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Evaluation of Leaf Area Index (LAI) of Broadacre
Crops Using UAS-Based LiDAR Point Clouds and
Multispectral Imagery

Fei Zhang
Julie Kikkert

Abstract—Leaf area index (LAI) is an established structural
variable that reflects the three-dimensional (3-D) leaf layering of
vegetation in response to environmental inputs. In this context,
unmanned aerial system (UAS) based methods present a new ap-
proach to such plant-to field-scale LAI assessment for precision
agriculture applications. This article used UAS-based light detec-
tion and ranging (LiDAR) data and multispectral imagery (MSI) as
two modalities to evaluate the LAI of a snap bean field, toward even-
tual yield modeling and disease risk assessment. LiDAR-derived
and MSI-derived metrics were fed to multiple biophysical-based
and regression models. The correlation between the derived LAI
and field-measured LAI was significant. Six LiDAR-derived met-
rics were fit in eight models to predict LAI, among which the square
root of the laser penetration index achieved the most accurate
prediction result ( R2= 0.61, nRMSE = 19%). The MSI-derived
models, which contained both structural features and spectral sig-
natures, provided similar predicting effectiveness, with predicted
R220.5 and nRMSE=22%. We furthermore observed variation
in model effectiveness for different cultivars, different cultivar
groups, and different UAS flight altitudes, for both the LiDAR and
MSI approaches. For data collected at a consistent flight altitude,
MSI-derived models could even exceed LiDAR-derived models, in
terms of accuracy. This finding could support the possibility of
replacing LiDAR with more cost-effective MSI-based approaches.
However, LiDAR remains a viable modality, since a LIDAR-derived
3-D model only required a single predictor variable, while an
MSI-derived model relied on multiple independent variables in our
case.

Index Terms—Leaf area index, LiDAR, multispectral imagery,
precision agriculture, structure-from-motion, unmanned aerial
system (UAS).
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I. INTRODUCTION

EMOTE sensing systems have exceedingly advanced pre-
R cision agriculture applications such as growth stage clas-
sification, yield estimation, and harvest scheduling in the past
few decades [1]-[3]. Among variables that affect the mentioned
practices to a large extent is leaf area index (LAI) [4]-[7]. LAl is
commonly defined as one-half of the total green leaf area per unit
horizontal ground surface area [8], [9]. Itis a critical variable that
governs multiple canopy-light processes and essentially quan-
tifies the amount of photosynthetic area in an ecosystem [10].
Several LAI measurement devices have been developed for LAI
field measurements based on Beer—Lambert’s law; these include
digital cover photography, LAI-2200 (LI-COR Inc., Lincoln,
NE, USA), and AccuPAR LP-80 ceptometer (Decagon Devices
Inc., Pullman, WA, USA). However, the use of such devices
results in a significant labor and time cost, especially for wide
crop fields.

Over the past few decades, satellite- and airborne-based re-
mote sensing methods thrived and have been used to estimate
LAI across coarser spatial scales. Existing techniques can be
divided into two categories, based on how the data are collected.
The first is termed passive remote sensing and is based on
spectral imagery, such as color (RGB), near infrared (NIR),
multispectral, and hyperspectral sensors. The second encom-
passes active remote sensing and typically is based on light de-
tection and ranging (LiDAR) or synthetic aperture radar systems
[11]. While promising results have been demonstrated in many
studies, the temporal and spatial resolutions are still lacking
when the plot-scale evaluation is needed. It is in this context
that the unmanned aerial systems (UAS) based remote sensing
methods have proliferated as a value-adding option to satellite
or airborne-based methods. Both passive sensors and active
sensors can be mounted on a UAS and simultaneously capture
different types of data for crops. There are two main types
of UAS-based methods for LAI assessment: spectral features
derived from reflectance imagery, and structural features derived
from the three-dimensional (3-D) point clouds, i.e., LIDAR or
structure-from-motion (SfM) based point clouds.

As for the models derived from spectral features, Yao
et al. [12] used UAS-based narrowband multispectral imagery
to estimate wheat LAI at the middle-to-high LAI levels. The
authors concluded that the LAI model, based on the modified
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TABLE I
GENERAL HEIGHT AND LAI FOR DIFFERENT CROPS AT MATURATION

CROP TYPE LAI RANGE HEIGHT RANGE REFERENCE
(m*m?) (m)

Sugarcane 3-5 2.5-3.5m [22], [23]
Winter 3-6 0.7-0.9m [24], [25]
wheat
Maize 2-4 2.0-3.0m [26], [27]

Soybean 3-7 0.5-0.8m [28], [29]

Sugar beet 4-8 0.3-0.6m [30], [31]

triangular vegetation index (MTVI2), provided the highest co-
efficient of determination (R? ~ 0.8) and lowest normalized
root-mean-squared error (nRMSE = 24%). Another study [13],
in turn, applied UAS-based multispectral camera imagery for
sorghum phenotypic assessment and determined that the nor-
malized difference vegetation index (NDVI) and the enhanced
vegetation index (EVI) correlated well with LAI, both during the
vegetative growth phase (preanthesis) and at maximum canopy
cover shortly after anthesis (R? = 0.66 — 0.85). Researchers
from a related effort [14] also developed a regression model
for evaluating LAI from NDVI with a significant correlation of
R? = 0.77 viaa UAS-based multispectral camera. Such spectral
approaches to LAI assessment often have been augmented by
3-D sensing inputs, i.e., 3-D point clouds generated by LiDAR
or SfM, given the ability of the latter to directly measure plant
structure.

As for structural feature-based methods, Comba et al. [15]
used UAS-LiDAR data to explore the effect of leaf occlusion
on LAl inversion for maize crops. They determined the optimal
voxel size for inverting LAI and demonstrated better results by
designing a flight direction that is perpendicular to the maize
rows. A related study [16] used a UAS-LiDAR system to evalu-
ate structural parameters of a mixed-species restoration planta-
tion experiment. Three structural variables were analyzed from
LiDAR data, including canopy height, gap fraction, and LAI,
and a significant correlation (R? = 0.84; nRMSE = 15.5%)
between LiDAR-derived canopy height/LLAI and field-observed
aboveground biomass was found. A related study [14] used
UAS-based StM point clouds to visualize and quantify vineyard
canopy LAI, with a moderate R? value of 0.567 being reported.
Finally, Comba et al. [15] evaluated the LAI of 704 vines in
a vineyard using SfM point clouds from UAS imagery and
obtained an solid R? value of 0.82. The performance metrics
for the mentioned studies might sound promising, but they were
constrained by various factors.

The most well-studied environments for LAI and UAS-based
methods are forests or relatively tall crops, such as maize, wheat,
and grapevines [12]-[18] (see Table I). It is worth noting that
for smaller/shorter crop types, many methods for extracting
structural parameters failed [11], [19]. To our knowledge, only
a few studies have focused on point cloud-based methods that
are applied to short (<0.5 m) crops. It has become evident that
unique problems emerge in such scenarios. While the vegetation
canopy becomes smaller/shorter, the associated biophysical fea-
tures become smaller, and noise from the background material
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could cause challenges [20]. Vegetation points near the ground
are difficult to separate from ground points. Mild disturbance
such as weeds, rocks, depressions, and even windy weather could
add significant noise to analyses. In other words, difficulty in
analysis increases as the “signal-to-noise ratio” decreases [7],
[21].

