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ARTICLE INFO ABSTRACT

Keywords: Functional magnetic resonance imaging (fMRI) functional connectivity between brain regions is often computed
Functional connectivity using parcellations defined by functional or structural atlases. Typically, some kind of voxel averaging is
Correlation performed to obtain a single temporal correlation estimate per region pair. However, several estimators can
Aggregated data

be defined for this task, with various assumptions and degrees of robustness to local noise, global noise, and
region size.

In this paper, we systematically present and study the properties of 9 different functional connectivity
estimators taking into account the spatial structure of fMRI data, based on a simple fMRI data spatial
model. These include 3 existing estimators and 6 novel estimators. We demonstrate the empirical properties
of the estimators using synthetic, animal, and human data, in terms of graph structure, repeatability and
reproducibility, discriminability, dependence on region size, as well as local and global noise robustness.

We prove analytically the link between regional intra-correlation and inter-region correlation, and show
that the choice of estimator has a strong influence on inter-correlation values. Some estimators, including the
commonly used correlation of averages (ca), are positively biased, and have more dependence to region size
and intra-correlation than robust alternatives, resulting in spatially-dependent bias. We define the new local
correlation of averages estimator with better theoretical guarantees, lower bias, significantly lower dependence
on region size (Spearman correlation 0.40 vs 0.55, paired t-test T=27.2, p = 1.1e*7), at negligible cost to
discriminative power, compared to the ca estimator.

The difference in connectivity pattern between the estimators is not distributed uniformly throughout
the brain, but rather shows a clear ventral-dorsal gradient, suggesting that region size and intra-correlation
plays an important role in shaping functional networks defined using the ca estimator, and leading to non-
trivial differences in their connectivity structure. We provide an open source R package and equivalent Python
implementation to facilitate the use of the new estimators, together with preprocessed rat time-series.

Familial correlations
Serial correlations

1. Introduction and in clinical neuroscience, to characterize psychiatric (Fornito et al.,
2017) or neurological (Fornito et al., 2015) disorders. They form a

Functional connectivity of the brain is estimated from observa- compact yet expressive representation of brain activity that can be used
tions using non invasive techniques such as electroencephalography for downstream analysis tasks such as diagnosis (Castellanos et al.,

(EEG), magnetoencephalography (MEG) or functional Magnetic Reso- 2013) or more generally machine learning approaches (Richiardi et al.,
nance Imaging (fMRI). Each recording provides time series associated 2013; Dadi et al., 2019)

to spatial locations within regions of the brain. Functional connec-
tomes, that is, graphs representing the estimated connectivity, are
then constructed by computing dependence measures between the time
series. These connectomes are used in fundamental neuroscience, for
example to study development (Fan et al., 2021; Tooley et al., 2021),

For graph construction, typically, each region of the brain, defined
by a structural or functional parcellation, is associated to a given set
of voxels amongst the thousands for which a signal is recorded. The
idea is then to extract a representative of the set of voxels to attach
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one time series to each region. When structural atlases are used, the
most common approach is to take the average of the voxel time series
at each time point. Indeed, almost 70% of papers on PubMed that
used the Human Connectome Project dataset to conduct functional-
connectivity-related studies in the last five years (e.g., Ogawa (2021),
Figueroa-Jimenez et al. (2021), Bolt et al. (2017) and Zhang et al.
(2016)) use this method (cf. Appendix A). While there are numerous
other approaches to connectivity estimation (including the related tech-
niques for estimating parcellation from connectivity, see, e.g., Eickhoff
et al., 2015, or using regional medians Braun et al., 2012 or eigenvec-
tors Biichel and Friston, 1997; Braun et al., 2012 instead of means),
we focus on correlations between averaged regional time-courses, and
argue that this technique introduces bias in the estimation of the
functional connectomes.

The choice of acquisition sequence and hardware, physiological
noise (Caballero-Gaudes and Reynolds, 2017), preprocessing (Braun
et al.,, 2012), and subject motion all impact correlation estimators.
Acquisition effects are site-dependent, causing heterogeneity problems
in multi-site studies, although various harmonization techniques have
been proposed as mitigation (Castrillon et al., 2014; Chen et al., 2022).
In addition, it has been shown that computation of connectomes is af-
fected by three main parameters: the length of the acquisition (Whitlow
et al.,, 2011; Van Dijk et al., 2010), the number of regions (Stanley
et al., 2013; Cao et al., 2019) and the chosen frequency band (Cordes
et al., 2001; Salvador et al., 2005; Braun et al., 2012; Chen and Glover,
2015). Finally, sample size will also play a role in terms of group
comparisons (Termenon et al., 2016).

Aggregation across voxels is often used because one wishes to
increase the signal to noise ratio. This approach is also common in other
areas of statistical analysis, for instance because the data are collected
in different groups, organizations, or regions. However, difficult chal-
lenges arise due to the presence of correlations within the collected
datasets.

Measurement errors can impact inter-region correlations. They have
been well studied in fMRI, and are related to both the hardware and
the subject (Greve et al., 2013). They are known to impart correlation
structure to the data that is not linked to neural activity (Jo et al.,
2010; Murphy et al., 2013), at various spatial scales. This problem is
also common in other areas of statistical analysis. For example, Ostroff
(1993) studied correlations between the score variables job satisfac-
tion and technology (i.e., perception of the amount of standardization
of tasks performed) both at the individual and organizational levels
(individuals grouped into organizations such as companies). When
organization-level estimates of correlation (i.e., correlations based on
aggregated data) are obtained by averaging individual-level estimates
of correlations, they showed that the ratio of individual to organiza-
tional correlations varied widely depending on measurement errors as
well as other factors. This is an instance of the fallacy of the wrong level,
when “correlations at a more macro level are used to make inference
about individuals, or vice versa” (Ostroff, 1993).

Region size can also influence inter-region correlations. In fMRI, the
dependence of inter-region correlations on brain region size has been
noted (Achard et al., 2011), showing a positive relationship between
region size and correlation values to the rest of the brain. This is
particularly problematic because many atlases have some dependency
between region size and spatial location (e.g. some deep gray mat-
ter structure may be parcellated into smaller regions or subregions
than cortical structures). It has also been shown that temporal au-
tocorrelation increases with region size, both for volume-based and
surface-based parcellation (Afyouni et al., 2019), and that at a small
scale regional homogeneity (Zang et al., 2004) — also called local con-
nectivity and measured by the Kendall correlation coefficient of small
neighborhood time series — is larger for 9-voxel than for 27-voxels
neighborhoods (Jiang and Zuo, 2016).

In studies of familial data (Rosner et al., 1977), specific character-
istics are obtained for different families with different sizes: correlation
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between the children and parents and the average of correlations between
all children and parents are not equal in the majority of cases, due to
differing number of children per family.

Finally, the spatial aspect of the data also complicates correlation
estimation, in particular due to spatial autocorrelation between voxels
(more simply named spatial correlation in the rest of the paper).
Spatial correlation means that observations in neighboring voxels are
not independent. However, independence is an assumption many sta-
tistical estimators rely on to simplify hypothesis testing by enabling the
application of the central limit theorem, leading to false positives and
artificially low p-values. Spatial correlation has been identified to be
present in fMRI data previously, in particular in activation studies. Even
if the methods to take into account the spatial correlation are different
from the functional connectivity, it is worth detailing these specific
approaches here. The common point between our problem in this paper
and the activation studies is that spatial correlation has an impact
on the design of the methodological approaches. Indeed, two classical
approaches in fMRI activation studies are to either assume voxel inde-
pendence, or conversely to smooth the data (Hartvig and Jensen, 2000).
Smoothing itself can lead to location and amplitude mis-estimation (De-
scombes et al., 1998); alternatively, estimating smoothness from data
allows adjusting effective number of degrees of freedom and reducing
false positives, but can itself lead to variability in p-values from hy-
pothesis tests (Poline et al., 1995). Spatial correlation has also been
shown to deflate p-values in structural imaging (Burt et al., 2020), and
has long been recognized as an issue in functional connectivity, for
instance with early voxelwise (PET) connectivity approaches removing
correlation “between neighboring voxels which can be attributed to
spatial correlation” (Cao and Worsley, 1999). More recently, methods
from spatial statistics have been applied for clustering fMRI data (Ye
et al., 2009, 2011), and spatial correlation-preserving null models have
been proposed to compare functional network maps (Alexander-Bloch
et al., 2018; Markello and Misic, 2021) and thus avoid deflated p-values
due to spatial correlation. Computing correlations is also common when
geostatistics is applied to ecology, geography, climate studies, and
more. The data collected in these fields are attached to a spatial position
and usually with spatial correlation. The problem was first reported
by Student (1914), and studied in Clifford et al. (1989) for two spatial
processes. Applications of these methods can be found for example in
the study of meteorological data (Gunst, 1995).

