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Abstract—Leaf area index (LAI) is an established structural
variable that reflects the three-dimensional (3-D) leaf layering of
vegetation in response to environmental inputs. In this context,
unmanned aerial system (UAS) based methods present a new ap-
proach to such plant-to field-scale LAI assessment for precision
agriculture applications. This article used UAS-based light detec-
tion and ranging (LiDAR) data and multispectral imagery (MSI) as
two modalities to evaluate the LAI of a snap bean field, toward even-
tual yield modeling and disease risk assessment. LiDAR-derived
and MSI-derived metrics were fed to multiple biophysical-based
and regression models. The correlation between the derived LAI
and field-measured LAI was significant. Six LiDAR-derived met-
rics were fit in eight models to predict LAI, among which the square
root of the laser penetration index achieved the most accurate
prediction result ( R2

= 0.61, nRMSE = 19%). The MSI-derived
models, which contained both structural features and spectral sig-
natures, provided similar predicting effectiveness, with predicted
R

2
≈0.5 and nRMSE≈22%. We furthermore observed variation

in model effectiveness for different cultivars, different cultivar
groups, and different UAS flight altitudes, for both the LiDAR and
MSI approaches. For data collected at a consistent flight altitude,
MSI-derived models could even exceed LiDAR-derived models, in
terms of accuracy. This finding could support the possibility of
replacing LiDAR with more cost-effective MSI-based approaches.
However, LiDAR remains a viable modality, since a LiDAR-derived
3-D model only required a single predictor variable, while an
MSI-derived model relied on multiple independent variables in our
case.

Index Terms—Leaf area index, LiDAR, multispectral imagery,
precision agriculture, structure-from-motion, unmanned aerial
system (UAS).
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I. INTRODUCTION

R
EMOTE sensing systems have exceedingly advanced pre-

cision agriculture applications such as growth stage clas-

sification, yield estimation, and harvest scheduling in the past

few decades [1]–[3]. Among variables that affect the mentioned

practices to a large extent is leaf area index (LAI) [4]–[7]. LAI is

commonly defined as one-half of the total green leaf area per unit

horizontal ground surface area [8], [9]. It is a critical variable that

governs multiple canopy-light processes and essentially quan-

tifies the amount of photosynthetic area in an ecosystem [10].

Several LAI measurement devices have been developed for LAI

field measurements based on Beer–Lambert’s law; these include

digital cover photography, LAI-2200 (LI-COR Inc., Lincoln,

NE, USA), and AccuPAR LP-80 ceptometer (Decagon Devices

Inc., Pullman, WA, USA). However, the use of such devices

results in a significant labor and time cost, especially for wide

crop fields.

Over the past few decades, satellite- and airborne-based re-

mote sensing methods thrived and have been used to estimate

LAI across coarser spatial scales. Existing techniques can be

divided into two categories, based on how the data are collected.

The first is termed passive remote sensing and is based on

spectral imagery, such as color (RGB), near infrared (NIR),

multispectral, and hyperspectral sensors. The second encom-

passes active remote sensing and typically is based on light de-

tection and ranging (LiDAR) or synthetic aperture radar systems

[11]. While promising results have been demonstrated in many

studies, the temporal and spatial resolutions are still lacking

when the plot-scale evaluation is needed. It is in this context

that the unmanned aerial systems (UAS) based remote sensing

methods have proliferated as a value-adding option to satellite

or airborne-based methods. Both passive sensors and active

sensors can be mounted on a UAS and simultaneously capture

different types of data for crops. There are two main types

of UAS-based methods for LAI assessment: spectral features

derived from reflectance imagery, and structural features derived

from the three-dimensional (3-D) point clouds, i.e., LiDAR or

structure-from-motion (SfM) based point clouds.

As for the models derived from spectral features, Yao

et al. [12] used UAS-based narrowband multispectral imagery

to estimate wheat LAI at the middle-to-high LAI levels. The

authors concluded that the LAI model, based on the modified
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TABLE I
GENERAL HEIGHT AND LAI FOR DIFFERENT CROPS AT MATURATION

triangular vegetation index (MTVI2), provided the highest co-

efficient of determination (R2 ≈ 0.8) and lowest normalized

root-mean-squared error (nRMSE = 24%). Another study [13],

in turn, applied UAS-based multispectral camera imagery for

sorghum phenotypic assessment and determined that the nor-

malized difference vegetation index (NDVI) and the enhanced

vegetation index (EVI) correlated well with LAI, both during the

vegetative growth phase (preanthesis) and at maximum canopy

cover shortly after anthesis (R2 = 0.66− 0.85). Researchers

from a related effort [14] also developed a regression model

for evaluating LAI from NDVI with a significant correlation of

R2 = 0.77 via a UAS-based multispectral camera. Such spectral

approaches to LAI assessment often have been augmented by

3-D sensing inputs, i.e., 3-D point clouds generated by LiDAR

or SfM, given the ability of the latter to directly measure plant

structure.

As for structural feature-based methods, Comba et al. [15]

used UAS-LiDAR data to explore the effect of leaf occlusion

on LAI inversion for maize crops. They determined the optimal

voxel size for inverting LAI and demonstrated better results by

designing a flight direction that is perpendicular to the maize

rows. A related study [16] used a UAS-LiDAR system to evalu-

ate structural parameters of a mixed-species restoration planta-

tion experiment. Three structural variables were analyzed from

LiDAR data, including canopy height, gap fraction, and LAI,

and a significant correlation (R2 = 0.84;nRMSE = 15.5%)
between LiDAR-derived canopy height/LAI and field-observed

aboveground biomass was found. A related study [14] used

UAS-based SfM point clouds to visualize and quantify vineyard

canopy LAI, with a moderate R2 value of 0.567 being reported.

Finally, Comba et al. [15] evaluated the LAI of 704 vines in

a vineyard using SfM point clouds from UAS imagery and

obtained an solid R2 value of 0.82. The performance metrics

for the mentioned studies might sound promising, but they were

constrained by various factors.

The most well-studied environments for LAI and UAS-based

methods are forests or relatively tall crops, such as maize, wheat,

and grapevines [12]–[18] (see Table I). It is worth noting that

for smaller/shorter crop types, many methods for extracting

structural parameters failed [11], [19]. To our knowledge, only

a few studies have focused on point cloud-based methods that

are applied to short (<0.5 m) crops. It has become evident that

unique problems emerge in such scenarios. While the vegetation

canopy becomes smaller/shorter, the associated biophysical fea-

tures become smaller, and noise from the background material

could cause challenges [20]. Vegetation points near the ground

are difficult to separate from ground points. Mild disturbance

such as weeds, rocks, depressions, and even windy weather could

add significant noise to analyses. In other words, difficulty in

analysis increases as the “signal-to-noise ratio” decreases [7],

[21].

