

1 **Title**

2 High sugar diet alters immune function and the gut microbiome in juvenile green iguanas
3 (*Iguana iguana*)

4 **Running Title**

5 Sugar, immunity, and the microbiome

6 **Authors/Affiliations**

7 Kwanho C. Ki^{1,2,*}, Erin L. Lewis^{1,2}, Elizabeth Wu³, Francis J. Oliaro⁴, Lise M. Aubry⁵, Charles
8 R. Knapp⁴, Karen M. Kapheim¹, Dale DeNardo⁶, Susannah S. French^{1,2}

9 ¹ Department of Biology, Utah State University, 5205 Old Main Hill, Logan, UT 84322

10 ² Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322

11 ³ Psychology Department, Arizona State University, 950 S. McAllister Ave, Tempe, AZ 85287

12 ⁴ Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago,
13 IL 60605

14 ⁵ Department of Fish, Wildlife and Conservation, Colorado State University, 1474 Campus
15 Delivery, Fort Collins, CO 80523-1474

16 ⁶ School of Life Science, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281

17 * Author for correspondence (Claudia.ki@usu.edu)

18 Keywords: Immunity, gut microbiome, sugar, green iguana

19 **Summary Statement**

20 We provide evidence that a high sugar diet has differential effects on components of the green
21 iguana immune system and alters the gut microbiome.

22 **Abstract**

23 The present work aimed to study whether a high sugar diet can alter immune responses
24 and the gut microbiome in green iguanas. Thirty-six iguanas were split into four treatment
25 groups using a 2x2 design. Iguanas either received a sugar supplemented diet or a control diet,
26 and either received a lipopolysaccharide (LPS) injection or a phosphate buffer solution (PBS)
27 injection. Iguanas were given their respective diet treatment through the entire study (~3 months)
28 and received a primary immune challenge one month and two months into the experiment. Blood
29 samples and cloacal swabs were taken at various points in the experiment and used to measure
30 changes in the immune system (bacterial killing ability, lysis and agglutination scores, LPS
31 specific IgY concentrations), and alterations in the gut microbiome. We found that sugar diet
32 reduces bacterial killing ability following an LPS challenge, and sugar and the immune challenge
33 temporarily alters gut microbiome composition while reducing alpha diversity. While sugar did
34

41 not directly reduce lysis and agglutination following the immune challenge, the change in these
42 scores over a 24-hour period following an immune challenge was more drastic (it decreased)
43 relative to the control diet group. Moreover, sugar increased constitutive agglutination outside of
44 the immune challenges (i.e., pre-challenge levels). In this study, we provide evidence that a high
45 sugar diet affects the immune system of green iguanas (in a disruptive manner) and alters the gut
46 microbiome.

47

48 **Introduction**

49 Simple sugars are an energy-rich macronutrient, but too much of it in some organisms
50 can lead to physiological or microbial imbalances leading to negative health outcomes (French,
51 Hudson, et al., 2022; Kawano et al., 2022; Ruxton et al., 2010). Sugar content in the natural diet
52 varies considerably among organisms, with sugar being the predominant nutrient in the diet of
53 some species (e.g., frugivores, nectarivores), while other species (e.g., carnivores) consume very
54 little sugar. Accordingly, organisms have evolved physiological processes that reflect their usual
55 dietary composition (Kohl et al., 2016). For example, nectar feeding bats (*Glossophaga soricina*)
56 can have blood glucose levels that would be considered pathologically high in other mammals of
57 similar size (Kelm et al., 2011). However, despite high spikes in post-prandial blood glucose,
58 these bats show adaptations to tolerate potentially harmful sugar levels and channel it towards
59 their metabolically costly flight (Kelm et al., 2011). Additionally, both nectar feeding birds and
60 bats are metabolically adapted to high sugar diets as found in their unique enzymes and
61 metabolomic profile (Potter et al., 2021). Despite this diversity in the physiological adaptations
62 to diets with very high sugar levels, there is potential for environmental change to create
63 imbalances in how organisms respond to food.