In all these fields of application, the main difficulty is to take into
account spatial correlation when the goal is to construct estimators of
correlation and to build testing procedures when the averaged variables
are not independent.

In light of the above, preferable inter-correlation estimators should
exhibit at least four properties (i) face validity, (ii) high repeatability,
(iii) preservation of the differences between individuals (discriminative
power), and (iv) independence from region size. In this paper, we
question the default choice of using correlations of averages of voxel
timecourses, and examine in details the assumptions of various methods
and their robustness to various types of noise. We propose first a simple
definition of a spatial model of fMRI with intra-correlations within
brain regions. Then, computations of correlations are described and
we show the potential bias in the estimators. Based on simulations, we
illustrate the good behavior of the newly introduced estimators. Finally,
we conclude with results on human data and rat data.

2. Proposed estimators of correlation
2.1. Definition of the proposed spatial model for fMRI data

Let C ¢ 7Z% d € N*, be a finite compact set of multi-indices.
In the context of our application, d = 3 and C contains all 3-tuples

indexing the voxels of a three-dimensional image of a brain. Each brain
is virtually partitioned into J regions of interest which are represented
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through their subsets of voxels R j of cardinality #R j=Npji=1..J.
We thus have
J
—ul -
C=U__R;and #C =) N;.
j=1
For any d-tuple i € C, a signal Y;(-) sampled at times 7 = 1,...,T is
observed and we assume that it can be decomposed as follows

Y1) = X;(0) + &,(t) + e(2), (€Y

where X,(-) is an unobserved signal of interest, ¢,(-) is a local noise
contaminating locally the signal X;(-), and e(-) is a global noise corrupt-
ing in the same way the signal measured in each voxel indexed by an
element of C. This can be, e.g., a consequence of thermal or background
noise (Lazar, 2008; Greve et al., 2013), which at high field strength has
been shown to explain a high proportion of noise variance (Greve et al.,
2011).

We make a few assumptions on these different components. First,
we assume that all random variables are centered. We also assume that
the signals X;(:), ¢;(-) and e(-) are mutually independent and indepen-
dent in time. This is not an overly restrictive assumption as for the
applications presented in Section 3 we preprocess the data by applying
a wavelet transform. And it is now well-known (Moulines et al., 2007),
that if a random time series has short or long memory characteristics,
after a wavelet decomposition, this signal can be approximated to be
decorrelated in time for large wavelet scales. In addition, assuming that
the X;’s are centered is coherent as it is a well-known fact that a wavelet
decomposition based on a wavelet mother with K vanishing moments
cancels out every polynomial trend with degree K — 1. Assuming that
the local and global noises are homoskedastic with a variance denoted
respectively by o, and o, is also not restrictive. Finally, we will be
assuming (again following the literature Lazar, 2008; Greve et al., 2011,
2013) that the local noise ¢ is not too strongly spatially dependent and
more precisely that two voxels far away have uncorrelated local noise.
This is made more precise in Section 2.2.

2.2. Spatial correlation structure induced by model (1)

Leti,i’ €C,j,j’=1,...,J (j#j)andforallt=1,...,T, we assume
that there exists 0;>0,0,20,r;y €[-L1], pjy € (O l], my € [-1,1]
such that

Cioir; ifieR,,i"eRuj+j,
ELX,0X, @) =4 2 !
o7 pii ifi,i’ e R;

and
Ele,(Dey (0] = o2,y if i,i' € R,

The parameter r;; represents the correlation between two (unob-
served) signals of two different regions R; and R and is called
inter-correlation between regions R; and R, in the following. This is
the parameter of interest we focus on in the rest of the paper. The pa-
rameter p,;, represents the intra-correlation between two (unobserved)
signals inside a common region. Moreover, the parameter 7, represents
the spatial correlation between two local noises inside a common
region. We assume that inside each region, the signals of interest
have positive intra-correlation. This is supported by literature (Uddin
et al., 2008; Tomasi and Volkow, 2010; Jiang and Zuo, 2016). We also
assume that for each time ¢ and for j = 1,...,J, {X;(®),i € R;} (resp.
{¢;(n),i € C}) is a second-order stationary and isotropic (with respect to
the uniform norm) random field defined over R ; (resp. C). This means
in particular that both the correlations p,;; (for any i,i’ € R ; for some
j) and n;y (for i,i’ € C) depend only on the (uniform) distance (that
is the usual distance on the lattice, e.g. Gaetan et al. (2010)) between
the two voxels i and i’. For brevity, we still denote pjs_; by p;» and
f—i by n;» where for x € 74, the notation |x| stands for the uniform
norm. Our a priori hypothesis is that the intra-correlation p; is close
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to 1 for moderate distances 6, meaning that close neighbors are strongly
(positively) correlated. Finally, we assume that the local noise is p-
dependent, i.e., n; = 0 for any § > p. Without loss of generality, we
also intrinsically assume that for all i € R; and i’ € R, €,(r) and &,(t)
are uncorrelated. This simplifies the presentation in the next sections.
Furthermore, in the sequel, employing a slight abuse of language, we
refer to the correlation between two voxels instead of the correlation
between the signals originating from those voxels.

Hence, this results in the following (spatial) correlation structure for
the signals ¥, and Y/ at time t:

C;0il; /+O'

e " Ly
//// 1fzeRj,leRj/,j;ﬁj,

ELY,(0Yy ()] =07 py—yp) + o2y +o0;  ifi,i’ €R;and |i—i'| <p

aj?p|,-_i,| + 0?2 ifi,i/ €R; and |i —i'| > p.

Given a parcellation of the brain, the objective is to estimate inter-
correlations r; for each pair of regions of interest, independently
of the parameters aj,aj,ag,o-e,pi,-/,n,-,./ which are viewed as nuisance
parameters. We do not model the distribution of Y; but only its second-
order properties (through X;,¢;,e). As said before, we consider the
intra-correlations, the correlation of the local noise and the different
variances as nuisance parameters that we do not want to estimate. In
the next section, we present various estimators of r;; built in order
to address one (or several) of the following cases: (1) the regions of
interest R j and R y may contain a different number of voxels; (2)
the intra-correlation may deviate strongly from 1 (especially for large
regions); (3) there may be a non negligible local noise ¢; affecting the
signal in each region; (4) there may be a global noise affecting all
regions.

2.3. Inter-correlation: notation and properties

Let Y, = (Y;(1),....,Y{(T)) and Y, = (Y5(1),...,Y,(T)) denote two
voxel time-series of length 7. The notation C/c;/(Yl,Yz), é\or(Yl,Yz)
and 52(Y,) stand for the sample covariance between Y, and Y,, the
sample correlation between Y, and Y, and the sample variance of
Y,, respectively. For any j = 1,...,J, we define a v-neighborhood
and denote it by V as a subset of n, := (2v + 1)? indices, all of
which are at a distance less than or equal to v from the center j
of the neighborhood. For any set of indices E (which could be a v-
neighborhood or a region of interest) and any spatio-temporal field
Z,(t) (which could be Y}, X,,¢;,...) we denote by Zg() fort =1,...,T
the time series spatially averaged over E, that is

22(1)

AGE

ZE(t) =

To sum up, we reserve the bold notation to mainly denote a vector of
length T, the notation * to denote an average over time while * will
denote an average over space. Hence, for instance 62(Y E) denotes the

sample variance of the vector with components (#E)~! Yicg Yi(0) for
t=1,...,T. We also let

and 2
E (#E)2 2 Piit E (#E)2 Z Ny - ( )

ii'€eE ii’€eE

The quantity 5 represents the (spatial) average intra-correlation inside
the set E. If E corresponds to a v-neighborhood with moderate v, we
may expect gy, to be close to 1. Such an observation is probably less
realistic when E = R; especially for large regions. The quantity 7
is related to the (spatial) correlation structure of the local noise. By
assuming this noise to be p-dependent (that is n; = 0 when § > p), it is
clear that the larger #E the smaller 7jj.

Using the assumption given in Section 2.1, for any E C R; and
E' C R, we deduce

_ _ ooyt + o2 if j #j/,
Cov[Yg (@), Ypr(Ol =4 ey
oippp +oy,  ifj=J,
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Fig. 1. Graphical overview of the inter-regional correlation estimators ca, ac, #ca, and r discussed in this paper. Gray dots represents voxels. Dashed black lines represent brain
regions. Edges between voxels represent voxel-voxel temporal correlations. Blue rectangles show the region and level of aggregation (voxels or correlations). r;; shows quantities
involved in the computation of the inter-regional correlations. Illustrations are approximate, please refer to the relevant equations for the exact definition. Neighborhood versions
of the estimators (starting with #) use the same principles but involve aggregating in small neighborhoods within regions.

where

o
Per = GEGE) 2 P

i€E,i'eE’

The variance can also be deduced as follows:
Var[Yg (0] = o7 pg + 0, i +0,.