These complications require a robust approach that could

take into account various characteristics of the environment

being studied. One such method is data fusion processes. Recent

studies have shown that data fusion, which utilizes data from

different sensor platforms, often can achieve more accurate

results. A related study [32] found that the fusion of RGB

image and thermal image could improve the evaluation of LAI

in a soybean field by reducing the nRMSE by 0.4% when

compared to only using a RGB camera. In a later study [33],

the authors showed that fusion of high resolution RGB, multi-

spectral, and thermal data could provide an accurate estimation

of biochemical and biophysical parameters and improve the

yield prediction accuracy from a R2 value of between 0.26 and

0.52 for a single imaging sensor, to 0.67 for multiple sensors.

Sankey et al. (2017) [34], in turn, demonstrated that LiDAR-

hyperspectral image fusion performed more accurately (88%

overall accuracy) than either data source alone for representing

a gradient of vegetation and topography in northern Arizona,

USA. In a follow-up study in arid and semi-arid land vegeta-

tion monitoring [35], the fusion of LiDAR-derived plant height

estimates and hyperspectral images derived spectral signatures

resulted in an overall accuracy of 84–89% for vegetation species

classification, which outperformed either data type alone.

Our primary goal in this article, therefore, was to estimate the

LAI of a short-crop, namely snap bean (Phaseolus vulgaris L.),

using UAS-based SfM and LiDAR point clouds, as well as the

spectral information from multispectral imagery. We combined

output products from both the structural (3-D) and spectral

datasets to improve their preprocessing pipelines. LAI predictive

models then were derived for both modalities. We pursued

three main objectives: 1) assess whether LiDAR-derived and

multispectral imagery-derived SfM models can provide reliable

estimates of LAI, 2) identify the most suitable models, either

as a single or fused approach, for structural characterization of

snap bean crops, and 3) compare the LiDAR-derived and multi-

spectral imagery-derived SfM models and explore the potential

of using the more cost-effective SfM point clouds to replace

LiDAR in precision agriculture applications, using snap bean as

a proxy crop.

II. MATERIALS AND METHODS

A. Study Site and Data Collection

The experimental field is located in Geneva, NY, USA

(42°49′53′′ N, 77°00′50′′ W; Fig. 1) with an area of 2060 m2

(20 m× 103 m). The field has a ∼ 2◦ slope from the west-

to-east. Four replications of six different snap bean cultivars,

namely Venture, Huntington, Colter, Cabot, Flavor Sweet, and

Blevet were planted, resulting in 24 plots, with four rows for

each plot.
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Fig. 1. Snap bean field was located in Geneva, NY, USA. Picture in the bottom shows the RGB representation of the captured mosaic of the field.

We used 11 flights to collect data over six days at different

growth stages, from July 8–August 20, 2019. There were two

flights at different altitudes (∼28 m and∼51 m) each day, except

for the single flight on July 8, which was for generating a digital

elevation model (DEM) when the field only contained snap bean

seedlings, i.e., the bare soil was mostly visible. The selection

of subsequent dates largely followed snap bean phenological

events: August 5 was selected because the snap beans were

blooming and changing rapidly; on August 12, the snap beans

were close to maturity, and the blooming period had ended; on

August 14, the snap beans were almost ready for harvest and

pods were relatively mature; and finally, some beans were har-

vested on August 16 and August 20, i.e., these dates represented

fully mature, harvest stages.

The UAS-based mapping system consists of a DJI Matrice

600 Pro hexacopter, which carries a Global Navigation Satellite

System (GNSS)/inertial measurement unit (IMU) unit, a Velo-

dyne VLP-16 PuckTM (Velodyne, San Jose, CA, USA) LiDAR,

and a MicaSense RedEdgeTM (Micasense, Seattle, WA, USA)

multispectral camera. The GNSS/IMU unit records geolocation

and GPS time during flights. The VLP-16 Puck generates up to

∼600 000 points/second in dual return mode. It holds a ±15°

vertical field-of-view and a 360° horizontal field-of-view. The

LiDAR’s laser wavelength is 903 nm, and the range accuracy is

±3 cm [36]. The MicaSense RedEdge captures imagery from

five discrete spectral bands: blue, green, red, red edge, and near

infrared, centered at 475 nm, 560 nm, 668 nm, 717 nm, and

TABLE II
FLIGHT SETTINGS AND DETAILS ON COLLECTED DATA

842 nm, respectively. It provided a ground sample distance of

approximately 0.02 m per pixel at 30 m above ground level.

Table II lists information related to flight plans and high-level

data specifications.

Field measurements were collected concurrently with UAS

flights. For each plot, we used measuring tapes to take 12

samples of canopy height and took nine samples of LAI via

an AccuPAR LP-80 ceptometer, by inserting the bar across two
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TABLE III
STATISTICS OF THE FIELD MEASUREMENT OF LAI

adjacent rows [37]. Sampling measurements within each plot

were then averaged to be a representative of the plot on the date.

Therefore, for each flight on each date, we have 24 samples of

ground truth canopy height and LAI. The statistics of the field

measured LAI is shown in Table III.

We used every two adjacent crop rows and the between-row

gap as an elementary sampling unit (ESU) [10] when process-

ing the LiDAR point clouds, which corresponded to the field

samples. We calculated the predicted LAI of each ESU and then

averaged the three ESUs in each plot to obtain the predicted LAI

of the plot.

It is worth noting that the VLP-16 is a widely used industrial-

level LiDAR. The system has a relatively larger beam divergence

(a horizontal beam divergence of 3.0 mrad and a vertical beam

divergence of 1.5 mrad), when compared to survey-level Li-

DAR systems, but it comes at a lower acquisition and operational

cost [38]. According to the descriptions in the VLP-16 manual

[26], the footprint size would be 150 × 85 mm in flights at 50

m altitude and 81 × 47 mm for flights at a 25 m altitude, while

the snap bean leaves can grow 6–15 cm long and 3–11 cm wide.

We intentionally selected the Velodyne VLP-16 as our LiDAR

modality in the hope of eventual operational implementation of

our methods. The AccuPAR LP-80, on the other hand, boasts

a proven track record as an effective in situ LAI measure-

ment device, as evidenced by a variety of previous studies

[10], [37], [39]–[41]. These considerations led to the selection

of our respective airborne and ground-based 3-D assessment

tools.