These complications require a robust approach that could
take into account various characteristics of the environment
being studied. One such method is data fusion processes. Recent
studies have shown that data fusion, which utilizes data from
different sensor platforms, often can achieve more accurate
results. A related study [32] found that the fusion of RGB
image and thermal image could improve the evaluation of LAI
in a soybean field by reducing the nRMSE by 0.4% when
compared to only using a RGB camera. In a later study [33],
the authors showed that fusion of high resolution RGB, multi-
spectral, and thermal data could provide an accurate estimation
of biochemical and biophysical parameters and improve the
yield prediction accuracy from a R? value of between 0.26 and
0.52 for a single imaging sensor, to 0.67 for multiple sensors.
Sankey et al. (2017) [34], in turn, demonstrated that LiDAR-
hyperspectral image fusion performed more accurately (88%
overall accuracy) than either data source alone for representing
a gradient of vegetation and topography in northern Arizona,
USA. In a follow-up study in arid and semi-arid land vegeta-
tion monitoring [35], the fusion of LiDAR-derived plant height
estimates and hyperspectral images derived spectral signatures
resulted in an overall accuracy of 84—-89% for vegetation species
classification, which outperformed either data type alone.

Our primary goal in this article, therefore, was to estimate the
LAI of a short-crop, namely snap bean (Phaseolus vulgaris L.),
using UAS-based SfM and LiDAR point clouds, as well as the
spectral information from multispectral imagery. We combined
output products from both the structural (3-D) and spectral
datasets to improve their preprocessing pipelines. LAI predictive
models then were derived for both modalities. We pursued
three main objectives: 1) assess whether LiDAR-derived and
multispectral imagery-derived SfM models can provide reliable
estimates of LAI, 2) identify the most suitable models, either
as a single or fused approach, for structural characterization of
snap bean crops, and 3) compare the LIDAR-derived and multi-
spectral imagery-derived STM models and explore the potential
of using the more cost-effective SfM point clouds to replace
LiDAR in precision agriculture applications, using snap bean as
a proxy crop.

II. MATERIALS AND METHODS
A. Study Site and Data Collection

The experimental field is located in Geneva, NY, USA
(42°49'53"" N, 77°00'50" W; Fig. 1) with an area of 2060 m?
(20 m x 103 m). The field has a ~ 2° slope from the west-
to-east. Four replications of six different snap bean cultivars,
namely Venture, Huntington, Colter, Cabot, Flavor Sweet, and
Blevet were planted, resulting in 24 plots, with four rows for
each plot.



ZHANG et al.: EVALUATION OF LAI OF BROADACRE CROPS USING UAS-BASED LIDAR POINT CLOUDS AND MSI

oy

0 1 B

Geneva, NY e —

12 km o

Plate markers at 1 m above the ground

Fig. 1.

We used 11 flights to collect data over six days at different
growth stages, from July 8—August 20, 2019. There were two
flights at different altitudes (~28 m and ~51 m) each day, except
for the single flight on July 8, which was for generating a digital
elevation model (DEM) when the field only contained snap bean
seedlings, i.e., the bare soil was mostly visible. The selection
of subsequent dates largely followed snap bean phenological
events: August 5 was selected because the snap beans were
blooming and changing rapidly; on August 12, the snap beans
were close to maturity, and the blooming period had ended; on
August 14, the snap beans were almost ready for harvest and
pods were relatively mature; and finally, some beans were har-
vested on August 16 and August 20, i.e., these dates represented
fully mature, harvest stages.

The UAS-based mapping system consists of a DJI Matrice
600 Pro hexacopter, which carries a Global Navigation Satellite
System (GNSS)/inertial measurement unit (IMU) unit, a Velo-
dyne VLP-16 PuckTM (Velodyne, San Jose, CA, USA) LiDAR,
and a MicaSense RedEdgeTM (Micasense, Seattle, WA, USA)
multispectral camera. The GNSS/IMU unit records geolocation
and GPS time during flights. The VLP-16 Puck generates up to
~600000 points/second in dual return mode. It holds a £15°
vertical field-of-view and a 360° horizontal field-of-view. The
LiDAR’s laser wavelength is 903 nm, and the range accuracy is
43 cm [36]. The MicaSense RedEdge captures imagery from
five discrete spectral bands: blue, green, red, red edge, and near
infrared, centered at 475 nm, 560 nm, 668 nm, 717 nm, and

- Different cultivars with their 1Ds

Snap bean field was located in Geneva, NY, USA. Picture in the bottom shows the RGB representation of the captured mosaic of the field.
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TABLE II
FLIGHT SETTINGS AND DETAILS ON COLLECTED DATA
Average LiDAR
Flight Flight flight Flight proc?ssed Nul.nber of
N speed point multispectral
date number height . .
(m) (m/s) density images
(pts/m?)
8-Jul 1 17.9 3.5 4115
2 51.3 2408 500
5-Aug
3 27.6 3240 464
4 51.0 2711 513
12-Aug
5 51.9 2705 536
6 52.3 2718 497
14-Aug 1.5
7 26.3 3542 470
8 52.5 2170 453
16-Aug
9 27.4 3712 466
10 29.9 3224 467
20-Aug
11 55.3 1136 519

842 nm, respectively. It provided a ground sample distance of
approximately 0.02 m per pixel at 30 m above ground level.
Table II lists information related to flight plans and high-level
data specifications.

Field measurements were collected concurrently with UAS
flights. For each plot, we used measuring tapes to take 12
samples of canopy height and took nine samples of LAI via
an AccuPAR LP-80 ceptometer, by inserting the bar across two
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TABLE IIT
STATISTICS OF THE FIELD MEASUREMENT OF LAI
Flight date Mean Std. Dev. Minimum Maximum Median
5-Aug 1.27 0.33 0.42 1.80 1.30
12-Aug 1.80 0.54 0.58 345 1.74
14-Aug 2.21 0.49 1.00 3.08 2.20
16-Aug 1.96 0.46 0.87 2.53 2.18
20-Aug 2.40 0.52 1.04 3.34 2.47

adjacent rows [37]. Sampling measurements within each plot
were then averaged to be a representative of the plot on the date.
Therefore, for each flight on each date, we have 24 samples of
ground truth canopy height and LAI The statistics of the field
measured LAI is shown in Table III.

We used every two adjacent crop rows and the between-row
gap as an elementary sampling unit (ESU) [10] when process-
ing the LiDAR point clouds, which corresponded to the field
samples. We calculated the predicted LAI of each ESU and then
averaged the three ESUs in each plot to obtain the predicted LAI
of the plot.