64 One common cause of mismatches between diet composition and physiological
65 capabilities is anthropogenic foods. There is evidence that humans are increasingly providing
66 unnatural foods to wild animals, but the effects on health and survival as well as the mechanisms
67 underlying these effects are understudied. For example, there are nutritional health risks for
68 dolphins in Florida fed bananas, candy, beer, and potato chips (Bryant, 1994). Fishes in the Great
69 Barrier Reef fed inappropriate foods by tourists have an increase in liver fat deposits (Great
70 Barrier Reef Marine Park Authority, 1993). Kangaroos in Australia fed breads, sausages, and
71 other unnatural foods often have “lumpy jaw” disease (Burger, 1997). In all of these cases,
72 supplemental feeding has been shown to contribute to increased mortality in these wild
73 populations (Orams, 2002). These altered diets usually include unnaturally high or artificial
74 sources of sugar (i.e., candy, bread, beer, banana), and high sugar diets are known to lead to
75 deficiencies in blood sugar regulation in a diverse array of species including humans (Kawahito
76 et al., 2009), fruit flies (Musselman et al., 2011), and iguanas (French et al., 2022). However, the
77 effects of high-sugar diets on other physiological processes have received much less attention.

78 The immune system of free-living animals is still not well understood, including how it is
79 impacted by diet. Previous research provides conflicting information regarding the effects of
80 sugar on immunity across species. Glucose is found to have pro-inflammatory effects on human

81 monocytes via increasing toll-like receptors (Dasu et al., 2008). Conversely, high blood sugar
82 decreases complement activation (a component of the immune system responsible for
83 inflammation, opsonization, and lysis) in rats and impairs phagocytic ability in *Drosophila*
84 (Mauriello et al., 2014; Yu et al., 2018). This suggests that the effects of sugar on immunity are
85 likely context-dependent and nuanced, affecting various cells and molecules differently. The
86 innate response is very robust and heavily relied upon in many reptilian species yet it is not well
87 understood how the immune system may respond differently upon subsequent infections
88 (Ademokun & Dunn-Walters, 2010; Wright & Schapiro, 1973). With the exception of a study
89 demonstrating agglutination and antibody titer responses to subsequent challenges in desert
90 iguanas, *Dipsosaurus dorsalis*, little work has investigated responses to multiple immune
91 challenges in reptiles (Wright & Schapiro, 1973). Thus, we intend to investigate the effects of a
92 high sugar diet on physiology after multiple immune challenges. Clarifying the mechanisms by
93 which diet modulates immunity across multiple challenges may provide a better understanding of
94 why there is considerable immune variation in response to a high sugar diet.

95 One potential mechanism underlying the link between diet and immune function is the
96 effects of diet on the microbiome (Burr et al., 2020; Siddiqui et al., 2022). Diet directly
97 influences the establishment and maintenance of an organism's microbiome and the microbiome
98 is related to the quality and development of the immune system (Amenyogbe et al., 2017;
99 O'Sullivan et al., 2013; Tamburini et al., 2016). Therefore, the microbiome may be an important
100 pathway by which diet can modulate immune function. For example, the establishment of the
101 microbiome at an early age is important for development of the immune system such that
102 chicken hatchlings raised in a germfree environment were found to lack T and B cells in certain
103 parts of the body and had altered cytokine expression (Broom and Kogut, 2018). When the
104 human microbiota is altered via antibiotics, neutrophil extracellular trap activity and the
105 concentration of antimicrobial peptides is elevated, but macrophage phagocytic killing is
106 inhibited (Konstantinidis et al., 2020; Yang et al., 2017). In mice, however, antibiotic changes to
107 the gut microbiome results in the up-regulation of cytokines and an increased Th1 response (Sun
108 et al., 2019). Other studies have demonstrated how bacterial metabolites influence immune
109 regulation. Metabolites such as short chain fatty acids (i.e., gut microbes produce these during
110 sugar catabolism) can regulate innate immune cells and B and T cells (C. H. Kim, 2018; Siddiqui
111 et al., 2022). However, the link between diet, immunity, and the dysregulation of the
112 microbiome has not been studied at the population level, particularly regarding a high dose of
113 sugar supplementation.

114 In the present study, we tested the effects of a sugar supplemented diet on the immune
115 function, gut microbiome, and energy metabolites of captive green iguanas (*Iguana iguana*).
116 Green iguanas are a good model for testing the effects of unnaturally high levels of sugar in the
117 diet as they are herbivores, and their natural diet has a low glycemic content (Rand et al., 1990).
118 Furthermore, previous studies indicate iguana physiology is consistently altered via a high sugar
119 diet. For example, in green iguanas (French et al., 2022) and rock iguanas (*Cyclura cychlura*)
120 (French et al., 2022, 2023), sugar alters glucose metabolism, energy metabolites, immune

121 function, and blood chemistry. However, no work has investigated how diet affects acquired
122 immunity in reptiles, and so we tested the effects of diet on immunity via two consecutive
123 immune challenges to quantify both innate and acquired immune responses over time.