B. LiDAR and MSI Data Preprocessing

The raw LiDAR data were provided directly by our data

collection team, with each LiDAR point containing data/header

fields for x, y, z, intensity, return number, and the GPS times-

tamp. The multispectral imagery was processed using the

Pix4DMapper (V.4.4.12) for generating SfM point clouds, image

mosaics of the crop field, and vegetation indices. This section

will describe details of both datasets.

1) Registering MSI With LiDAR: SfM point clouds and mul-

tispectral mosaic images were significantly shifted and inclined

from LiDAR point clouds due to differences in platform design

and flight collection parameters, making it challenging to utilize

a fusion of the LiDAR and multispectral data directly. The spatial

disparities were attributed to the following issues: 1) the ground

control points (GCPs) were not well utilized for mosaicking

Fig. 2. Representation of point cloud cross-sections along the (a) y-axis and (b)
x-axis. Large dark gray points represent the SfM point cloud, and the small bright
grey points represent the LiDAR point cloud. (a) A sample of a cross-section of
SfM and LiDAR point clouds along ±y direction. (b) A sample of a cross-section
of SfM and LiDAR point clouds along ±x direction.

images or generating the SfM point cloud; 2) different horizontal

and vertical georeference coordinate systems were used for

different sensors; and 3) differences between the ellipsoidal

height and the orthometric height. Therefore, we registered

the multispectral data with LiDAR data via an independent

step.

Six valid GCPs (AeroPoints) were used to optimize the pro-

cess of mosaicking images and generating SfM point clouds. The

GCPs used NAD83 as the geographic coordinate reference sys-

tem (horizontal) datum and NAVD88 as the vertical coordinate

reference system datum. The LiDAR point cloud accordingly

used WGS84 and EGM1996. Different reference coordinates

resulted in several meters difference of the x/y coordinates.

Second, the default z value in SfM point clouds corresponded to

orthometric height, i.e., the distance of a point on the earth’s

surface to the reference geoid, which is determined by the

earth’s gravity and approximated by the global mean sea level.

In contrast, the z value in LiDAR point clouds was ellipsoidal

height, meaning the distance of a point on the earth’s surface

to the ellipsoid that approximates the earth’s surface [42]. The

difference between the ellipsoidal height and the orthometric

height is called “geoid-ellipsoid separation”[43], calculated by

N = Ho −He, where Ho is the orthometric height, He is

the ellipsoidal height, and N is a signed number [44]. At our

experimental field, N = −34.9 m.

We, therefore, first converted the coordinates of the GCPs

from NAD83/NAVD88 to WGS84/EGM1996 by using the free

software tool VDatum 4.0.1 [45]. We then used the transformed

GCPs to reoptimize the SfM point clouds. This was followed by

calculating geoid height at our experimental field and shifting the

SfM point clouds to match the LiDAR point clouds vertically.

Fig. 2 shows examples of the cross-sections of the 3-D point

cloud from the ninth flight; note that each ridge represents part

of a row crop. The valleys in the middle of each two adjacent

ridges represent the between-row space. Judging from the peaks

and valleys, we found that the LiDAR and SfM point clouds
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Fig. 3. LiDAR data preprocessing workflow. The rectangles represent point
cloud data. The ellipses refer to a processing step or filter. The rhomboid refers to
an external file or medium processed results, and the plus sign implies multiple
files interacting with each other. The CSF filter was applied only on the first
flight for generating the DEM.

matched well in all 3-D. The LiDAR point clouds were generally

higher than the SfM point clouds and exhibited more variation,

especially at the top of the canopy rows. We attributed this to

the fact that LiDAR operates by actively recording the reflected

signal from objects in space, while the SfM algorithm is based

on feature extraction. As the leaves at the top of canopy were

small and erectophile in nature, it was challenging for the SfM

approach to capture top leaves.

2) LiDAR Data Preprocessing: LiDAR sensing enables

probing of both the horizontal and vertical structures of crops

by actively emitting high-frequency laser pulses toward the

object and recording the reflected responses as a function of

time [46], [47]. While this design enables such active systems to

capture more in-depth structural information than classical pas-

sive imagery sensors, it also creates specific challenges, such as

complex data preprocessing, noise points, nonuniformity across

different scanning angles, and a rapid increase in footprint size

as the detection range increases. Moreover, different vegetation

characteristics, in terms of height, layering, and leaf charac-

teristics, limit the effectiveness and generality of evaluation

models based on LiDAR-derived metrics. Therefore, a robust

assessment requires proper preprocessing of the raw point cloud

and careful selection and validation of predictive models.

We implemented an amended version of the UAS-based Li-

DAR data preprocessing pipeline described in [48] (see Fig. 3).

First, we retrieved the flight trajectory from IMU recordings.

We then cropped the point clouds according to the valid spatial

boundaries of x/y/z and temporal boundaries of GPS time, using

the las2las function embedded in the LAStools software [49].

Subsequently, the outliers in the point cloud were removed

using the statistical outlier removal filter, which computes the

average distance of each point to its k nearest neighbors and

then eliminates the points that have larger distance to their

neighbors than the average distance plus nσ times the standard

deviation [50]. Then, the second return points were removed.

The LiDAR operated in dual-return mode, and thus, could

distinguish two returns on a per-pulse basis only if the distance

between the two returns was greater than 1 m [36]. However,

since snap bean plants only grow 0.3–0.6 m tall, the first return

points were adequate for representing most of the crop-specific

structural information for the LiDAR data. The next step in-

volved the removal of duplicate points, which were ≤0.001 m

away and may result during preprocessing of raw data. These

duplicates could inflate the pulse density and consume additional

disk space [51].

Next, we retrieved the scan angle of each 3-D point in the

point cloud by associating it with a flight trajectory point with the

nearest timestamp. Thus, from (1), we calculated the horizontal

and vertical scan angles α1 and α2 of each LiDAR point

α1 = tan−1

(

yl − yt
zl − zt

)

;α2 = tan−1

(

xl − xt

zl − zt

)

(1)

where xl, yl, zl, are the coordinates of the LiDAR point, and

xt, yt, zt are the coordinates of the flight trajectory points.