It is worth noting that the VLP-16 is a widely used industrial-
level LiDAR. The system has arelatively larger beam divergence
(a horizontal beam divergence of 3.0 mrad and a vertical beam
divergence of 1.5 mrad), when compared to survey-level Li-
DAR systems, but it comes at a lower acquisition and operational
cost [38]. According to the descriptions in the VLP-16 manual
[26], the footprint size would be 150 x 85 mm in flights at 50
m altitude and 81 x 47 mm for flights at a 25 m altitude, while
the snap bean leaves can grow 6—15 cm long and 3—11 cm wide.
We intentionally selected the Velodyne VLP-16 as our LiDAR
modality in the hope of eventual operational implementation of
our methods. The AccuPAR LP-80, on the other hand, boasts
a proven track record as an effective in situ LAl measure-
ment device, as evidenced by a variety of previous studies
[10], [37], [39]-[41]. These considerations led to the selection
of our respective airborne and ground-based 3-D assessment
tools.

B. LiDAR and MSI Data Preprocessing

The raw LiDAR data were provided directly by our data
collection team, with each LiDAR point containing data/header
fields for x, y, z, intensity, return number, and the GPS times-
tamp. The multispectral imagery was processed using the
Pix4DMapper (V.4.4.12) for generating SfM point clouds, image
mosaics of the crop field, and vegetation indices. This section
will describe details of both datasets.

1) Registering MSI With LiDAR: SfM point clouds and mul-
tispectral mosaic images were significantly shifted and inclined
from LiDAR point clouds due to differences in platform design
and flight collection parameters, making it challenging to utilize
afusion of the LIDAR and multispectral data directly. The spatial
disparities were attributed to the following issues: 1) the ground
control points (GCPs) were not well utilized for mosaicking
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Fig.2. Representation of point cloud cross-sections along the (a) y-axis and (b)
x-axis. Large dark gray points represent the StM point cloud, and the small bright
grey points represent the LIDAR point cloud. (a) A sample of a cross-section of
SfM and LiDAR point clouds along +y direction. (b) A sample of a cross-section
of StM and LiDAR point clouds along +x direction.

images or generating the SfM point cloud; 2) different horizontal
and vertical georeference coordinate systems were used for
different sensors; and 3) differences between the ellipsoidal
height and the orthometric height. Therefore, we registered
the multispectral data with LiDAR data via an independent
step.

Six valid GCPs (AeroPoints) were used to optimize the pro-
cess of mosaicking images and generating SfM point clouds. The
GCPs used NADS3 as the geographic coordinate reference sys-
tem (horizontal) datum and NAVDS88 as the vertical coordinate
reference system datum. The LiDAR point cloud accordingly
used WGS84 and EGM1996. Different reference coordinates
resulted in several meters difference of the x/y coordinates.
Second, the default z value in SfM point clouds corresponded to
orthometric height, i.e., the distance of a point on the earth’s
surface to the reference geoid, which is determined by the
earth’s gravity and approximated by the global mean sea level.
In contrast, the z value in LiDAR point clouds was ellipsoidal
height, meaning the distance of a point on the earth’s surface
to the ellipsoid that approximates the earth’s surface [42]. The
difference between the ellipsoidal height and the orthometric
height is called “geoid-ellipsoid separation’[43], calculated by
N =H,— H., where H, is the orthometric height, H. is
the ellipsoidal height, and N is a signed number [44]. At our
experimental field, N = —34.9 m.

We, therefore, first converted the coordinates of the GCPs
from NADS3/NAVDS8 to WGS84/EGM 1996 by using the free
software tool VDatum 4.0.1 [45]. We then used the transformed
GCPs to reoptimize the SfM point clouds. This was followed by
calculating geoid height at our experimental field and shifting the
StM point clouds to match the LiDAR point clouds vertically.
Fig. 2 shows examples of the cross-sections of the 3-D point
cloud from the ninth flight; note that each ridge represents part
of a row crop. The valleys in the middle of each two adjacent
ridges represent the between-row space. Judging from the peaks
and valleys, we found that the LiDAR and SfM point clouds
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Fig. 3. LiDAR data preprocessing workflow. The rectangles represent point
cloud data. The ellipses refer to a processing step or filter. The rhomboid refers to
an external file or medium processed results, and the plus sign implies multiple
files interacting with each other. The CSF filter was applied only on the first
flight for generating the DEM.

matched well in all 3-D. The LiDAR point clouds were generally
higher than the SfM point clouds and exhibited more variation,
especially at the top of the canopy rows. We attributed this to
the fact that LIDAR operates by actively recording the reflected
signal from objects in space, while the SfM algorithm is based
on feature extraction. As the leaves at the top of canopy were
small and erectophile in nature, it was challenging for the StM
approach to capture top leaves.

2) LiDAR Data Preprocessing: LIDAR sensing enables
probing of both the horizontal and vertical structures of crops
by actively emitting high-frequency laser pulses toward the
object and recording the reflected responses as a function of
time [46], [47]. While this design enables such active systems to
capture more in-depth structural information than classical pas-
sive imagery sensors, it also creates specific challenges, such as
complex data preprocessing, noise points, nonuniformity across
different scanning angles, and a rapid increase in footprint size
as the detection range increases. Moreover, different vegetation
characteristics, in terms of height, layering, and leaf charac-
teristics, limit the effectiveness and generality of evaluation
models based on LiDAR-derived metrics. Therefore, a robust
assessment requires proper preprocessing of the raw point cloud
and careful selection and validation of predictive models.

We implemented an amended version of the UAS-based Li-
DAR data preprocessing pipeline described in [48] (see Fig. 3).
First, we retrieved the flight trajectory from IMU recordings.
We then cropped the point clouds according to the valid spatial
boundaries of x/y/z and temporal boundaries of GPS time, using
the las2las function embedded in the LAStools software [49].
Subsequently, the outliers in the point cloud were removed
using the statistical outlier removal filter, which computes the
average distance of each point to its k£ nearest neighbors and
then eliminates the points that have larger distance to their
neighbors than the average distance plus n,, times the standard
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deviation [50]. Then, the second return points were removed.
The LiDAR operated in dual-return mode, and thus, could
distinguish two returns on a per-pulse basis only if the distance
between the two returns was greater than 1 m [36]. However,
since snap bean plants only grow 0.3—0.6 m tall, the first return
points were adequate for representing most of the crop-specific
structural information for the LiDAR data. The next step in-
volved the removal of duplicate points, which were <0.001 m
away and may result during preprocessing of raw data. These
duplicates could inflate the pulse density and consume additional
disk space [51].

Next, we retrieved the scan angle of each 3-D point in the
point cloud by associating it with a flight trajectory point with the
nearest timestamp. Thus, from (1), we calculated the horizontal
and vertical scan angles o1 and as of each LiDAR point

— T —T
= tan (yl yt) JQg = tan ™ (l t) (1)
21 — Z¢ 2l — &t

where x;, y;, 2, are the coordinates of the LiDAR point, and
T, Yi, 2¢ are the coordinates of the flight trajectory points.
Points with large scan angles were removed because 1) the point
density decreases rapidly at large angles, and 2) measurement
error could increase substantially as the laser beams propagate
further (the footprint size of a single laser beam increases by
a factor of two as the propagation distance increases). We,
therefore, set a threshold of +=20° to only retain points with small
enough vertical and horizontal scan angles. While this threshold
was +22.5° in [48], we considered that this threshold was
adjustable for different data characteristics and objectives. The
flight line overlap percentage can also impact the selection of this
threshold. We then generated a DEM to create the normalized
height to ground dataset by 1) applying the cloth simulation filter
(CSF) [52]-[55] via CloudCompare (version 2.11) to identify
pure ground points from the point cloud collected on July 8§,
when the bare soil was mostly visible, 2) subsampling the
ground points to a 0.02 m grid, given that the ground points
are even denser than the target grid data, and 3) ordinary kriging
interpolation [56] to fill the empty cells. Then, we normalized
all z coordinates from the other point clouds to heights above
ground using the DEM [26].