The detail of this result is given in Proposition C.1.
To lighten the expression of estimators proposed in the next sec-
tions, we define for j, i’ € {1,...,J}

c c
o, ==, o, = —=<, and -

| o, Oejj’ = \/ﬁ
J J J7]

In the next sections, we set j, ;' and thus aim to estimate r;; indepen-
dently of the other parameters. The definition of standard estimators as
well as novel estimators may look complicated due to the large amount
of notation induced by the spatio-temporal correlation structure of Y
and the methods themselves. However, we have postponed as much as
possible theoretical contents to Appendix and present the estimation
methods from an intuitive point of view in Figs. 1-2 in order to make

next sections readable and reproducible.

3

2.4. Existing inter-correlation estimators

We first review existing inter-regional correlation estimators using a
unified notation throughout.! Results on consistency of the estimators
are provided in Appendices C-G.4.

2.4.1. Correlation of averages (method ca)

In order to increase the signal-to-noise ratio, the most standard
method in fMRI is to average (or sometimes convolve with a Gaussian
kernel) the signal in space (in each region of interest). The aggregated
correlation estimator corresponds to the standard estimator (see Sec-
tion 1) considered for example in Achard et al. (2006), Bolt et al. (2017)
or Ogawa (2021):

Cov(YR‘/ s YRj )

U 5(Y )6V )

! In a previous study (Achard et al., 2011), we already described three of
the estimators discussed here (ca, Ac, Zca), but not with a unified notation,
as well as a fourth estimator which is only discussed in the Appendix of the
present paper.
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This estimator, illustrated in Fig. 1 was designed to reduce the local
noise. Indeed, in the absence of global noise (02 = 0), this estimator

tends to r;;/ / (g, + o’ iR, )(pRr + 0' ,nRr) The interest of averaging
before computing correlatlons is clear the Iocal noise is smoothed, thus
fir, = O(1/Nj;) is probably very small. However, even in absence of
noise (o, = o, = 0), 7% has a serious drawback since it estimates
rirl/ PR, PR, which is hlghly dependent on intra-correlation. Just to
give an example, assume r;y = 1/2, N; = Ny = 2, p; = 0 then
Pr; = Pr, = 1/2 then 74 will converge towards 1 and not 1/2. This
is a caricature but illustrates what may happen for large regions when
some of the signals X; are not enough positively intra-correlated. That
fact was already pointed out by Achard et al. (2011).

2.4.2. Average of correlations (method Ac)

Instead of evaluating correlation of spatial averages, it is natural to
perform the (spatial) average of correlations. This estimator, illustrated
in Fig. 1, is given by:

A 1 —~
7S = Cor(Y;,Y ). 5)
7 NNy ezz:j Y

i’eR/,

As seen from Table 1, in absence of global noise ("3 = () and when
the variances are equal to 1, this estimator estimates the quantity

s/ + 02) which makes this estimator robust to large regions (for
wh1ch PR, may be far from 1) but more sensitive to local noise than
the estimator r“

2.4.3. Replicates for correlations (method r)

In order to cancel out the effect of local noise, we introduce to
fMRI a slight adaptation of the estimator introduced by Bergholm et al.
(2010), in the context of image analysis. This is based on the concept of
replicates within the same region, and denoted by 7R (r for replicates).
The idea is to take two samples within each region, called replicates, to
be able to compute correlation using these replicates to cancel out the
local noise. These replicates can be chosen randomly a certain number
of times denoted B. This estimator, illustrated in Fig. 1, is then obtained
as a Monte-Carlo mean (or bootstrap) over different random replicates

L

n 13 7 L=l COT(Yifxm,Yi/;m)

=g Z 6)
b=1 \/|Cor(Y (b),Y(b))COr(Y /> ,<b>)|

where for b=1,..., B, :(b) (b) € R, are such that |:(b) (b)l =6>p.In

the same way, i’ ® (b) IS R » are such that |i’; & _ (lb)l =6 > p. Under

equal variances and absence of global noise, A}}, estimates 1/|p;| which

is clearly independent of o2 and may be expected to be close to one if
6 is small.

2.5. Novel estimators: discarding the effect of global and/or local noise

2.5.1. Use of a priori uncorrelated regions (method p based on differences)

We now present an estimator which handles the problem of global
noise. To achieve this task, we assume that among the regions where
the signal is recorded there are at least two regions say R, and R
which are uncorrelated between themselves and from all the other ones.
With a slight abuse of notation, k, k’ will be used for the indices of
these two regions, while j, j will be used when we are interested in
the inter-correlation between regions R; and R (hence ry = r; =
Fyk =Ty = 0). This assumption is realistic in the context of fMRI data
where we are interested in the correlations between cortical regions.
Indeed, the field of view is typically larger than the brain itself, and
the definition of extra regions is possible, for instance using air voxels
or muscle voxels. The estimator is illustrated in Fig. 2.
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We propose the following strategy: for b = 1,..., B let i®), i/®, k®

and k'® be voxels of R;, Ry, Ry and Rys.

B
~ 1 —_—
"2, =3 [; Cor(Y;0), Y003 Yyr, Y o), )

where for four vectors Y|, Y,, Y3 and Y, (with same length)

~ Cov(Y, - Y3, Y, - Y,)
Cor(Y,Y;Y3,Yy) = = R ®
S(Y] 5 Y3, Y4) S(Y27 Y3’ Y4)

and where for three vectors U, V and W with same length

FUV,W) = (32 U-V)+52U-W)-X(V-W)) /2.

The intuition of this estimator is quite simple. Assume that the local
noise has zero variance. Since the noise e(-) is global, subtracting from
Y (®) the value Y, (1) and from Y, (r) the value Y, (1) discards the
global noise. And since the regions R, and R, are not correlated
and not correlated to the other ones, the numerator (for each b) is an
estimate of 6,6, r;,. Then, we just have to divide by estimates of ¢;
(and o;/). We observe that this cannot be done using simply 32(Y,0) —
Y, ») which estimates af + 67 + 202. This justifies the introduction of
52,

Note that FE, is still biased with respect to local noise (see Table 1).

An illustration of estimator b is provided in Fig. 2, and a more formal
proposition and proof for this estimator are provided in Appendix E.

2.5.2. Replicates and use of a priori disconnected regions: method rp

Combining replicates and the idea based on differences motivates
us to propose the following estimator (see Sections 2.4.3 and 2.5.1 for
notation)

1 .
< Za,; 1COT(Y s /fﬁb)sYk(b)aka(b))

1 B
/\RD
"5

\/|Cor(Y(b Y<b>,Yk<b>, kmb))COY(Y,,(b), ,/“’)’Yk“’)’ Y, 0)l

9

It is worth pointing out that »RP is independent of 5, and ¢, and equals
the unknown r;; if p; is close to 1. A more formal proposition and proof
for this estlmator are provided in Appendix F.

2.6. Localized versions of inter-correlation estimators

As mentioned previously, when noisy signals are averaged, the
signal to noise ratio increases. A very popular method in neuroimaging
analyses is to apply a Gaussian smoothing on the fMRI volumes (Wors-
ley et al., 1992, 1996; Poline et al., 1997). However, applying a large
kernel width may have dramatic effect on brain connectivity (Triana
et al., 2020). Some earlier work on PET connectivity used a local
neighborhood centered around voxels of interest to smooth the signal
in each region prior to connectivity estimation (Kohler et al., 1998).
We introduce in this section estimators using local neighborhoods to
control the smoothing effect on correlation estimations.