124 Our study tested a central hypothesis that sugar supplementation alters physiological
125 processes and the gut microbiome. Specifically, we have three not mutually exclusive predictions
126 related to the physiological effects of an unnatural, high sugar diet.

- 127 1) Iguanas fed an unnaturally high sugar diet will have higher levels of circulating
128 energy metabolites (glucose, triglycerides, free glycerol).
- 129 2) An unnaturally high level of sugar in the diet will differentially alter subsequent
130 immune responses to a lipopolysaccharide (LPS) challenge.
- 131 3) There will be changes in the composition and diversity of the gut microbiome in
132 iguanas fed a high sugar diet.

133 **Materials and Methods**

134 *Study Animals and Husbandry*

135 Thirty-six wild-caught, male, juvenile green iguanas (mean snout-to-vent length SVL =
136 12.0 ± 0.1 cm, mean mass 54.1 ± 2.5 g) were obtained from Underground Reptiles (Deerfield
137 Beach, FL, USA) in March 2021. For the duration of the study, the iguanas were housed singly
138 in clear polycarbonate cages (47.6 cm D X 26.0 cm W X 20.3 cm H) covered by fine-mesh metal
139 lids. Each cage was provided with a sheet of Techboard paper (Shepherd Specialty Products,
140 Watertown, TN, USA) on the cage floor, a water bowl, and a wooden perch set at a 45-degree
141 incline directly under a 25 W incandescent light bulb at one end of the cage to provide a basking
142 site and thermogradient. The housing room was kept at 25.6°C, and the room's fluorescent lights
143 and heat lamps were on from 0700 to 1900 daily. Except when noted below, the iguanas were
144 fed daily a combination of diced romaine lettuce and moistened grain food pellet (Tortoise LS
145 Diet, Mazuri, St. Louis, MO, USA). The iguanas had a 7-day acclimation period before the start
146 of the study. All treatments in this study were approved by the IACUC of Arizona State
147 University (18-1658R)

148 *Dietary sugar treatment and sampling*

149 First, the impact of a high-sugar diet on the gut microbiome was investigated.
150 Specifically, dextrose was used as it is a readily available corn-based simple sugar that is
151 chemically identical to glucose. After the acclimation period, we randomized sampling order to
152 balance any circadian effects on blood glucose levels; however, the time of bleeding may still
153 have contributed to variation in our metrics. Blood was collected in under 3 minutes from the
154 caudal vein using a heparinized 1ml syringe with a 25 g X 1.6 cm needle within the hr of 0700
155 and 1200, prior to the animals being fed that day. Immediately after being collected, a drop of
156 blood was used to determine blood glucose concentration in mg dl⁻¹ (EvenCare G2 Blood
157 Glucose Monitor, #MPH1540), and the remaining blood stored in a 1.5 ml sterile
158 microcentrifuge tube on ice until all samples were collected. To obtain the colon sample, a sterile
159 swab was moistened with sterile water and then gently inserted through the vent and cloaca.
160 Once in the colon, the swab was swirled while moving it approximately 1cm proximally and then

161 distally. The swab was then removed from the iguana, its tip broken off and sealed into a 1.5 ml
162 sterile microcentrifuge tube that was first put on ice until all samples were collected and then
163 placed in a -20°C freezer. Finally, each iguana's mass (using a platform scale) was measured
164 (Fig 1). After all collections were complete, blood samples were centrifuged at 3000 rpm for 4
165 min. Following centrifugation, the blood plasma was separated into 0.5 ml microcentrifuge tubes
166 and then frozen at -20°C.