Points with large scan angles were removed because 1) the point

density decreases rapidly at large angles, and 2) measurement

error could increase substantially as the laser beams propagate

further (the footprint size of a single laser beam increases by

a factor of two as the propagation distance increases). We,

therefore, set a threshold of±20◦ to only retain points with small

enough vertical and horizontal scan angles. While this threshold

was ±22.5◦ in [48], we considered that this threshold was

adjustable for different data characteristics and objectives. The

flight line overlap percentage can also impact the selection of this

threshold. We then generated a DEM to create the normalized

height to ground dataset by 1) applying the cloth simulation filter

(CSF) [52]–[55] via CloudCompare (version 2.11) to identify

pure ground points from the point cloud collected on July 8,

when the bare soil was mostly visible, 2) subsampling the

ground points to a 0.02 m grid, given that the ground points

are even denser than the target grid data, and 3) ordinary kriging

interpolation [56] to fill the empty cells. Then, we normalized

all z coordinates from the other point clouds to heights above

ground using the DEM [26].

Most LiDAR-derived predictive models rely heavily on tally-

ing the number of points or feature values of all points per class

(vegetation versus ground). Therefore, the final models’ efficacy

and accuracy largely depend on the quality of the segmentation

of ground points versus vegetation points. Many studies for

vineyard or forestry applications [14], [57], [58] used a manually

selected threshold of normalized height, which could be 0 or

a small positive number, to achieve the segmentation. Points

lower than the threshold are classified as ground points, and

points above the threshold are classified as nonground points.

However, crops like snap bean have a much smaller height than

vineyards (meters) or trees (tens of meters), ending up with

severe blending of near-ground vegetation points and ground

points. A random threshold could easily bring bias from either

ground side or vegetation side.
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TABLE IV
CALCULATION OF THE OBSERVATION PARAMETERS FOR DETERMINING THE

IDEAL Ẑth

Note: N refers to the total number of the points in the tested point cloud; tp refers to the

number of true positives, i.e., vegetation points predicted as vegetation points; fp refers

to the number of false positives, i.e., vegetation points predicted as ground points; fn

refers to the number of false negatives, or ground points predicted as vegetation points;

and tn refers to the number of true negatives, or ground points predicted as ground

points.

We, thus, resorted to the segmentation results from 2-D image

mosaics of the whole field. By combining the vertical traits from

LiDAR and the horizontal textures, we hope to minimize ground

versus nonground return segmentation error. We used the ENVI

5.5.2 to create a 2-D segmentation mask for each multispec-

tral image. First, we generated mosaic images of the whole

field, corresponding to the five bands, using the Pix4DMapper

(V.4.4.12). Second, we stacked the five single-band mosaic

images and then applied the spectral angle mapper (SAM) [59] to

classify vegetation pixels versus ground pixels. SAM operates by

comparing the spectra of each pixel to known reference spectra

or endmembers. It is insensitive to illumination change, since

only the vector direction is used and not the vector length. Then,

we used the “mask” to assess results from a list of different

threshold values Ẑth1, Ẑth2, . . . , ẐthN . From the 3-D segmen-

tation results, corresponding to each Ẑthi, we used stratified

sampling on both ground and vegetation points according to

their x/y values and matched the sampled points to the nearest

pixels in the 2-D mask. A contingency table, thus, could be

constructed.

Evaluation parameters such as recall, precision, total accu-

racy, and Cohen’s Kappa coefficient (κ) [60], [61] were calcu-

lated (see Table IV). Since we want the highest accuracy for

both ground points and vegetation points, we determined the

best Ẑth by selecting the threshold where the highest Cohen’s

Kappa occurred, i.e., the classification results of the 2-D SAM

and of the z-threshold-based method reached the maximum

overall agreement. We then applied the best Ẑth as a threshold

for differentiating ground and nonground points in the LiDAR

point cloud.

Fig. 4 displays an example of determining the ideal Ẑth for the

LiDAR point cloud and the values of different Ẑth for LiDAR

point clouds from different flights. The ideal Ẑth ranged from

0.06–0.14 m for different flights. Fig. 5 shows an example of a

top-down view of the segmented nonground points. Apart from

a few points that were 1 m above the ground (in-field plate

markers) and a small portion of misclassified ground points,

most of the points were within 0.1–0.4 m above ground, i.e.,

resulting from the snap bean plants. The segmented point clouds

Fig. 4 Determination of the ideal Ẑth for different flights. (a) Change of the

observation parameters over Ẑth. (b) The ideal Ẑth values in different flights.

then were separated into ESUs by 1) manually creating polygons

of the ESUs’ boundaries, 2) intersecting the ground points and

the nonground points of each ESU with its associated coverage

polygon, and 3) allocating the points to different groups by

their polygon ID. Points for each ESU were used to derive one

observation (xi) for evaluating LAI from LiDAR. Our next step

involved the addition of spectral information to augment the 3-D

datasets.

3) MSI Data Preprocessing: Multispectral imagery can pro-

vide rich information about the crop from two general perspec-

tives. The first involves the generation of a 3-D point cloud of the

field through a photogrammetric range imaging technique, i.e.,

SfM [62]–[64]. The other focuses on spectral information, i.e.,

deriving vegetation indices from the multiple bands per image

[65]–[68]. We implemented and combined both methods in this

section to generate extended SfM point clouds that contain both

structural (3-D) features from the x/y/z coordinates and spectral

features from vegetation indices.

Fig. 6 displays the processing workflow for multispectral

imagery. First, all multispectral images from each flight were

fed into Pix4Dmapper to generate an SfM 3-D point cloud

and five mosaic reflectance images (one for each band) of

the whole field. We next separated the vegetation points from

nonvegetation points via the following steps: 1) classifying the
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Fig. 5. Top-down view of the nonground points from the second flight on August 14, 2019.

Fig. 6. Workflow for generating the extended 3-D point cloud with structural and spectral metrics. Box A represents the processing of 3-D points, while the box
B shows the processing of images in spectral space.

2-D mosaic image, stacked from five single band mosaic images,

into vegetation versus nonvegetation pixels using the SAM clas-

sification in ENVI and 2) “masking” the 3-D points according

to the classification labels and the geographical information (x/y

coordinates) in the 2-D mosaic image. We then normalizedthe

the z coordinates in the SfM point cloud to height-above-ground

and derived normal vectors for vegetation points; additionally,

we derived vegetation indices from the five mosaic images.

Finally, by using QGIS (version 3.12.2), we intersected the

3-D vegetation points with the mosaic images and polygons

of the ESU boundaries. Thus, we integrated the structural and

spectral information, as well as the ESU ID, into the final point

cloud.