2.6.1. Local correlation of averages (method ¢ca)

Motivated by the first two estimators, we propose to estimate r;;
using an empirical average of local spatial averages. For b = 1, ..., B,
let V;b) (resp. V;{’)) be a v-neighborhood of R ; (resp. Rj). We define

/\KCA

bul~

B
Z Cor (Y. vm 10



S. Achard et al.
method D
(1) covariance computation

(2) j variance computation

Neurolmage 282 (2023) 120388

(3) j’ variance computation

R . . ‘Re Rl
e | A= _l Fo
| A | |

| |
| | |
| |
| | | | |
I—_—J I—_—J I—_—
R R, R
A=cov(Y-Y,, Y,-Y,)
(4) final estimator A/(BB’

Fig. 2. Main steps involved in computing the inter-regional correlation estimator . Dashed black lines represent brain regions of interest R; and R ;. Dotted black lines represent
a priori uncorrelated region (e.g. air or muscle voxels) R, and R,,. Colored rectangles show the voxels involved in the computation. The final inter-regional correlation estimator
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2.6.2. Local average of replicates (method ¢r)
This estimator consists in replacing single indices by neighborhoods
in (6). For b=1,..., B, let V(b) and V(b) (resp. V(b) and V(b)) be two v-

) v(b) i e v(b)

neighborhoods in R; (resp. R ) such that for any z o b

|i(1b)—i(2b)| = 6 > p (resp. | "® _ '(b)l = 6 > p for any /l(b) € V;_,b),
1
i'z(b) € v;f’)). The local average of replicates based estimator is defined
by :
lws = _
B T Zapt Cor(Yv;b),Yva))
o J

PR = %Z : . an

b=l \/ ICor(Yv(b>, v(h))COT(Yvwn v(b))l

7 )

2.6.3. Local averages and use of disconnected regions (method ¢p)
We use in particular notation introduced in Sections 2.6.2 and 2.5.1

to propose the estimator 7 A") D given by
L&
?ﬁ]? =3 2 OF(YVW, v(“’YvL”)’Yvﬁ)' 12)

b=1

2.6.4. Replicates, local averages and use of a priori disconnected regions
(method ¢rp)
This estimator is a local version of 7 ARD and is defined by

1
Zaﬁ 1 COI(YV«M, Yvw N Yv(m, V”")

B
#eRD _ 1 Z
/'j/ - B — _ — — — p—— — — — :
b=1 \/COI‘(YV(M N YVU» 5 szm N YV(’Z') COI‘(YV@ N YV@ 5 szm N Yvo;))
Ul ) K i i K

(13)
2.7. Summary of estimators

We have formalized 9 estimators for inter-region correlation in
fMRI, 6 of which are novel to the best of our knowledge. They vary
in terms of their theoretical sensitivity to three factors: differences
in region sizes and region intra-correlations (ﬁRj < 1), local noise
(c,), and global noise (¢,). Table 1 summarizes estimators properties
qualitatively using — for estimators that are sensitive to these factors,
—+ for estimators that are insensitive, and = for those that are in-
between. The ca, Zca, aAc, and Rr estimators are sketched in Fig. 1 and
the b estimator is illustrated in Fig. 2.

As an example, let us interpret the properties of ca shown in Table 1
in terms of these factors. First, we observe that the limit of oA strongly

r;, is defined in terms of the intermediate quantities computed in these three steps. See Fig. 1 for more details and other estimators.

depends on the region size. Indeed, even in absence of noise this limit

is rj;/, /PR, Pry» which can be quite far from r;; especially for very

large regions (so the estimator is sensitive to local noise and denoted —
in the corresponding column). Now imagine that PR,PR, = 1 and that
J

= 0 then the limit becomes r;; /\/ 1+ aij g (1 + af’j,ﬁR‘r]). Since

it is expected that 7, is small (see (C.3)), especially for large sets E,
this limit should be quite close to r;; in this situation (+) Finally, if
pR Pr, = =1 and 62 = 0, and assume for simplicity that 6; =0y = 1, then
o would converge towards (r;; + 62)/(1+ ¢2) which can significantly

deviate from r i when the global noise is strong (—).

This does not describe at all finite sample properties of the different
estimators. Obviously, we could be tempted to always use the last
two estimators (methods rRp ad #rp) which seem to be the most
robust to additional noises. However, these last estimators will be less
robust to small sample size. We propose to investigate these finite
sample properties in a simulation study (Section 3.1) and real datasets
(Sections 3.2 and 3.3).

We note that evaluating asymptotic variances of the different esti-
mators would add too much notation, assumptions and technicalities,
and is left for future work.

3. Description of simulated and real datasets

We employed three distinct datasets to assess the performance of
our estimators. These datasets encompassed a simulated dataset, a
dataset involving rats that comprised both deceased and living animals,
and a dataset from a healthy human subject, which included test-retest
data.

3.1. Simulated data

The paper being focused on pairwise spatial (auto)correlation es-
timation, it is sufficient to investigate the finite sample properties of
our estimators for just two regions, say R; and R (whose sizes are set
here to 20 and 40 voxels, respectively). Also, to save time and memory,
we restrict ourselves, w.l.o.g., to one-dimensional regions (d = 1,
regions are simply intervals so they are simply made of ‘voxels’ along
a line). For the estimators based on differences (methods b, #p, ZRD),
we consider two extra regions, say R, and R/, that are disconnected
(i.e., rjp = rjp = re = ry = rpp = 0). We consider two scenarios:
the “relatively strong inter-correlation case” (rj = 0.6) and the “no
inter-correlation case” (r;; = 0). The intra-correlation for any given
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Table 1

Expected limits and properties for existing and novel estimators of inter-correlation
Tt under the model (1). We refer the reader to Section 2.3 for details on notation.
In particular 63»/, "3,/ and ai , are given by (3) while iy and jg  for two sets of
indices E, E’ are given by (2) and (C.7). Sensitivity of estimators to three factors are
reported: differences in region sizes and region intra-correlations (P, < 1), local noise
(c,), and global noise (c,). Estimators that are sensitive to these factors are denoted =
those that are insensitive are denoted + and those in-between are denoted insensitive

Estimator Limit r;./, Sensitivity to
pr, < 1 o, c,
ripte’
FCA (see (4)) — > - -
\/@r; 02, +0 Now , 97 T, +07 )
~ rptet
7S (see (5)) R + - -
(I4c; +0, )(1+0° ,+0> )
o )Ie, , +o,
riptet
PICA (see (10)) Ty i + + -
(Py+a? ity +o; ) py+o? ,iiv+o? )
rpet
7R (see (6)) e + + -
V@502 o5 407 )l
~ rp+et
7R (see (1)) Lo + + -
1y 5402 w1 5+0% )l
#D (see (7)) — + - +
(]+c}_/)(]+a‘3/,)
#D (see (12)) /- + + +
(Py+o? iy)Py+a? , iiy)
#RD (see (9)) L + + +
FRD (see (13)  —— + + +
V'

region is modeled (alike within any region R;, R, Ry, Rys) using the
following spatial model

i —i'|
pin=1-(1-v) 1—T 14
which only depends on the distance |i —i’| between two voxels, say

i and i/, belonging to the same region. We selected either the value
v = 0.8 or v = 0, and designated accordingly the region as strongly or
weakly intra-correlated. Hence, when v = 0, the two voxels furthest
apart in the region of size 40 are uncorrelated, i.e., p; = 0 when
li—i'| = 40. When v = 0.8, they are highly correlated with p;; =
0.8. Fig. 3 represents the correlation structure of (14), as well as the
quantity gy for sets of indices E C {1,...,40} with increasing size
#E, for both intra-correlation models. We generated independently
500 series of length T = 1000 according to model (1), and used 500
replicates for the method r and also 500 (Monte-Carlo or bootstrap)
replications of choices of neighborhoods for methods Zcs, #R, £D, #RD
(where we set the length of the neighborhood to 3). The local noises
£,(t) and £, (7) are assumed to be uncorrelated, so for some set of indices
E, iig = 0,/#E. This is also represented in Fig. 3.

Finally, we chose two values for the variance of the global noise,

=0 and GZ = 0.1, and two values for the variance of the local noise,

2
e

62 = 0 and o2 = 0.1. Results consist of 500 estimates for 9 methods,

2 intra-correlation models, 2 values for aez and 2 values for af, that

is 16 different scenarii (involving each time the 9 methods). They are

presented and discussed in Section 6.1.

3.2. Rats data

Using a 9.4T machine (Paravision 6.0.1, Bruker, Ettlingen, Ger-
many), fMRI data were acquired for both dead and alive rats in Pawela
et al. (2008). Twenty-five rats were scanned and identified in 4 differ-
ent groups: DEAD, ETO-L (Etomidate), ISO-W (Isoflurane) and MED-
L(Medetomidine). The first group contains dead rats and the three
last groups correspond to different anesthetics. In this paper, we show
results with data from three rats, one dead and two alive with different
anesthetics (ETO-L, ISO-W).
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The duration of the scanning was 30 min, using single-shot echo-
planar imaging with TR/TE = 500/20 ms, so that 3600 time points
were available at the end of experiment. The resolution was 0.47 x
0.47 x 1.00 mm, slice gap 0.1 mm, 9 slices. After preprocessing as
explained in Becq et al. (2020b), 51 brain regions for each rat were
extracted using an in-house atlas. Sufficiently large regions are needed
to be able to use the r estimator. We hence discarded regions that
contained fewer than 40 voxels, and were left with 18 brain regions:
The anterior cingulate cortex (ACC), bilateral Insular cortex (Ins.r
and Ins_l), bilateral primary motor cortex (M1_r and M1_l), bilateral
somatosensory 1 (S1_r and S1_1), bilateral somatosensory 1 barrel field
(S1BF_r and S1BF_l), bilateral auditory cortex (AU_r and AU_l), bilateral
caudate-putamen (striatum) (CPu_r and CPu_l), bilateral thalamus (Th_r
and Th_l), bilateral basal forebrain region (BF_r and BF_), bilateral
hippocampus (HIP_r and HIP_]).