167 The day after sample collection, each iguana was assigned to either a dextrose-
168 supplemented or control diet using a mixed dispersion design based on their mass, from largest
169 to smallest, with 18 iguanas in each assignment group (dextrose mean mass = 53.3 ± 3.4 g;
170 control = 53.6 ± 2.8 g). The control diet was the same diet as the iguanas had been receiving
171 during acclimation. For the dextrose-supplemented diet, 0.17 g dextrose was added to each mL
172 of water used to soak the tortoise pellets. This dose equated to the estimated amount of sugar (on
173 a per gram body mass basis) ingested by grape-fed rock iguanas on tourist-visited islands in the
174 Bahamas and known to induce changes in glucose metabolism (French, et al., 2022). Iguanas
175 remained on their assigned diets throughout the entire study.

176 After 30 days of the iguanas being on their assigned diets, mass and SVL (using a rigid
177 ruler) were re-measured, and a blood sample (for blood glucose, plasma, and cells) and a colon
178 swab were collected again (Fig. 1). We measured blood glucose despite treating the iguanas with
179 dextrose as both have the same empirical formula and the glucose monitor measures dextrose as
180 glucose (we will refer to dextrose as sugar for the rest of the paper).

181 *Immune Challenges*

182 Next, the effects of a high-sugar diet on the immune response to a simulated pathogen via
183 the use of LPS (L3129, Sigma-Aldrich) were investigated. The iguanas in each of the two diet
184 treatment groups were subdivided equally ($n = 9$) into two challenge groups using a mixed
185 dispersion design and given either an intracelomic injection of $15 \mu\text{g LPS g}^{-1}$ body mass or an
186 equal volume (0.50 – 0.85 ml) of phosphate-buffered saline (PBS) as a control. Body mass, SVL,
187 colon swabs and blood samples were measured throughout the study (Fig. 1). We evaluated the
188 iguanas' response to a primary immune challenge (~30 days from the start of the experiment)
189 and their responses to a secondary immune challenge (~60 days from the start of the experiment,
190 ~30 days after the primary immune challenge). These time points were chosen based on the
191 response time to LPS injection in other tetrapod ectotherms, including *Lithobates catesbeianus*
192 and *Uta stansburiana* (Figueiredo et al., 2021; Smith et al., 2017). In addition, as reptiles rely
193 heavily on an innate response and very few studies have investigated how the immune system
194 may respond differently in a subsequent infection, we chose to use two consecutive immune
195 challenges (Ademokun & Dunn-Walters, 2010; Wright & Schapiro, 1973) to understand how
196 subsequent responses may differ over time.

197 *DNA extraction*

198 Genomic DNA was extracted from colon swabs using DNeasy PowerSoil Kits (Qiagen
199 Inc. 12888-100) according to the manufacturer's protocol. DNA was extracted from a total of
200 238 swabs in sets of eleven with one blank per extracted set to control contamination. Blanks

201 were treated like swabs from the start of the extraction process by mimicking movement of the
202 swab to a beaded tube with flame sterilized tweezers. DNA yield was measured with a Qubit 2.0
203 Fluorometer (Invitrogen by Life Technologies, Singapore) using the High Sensitivity assay.
204 Extracted DNA was stored at -80°C until sequencing.

205 *Sequencing*

206 Library preparation and sequencing was performed at the Shedd Aquarium Microbial and
207 Molecular Ecology Lab (Chicago, IL, USA). Bacterial DNA was amplified using primers 515f
208 (Parada et al. 2016) and 806rB (Aprill et al. 2015) targeting the V4 region of the 16S rRNA
209 gene. The primer constructs contain Illumina specific adapters followed by 12bp Golay barcodes
210 on each forward primer, primer pads and linkers, and finally the template specific PCR primer at
211 the 3' end (Walters et al., 2016). PCR was performed in replicate 25 µl reactions containing 12.5
212 µl Phusion Hot-Start Flex 2X MasterMix (New England Biolabs), 0.2 µM final primer
213 concentrations, 2 µl of template DNA and nuclease free water to equal 25 µl. Mock microbial
214 community DNA standards (Zymo Research) and negative controls containing no template DNA
215 were prepared with each PCR replicate. Thermal cycling conditions were carried out as follows:
216 98°C for 30 seconds, 30 cycles at 98°C for 10 sec, 55°C for 30 sec and 72°C for 30 sec, with a
217 final extension of 5 minutes at 72°C. After PCR, replicate amplicons were combined and 5 µl of
218 each were electrophoresed in 1.8% agarose gels to confirm amplification of the V4 region.
219 Twenty-five µl of each amplicon library was then cleaned and normalized using the
220 SequalPrep™ Normalization Plate Kit (Applied Biosystems), and equal volumes of each
221 normalized library were pooled together. The pooled amplicon library was quantified using a
222 Qubit™ 3.0 fluorometer and Qubit™ dsDNA HS Assay Kit (Life Technologies). The molarity
223 of the pooled library was calculated, then denatured and diluted to a loading concentration of
224 5.15 pM. Paired-end sequencing for a total of five hundred cycles was conducted on the
225 Illumina MiSeq platform using custom sequencing primers described previously (Caporaso et al.,
226 2012) with addition of 10% PhiX Control library (Illumina).