One possible caveat of this 2D-classification-to-3D-

segmentation method might be that some ground points di-

rectly beneath vegetation points could be mistaken as vegetation

points. However, we considered the impact of this drawback as

negligible in our project. Given the fact that the images were

collected at a nadir angle, the dense snap bean canopy hindered

the camera from capturing the ground underneath leaves, which

resulted in the SfM point cloud only having one “visible” layer

for the imagery in the study area.

We mainly utilized structural features that consisted of nor-

malized heights and projected normals. The z coordinates in

the SfM point clouds were normalized to height above the

LiDAR-derived DEM. We used CloudCompare to calculate the

point normals. We hypothesized that the normal vectors could

explain a plant canopy’s inherent structural variability. In other

words, normals that were uniformly distributed across a plant

canopy were indicative of a closed, even canopy, not dissimilar

to an umbrella’s form. In contrast, highly variable normal angles

represent a gap-filled, uneven plant canopy. CloudCompare

outputs normals as dip angle (zenith) and dip direction angle

(azimuth). These values were calculated using

Dip angle = arccos
(nz

n

)

Dip direction angle = arctan

(

nx

ny

)

(2)

where n refers to the unit normal at a certain point, and

nx, ny, nz are components of the normal.

A typical vegetation spectrum shows absorption features in

the red and blue wavelengths, slight reflectance in the green

wavelength range, and a strong NIR reflectance plateau, with
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TABLE V
CALCULATION OF VARIOUS VEGETATION INDICES FROM THE MULTIPLE BANDS

water absorption features at the longer shortwave-infrared wave-

lengths. Vegetation indices (VIs) are broadly used to reflect and

enhance the relationships between these spectral absorption-

reflectance spectral features and, thus, provide meaningful in-

formation about plant growth stage, plant health, and among

other important characteristics [69]. Considering the five bands

in our data, we selected five VIs by referencing previous rele-

vant studies (see Table V). They are the normalized difference

vegetation index (NDVI), simple ratio index (SR) Anthocyanin

Reflectance Index 2 (ARI2), green NDVI (GNDVI), and nor-

malized difference red edge index (NDRE).

C. Predicting LAI From LiDAR and MSI

1) LiDAR LAI Models: Multiple models have been proposed

to retrieve LAI from LiDAR point clouds, with [10] providing an

extensive overview. The models can be divided into three main

categories: 1) based on Beer–Lambert’s law, LAI is correlated

with the gap fraction, which usually is derived through various

laser-based metrics, such as the laser penetration index (LPI)

[72], [73] and the all echo cover index (ACI) [74]; 2) LAI is

linearly correlated with laser-based metrics, in which the corre-

lation coefficients are determined by regression [57], [58], [75],

and 3) LAI is evaluated through its allometric relationship with

other LiDAR-derived biophysical parameters, such as vegetation

height [72] and canopy cover [76].

We selected eight models to test our data (see Table VI). In

model 1–4, we used two different methods to determine the

β value: 1) simply assuming a spherical leaf angle distribution,

which gave us β = 2 for all plots [77]; and 2) calculate β via its

relationship with the extinction coefficient k [78], i.e., β = 1
k

,

where k can be decided by the solar zenith angle and the leaf

angle distribution parameterχ. The zenith angle in our study was

retrieved from time and geo-coordinates. The leaf distribution

parameter χ refers to the ratio of the length of the horizontal

semi-axis to the vertical semi-axis of an ellipsoid, described by

the leaf angle distribution function of the canopy [78], [79]. The

default value forχ is 1.0 for the AccuPAR LP80, which assumes

a spherical canopy angle distribution. While the value of LAI is

not strongly dependent on the value of χ, we adjusted this value

as the ratio of the measured row width to the measured canopy

height, assuming that the wider a snap bean plant becomes, the

more horizontal its leaves will be. In models 5–8, a and b were

empirical parameters derived from linear regression between the

medium terms (p or CH) and the measured LAI.

2) MSI Evaluation Models: We used both the structural and

spectral descriptors per plot to derive multiple statistical metrics,

including the mean (μ), standard deviation (std), coefficient

of variation (CoV), first quartile (q1), median, third quartile

(q3), interquartile range (IQR), and trimmed mean (trMean).

These metrics (7 descriptors × 8 metrics = 56 predictors) then

were used to predict LAI through multivariate regression. We

input these independent variables to three feature selection and

regression algorithms using a widely used classical algorithm—

stepwise regression [57], [58], two common machine learning

algorithms—Lasso cross-validation (LassoCV) [80], and recur-

sive feature elimination (RFE), which used linear support vector

regression (SVR) [81] as the estimator. For stepwise regression,

we used backward selection when the sample size was larger

than the number of features (n>p) and forward selection in the

opposite case (n<p) [82]. We first used LassoCV and RFE-SVR

to select the most significant features, after which collinear vari-

ables were removed from the selected subset, if their variance

inflation factor > 5–10 [83], [84]. Multivariate linear regression

subsequently was implemented for the remaining features to

develop prediction models for LAI. All three methods were

implemented in Python 3, and LassoCV and RFE-SVR were

implemented by using the scikit-learn package [85]. The soft-

ware and packages used in this project along with their objectives

can be found in Table IX.

3) Modeling From Different Combinations of Datasets: In

both datasets, we first derived models from all the data from

flights 2–10. Field measurements on each day were reused as

corresponding true responses for both flights. Next, we assumed

that different snap bean cultivars might require different evalu-

ation models, since their physical characteristics varied as they

matured. The six cultivars were separated into three groups

according to their morphological characteristics, i.e., Venture

and Huntington belong to the “Large cultivar variety (L)” group;

Colter and Cabot belong to the “Four sieve cultivar (F),” and

Flavor sweet and Blevet belong to the “Whole sieve cultivar

(W)” [86].

Flight altitude could also affect the point density in LiDAR

point clouds and the laser pulse average footprint size. Denser

points and smaller footprint size arguably could lead to more

structural crop detail. Lower flight altitudes, in general, lead to

higher LiDAR point density and smaller footprint sizes. We,

therefore, also assumed that flight altitude could impact the

evaluation results. We evaluated two sets of prediction models

to test this assumption for flights at two different altitudes, i.e.,

the 3rd, 7th, 9th, 10th flights as a group at 28 m altitude and the

2nd, 4th, 6th, 8th, 11th flights as the other group at 51 m altitude.