Voxel time series were wavelet-filtered using Daubechies orthonor-
mal compactly supported wavelet of length 8.

3.3. Human connectome project data

We also evaluated our estimators on a subset of the Human Con-
nectome Project (HCP) Young Adult 1200 Subjects release, WU-Minn
Consortium pre-processed (Glasser et al., 2013) (connectome db data
package Resting State fMRI 1/2 Preprocessed). We selected 100 subjects
with two rs-fMRI acquisitions on different days. The TR was 720 ms
and the duration of acquisition was 14 min and 24 s.

The preprocessed fMRI data was segmented into 89 regions with
SPM New Segment using a modified AAL template: merging some of the
regions, reducing the parcellation to 89 regions. Merged regions are:
frontal medial orbital and rectus (one region for left and one for right
hemisphere); occipital superior, middle and inferior (one region for
left and one for right hemisphere); temporal pole superior and medial
(one region for left and one for right hemisphere); the cerebral crus
(one region for left and one for right hemisphere); areas III, IV, V and
VI of cerebellum (one region for left and one for right hemisphere);
areas VII, VIII, IX, X of cerebellum (one region for left and one for
right hemisphere) and finally, the vermis (one single region for both
hemispheres). Other details are available in Termenon et al. (2016).

Voxel time series were wavelet filtered using Daubechies orthonor-
mal compactly supported wavelet of length 8.

4. Evaluation and metrics

First, on simulated data, we qualitatively inspected the bias and
variance of the distribution of correlation values with respect to known
ground truth for various levels of global and local noise.

Then, using rat data, we performed a face validity analysis of the
estimators, with the premise that dead rats should show no functional
connectivity (the correlation distribution should be centered at zero).
In order to quantify the differences between correlation values obtained
for dead and live rats, we computed the Wasserstein distance between
the correlation distributions of each anesthetized rat in comparison to
that of a dead rat. A low value of the Wasserstein distance indicates
that correlations values of live and dead rats are comparable and counts
negatively in the evaluation of an estimator.

To evaluate the repeatability of the proposed estimators on the rat
dataset, we split the time series in two equal parts. We computed the
correlations on each part using the whole range of proposed estimators,
and computed the Concordance Correlation Coefficient (CCC) (Lin,
1989) between splits to provide a scaled measure of agreement, where
1 is perfect agreement and O is no agreement. A preferable estimator
should be more repeatable and have higher CCC.

To quantify the similarity of connectivity graphs between estima-
tors, we computed the number of common edges between graphs
obtained from each estimator. To this end we used a sparsity threshold
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Fig. 3. Simulation setup and results. (A) The two simulated one-dimensional regions (one with 40 “voxels”, the other with 20 “voxels”, shown as an inset) and their intra-correlation
structure. Intra-correlation p,;, is given by (14) (with v = 0.8 for the strong intra-correlation and v = 0 for the weak intra-correlation) and decays with distance. (B) Intra-correlation
(vertical axis) as a function of the size of region E (horizontal axis). From top to bottom: j, (orange): average intra-correlation of signal in the strong case; . (blue): average

intra-correlation of signal in the weak case; 7, (black): average intra-correlation of noise. Average noise intra-correlation decays sharply with region size.

equal to 20% of the total number of edges (i.e., 27 edges in our case
with 18 regions).

For human data, we used rs-fMRI sessions from different days, in
order to evaluate reproducibility of correlation coefficients. This was
analyzed using CCC, again with a preferable estimator being more
reproducible and having higher CCC.

We also evaluated the reproducibility of graph metrics between
sessions. To this end we used a sparsity threshold equal to 20% of the
total number of edges, keeping only edges with the highest correlation
(i.e., 783 edges in our case with 89 regions), and binarized the edges. In
order to compute graph metrics, we forced the graph to be connected by
applying a minimum spanning tree (Alexander-Bloch et al., 2010). Then
we computed classical graph metrics: betweenness centrality, transitiv-
ity, global and local efficiencies using package iGraph. Reproducibility
was evaluated using the CCC.

We also summarized the differences of connectivity graphs between
estimators, by computing the number of common edges between graphs
obtained from ca and #ca using thresholding at the 20th percentile
(i.e., 783 edges with 89 regions), and visualized the difference qualita-
tively by taking absolute values of correlation values for each estimator,
rank-transforming, and computing median difference in ranks across all
subjects,

Additionally, we also evaluated discriminative power of the various
estimators via three metrics: inter vs. intra-subject graph distance, a
non-parametric test of the same, and identification rate using functional
connectome fingerprinting (Finn et al., 2015). A desirable estimator
should provide estimates that preserve inter-individual differences.

We defined the intra-subject distance as the distance between the
graph representing the first rs-fMRI session and the graph representing
the second rs-fMRI session. The inter-subject distance was computed
between each subject’s first session and all other subject’s first sessions.
Separation between the intra-subject distances and the inter-subject
distances was quantified by mean and standard deviation of the dis-
tributions, and by a Wilcoxon rank-sum test on multiple random splits
of subject data, to avoid having multiple measurements of the same
subjects. Here, we repeated 10 times the following procedure for each
estimator of interest: first, split the subjects into two disjoint sets —
one used to compute intra-distances (50 subjects), and one to compute
inter-distances (50 subjects). Within the inter-distances set, 25 subject
pairs were formed randomly. We tested the null hypothesis of no
difference between inter- and intra-distances, against the alternative
hypothesis that intra-subject distance < inter-subject distance, based
on the assumption that subjects are more similar to themselves than
to other subjects. Given the relatively narrow age range of our sample
of HCP subjects (all 22-35 except one 36+), and given that our goal

was to compare estimators using fixed splits, we did not adjust for
covariates or match samples across splits We used a one-sided Wilcoxon
rank-sum test, yielding a W statistic and a p-value for each of the 10
runs. We then computed the average W value across runs, as well as
the harmonic mean p-value (Wilson, 2019) across runs, a procedure
with strong family-wise error rate (FWER) control even for positively
dependent tests.

To compute identification rate, functional connectome fingerprint-
ing represent each subject’s graph g as a vectorized version a of the
upper-triangular (or lower-triangular) part of the full inter-region cor-
relation matrix (whose entries are r;;), and computes the fingerprinting
distance between graphs as d(g;, g,) = 1—6&<a1,a2), where Cor denotes
Pearson correlation. From the (intra, inter) fingerprinting distance
distributions, the identification counts as correct if the intra-subject
distance is lower than all inter-subject distances. This is equivalent to
a top-1 recognition rate. We note there are many other possibilities to
compute distances between such brain graphs (Richiardi et al., 2013;
Ng et al., 2016; Dadi et al.,, 2019), including computing distances
between graph embeddings, which could substantially alter results.

Finally, we evaluated the dependence on region size by computing
Spearman correlations between atlas region size and the average of
correlations in which the region is involved (itself averaged across
subjects). A preferable estimator should minimize dependence to re-
gion size, and show lower Spearman correlation. We tested differ-
ences between estimators using a paired t-test between these Spearman
correlations.

5. Data and code availability

R and Python code implementing all estimators, to generate simu-
lated data, and to extract the time-series from the preprocessed HCP
data is available at https://gitlab.inria.fr/q-func/ireco4fmri.

The pre-extracted, wavelet-filtered time series for the rat data are
available at https://dx.doi.org/10.5281/zenodo.7254133. Human Con-
nectome Project data is available at https://www.humanconnectome.
org/.

6. Results
6.1. Evaluation on simulated data

Simulation setup is described in Section 3.1. Fig. 4 shows boxplots
of estimates of r;; = 0.6 for all methods and different intra-correlation
models, and different levels of local and global noise. In terms of

bias, overall, the method #Rp is the best, but it is also the one with
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Fig. 4. Estimates of the inter-correlation parameter r;;, = 0.6 between two regions, based on 500 simulation runs of the general model (1). Situations for two intra-correlation
models and situations with no noise, local noise and/or global noise are considered. The true inter-correlation is depicted by a red dashed line.

the highest variance. In the strong intra-correlation case, and when
o6, = 0, all methods are almost unbiased. When ¢, is increased to
0.1, the estimators ac, Zc, D, and ¢D clearly lose this property. In
the weak intra-correlation case, only the estimators ac, #R and #RD
are unbiased, or close to, with ZrD being the best overall for this
criterion, while still being the more variable. Fig. 5 shows boxplots
of estimates of r;; = 0 for all methods and different intra-correlation
models, and different levels of local and global noise. When o, = 0 all
estimators are unbiased, both in the strong and weak intra-correlation
case. This property remains true when o, is increased to 0.1 only for
the estimators b, #p and rRD. Here again, the estimator #Rrp is the
more variable. We can also notice that when o, = 0.1, the estimator
ac exhibits very good properties, while #rp is the worst.