Most LiDAR-derived predictive models rely heavily on tally-
ing the number of points or feature values of all points per class
(vegetation versus ground). Therefore, the final models’ efficacy
and accuracy largely depend on the quality of the segmentation
of ground points versus vegetation points. Many studies for
vineyard or forestry applications [14], [57], [58] used a manually
selected threshold of normalized height, which could be 0 or
a small positive number, to achieve the segmentation. Points
lower than the threshold are classified as ground points, and
points above the threshold are classified as nonground points.
However, crops like snap bean have a much smaller height than
vineyards (meters) or trees (tens of meters), ending up with
severe blending of near-ground vegetation points and ground
points. A random threshold could easily bring bias from either
ground side or vegetation side.
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TABLE IV
CALCULATION OF THE OBSERVATION PARAMETERS FOR DETERMINING THE

IDEAL Z¢p,

Parameters Calculation
t
Recall Recall = 14
tp+fn
Precision .. tp
Precision =
tp + fp

Total tp +tn

Total accuracy =
accuracy y N

Cohen's tpt+tn_(tp+fp) X (tp+fn)

Kappa = N N2

coefficient 1— (p+fp) X (tp + fn)
NZ

Note: N refers to the total number of the points in the tested point cloud; £p refers to the
number of true positives, i.e., vegetation points predicted as vegetation points; fp refers
to the number of false positives, i.e., vegetation points predicted as ground points; fn
refers to the number of false negatives, or ground points predicted as vegetation points;
and tn refers to the number of true negatives, or ground points predicted as ground
points.

We, thus, resorted to the segmentation results from 2-D image
mosaics of the whole field. By combining the vertical traits from
LiDAR and the horizontal textures, we hope to minimize ground
versus nonground return segmentation error. We used the ENVI
5.5.2 to create a 2-D segmentation mask for each multispec-
tral image. First, we generated mosaic images of the whole
field, corresponding to the five bands, using the Pix4DMapper
(V.4.4.12). Second, we stacked the five single-band mosaic
images and then applied the spectral angle mapper (SAM) [59] to
classify vegetation pixels versus ground pixels. SAM operates by
comparing the spectra of each pixel to known reference spectra
or endmembers. It is insensitive to illumination change, since
only the vector direction is used and not the vector length. Then,
we used the “mask™ to assess results from a list of different
threshold values Zthl, Zthg, .. Zth ~ - From the 3-D segmen-
tation results, corresponding to each Zthi, we used stratified
sampling on both ground and vegetation points according to
their x/y values and matched the sampled points to the nearest
pixels in the 2-D mask. A contingency table, thus, could be
constructed.

Evaluation parameters such as recall, precision, total accu-
racy, and Cohen’s Kappa coefficient (x) [60], [61] were calcu-
lated (see Table IV). Since we want the highest accuracy for
both ground points and vegetation points, we determined the
best Zy, by selecting the threshold where the highest Cohen’s
Kappa occurred, i.e., the classification results of the 2-D SAM
and of the z-threshold-based method reached the maximum
overall agreement. We then applied the best Zu1, as a threshold
for differentiating ground and nonground points in the LiDAR
point cloud.

Fig. 4 displays an example of determining the ideal Zy, for the
LiDAR point cloud and the values of different Zth for LIDAR
point clouds from different flights. The ideal Zun ranged from
0.06-0.14 m for different flights. Fig. 5 shows an example of a
top-down view of the segmented nonground points. Apart from
a few points that were 1 m above the ground (in-field plate
markers) and a small portion of misclassified ground points,
most of the points were within 0.1-0.4 m above ground, i.e.,
resulting from the snap bean plants. The segmented point clouds
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Fig.4 Determination of the ideal Zth for different flights. (a) Change of the
observation parameters over Z;p . (b) The ideal Z;, values in different flights.

then were separated into ESUs by 1) manually creating polygons
of the ESUs’ boundaries, 2) intersecting the ground points and
the nonground points of each ESU with its associated coverage
polygon, and 3) allocating the points to different groups by
their polygon ID. Points for each ESU were used to derive one
observation (x;) for evaluating LAI from LiDAR. Our next step
involved the addition of spectral information to augment the 3-D
datasets.

3) MSI Data Preprocessing: Multispectral imagery can pro-
vide rich information about the crop from two general perspec-
tives. The first involves the generation of a 3-D point cloud of the
field through a photogrammetric range imaging technique, i.e.,
StM [62]-[64]. The other focuses on spectral information, i.e.,
deriving vegetation indices from the multiple bands per image
[65]-[68]. We implemented and combined both methods in this
section to generate extended SfM point clouds that contain both
structural (3-D) features from the x/y/z coordinates and spectral
features from vegetation indices.

Fig. 6 displays the processing workflow for multispectral
imagery. First, all multispectral images from each flight were
fed into Pix4Dmapper to generate an SfM 3-D point cloud
and five mosaic reflectance images (one for each band) of
the whole field. We next separated the vegetation points from
nonvegetation points via the following steps: 1) classifying the
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Fig. 6.
B shows the processing of images in spectral space.

2-D mosaic image, stacked from five single band mosaic images,
into vegetation versus nonvegetation pixels using the SAM clas-
sification in ENVI and 2) “masking” the 3-D points according
to the classification labels and the geographical information (x/y
coordinates) in the 2-D mosaic image. We then normalizedthe
the z coordinates in the SfM point cloud to height-above-ground
and derived normal vectors for vegetation points; additionally,
we derived vegetation indices from the five mosaic images.
Finally, by using QGIS (version 3.12.2), we intersected the
3-D vegetation points with the mosaic images and polygons
of the ESU boundaries. Thus, we integrated the structural and
spectral information, as well as the ESU ID, into the final point
cloud.

One possible caveat of this 2D-classification-to-3D-
segmentation method might be that some ground points di-
rectly beneath vegetation points could be mistaken as vegetation
points. However, we considered the impact of this drawback as
negligible in our project. Given the fact that the images were
collected at a nadir angle, the dense snap bean canopy hindered
the camera from capturing the ground underneath leaves, which
resulted in the SfM point cloud only having one “visible” layer
for the imagery in the study area.