D. Evaluation Metrics

We used the coefficient of determination (R2) the root-mean-

squared error (RMSE), and the normalized (nRMSE) to evaluate

the accuracy and precision of the predicting models from LiDAR

and MSI. Moreover, since MSI models were derived from multi-

variate regression, we calculated the adjusted R2 [14], [90], the

predicted R2 [91]–[93]. The adjusted R2 essentially is the R2

that has been adjusted to compare models for different numbers

of predictors. It increases only if a predictor improves a model

by more than what is expected by chance [90]. The predicted

R2 reflects the ability of the regression model in predicting the

response of a new observation and reflects how much of the
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TABLE VI
MODELING APPROACHES BASED ON LIDAR-DERIVED INDICES TO ESTIMATE LAI

Notes:
∑

Icanopy refers to the sum of points’ intensity values. R≥T refers to the number of returns above or equal to the height threshold, i.e., the ideal Ẑth in Fig. 4(b) and

R<T refers to the number of returns below the height threshold. Rtotal is the number of total returns. Res0.95 and Res0.05 refer to the 95% quantile and the 5% quantile,

respectively, of the height above the DEM.

variance in the dependent variable is explained by the model. If

a model is overfitting, the predicted R2 will drop significantly.

The equations for calculating five evaluation metrics are as

follows.

1) R2 = 1−
∑

i (yi−ŷi)
2

∑

i (yi−ȳ)2
, where yi is the true response and

ŷi is the predicted response for the ith observation.

2) RMSE =

√

∑

i (yi−ŷi)
2

n , where n is the number of obser-

vations.

3) Adj. R2 = 1− (1−R2)(N−1)
N−p−1 , where N is the number of

observations, p is the number of independent variables in

the model. R2 is calculated from 1).

4) Pred. R2 = 1− PRESS
SStotal

= 1−
∑n

i = 1 (yi−ŷi, −i)
2

∑

i (yi−ȳ)2
, where

SStotal is the total sum of squares and PRESS is the

predicted residual error sum of squares (PRESS) statis-

tic. PRESS is essentially a form of leave-one-out cross-

validation: after removing one observation each time, the

model is refitted from the remaining observations and then

predict response to the removed observation (ŷi, −i), then

the PRESS statistic is calculated as the sum of square of

the resulting error [94], [95].

5) nRMSE = RMSE
ȳ × 100% =

√

∑

i
(yi−ŷi)

2

n

ȳ × 100%.

III. RESULTS

We derived multiple models for predicting LAI from both

LiDAR and extended SfM point clouds. By providing the eval-

uation metrics mentioned previously, we compared not only

models for the same method or under the same condition, but

also models across different methods and conditions.

A. LiDAR-Based LAI Estimation

Fig. 7 shows the scatter plots of LiDAR-predicted LAI versus

field-measured LAI and the R2, RMSE, and nRMSEof the

model 1–8 in Table VI. Except for model 8, which exhib-

ited some correlation between the predicted LAI and mea-

sured LAI with R2= 0.05, all the other models provided

moderate accuracy with R2 values ranging between 0.55–

0.61, RMSE ranging between 0.38–0.59 m2/m2, and nRMSE
ranging between 19% and 31%. The model based on LPI

achieved the highest R2 of 0.61 and the lowest RMSE of

0.38 m2/m2.

Figs. 8 and 9 list the R2 and RMSE of the models generated

from data on a percultivar and percultivar group basis, respec-

tively. The models were sensitive to the differences in cultivars

and within cultivar groups.

Models for the Flavor Sweet cultivar tended to yield the

highest R2 and lowest RMSE, while models for the Venture

cultivar resulted in the lowest R2 and the highest RMSE. The

highest R2 = 0.89 was achieved by ACI, β = 1
k

model on the

Flavor Sweet. The lowestRMSE = 0.26 andnRMSE = 0.14
were achieved by the fc model and

√
LPI model for the Flavor

Sweet cultivar. Models based on ABRI, fc, and LPI (5, 6,

7) provided consistently better predictions for nearly all cul-

tivars. The CH models did not exhibit apparent correlations

between the predicted LAI and the measured LAI for most

cultivars, and were inferior to other models. However, for the

Flavor Sweet cultivar, it gave satisfactory predictions withR2 =
0.82 and an RMSE = 0.31. We attributed this difference to

Flavor Sweet’s strong resistance to lodging, even during harvest

time.

In Fig. 9, similar to the percultivar-polylines, the models based

on ABRI, fc, and LPI continued to perform better than other

models. The CH models again showed no predictive value (close

to zero R2 for cultivar group L and F), but moderate accuracy

and precision for cultivar group W (R2 = 0.51 and RMSE =
0.45). Fig. 10 shows a comparison of the evaluation metrics for

all the models derived for two flight altitude groups. Generally,

all the models from the 28 m flights yielded better results than
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Fig. 7. Scatter plots of 1:1 relationship between the estimated and measured LAI using LP-80 for each of the models. Data from all flights and all plots were
included. The key indices were listed in the titles. The subplot names refer to the key indices in Table VI.

their corresponding models from the 51 m altitude flights, except

for the CH models.

B. MSI-Based LAI Estimation

Table VIII shows the results of the models for evaluating

LAI using stepwise, LassoCV, and RFE-SVR methods. For the

stepwise regression, we set α = 0.05 as the include (forward

selection) or exclude (backward selection) threshold [14], [96].

For the LassoCV and the RFE-SVR methods, we used the default

setting of key parameters in the scikit-learn package. Three

regression/feature selection methods achieved similar results

based on the adjusted R2, predicted R2, and nRMSE. For the

models built from data from all flights, the adjusted R2 and the

predicted R2 were 0.48–0.53, and nRMSE values between 0.21

and 0.22. The derived model using the LassoCV method only
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Fig. 8. LiDAR regression results per cultivar. Note the apparent differences between results for the various cultivars. All the models achieved similar results,
except for the CH-based model.

Fig. 9. LiDAR regression results per cultivar group. Across all models, the whole bean cultivar group resulted in higher accuracy than the other two groups.

Fig. 10. LiDAR regression results for two different altitudes. Note that the 28 m flight group generally had a higher R2 and lower RMSE/nRMSE values than
the 51 m flight group. (a) 28m-flight-group. (b) 51m-flight-group.
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Fig. 11. Adjusted R
2, predicted R

2, and nRMSE of the L, F, and W cultivar group. According to Green’s rule-of-thumb [98] for samples per variable, since
the sample size decreased to 80 for each model, only a maximum of four predictor variables were included in each model.