6.2. Evaluation on rat data

Fig. 6(A) shows the correlation values obtained on rats for all
pairs of brain regions, 153 in our case. For this data set, we know
that for the dead rat we are under the full null hypothesis as no
legitimate functional activity should be detected. Thus the estimated
correlations should be close to zero. This is the case for estimators Ac,
R, ZcA, D and #p. However, the other estimators showcase a clear bias
towards positive values. The method ca namely yields unexpectedly
high values of correlations. These correlations correspond to regions

that are close together (Becq et al., 2020a). In order to validate these
methods, we also apply our estimators to live rats. The results of two
live rats is shown in Fig. 6(A, right). As expected, due to the local
noise, the methods ac and b do not provide satisfactory results as the
correlation values are very close to zero. One of the best method in
this case is Zca, where sufficient non-zero correlations are obtained.
Wasserstein distance computations (Fig. 6(C)) show that ac, b, and
rD have the lowest Wasserstein distance values, indicating that the
correlation distribution of the live rats resemble that of a dead rat.

Fig. 6(B) shows Concordance Correlation Coefficient results. Consis-
tent with the all-noise nature of the data, the dead rat exhibited very
low repeatability, with Zca providing the highest at 0.22. On the live
Eto-L rat, estimators had approximately the same repeatability, with rp
showing the lowest CCC at 0.62 and ac tied with #ca for highest at 0.87.
For the Iso-W rat, Zr had the lowest CCC at 0.46, ca the second lowest
at 0.54, and ¢p the highest at 0.73.

Combining all of these results, #ca, r and #p hence seem to be the
most adequate correlation estimators. However, as shown in formula
(G.4), the estimator #p is difficult to implement. Indeed, it requires the
definition of two other regions uncorrelated with the main brain re-
gions of the parcellation and uncorrelated with themselves. Moreover,
R cannot be estimated when regions are too small, which is often the
case in rat data. From now on, we will hence focus on estimator #ca.
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Fig. 6. Rat data results. A. Empirical distribution of the correlation estimators for all pairs of brain regions for a dead and two anesthetized rats, for all proposed estimators. In
the dead rat, the correlation of averages (CA) estimator is providing high values where null correlations should be observed. For the live rat the average of correlation estimator
(AQ) is providing very low values where non null correlations should be observed. B. The Concordance Correlation Coefficient (CCC) for the repeatability of the different estimators
for all rats, calculated between the first and second half of the BOLD time series. Higher CCC corresponds to a more repeatable estimator. C. Wasserstein distances between the
correlation distribution of each anesthetized rat and that of the dead rat, for all estimators. ac, D, RD have a very low distance, indicating that correlation values are similar
between dead and live rats for these estimators.
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Fig. 7. Human data results. A. Empirical distribution of inter-regional correlations for three selected estimators for all pairs of brain regions for four human subjects. Each subject
was scanned twice, on different days. B. and C. Concordance correlation Coefficient (CCC) for the reproducibility of the inter-regional correlation values obtained by different
estimators for all human subjects, computed between the two examinations. Higher CCC indicates a more repeatable estimator. All estimators have broadly similar reproducibility.
D. and E. reproducibility of a topological graph metric (betweenness). Again all estimators give broadly similar results, with slightly higher reproducibility for ac.

We then quantified the edges in common between the networks
obtained via the two estimators ca (which is currently the most widely
used estimator) and #ca. For the dead rat, 67% of edges are in common
between the two estimators. Additionally, 60% and 77% of edges are
similar for the live rats.

6.3. Evaluation on human data

Based on our findings on the rats datasets, we evaluate the perfor-
mances of the three estimators ca (most common estimator, highest
dead-live rat distance), ac (low dead-live rat distance) and #ca (high
dead-live rat distance) for 100 subjects of the HCP dataset.

Fig. 7(A) reports the correlation values among all pairs of regions
for four randomly selected HCP subjects. Consistent with the rat results,
the estimator ca yields the largest values of correlations, estimator ac
yields very low values, while Zca values are different from zero, but
smaller that ca values.

11

Reproducibility results for correlation estimates are shown in
Fig. 7(B,C). The Concordance Correlation Coefficient was similar be-
tween estimators (average (sd) across 100 subjects for ca: 0.64 (0.13),
Ac: 0.66 (0.20), Zca: 0.62 (0.17), r: 0.56 (0.17), #r: 0.52 (0.14)), with
variations in reproducibility reflecting inter-subject variability more
than differences between estimators. For graph metrics reproducibility,
we report only the results with betweenness in Fig. 7(D,E), since similar
results are obtained with other metrics. Here, the methods differed
more, with average (sd) across 100 subjects for ca: 0.29 (0.14), Ac:
0.55 (0.17), Zca: 0.4 (0.16), r: 0.37 (0.14), #r: 0.26 (0.15). Zca had
significantly lower CCC than ac (T = —6.8, p = 1.6e~'?), However, Zca
has significantly higher CCC than ca (T = 5.1, p = 8¢™%7) and #r (T
= 6.3, p = 2¢7°). Finally Zca and r are not significantly different (T =
1.35, p = 0.18). These differences are robust to the choice of threshold
(cf, Appendix G.5).
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Fig. 8. Largest differences between the ca and Zca estimators, median over 100 HCP subjects. Only the top 20% differences are shown. Inter-regional correlations are taken
in absolute value and rank-transformed prior to computing differences (rank 1 for the strongest correlation, rank 2 for the second-strongest, and so on). Red indicates absolute
correlations that are higher for the #ca than the ca estimator, while blue indicates the reverse. Node size is proportional to region size in the atlas. Estimator ca on average shows
hyperconnectivity in occipital and generally dorsal posterior regions, and hypoconnectivity in frontal, temporal, and general ventral anterior regions.

Table 2

Discriminative power of estimators on the human dataset. intra: Within-subject average and standard deviation of graph
distances between first and second imaging session across 100 subjects; inter: same for between-subjects, using only the first
session. W: average one-sided Wilcoxon rank-sum test value on 10 random splits, with corresponding harmonic mean p-

value.

Estimator Intra (sd) Inter (sd) W (p-value) Identification rate
cA 0.29 (0.10) 0.49 (0.10) -5.82 (py,, = 1.5¢71) 72%

AC 0.19 (0.10) 0.32 (0.10) —4.88 (py,, = 3.6¢7) 69%

(20N 0.26 (0.10) 0.43 (0.10) —3.315.58 (pj,, = 1.2¢7°) 72%

In the thresholded graphs, the percentage of edges in common
between estimators ca and #ca was on average equal to 70% for the one
hundred subjects used in this analysis for both sessions. Fig. 8 shows
median differences between the estimators in brain space across the
HCP subjects.

Looking at dependence on region size, the ca estimator showed
significantly more correlation with region size than the #ca estimator
(average (sd) across 100 subjects 0.55 (0.10) vs. 0.40 (0.09), T = 27.2,
p=1.1e").

In terms of discriminative power between subjects, for connectome
fingerprinting, ca and Zca achieved the same performance (72% correct
identification), while ac had slightly lower performance (68% correct
identification). Group differences were also similar between estimators.
Table 2 provides details.

7. Discussion

In this paper we illustrate the effect of averaged data on estimators
of correlation when two types of noises are present, local and global
noise. The use of the classical correlation of averages is hindered
by the presence of these noises in addition to the presence of intra-
correlations. We proposed alternative estimators including correction
terms to compensate the intra-correlations, local and global noises.
The performance of these estimators was evaluated on simulations, rats
data, and human data, yielding several observations.

7.1. The correlation of averages estimator is highly biased

The CA estimator tends to be highly biased, as illustrated on syn-
thetic data where the ground truth is known, but also compared to
other estimators, as shown on live rats and human data, where the
mode of the distribution of correlation values is systematically among
the highest found. We hypothesize that this is driven by a combination
of low intra-correlation and large region sizes, which further lowers
intra-correlation. This can be seen from the estimator definition in
Eq. (4). We also note that the Zca estimator effectively reduces this
influence of region size.