Workflow for generating the extended 3-D point cloud with structural and spectral metrics. Box A represents the processing of 3-D points, while the box

We mainly utilized structural features that consisted of nor-
malized heights and projected normals. The z coordinates in
the SfM point clouds were normalized to height above the
LiDAR-derived DEM. We used CloudCompare to calculate the
point normals. We hypothesized that the normal vectors could
explain a plant canopy’s inherent structural variability. In other
words, normals that were uniformly distributed across a plant
canopy were indicative of a closed, even canopy, not dissimilar
to an umbrella’s form. In contrast, highly variable normal angles
represent a gap-filled, uneven plant canopy. CloudCompare
outputs normals as dip angle (zenith) and dip direction angle
(azimuth). These values were calculated using

n,
arccos | —
n
Ny
arctan (| —
Ty

where n refers to the unit normal at a certain point, and
Ng, Ny, N are components of the normal.

A typical vegetation spectrum shows absorption features in
the red and blue wavelengths, slight reflectance in the green
wavelength range, and a strong NIR reflectance plateau, with

Dip angle =

@

Dip direction angle =
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TABLE V
CALCULATION OF VARIOUS VEGETATION INDICES FROM THE MULTIPLE BANDS

VI Formula Reference
NDVI NDVI=(NIR — RED) / (NIR + RED) [65]
SR SR =NIR / RED [70]
ARI2 ARI2 = NIR* [(1/RED) - (I/RE)] [71]
GNDVI GNDVI=(NIR - G)/ (NIR + G) [67]
NDRE NDRE = (NIR — RE) / (NIR + RE) [68]

water absorption features at the longer shortwave-infrared wave-
lengths. Vegetation indices (VIs) are broadly used to reflect and
enhance the relationships between these spectral absorption-
reflectance spectral features and, thus, provide meaningful in-
formation about plant growth stage, plant health, and among
other important characteristics [69]. Considering the five bands
in our data, we selected five VIs by referencing previous rele-
vant studies (see Table V). They are the normalized difference
vegetation index (NDVI), simple ratio index (SR) Anthocyanin
Reflectance Index 2 (ARI2), green NDVI (GNDVI), and nor-
malized difference red edge index (NDRE).

C. Predicting LAI From LiDAR and MSI

1) LiDAR LAI Models: Multiple models have been proposed
to retrieve LAI from LiDAR point clouds, with [10] providing an
extensive overview. The models can be divided into three main
categories: 1) based on Beer—Lambert’s law, LAI is correlated
with the gap fraction, which usually is derived through various
laser-based metrics, such as the laser penetration index (LPI)
[72], [73] and the all echo cover index (ACI) [74]; 2) LAI is
linearly correlated with laser-based metrics, in which the corre-
lation coefficients are determined by regression [57], [58], [75],
and 3) LAI is evaluated through its allometric relationship with
other LiDAR-derived biophysical parameters, such as vegetation
height [72] and canopy cover [76].

We selected eight models to test our data (see Table VI). In
model 1-4, we used two different methods to determine the
B value: 1) simply assuming a spherical leaf angle distribution,
which gave us § = 2 for all plots [77]; and 2) calculate 3 via its
relationship with the extinction coefficient k [78], i.e., 8 = % ,
where k can be decided by the solar zenith angle and the leaf
angle distribution parameter x. The zenith angle in our study was
retrieved from time and geo-coordinates. The leaf distribution
parameter x refers to the ratio of the length of the horizontal
semi-axis to the vertical semi-axis of an ellipsoid, described by
the leaf angle distribution function of the canopy [78], [79]. The
default value for  is 1.0 for the AccuPAR LP80, which assumes
a spherical canopy angle distribution. While the value of LAI is
not strongly dependent on the value of x, we adjusted this value
as the ratio of the measured row width to the measured canopy
height, assuming that the wider a snap bean plant becomes, the
more horizontal its leaves will be. In models 5-8, a and b were
empirical parameters derived from linear regression between the
medium terms (p or C' H) and the measured LAIL

2) MSI Evaluation Models: We used both the structural and
spectral descriptors per plot to derive multiple statistical metrics,
including the mean (u), standard deviation (std), coefficient
of variation (CoV), first quartile (ql), median, third quartile
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(q3), interquartile range (IQR), and trimmed mean (trMean).
These metrics (7 descriptors x 8 metrics = 56 predictors) then
were used to predict LAI through multivariate regression. We
input these independent variables to three feature selection and
regression algorithms using a widely used classical algorithm—
stepwise regression [57], [58], two common machine learning
algorithms—Lasso cross-validation (LassoCV) [80], and recur-
sive feature elimination (RFE), which used linear support vector
regression (SVR) [81] as the estimator. For stepwise regression,
we used backward selection when the sample size was larger
than the number of features (n>p) and forward selection in the
opposite case (n<p) [82]. We first used LassoCV and RFE-SVR
to select the most significant features, after which collinear vari-
ables were removed from the selected subset, if their variance
inflation factor > 5-10 [83], [84]. Multivariate linear regression
subsequently was implemented for the remaining features to
develop prediction models for LAI. All three methods were
implemented in Python 3, and LassoCV and RFE-SVR were
implemented by using the scikit-learn package [85]. The soft-
ware and packages used in this project along with their objectives
can be found in Table IX.

3) Modeling From Different Combinations of Datasets: In
both datasets, we first derived models from all the data from
flights 2—-10. Field measurements on each day were reused as
corresponding true responses for both flights. Next, we assumed
that different snap bean cultivars might require different evalu-
ation models, since their physical characteristics varied as they
matured. The six cultivars were separated into three groups
according to their morphological characteristics, i.e., Venture
and Huntington belong to the “Large cultivar variety (L)” group;
Colter and Cabot belong to the “Four sieve cultivar (F),” and
Flavor sweet and Blevet belong to the “Whole sieve cultivar
(W) [86].

Flight altitude could also affect the point density in LIDAR
point clouds and the laser pulse average footprint size. Denser
points and smaller footprint size arguably could lead to more
structural crop detail. Lower flight altitudes, in general, lead to
higher LiDAR point density and smaller footprint sizes. We,
therefore, also assumed that flight altitude could impact the
evaluation results. We evaluated two sets of prediction models
to test this assumption for flights at two different altitudes, i.e.,
the 3rd, 7th, 9th, 10th flights as a group at 28 m altitude and the
2nd, 4th, 6th, 8th, 11th flights as the other group at 51 m altitude.

D. Evaluation Metrics

We used the coefficient of determination (R2) the root-mean-
squared error (RMSE), and the normalized (nRMSE) to evaluate
the accuracy and precision of the predicting models from LiDAR
and MSI. Moreover, since MSI models were derived from multi-
variate regression, we calculated the adjusted R? [14], [90], the
predicted R? [91]-[93]. The adjusted R? essentially is the R?
that has been adjusted to compare models for different numbers
of predictors. It increases only if a predictor improves a model
by more than what is expected by chance [90]. The predicted
R? reflects the ability of the regression model in predicting the
response of a new observation and reflects how much of the
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TABLE VI
MODELING APPROACHES BASED ON LIDAR-DERIVED INDICES TO ESTIMATE LAI

Number Method Key index Calculation Reference
1,2 Beer-Lambert's law: All echo cover index L =2 ACT = Ryr [74]
LAl = —f In(GF) (ACI) ~ Reora