TABLE VII
MINIMUM SAMPLE SIZES FOR DIFFERENT NUMBERS OF PREDICTORS BASED

ON GREEN’S RULE-OF-THUMB [97], [98]

required three variables to achieve nearly the same results as the

stepwise and RFE-SVR models. The third quantile of NDVI and

the standard deviation of NDRE were shared variables across all

three models.

From Fig. 10, we found that the 28 m flight group achieved

obviously better results than the 51 m flights, with predicted

R2 = 0.72 to 0.73 and nRMSE = 15% to 16%. The variables

shared between models also changed. For the 28 m flight group,

these were the standard deviation of GNDVI and median of

NDRE and for the 51 m flight group, the common variable was

the standard deviation of the dip angles.

Fig. 11 shows the results of MSI models derived from cultivar

groups. We found that the models for the W group achieved

relatively higher adjusted and predicted R2 values than models

in the other two groups, although their nRMSE were similar.

We did not derive regression models for flights per cultivar as in

the LiDAR data analysis, since Green’s rule-of-thumb states that

when selecting samples per variable, the sample size should not

be smaller than 50 in order to avoid overfitting in multivariate

regression [97], [98].

Moreover, minimum sample size requirements increase with

an increased number of predictor variables (see Table VII). The

“all flights” group contains all the observations for the 24 plots

during flight numbers 2–11, i.e., 240 observations. When they

were split into a 28 m flight group and a 51 m flight group, the

sample sizes decreased to 96 (flight number 3/7/9/11) and 144

(flight number 2/4/5/6/8/10), respectively. It followed that these

models would be restricted to up to six predictors. However,

when the observations were split into six cultivars, each sample

only had 40 observations, which violates the rule-of-thumb.

IV. DISCUSSION

A. LiDAR-Derived Metrics Modeling

Among the LiDAR-derived models, the models based on

ABRI fc, and LPI consistently provided the strongest correlation

and the smallest error. This result corroborated the findings from

studies in [57] and [58]. We observed that the LiDAR-derived

models (models 1–7) generally account for around 60% of the

variance in measured LAI (see Table VI and Fig. 7). The models

based on Beer–Lambert or the linear/logarithmic regression

achieved similar R2, and the latter ones yielded relatively lower

RMSE values. The model based on an allometric relationship

could not explain the variance adequately. We attributed this

to the model only considering one structural metric, i.e., the

canopy height, while no other structural information was in-

cluded. If additional structural metrics, such as plant width and

aboveground biomass were measured, this model’s accuracy

and precision likely could be improved, as mentioned in the

work of [99].

Two phenomena seemed counterintuitive in Fig. 7—the com-

parison between models 1 and 3 with 2 and 4, showed that a

more precisely retrieved β from row width and canopy heights

did not perform better than the naive assumption of β = 2. This

could be attributed to the uncertainty from field measurements

[100] and systematic inconsistency between different flights. By

comparing models 1 and 2 with 3 and 4, we found the sum of

intensity ratio (IRI) models yielded slightly lowerR2 and higher

RMSE values than the point number ratio (ACI) models, which

implies that integrating point intensity in LAI evaluation did not

improve the evaluation accuracy. This result could be due to the

radiometric conditions changing across different flights, which

in turn hints at the need for additional research into the impact

of illumination conditions on LiDAR-based models.

Results listed in Figs. 7 and 8 showed that 1) models for the

Venture cultivar exhibited worse predictions than the general
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TABLE VIII
LAI PREDICTIVE MODELS GENERATED FROM THE EXTENDED SFM POINT CLOUD DATA

∗ Features were normalized by subtracting the mean and divided by standard deviation before modeling.

∗∗ Since the sample size for the 28 m flight group models was only 96, according to Table VII, to avoid overfitting, we cannot legitimately use more than six independent variables.

Therefore, the number of features was limited to six by limiting the number of best predictor features.

Note: The naming convention for model variables follow a format of “[abbreviation of statistical metric]_[structural or spectral feature].” For example, µ_h implies the mean of

the height above DEM, CoV_dip refers to the coefficient of variation of the dip angle of normals, and q3_NDRE means the third quantile of NDRE.

models for the whole field (highestR2 < 0.40, lowestRMSE >
0.40); 2) models for the Cabot cultivar yielded nearly the same

prediction performance; and 3) models for the other four culti-

vars, i.e., Huntington, Colter, Flavor Sweet, and Blevet achieved

better results (highest R2 > 0.65, lowest RMSE < 0.30). This

was attributed to the morphological (biophysical) characteristics

that varied across different cultivars. For example, in our obser-

vation, leaves of cv. Venture expanded parallel to the ground with

maturity. The canopy of other snap bean cultivars began to lodge

with crop maturity. In contrast, snap bean cv. Huntington (also

a member of the L group), had leaves, which grew closer to the

main stem and the entire canopy was upright and remained so un-

til maturity. Cultivars with a tendency to lodge as crops matured

tended to affect the accuracy and precision of the LiDAR models.

Cultivars subject to lodging may be strongly affected by weather

such as heavy rainfall. Since data were collected over the full

growing stages of the snap bean crop, the tendency to lodge along

with the influence of external variables likely impacted modeling

results across days. These external factors could help explain the

variation in model results for the three cultivar groups in Fig. 9.

We concluded that leaf distribution angles for different cultivars

may contribute to the observed differences, and therefore, we

suggest that future studies include an assessment of leaf angles.

The models for the whole bean cultivar (W) group achieved

relatively better predictions than the other two groups, with the

largest R2 = 0.79 and the lowest RMSE = 0.30.

Additionally, when comparing Figs. 7 and 10, we observed

a general relationship among prediction accuracy and precision

for models 1 to 7 at different flight altitude groups, where the

28 m flight group > all-flight-group > 51 m flight group. This

observation supports our assumption that flight altitude is a

significant factor in predicting LAI from UAS-based LIDAR

data. The lower flight altitude enhances the capture of structural

detail of the crop by generating LiDAR point clouds of higher

density and smaller footprint size.

B. MSI-Derived Metrics Modeling

The models derived from the three feature selection meth-

ods (see Table VIII) exhibited similar accuracy and precision

(Adj. R2, Pred. R2, and nRMSE values), demonstrating the

robustness of our data processing methods. While we observed

one or two common features among the models from different

methods, it is noticeable that the models apparently varied

based on selected features. We attributed this to the fact that

feature selection methods use different metrics to eliminate less

important features. More specifically, stepwise regression uses

the p-value as its criterion, while LassoCV retains only nonzero

estimated coefficients in its sparse solution in L1 norm, and

RFE-SVR prunes features by ranking the coefficients of features

and recursively considering smaller and smaller sets of features.