In addition, Fig. 8 revealed a systematic spatial bias between the
ca and Zca estimator, exhibiting dorsal posterior hyper-connectivity for
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ca, and corresponding ventral anterior hypo-connectivity. The figure
also suggests that the largest differences between the two estimators
appear between regions that are the largest, further highlighting the
reduced dependency to region size for the #ca estimator. The spatial
distribution of these differences suggests that caution is in order when
examining large-scale resting-state networks derived from the ca esti-
mator, as some apparent topological properties of brain networks, such
as modularity, could be driven in part by region size and region intra-
correlation. Indeed, in our experiments, thresholded graphs differed
in a large proportion of edges, both in rats (around 30%-50% edge
differences) and humans (around 30% edge differences). Thus, it is
probable that both edge-level and graph-level metrics obtained from
the ca estimator are biased due to their over- or under-estimation
of actual functional connectivity, in a spatially-dependent manner.
For clinical applications, this phenomenon could either emphasize or
reduce differences between patients and controls. Since we have no
ground truth available for in-vivo functional connectivity, in practical
situations, we therefore recommend that results obtained with the ca
estimator be re-run at least with the Zca estimator as a sensitivity
analysis. The computational cost is not excessive, and differences in
results could indicate that estimator-induced bias was at play.

7.2. Local noise and intra-correlation link to long-range correlation

In this paper, we explain the bias observed in ca estimator by intro-
ducing hypotheses on both intra-correlation and noise. Indeed, previous
studies on regional homogeneity (Zang et al., 2004) showed relevant
results on classification of pathologies based only on intra-regional
properties. This was confirmed by a recent work on classification of
intra-correlation (Petersen et al., 2016) using Wasserstein distances.
Based on these findings, we hypothesize that bias observed on inter-
correlation is driven by intra-correlation and noise. Our simple simu-
lation model illustrates the effect of local noise and intra-correlation.
This is clearly displayed in Figs. 4-5, where the boxplots for the various
estimators are plotted. However, it is important to note that under local
noise, in this framework with controlled intra-correlation, estimator
ca is relatively close to the exact value. This may be explained by a
trade-off in the denominator of the limit as expressed in Table 1. In
our simulation, we also observed that the ca estimators bias depends
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on the intra-correlation and local noise. Indeed, high values of ca
tends to be observed when low values of intra-correlation are observed.
These low values of intra-correlation have already been mentioned in
the study of dynamics of neural networks (Deco et al., 2014) where
local decorrelation was reported in real datasets. In our paper, for
the first time, we proved a statistical explanation of the link between
local decorrelations and long-range correlations using aggregated time
series.

The model chosen in this paper for intra-correlation and local noise
was driven by statistical motivations to be able to write explicit formu-
las for the limit of the estimators. However, as observed in Jiang and
Zuo (2016) and Deco et al. (2014), these hypotheses are realistic for
resting-state fMRI data, where local decorrelations are observed. These
local decorrelations can come from two factors: a low intra-correlation
(as modeled by the choice of the intra-correlation coefficients of the
matrix), or a strong local noise. The stationarity assumption may be not
adequate based on raw data. However, as mentioned in Section 2.1,
it becomes very reasonable after performing a wavelet transform of
each time series voxelwise. This preprocessing significantly reduces non
stationary artefacts.

7.3. Repeatability and reproducibility

Repeatability of correlation values in dead rats was very low for
all estimators, consistent with the random nature of the data. For
live rats, the CCC ranged from 0.46 to 0.87 depending on specimen
and estimator. For humans, ca and #ca showed approximately the
same reproducibility (0.63 average (0.2)), and ac was slightly superior
(0.66 average (0.2)). But reproducibility differences between estimators
were much less pronounced than reproducibility differences between
individual subjects.

As a representative for the reproducibility of graph metrics, we
investigated betweenness. Here, ac offered the highest reproducibility
(average (sd): 0.55 (0.17)) and Zca improved markedly over ca (0.4
(0.16) vs. 0.29 (0.14)). This is contrast to another study that found no
effect of aggregation method (region mean time series versus region
median versus 1st eigenvariate of the region) on the reproducibility of
graph metrics (Braun et al., 2012) (although in that study sessions were
weeks apart).

7.4. Discriminability

Estimators ca,ac,#ca showed similar values for discriminability,
with slightly lower identification rate and intra-subject to inter-subject
distribution separation for ac than the two others, and slightly lower
intra-inter separation for #ca than ca. This suggests that the improved
robustness to region size and intra-correlation effects of #ca does not
result in a sizeable impact on discriminative ability, although this
warrants further evaluation.

7.5. Limitations

Our signal model, and therefore the derived estimators, is a trade-
off between model realism and tractability of the analysis of estimator
properties. This comes with important limitations.

First, assuming stationarity and additivity of the local noise fails
to capture effects like system instability due to BO inhomogeneity, RF
power variations, or gradient fluctuations (Lazar, 2008; Greve et al.,
2013; Liu, 2016). Independently of the model, note that effects such as
drift are mitigated by using wavelet coefficient time series as we did in
this study, and that such instabilities explain proportionally less of the
noise variance than thermal noise at high field (Greve et al., 2011).

Second, motion effects, and in particular differential long-vs. short-
range effects on correlations (Van Dijk et al., 2010; Yan et al., 2013),
were not studied, and their interplay with the spatial bias exhibited by
estimator ca in Fig. 8 was not examined.
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Third, our new estimators come with the added burden of choos-
ing hyperparameters such as neighborhood size. These are currently
selected empirically, and no systematic sensitivity analysis has been
performed. However, our proposed approach may be used to redefine
the brain regions by grouping voxels with high intra-correlation. This
would allow to define new brain regions using intra-correlation in
addition to anatomical criterion.

Despite these limitations, we believe our empirical tests served to
bridge the gap towards applicability, since our model yielded at least
an estimator, #ca, with useful properties for use in neuroimaging —
namely, reduced dependency to region size and low intra-correlation,
and improved reproducibility of graph metrics.
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Appendix A. Brain functional connectivity review

The literature review was conducted on PubMed using the keywords
“brain connectivity graph resting state ‘human connectome project” on
September 30, 2021. The search returned 32 papers written between
2014 and 2021. Out of those papers, 5 were not open access and 2
papers were literature reviews, and were not considered further. 3
papers were either using seed-based or voxel-to-voxel correlation. Out
of the remaining 24 papers 71% (17/24) first averaged voxels before
computing the inter-regional correlations and 88% (21/24) employed
some kind of spatial aggregation method, including but not limited to
averaging over voxels, ICA or dictionary learning.
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Appendix B. Hypotheses for the spatio-temporal model

The assumptions on the model can be written as follows. For any
i,i'’eCands,t=1,...,T,

E[X;(®)] = Elg;(1)] = E[e(n)] =
E[X,(5)X,()] = E[g,(s)e;(1)] = Ele(s)e(t)] = 0
E[X;(s)ey (D] = E[X;(s)e(n)] = E[g;(s)e()] = 0

Ele(t)*] = 2.

Let X be the covariance matrix of the vector (Y;(t));cc =1, r- In this
paper, we assume without referring specifically to this assumption that
the parameters o—j?, 62, 62, pyr, My, 1 are such that X is a positive
definite matrix.

We also assume that the random variables are independent in time.
This is not overly restrictive: in particular, if the random variables have
long memory, after a wavelet decomposition, the random variables
can be approximated to be decorrelated in time for large wavelet
scales (Moulines et al., 2007). In addition, assuming that the X,’s
are centered is coherent as it is a well-known fact that a wavelet
decomposition based on a wavelet mother with K vanishing moments
cancels out every polynomial trend with degree K — 1.

Finally, to apply the law of large numbers, we also assume that all
random variables are absolutely integrable, that is E[|Z;(r)|] < o for
Z=X,e,e,icCandr=1,...,T.

Appendix C. Properties of the estimators of interest

For any set of indices E with cardinality #E, we let

2 Piit Z Njit -

ii'eE ii'€eE

and (C1

(#E)2 (#E)2

The results of the paper are based on this proposition:
Proposition C.1. Consider the notation of Section 2.1 and assumptions

described in Appendix B. Let j,j' € {1,...,J}.
(i) Let E C R, then for any t = 1, ,T

Var[Xp(0)] = o7 (C.2)
Var[eg (0] = o7 fig = O(1/(#E)) (C.3)
Var[eg(1)] = Var(e(r) = o2 (C.4)
Var[Yg ()] = o7 pp + 0, iig + 0. (C.5
(i) Let ECR; and E' C R, then
Cov[Y5(t), Ter (1)] = {6’6’””/ *o lfj #/ (C.6)

UjﬂE,E/+Ue ifj=Jj

where
P = m iEE.t’Z’eE’ a 7
(m) Leti € ECR; and i’ € E' R and assume for any i € E and

e E|i-i| 2 p (in the case j
statements hold almost surely.

j'). Then as T — oo, the following

2(Y,) S var[y,(1)]  and  Cov[Y,,Y;]= Cov[Y,(1).Y,(1)] (C.8)
2(Yp) S Var[Tp(1)]  and  CovYp, Y] = Cov[Vp(l), Y (L)].
(C.9)

Proposition C.1 is given without proof. (i)-(ii) ensue from the
model (1) while (iii) is quite straightforward since we have assumed
independence in time.