_1 GF =1- ACI
p k
3,4 Intensity ratio index (IRI) p=2 IRl = 2 leanopy [87]
Z Itutal
g== GF =1—1IRI
5 Linear / logarithmic model: Above and below ratio Ryr [58]
. ABRI =
index (ABRI) <T
LAl=a+bx*p p = log,o (ABRI)
6 Fraction of canopy cover >T [88]
pP=fo=5—
(fc) Rtutal
7 Laser penetration index Rer [57]
LPl = ——
(LPI1) total
p = sqrt(LPI)
8 Allometric relationship: Canopy height (CH) CH = Resg g5 — Resg s [89]

LAl =a+b*CH

Notes: >, I canopy refers to the sum of points’ intensity values. R refers to the number of returns above or equal to the height threshold, i.e., the ideal Z ¢p, in Fig. 4(b) and
R 7 refers to the number of returns below the height threshold. Rtota1 is the number of total returns. Resq.g5 and Resg. o5 refer to the 95% quantile and the 5% quantile,

respectively, of the height above the DEM.

variance in the dependent variable is explained by the model. If
a model is overfitting, the predicted R? will drop significantly.
The equations for calculating five evaluation metrics are as

follows.
DR =1
7); is the predicted response for the 7, observation.

RMSE = M , where n is the number of obser-
vations. )
Adj. R? =1— %, where N is the number of

_0.)2 .
2 Wim#)_ \here y; is the true response and

2)

3) p—
observations, p is the number of independent variables in
the model. R? is calculated from 1).

n ~ 2
Pred. R?=1— %S 3 _ Rica ot yhere

SSotal 18 the total sum of squares and PRESS is the
predicted residual error sum of squares (PRESS) statis-
tic. PRESS is essentially a form of leave-one-out cross-
validation: after removing one observation each time, the
model is refitted from the remaining observations and then
predict response to the removed observation (g;, —;), then
the PRESS statistic is calculated as the sum of square of
the resulting error [94], [95].

> timen)?
5) nRMSE = @ x 100% = +——=—— x 100%.

III. RESULTS

4)

We derived multiple models for predicting LAI from both
LiDAR and extended SfM point clouds. By providing the eval-
uation metrics mentioned previously, we compared not only
models for the same method or under the same condition, but
also models across different methods and conditions.

A. LiDAR-Based LAI Estimation

Fig. 7 shows the scatter plots of LIDAR-predicted LAI versus
field-measured LAI and the R2, RMSE, and nRMSEof the

model 1-8 in Table VI. Except for model 8, which exhib-
ited some correlation between the predicted LAI and mea-
sured LAI with R2= 0.05, all the other models provided
moderate accuracy with R? values ranging between 0.55-
0.61, RMSE ranging between 0.38-0.59 mg/m2, and nRMSE
ranging between 19% and 31%. The model based on LPI
achieved the highest R? of 0.61 and the lowest RMSE of
0.38 m?2/m?.

Figs. 8 and 9 list the R? and RMSE of the models generated
from data on a percultivar and percultivar group basis, respec-
tively. The models were sensitive to the differences in cultivars
and within cultivar groups.

Models for the Flavor Sweet cultivar tended to yield the
highest R? and lowest RMSE, while models for the Venture
cultivar resulted in the lowest R? and the highest RMSE. The
highest R = 0.89 was achieved by ACI, 3 = % model on the
Flavor Sweet. The lowest RMSE = 0.26 and nRMSE = 0.14
were achieved by the f. model and v/LPI model for the Flavor
Sweet cultivar. Models based on ABRI, f., and LPI (5, 6,
7) provided consistently better predictions for nearly all cul-
tivars. The CH models did not exhibit apparent correlations
between the predicted LAI and the measured LAI for most
cultivars, and were inferior to other models. However, for the
Flavor Sweet cultivar, it gave satisfactory predictions with R? =
0.82 and an RMSE = 0.31. We attributed this difference to
Flavor Sweet’s strong resistance to lodging, even during harvest
time.

InFig. 9, similar to the percultivar-polylines, the models based
on ABRI, f., and LPI continued to perform better than other
models. The CH models again showed no predictive value (close
to zero R? for cultivar group L and F), but moderate accuracy
and precision for cultivar group W (R? = 0.51 and RMSE =
0.45). Fig. 10 shows a comparison of the evaluation metrics for
all the models derived for two flight altitude groups. Generally,
all the models from the 28 m flights yielded better results than
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Fig. 7. Scatter plots of 1:1 relationship between the estimated and measured LAI using LP-80 for each of the models. Data from all flights and all plots were
included. The key indices were listed in the titles. The subplot names refer to the key indices in Table VL.

their corresponding models from the 51 m altitude flights, except
for the CH models.

B. MSI-Based LAI Estimation

Table VIII shows the results of the models for evaluating
LAI using stepwise, LassoCV, and RFE-SVR methods. For the
stepwise regression, we set @ = (.05 as the include (forward

selection) or exclude (backward selection) threshold [14], [96].
For the LassoCV and the RFE-SVR methods, we used the default
setting of key parameters in the scikit-learn package. Three
regression/feature selection methods achieved similar results
based on the adjusted R?, predicted R?, and nRMSE. For the
models built from data from all flights, the adjusted R? and the
predicted R? were 0.48-0.53, and nRMSE values between 0.21
and 0.22. The derived model using the LassoCV method only
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Adjusted R?, predicted R?, and nRMSE of the L, F, and W cultivar group. According to Green’s rule-of-thumb [98] for samples per variable, since

the sample size decreased to 80 for each model, only a maximum of four predictor variables were included in each model.

TABLE VII
MINIMUM SAMPLE SIZES FOR DIFFERENT NUMBERS OF PREDICTORS BASED
ON GREEN’S RULE-OF-THUMB [97], [98]

NUMBER OF PREDICTORS MINIMUM SAMPLE SIZE
73
81
89
97
103
109
115

119

N=JE--REN - WU | I ]

p—
—

required three variables to achieve nearly the same results as the
stepwise and RFE-SVR models. The third quantile of NDVI and
the standard deviation of NDRE were shared variables across all
three models.

From Fig. 10, we found that the 28 m flight group achieved
obviously better results than the 51 m flights, with predicted
R? = 0.72t00.73 and nRMSE = 15% to 16%. The variables
shared between models also changed. For the 28 m flight group,
these were the standard deviation of GNDVI and median of
NDRE and for the 51 m flight group, the common variable was
the standard deviation of the dip angles.

Fig. 11 shows the results of MSI models derived from cultivar
groups. We found that the models for the W group achieved
relatively higher adjusted and predicted R? values than models
in the other two groups, although their nRMSE were similar.
We did not derive regression models for flights per cultivar as in
the LiDAR data analysis, since Green’s rule-of-thumb states that
when selecting samples per variable, the sample size should not
be smaller than 50 in order to avoid overfitting in multivariate
regression [97], [98].

Moreover, minimum sample size requirements increase with
an increased number of predictor variables (see Table VII). The
“all flights” group contains all the observations for the 24 plots
during flight numbers 2—-11, i.e., 240 observations. When they
were split into a 28 m flight group and a 51 m flight group, the
sample sizes decreased to 96 (flight number 3/7/9/11) and 144

(flight number 2/4/5/6/8/10), respectively. It followed that these
models would be restricted to up to six predictors. However,
when the observations were split into six cultivars, each sample
only had 40 observations, which violates the rule-of-thumb.