227 *Sequence Processing*

228 The 16s rRNA sequences were processed in the QIIME2 (v2019.4) environment after
229 visual inspection of quality score distribution. The ‘trim-paired’ cutadapt function was used to
230 trim adapters for the 515F and 806R primers. Then, DADA2 was used to join, denoise, and
231 dereplicate sequences, including the removal of chimeras and singletons. Forward and reverse
232 reads were truncated at 248 nts and 219 nts, respectively, based on the earliest location at which
233 the median quality score dropped below 30 in either dataset. The amplicon sequence variants
234 (ASVs) were classified with the SILVA 16S rRNA database (v132), using the 7-level taxonomy
235 file and 99% identity. Reference reads were extracted based on our 515F/806R primer pairs and
236 length 100-400 nts. The ASVs were then classified with ‘classify-sklearn’. Sequences were
237 aligned with MAFFT and a rooted phylogenetic tree was generated with FastTree using ‘align-
238 to-tree-mafft-fasttree’. Code is available at <https://github.com/kapheimlab>.

239 *Energy metabolites*

240 Free glycerol and triglycerides were measured via an enzymatic color endpoint assay
241 (F6428, T2449 and G7793, Sigma- Aldrich, Missouri, USA) based on a modified protocol
242 (Webb et al., 2019). The absorbance was measured at 540 nm for both glycerol and triglyceride
243 concentration (mg mL⁻¹) (xMark; Bio- Rad, California, USA). The inter-assay variation was
244 6.09% for glycerol and 4.62% for triglycerides.

245 *Bacterial Killing Ability (BKA)*

246 This assay enables us to understand a functionally relevant, integrative immune function
247 to a common pathogen, *E. coli*. It is important as it characterizes the overall response of immune
248 components such as phagocytes, opsonizing proteins, and natural antibodies, which are critical to
249 innate immunity which reptiles rely heavily upon. Assays were performed under sterile
250 conditions using a laminar flow hood and autoclaved materials. The assay procedures followed
251 are outlined in French and Neuman-Lee (2012) with modifications for use in a 96-well
252 microplate with positive and negative controls. Pipetted into each well in duplicate were: 5 µl of
253 plasma, 13 µl of CO₂-independent media (Gibco, Grand Island, NY) plus 4 mM L-glutamine
254 (Sigma-Aldrich), and 6 µl of *E. coli* (EpowerTM Microorganisms #0483E7, ATCC 8739,
255 MicroBioLogics, St. Cloud, MN). The plate was incubated for 30 min at 37°C, then 125 µl of
256 tryptic soy broth was added (Sigma-Aldrich NO. T8907;15 g broth/500 ml nano-pure water) and
257 a background absorbance was taken at 300 nm (xMark; Bio- Rad, California, USA). The plate
258 was incubated for 12 hr at 37°C and then read at 300 nm in the spectrophotometer again. The
259 intra-assay variation was 0.46% for assay 1, 1.34% for assay 2, 0.75% for assay 3, and 6.71% for
260 assay 4; the inter-assay variation was 4.93%.

261 *Lysis and Agglutination*

262 This assay measures a form of innate constitutive humoral immunity (natural antibodies,
263 complement proteins, and other antimicrobial proteins). The agglutination and lysis assay (which
264 are also encompassed in part of the BKA) enables us to parse out how specific immune
265 components within the broader BKA functional response are altered by our treatments. Thus,
266 using both assays we can see how the overall functional response changes together with how
267 specific components within that response contribute to the integrated response. Heparinized
268 sheep red blood cells (HemoStat Laboratories, SBH050) were washed 5-7 times to eliminate
269 dead cells. In a microplate, 20 µl of PBS was added to each well followed by 30 µl of plasma
270 added to just the first column. The samples were serially diluted with a multi-channel pipette
271 down the plate through column 12. Finally, 20 µl of a 1% sheep red blood cell solution was
272 added to all wells. The plate was incubated for 90 min at 37°C and another 20 min at room
273 temperature, after which the plate was scanned (Epson Perfection V750 Pro) for agglutination.
274 The plate was incubated at room temperature for another 70 min and scanned again for lysis.
275 Three people independently scored the scanned pictures for the agglutination and lysis scores
276 (ranging from 0 to 12) and scores were averaged.