As seen from Proposition C.1, the quantity 7, is related to the
correlation structure of the local noise. By assuming this noise to be
p-dependent (that is n; = 0 when 6 > p), it is clear that the larger #E
the smaller 7.
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Appendix D. Consistency results for the existing estimators
D.1. Consistency of ?jcl“,

Proposition C.1 shows 7 ACI“,

is a strongly consistent estimator of rjcj“,
as T — oo where

0'2_.,/1'“-!

\/(pn +0? SR, +0'“)(PR,+U /'IR/+‘7 )

(D.1)

Another way to correct the size effect is to compensate the inter-
correlation by the intra-correlation. This would lead to the following
estimator:

1/2
o LY Gorvy,) Y Corvnyp| A

AS
i’ ~ N.N.
JT \iier, i/ER

(D.2)

The two estimators (5) and (D.2) have the important property to
remove the size effect (since when o, = 6, =0, r = j,). Note that
both estimators tend to the same limit.

"AC

D.2. Consistency of

Proposition C.1 shows that ’r\lAJC, is a strongly consistent estimator of
rj“jc, given by

02 i T
riS = ri; . (D.3)

ji \/(]+0' +o; )1 +0?, +07 )

As revealed by (D.1) and (D.3), f',c'_‘, and f’_‘_c, do not converge towards

+ when a local noise or global noise is present. We could ask why 7, P
1s 1nterest1ng Actually, a first spatial averaging tends to decrease the
effect of the local noise. Indeed, when o2
variances to simplify), we have

oA _ r/-/-r

\/ (Pr, +02iR PR, + 2R ,)

= 0 (and with equal unit

and r%S = i
AC = .
1402

Hence, if we expect that ﬁR_ ~ ﬁRv ~1, ’A',Cf/ will be a better estimator

since fir, = = O(1/N;). A natural compromise between #¢, and 7 AJCJ" can
be defined using local neighborhood as defined by Zca.

D.3. Consistency of ?j‘j,

From Proposition C.1, as T — oo

2
% Z @'(Yifxb),Yi,;}»)) a_rs)r 00l + o‘
p=1 \/<6/2+63+6§> (af,+062+0'§>
and
a.s. O'?P(S + O-Z

Cor(Y ([,),Y(b)) - 2—,
o; + 02+ 0?2

whereby we deduce that 7R is a strongly consistent estimator of
1+ O' S / r i
rR_, =r &JJ . (D.4)
V105 + 62,05 +02 )]

From (D.4), we observe that when o, = 0 then for any unknown value
of o, f}?, estimates consistently r;, /|p;| which should be close to r;;

if we take 6 = p and expect that p, is close to 1. In other words, the
estimator rR is robust to the size of the regions and robust to a possible
local n01se

To reduce the assumption that p, is close to 1, we can combine this
idea of replicates with local averaging. This is the topic of the next
section.
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Fig. G.9. CCC of betweenness according to different choices of threshold and for the different estimators.

Appendix E. Consistency of 'r‘j]; ,
The following result is the key ingredient:

Proposition E.1. Under the notation of this section, as
following statements hold almost surely.

0]
Cov(Y i = Yo, Yoy = Ypwm) S,
@i

o as. 5 5
25 (Yi(b)’Yk(b)’Yk’(b)) — 26]. + 20—5'

T — oo, the

Gj/l‘“

(E.1)

Proof. (i) Using the independence in time, it is clear that the left-
hand side converges almost surely to Cov(Yyn (1) — Y (1), Yym (1) —
Yoo (1)) = oj0r;y + (7 - 26 + 0' since the two regions R, and R,/
are disconnected, Wthh leads to the result.

(ii) In the same way, the left-hand side tends to Var(Yu,) 1)— Yk(;,) )+
Var (Y (1) = Yiuw (1)) = Var(Yye (1) = Yy (1) = 0' + 0' + 0' +4G - 0',3 -
o}, — 207 which yields the stated limit. []

In other words, Proposition E.1 shows that ?};, is a strongly consis-

tent estimator of r , given by

D 1

Y \/(1 v, (1+22)

which, in the situation where o, = 0, is nothing else than r Na

(E.2)

Appendix F. Consistency of FRD

The following result is a consequence of Propositions C.1-G.1.
Proposition F.1. As T — oo, the following statements hold almost surely.

. o g . .
(D For any iy,i; € R, i},i5 € R; iy € Ry and iy € Ry, such that
liy =iyl =iy =il =62p

— a.s. 0;0; /|,05|
|C0r(Y,~1,Y,Z,Y,k,Y,k,)Cor(Yi ,Y' Y. Y ) - ——————
1 /(6/2 + 0'52)(61_, + 0'52)
(F.1)
(ii) For any v-neighborhoods VJI,VI € R, Vy ,V/ € Ry YV, € Ry
Vo € Ry, such that for any iy € V;, i, € Vh,"l € v/’.l, i) € vj'.z,
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liy =il =i -l =62p

—_— — — — —_— — — — a.s.

|C0r(YV/1 s vaz Yy, Yy, )Cor(YV/, ,YV/, Yy, Yy )l =
RS

(F.2)

(012/71) + Gszilv)(ﬁj/ﬁv + 0277y)
where V, V' are two v-neighborhoods at distance 5.

Proposmons G.1-F.1 show that rRD is a strongly consistent estima-
tor of rjj, given by

R0 _ T

= (F.3)
“ [os1

Appendix G. Consistency of localized versions of estimators
G.1. Consistency of ?jfﬁ“

[N

We can apply Proposition C.1 to show that i
consistent estimator of

is a strongly

L4062 ,/rin
ejj JJ
r.ff"—r
Ji

(G.1D)

\/(ﬂv + Uijﬁv + Ufyj)(ﬁv + Uij-,ﬁv + Uz_j,)

where V is any v-neighborhood. When there is no global noise (¢, = 0)
and for moderate v, it may be expected than the denominator of r/ oA

is closer to 1 than the ones of r¢ i 4 and r* /
G.2. Consistency of ?ji‘,‘
Proposition C.1 shows that 7 Af R is a strongly consistent estimator of
rjfj‘,‘ defined by
2
[ / rjj
r'lR=r = (G.2)

= 2 = 2
VI Gvvr 5+ 02 )y s +02 )]

where jy, ) 5 is defined by (C.7) with ¥ and V' two v-neighborhoods at
distance 6. Similarly to the estimator #®, when o, = 0, the previous ex-
pression reduces to r/‘_/j_},{ =r;;1 /1Py 5| and again it is not unreasonable

to think that py,,» ; is close to 1.
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G.3. Consistency of ?j‘_’;’?

The following result is an adaptation of Proposition E.1 to local
averages.

Proposition G.1. As T — oo, the following statements hold almost surely.
0]

—~ a.s.
COV(Yv;b) - le((b), Yv(f) - YV‘(:)) - O'jo'jrrjjr.
J

(i)
0 - _ as. o _ 2
25 (Yv;b),le(cb), le(j)) - 20']. Py +20.7y. (G.3)

Using Proposition G.1 (for which proof follows along similar lines as
Proposition E.1), we deduce that ?jf;',) is a strongly consistent estimator

of rj‘;_],) given by
/D _ 1

= G4
\/(ﬁv +o7 ip)(py + O'EZ’j,ﬁv)

T =i
where V is any v-neighborhood.

G.4. Consistency of ?j_‘;‘,‘D

Propositions G.1-F.1 show that ?Ji‘,‘D is a strongly consistent estima-
tor of rf;l,m given by
Fiq
ri = (G.5)
/I |y sl

where V and V' are two v-neighborhoods at distance §. Similarly to the

previous estimator, 7RP is robust to an additive global and local noise.

7
JJ

G.5. Robustness of CCC differences in terms of threshold

In the main text, we presented the difference of CCC for the different
estimators based on a single threshold corresponding to 20% of the
edges of the graph. Fig. G.9 displays the variability of CCC according to
different number of edges selected to construct the graph. This shows
the robustness of our findings where #ca has always higher CCC than
ca for all possible thresholds.
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