IV. DISCUSSION

A. LiDAR-Derived Metrics Modeling

Among the LiDAR-derived models, the models based on
ABRI f., and LPI consistently provided the strongest correlation
and the smallest error. This result corroborated the findings from
studies in [57] and [58]. We observed that the LiDAR-derived
models (models 1-7) generally account for around 60% of the
variance in measured LAI (see Table VI and Fig. 7). The models
based on Beer—Lambert or the linear/logarithmic regression
achieved similar R?, and the latter ones yielded relatively lower
RMSE values. The model based on an allometric relationship
could not explain the variance adequately. We attributed this
to the model only considering one structural metric, i.e., the
canopy height, while no other structural information was in-
cluded. If additional structural metrics, such as plant width and
aboveground biomass were measured, this model’s accuracy
and precision likely could be improved, as mentioned in the
work of [99].

Two phenomena seemed counterintuitive in Fig. 7—the com-
parison between models 1 and 3 with 2 and 4, showed that a
more precisely retrieved 3 from row width and canopy heights
did not perform better than the naive assumption of 5 = 2. This
could be attributed to the uncertainty from field measurements
[100] and systematic inconsistency between different flights. By
comparing models 1 and 2 with 3 and 4, we found the sum of
intensity ratio (IRT) models yielded slightly lower R? and higher
RMSE values than the point number ratio (ACI) models, which
implies that integrating point intensity in LAI evaluation did not
improve the evaluation accuracy. This result could be due to the
radiometric conditions changing across different flights, which
in turn hints at the need for additional research into the impact
of illumination conditions on LiDAR-based models.

Results listed in Figs. 7 and 8 showed that 1) models for the
Venture cultivar exhibited worse predictions than the general
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Flight altitude ~ Method  Adj. R? Pred.R*> nRMSE Model* Number of Common
features in Features
each model

all flights stepwise 0.46 0.44 23% accuparLAI = 1.931+ 0.36xIQR_SR-0.225xCoV_GNDVI- 8
0.165%std_res+ 0.154xstd_NDRE-0.149xCoV_dip_v-
0.094xCoV_ARI2 + 0.064xmed_res-0.04xmu_NDRE
LassoCV 0.49 0.49 22% accuparLAI =1.931+ 0.419xq3 NDVI-0.128xstd_dip v+ 3 std_ NDRE
0.082xstd_ NDRE
RFE-SVR 0.50 0.48 22% accuparLAI = 1.931-0.812xCoV_NDRE+ 0.737xstd_NDRE- 4
0.56xmu_NDRE+ 0.486xtrMean_NDVI
28m flights**  stepwise 0.75 0.73 15% accuparLAI = 1.963+ 0.286xq3_NDVI-0.262xstd_ GNDVI+ 6
0.243xmed_NDRE+ 0.138xql_res-0.132xq3_dip_v+
0.106xCoV_SR
LassoCV 0.75 0.72 15% accuparLAI = 1.963+ 0.337xq3_NDVI+ 0.278xmed_NDRE- 6 td GNDVI
0.277xstd_dip_v-0.276xstd_GNDVI+ 0.219xIQR_res+ S 4 NDRE’
0.136xCoV _dip v med_
RFE-SVR 0.78 0.76 15% accuparLAT = 1.963+ 0.424xCoV_ARI2 + 0.414xmed_ARI2 - 6
0.354xstd_GNDVI-0.329xCoV_NDVI+ 0.174xmed_ NDRE+
0.087>xmu_res
51m flights stepwise 0.48 0.46 22% accuparLAI = 1.91-0.242xstd_dip+0.339xtrMean_ARI2 + 5
0.103xpu_GNDVI+ 0.07xstd_ NDRE-0.051xCoV_SR
LassoCV 0.54 0.53 21% accuparLAI = 1.91+ 0.376xmed _NDVI-0.27xstd_dip- 4
0.082xIQR_GNDVI-0.036xCoV_dip std_dip
RFE-SVR 0.50 0.48 21% accuparLAI = 1.91-0.033xp_h+ 0.173xIQR_h-0.373xstd_dip+ 7

0.322xmed ARI2 +0.083xmed GNDVI+ 0.075xstd NDRE-
0.092xCoV_SR

+ Features were normalized by subtracting the mean and divided by standard deviation before modeling.
s+ Since the sample size for the 28 m flight group models was only 96, according to Table VII, to avoid overfitting, we cannot legitimately use more than six independent variables.
Therefore, the number of features was limited to six by limiting the number of best predictor features.
Note: The naming convention for model variables follow a format of “[abbreviation of statistical metric]_[structural or spectral feature].” For example, 1._h implies the mean of

the height above DEM, CoV_dip refers to the coefficient of variation of the dip angle of normals, and q3_NDRE means the third quantile of NDRE.

models for the whole field (highest R? < 0.40, lowest RMSE >
0.40); 2) models for the Cabot cultivar yielded nearly the same
prediction performance; and 3) models for the other four culti-
vars, i.e., Huntington, Colter, Flavor Sweet, and Blevet achieved
better results (highest R% > 0.65, lowest RMSE < 0.30). This
was attributed to the morphological (biophysical) characteristics
that varied across different cultivars. For example, in our obser-
vation, leaves of cv. Venture expanded parallel to the ground with
maturity. The canopy of other snap bean cultivars began to lodge
with crop maturity. In contrast, snap bean cv. Huntington (also
a member of the L group), had leaves, which grew closer to the
main stem and the entire canopy was upright and remained so un-
til maturity. Cultivars with a tendency to lodge as crops matured
tended to affect the accuracy and precision of the LIDAR models.
Cultivars subject to lodging may be strongly affected by weather
such as heavy rainfall. Since data were collected over the full
growing stages of the snap bean crop, the tendency to lodge along
with the influence of external variables likely impacted modeling
results across days. These external factors could help explain the
variation in model results for the three cultivar groups in Fig. 9.
We concluded that leaf distribution angles for different cultivars
may contribute to the observed differences, and therefore, we
suggest that future studies include an assessment of leaf angles.
The models for the whole bean cultivar (W) group achieved
relatively better predictions than the other two groups, with the
largest R? = 0.79 and the lowest RMSE = 0.30.
Additionally, when comparing Figs. 7 and 10, we observed
a general relationship among prediction accuracy and precision
for models 1 to 7 at different flight altitude groups, where the
28 m flight group > all-flight-group > 51 m flight group. This

observation supports our assumption that flight altitude is a
significant factor in predicting LAI from UAS-based LIDAR
data. The lower flight altitude enhances the capture of structural
detail of the crop by generating LiDAR point clouds of higher
density and smaller footprint size.