Moreover, as shown in Fig. 12, features from the different

models were correlated. For example, RFE-SVR selected the

covariance of ARI2 (square A) and median of ARI2 (square B)

as the two most significant features. Although these two features

did not show up in the other two models within the same

group, they are significantly correlated with the covariance of

SR (stepwise model) and the third quartile of NDVI (LassoCV

model), respectively. We, therefore, concluded that although

different methods selected different features, many of these
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Fig. 12. Correlation matrix for the features in the three models for the 28 m
flights in Table VI. Yellow lines represent the boundaries of features from the
same models. Note that pixels at A and B exhibited a significant correlation.

features in fact were correlated. Such correlation is to be ex-

pected for a dataset of 96 samples × 56 features. If our methods

were to be extended to larger datasets, we speculate that more

common features will be found among the models, and the

between-feature correlation will be reduced. Judging from the

performance and the number of features of the models, we

recommend the LassoCV-based models based on performance

and the required number of predictor variables.

C. LiDAR Versus MSI

For the general models across all flights and all cultivars, the

best LiDAR-derived model achieved slightly better prediction

results than the best multispectral imagery-derived model, with

R2
lidar = 0.61 versus R2

msi = 0.53 and nRMSElidar = 19%
versus nRMSEmsi = 22%. However, when we separated the

data according to their flight altitudes, the best MSI-derived

models surpassed the best LiDAR-derived models. For the 28

m flight group, we observed R2
msi = 0.75 > R2

lidar = 0.65,

and nRMSEmsi = 15% < nRMSElidar = 19%; for the 51 m

flight group, we observed R2
msi = 0.54 > R2

lidar = 0.50,

and nRMSEmsi = 21% < nRMSElidar = 22%. This pro-

vided credence to our claim that an SfM approach, based on

multispectral imagery, could be a competent alternative to an

costly LiDAR sensor for measurement of LAI of snap beans

under the same flight settings. However, it is noticeable that

the MSI-derived models required more independent variables

than the LiDAR-derived models. Such complexity in models

could undermine their robustness and generality when research

expands to alternative crops. While some studies have shown

that the performance of different UAS-LiDAR systems varies

under different settings, such as flying height and speed [101],

we acknowledge that the conclusion was based on a set of limited

conditions and therefore should not be generalized too broadly.

The methods based on LiDAR data and multispectral imagery

shared some common findings: 1) the 28 m flight group generally

performed better than 51 m flight group, which attributed to

a denser spatial sampling of crop structure at lower altitudes;

and 2) the models for the W cultivar group exhibited higher

prediction accuracy than models for the L and the F cultivar

group, which was attributed to more consistent growth patterns

within a crop and during the season. These findings could offer

guidance for flight planning when predicting LAI of other crops.

First, without causing undue impacts on the operational flight

execution, it is preferable to operate the UAS at a lower altitude if

the environment and UAS battery power allow. Second, crops’

biophysical variance characteristics could result in additional

complexity (and poorer performing models) when assessing LAI

remotely. The more uniform and regular the crop growth patterns

are, i.e., leaf angles and leaf direction, the more likely an accurate

and precise LAI modeling outcome.

It is informative that despite the challenges associated with

the relatively low canopy height and high structural/temporal

growth variance in snap bean crops, our model performance was

comparable to other recently published studies. A related study

[12] evaluated LAI on winter wheat. Their models, based on

the modified triangular vegetation index, achieved R2 = 0.79
and nRMSE = 24%. Another related study [17], in turn, used

voxel-based methods from UAS-LiDAR data to invert LAI of

maize and obtained nRMSE values of 10.8%, 12.4%, 42.8%

for the upper, middle, and lower canopy layers, respectively.

Maimaitijiang et al. [102] compared LiDAR and photogram-

metry for LAI retrieval for sorghum fields and reported rel-

atively better results from LiDAR metrics, with R2 = 0.41
and RMSE = 0.32 for a tall, dense field and R2 = 0.75 and

RMSE = 0.27 for a lower, sparse field. These findings match

our results concerning the apparent improvement of models’

performance on the W cultivar group and the Flavor Sweet

cultivar, and in general bodes well for UAS-based sensing of

crop LAI. Major contributions of our study are the comparison

of models across cultivars and especially sensing modalities.

The use of image-based SfM versus more costly (financial and

processing costs) LIDAR-based structural sensing is also a key

finding.

V. CONCLUSION

The application of the UAS-based LiDAR and multispectral

imagery for predicting LAI has distinct advantages in terms

of temporal and spatial resolution and accuracy for field-to-

landscape-scale crop management. Our study demonstrated the

utility of LiDAR-derived models and MSI-derived 3-D models,

via SfM, in predicting LAI of short broadacre crops like snap

beans.

The relatively low canopy height of snap bean plants and

foliage architecture made the internal canopy details hard to

capture via either LiDAR or photogrammetry (SfM). Despite

the challenges, this article strongly supported the potential of

UAS-based LiDAR and multispectral imagery to estimate LAI

of short broadacre crops. Furthermore, since snap beans only

grow up to 0.3–0.6 m in height, the methods in our study should

be extensible to other short broadacre crops, such as sugar beets,

soybeans, and winter wheat (see Table I). Temporal transferabil-

ity of the models was not fully explored due to limited, one-year

sample data.

Results from this article are encouraging for the translation of

an eventual operational solution to crop structural assessment,
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and potential extension to, for example, yield models, especially

given that image-based SfM approaches performed nearly as

well as LiDAR, an active sensing modality. Our objective here

was to contrast LiDAR- and MSI-based LAI estimation, espe-

cially given that latter modality’s cost benefits, i.e., SfM-based

structural information, coupled to spectral content. However, we

recommend that future studies evaluate the fusion of LiDAR and

multispectral imaging, in order to assess the potential benefits

of such a coupled modality approach. Larger sample size, multi-

temporal data, and more diversity in vegetation growth patterns

all could contribute to the development of even more robust

models. One more interesting topic is utilizing LiDAR indices

to mitigate the saturation problem of VIs when LAI > 3 [103],

which we would like to include in future studies.

APPENDIX

TABLE IX
SOFTWARE WE USED IN THE PROJECT AND THEIR OBJECTIVES
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