B. MSI-Derived Metrics Modeling

The models derived from the three feature selection meth-
ods (see Table VIII) exhibited similar accuracy and precision
(Adj. R?, Pred. R?, and nRMSE values), demonstrating the
robustness of our data processing methods. While we observed
one or two common features among the models from different
methods, it is noticeable that the models apparently varied
based on selected features. We attributed this to the fact that
feature selection methods use different metrics to eliminate less
important features. More specifically, stepwise regression uses
the p-value as its criterion, while LassoCV retains only nonzero
estimated coefficients in its sparse solution in L1 norm, and
RFE-SVR prunes features by ranking the coefficients of features
and recursively considering smaller and smaller sets of features.

Moreover, as shown in Fig. 12, features from the different
models were correlated. For example, RFE-SVR selected the
covariance of ARI2 (square A) and median of ARI2 (square B)
as the two most significant features. Although these two features
did not show up in the other two models within the same
group, they are significantly correlated with the covariance of
SR (stepwise model) and the third quartile of NDVI (LassoCV
model), respectively. We, therefore, concluded that although
different methods selected different features, many of these
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Fig. 12.  Correlation matrix for the features in the three models for the 28 m
flights in Table VI. Yellow lines represent the boundaries of features from the
same models. Note that pixels at A and B exhibited a significant correlation.

features in fact were correlated. Such correlation is to be ex-
pected for a dataset of 96 samples x 56 features. If our methods
were to be extended to larger datasets, we speculate that more
common features will be found among the models, and the
between-feature correlation will be reduced. Judging from the
performance and the number of features of the models, we
recommend the LassoCV-based models based on performance
and the required number of predictor variables.

C. LiDAR Versus MSI

For the general models across all flights and all cultivars, the
best LiDAR-derived model achieved slightly better prediction
results than the best multispectral imagery-derived model, with
R?jigar = 0.61 versus R?,,,; = 0.53 and nRMSEjiger = 19%
versus nRMSE,,s; = 22%. However, when we separated the
data according to their flight altitudes, the best MSI-derived
models surpassed the best LiDAR-derived models. For the 28
m flight group, we observed R?,,,; = 0.75 > R%gr = 0.65,
and nRMSE,,.s; = 15% < nRMSEjjqar = 19%; for the 51 m
flight group, we observed R%,. = 054> R?igw = 0.50,
and nRMSE,,,; = 21% < nRMSEjjg = 22%. This pro-
vided credence to our claim that an SfM approach, based on
multispectral imagery, could be a competent alternative to an
costly LiDAR sensor for measurement of LAI of snap beans
under the same flight settings. However, it is noticeable that
the MSI-derived models required more independent variables
than the LiDAR-derived models. Such complexity in models
could undermine their robustness and generality when research
expands to alternative crops. While some studies have shown
that the performance of different UAS-LiDAR systems varies
under different settings, such as flying height and speed [101],
we acknowledge that the conclusion was based on a set of limited
conditions and therefore should not be generalized too broadly.

The methods based on LiDAR data and multispectral imagery
shared some common findings: 1) the 28 m flight group generally
performed better than 51 m flight group, which attributed to
a denser spatial sampling of crop structure at lower altitudes;
and 2) the models for the W cultivar group exhibited higher
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prediction accuracy than models for the L and the F cultivar
group, which was attributed to more consistent growth patterns
within a crop and during the season. These findings could offer
guidance for flight planning when predicting LAI of other crops.
First, without causing undue impacts on the operational flight
execution, it is preferable to operate the UAS at alower altitude if
the environment and UAS battery power allow. Second, crops’
biophysical variance characteristics could result in additional
complexity (and poorer performing models) when assessing LAI
remotely. The more uniform and regular the crop growth patterns
are, i.e., leaf angles and leaf direction, the more likely an accurate
and precise LAI modeling outcome.

It is informative that despite the challenges associated with
the relatively low canopy height and high structural/temporal
growth variance in snap bean crops, our model performance was
comparable to other recently published studies. A related study
[12] evaluated LAI on winter wheat. Their models, based on
the modified triangular vegetation index, achieved R? = 0.79
and nRMSE = 24%. Another related study [17], in turn, used
voxel-based methods from UAS-LiDAR data to invert LAI of
maize and obtained nRMSE values of 10.8%, 12.4%, 42.8%
for the upper, middle, and lower canopy layers, respectively.
Maimaitijiang et al. [102] compared LiDAR and photogram-
metry for LAI retrieval for sorghum fields and reported rel-
atively better results from LiDAR metrics, with R? = 0.41
and RMSE = 0.32 for a tall, dense field and R? = 0.75 and
RMSE = 0.27 for a lower, sparse field. These findings match
our results concerning the apparent improvement of models’
performance on the W cultivar group and the Flavor Sweet
cultivar, and in general bodes well for UAS-based sensing of
crop LAIL Major contributions of our study are the comparison
of models across cultivars and especially sensing modalities.
The use of image-based SfM versus more costly (financial and
processing costs) LIDAR-based structural sensing is also a key
finding.

V. CONCLUSION

The application of the UAS-based LiDAR and multispectral
imagery for predicting LAI has distinct advantages in terms
of temporal and spatial resolution and accuracy for field-to-
landscape-scale crop management. Our study demonstrated the
utility of LIDAR-derived models and MSI-derived 3-D models,
via SfM, in predicting LAI of short broadacre crops like snap
beans.

The relatively low canopy height of snap bean plants and
foliage architecture made the internal canopy details hard to
capture via either LIDAR or photogrammetry (SfM). Despite
the challenges, this article strongly supported the potential of
UAS-based LiDAR and multispectral imagery to estimate LAI
of short broadacre crops. Furthermore, since snap beans only
grow up to 0.3-0.6 m in height, the methods in our study should
be extensible to other short broadacre crops, such as sugar beets,
soybeans, and winter wheat (see Table I). Temporal transferabil-
ity of the models was not fully explored due to limited, one-year
sample data.

Results from this article are encouraging for the translation of
an eventual operational solution to crop structural assessment,
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and potential extension to, for example, yield models, especially
given that image-based SfM approaches performed nearly as

well

as LiDAR, an active sensing modality. Our objective here

was to contrast LIDAR- and MSI-based LAI estimation, espe-
cially given that latter modality’s cost benefits, i.e., SfM-based
structural information, coupled to spectral content. However, we
recommend that future studies evaluate the fusion of LiDAR and
multispectral imaging, in order to assess the potential benefits
of such a coupled modality approach. Larger sample size, multi-
temporal data, and more diversity in vegetation growth patterns
all could contribute to the development of even more robust
models. One more interesting topic is utilizing LiDAR indices
to mitigate the saturation problem of VIs when LAI > 3 [103],
which we would like to include in future studies.

APPENDIX

TABLE IX
SOFTWARE WE USED IN THE PROJECT AND THEIR OBJECTIVES

Software Version Objective

CloudCompare

ENVI
Pix4DMapper

QGIS

VDatum

scikit-learn

2.11 Visualize 3D point clouds, do
preprocessing steps in the
LiDAR workflow, and
calculate normals at points
Image segmentation on
multispectral images
Generate SfM point clouds and
mosaic images of the field
Intersect 3D point clouds with
the mosaic images and
polygons of the plot
boundaries

Convert the coordinates of the
GCPs

A python package for
implementing LassoCV and
RFE-SVR regression methods

552

4.4.12

3.12.2

4.0.1

1.0.2
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