277 *IgY*

278 IgY is a type of immunoglobulin that is part of the humoral response found in reptiles and
279 akin to IgG in mammals. This is a way to measure acquired immunity in response to a specific

280 antigen and is a direct measure of the LPS-induced responses. The concentration (mg ml⁻¹) of
281 LPS-specific iguana IgY was quantified via our newly developed iguana-specific ELISA. On day
282 1, the plates were coated with LPS carbonate buffer and incubated at 4°C overnight. On day 2,
283 the plates were washed with PBS/Tween20 solution, then 3% milk powder buffer was added, and
284 the plate was incubated at 4°C overnight. On day 3, the plates were washed with PBS/Tween 20
285 solution and diluted plasma samples (1:20) were added. Again, plates were incubated at 4°C
286 overnight. On day 4, plates were washed and diluted rabbit-anti-iguana-IgY (SouthernBiotech,
287 custom antibody SBCS-58) with HRP was added. The antibody was diluted 1:1000 in 1% milk
288 powder solution. The plate was incubated for 1 hr at 37°C, and then the plates were washed.
289 TMB substrate was added, and the plates were incubated in the dark for 30 min at room
290 temperature. Finally, stop solution was added and plates were read at 450 nm. The inter-assay
291 CV was 0.17%.

292 *Statistical Analysis*

293 All statistical analyses of physiological measures were performed in R, version 4.1.1 (R
294 Core Team 2021), using the packages: “tidyverse” v 1.1.4 (Wickham et al. 2019), “rstatix”
295 v0.7.0 (Kassambara 2021), “betareg” v2.0.0. (Cribari-Neto F, 2010). Tests were only used if
296 assumptions were met (checked using diagnostic plots). An alpha level of 0.05 was used for all
297 tests. The code for all analyses is available on <https://github.com/KiClaudia/greeniguana>.

298 *Physiology – Dietary Sugar Treatment*

299 The effects of one month of diet treatment, before the immune challenge, were tested
300 with Welch’s t-test. The change between pre-diet and post-diet was calculated for both treatment
301 groups (sugar group and water group). Then, the change over time was compared between the
302 two treatment groups using a 2-tailed, independent t-test.

303 *Physiology – Immune Challenge*

304 The effects of diet and the immune challenges for each physiological variable were tested
305 using a three-way repeated mixed measures ANOVA (time, diet, and immune challenge) over
306 the 4-week period of each immune challenge (where time is referring to the multiple timepoints
307 throughout the study that we measured physiological variables (Fig 1)). Separate ANOVAs were
308 used for the primary and secondary challenges. Upon a significant interaction amongst any
309 combination of variables, a post hoc multiple comparison Benjamini-Hochberg adjusted test was
310 used. Agglutination and lysis scores have ordinal data; thus, a Mann-Whitney test was used to
311 detect effects of diet and the immune challenge (separately) at each time point. Additionally, the
312 change between pre-injection and several post-injection scores for diet and immune challenge
313 was compared. Bacterial killing ability values are percentages and violated assumptions of
314 normality. Thus, a beta regression was used (BKA data from the primary challenge was not used
315 due to methodological issues in the assay). These data were transformed using the formula $(y^*(n-1) + 0.5) / n$, where n is sample size and y is the data point, as recommended by the “betareg”
316 package. Six different models were created (different combinations of the three variables:
317 immune challenge, diet, and time) and the top model as indicated by Akaike information
318 criterion (AIC) was the diet model.

320 *Microbiome*

321 Phyloseq v.1.40.0 (McMurdie and Holmes 2013) was used to perform statistical analysis
322 of iguana microbiomes in R v.4.2.3 (R Core Team 2019). R code is available at
323 <https://github.com/kapheimlab>. Decontam v.1.6.0 (Davis et al. 2017) was used to identify and
324 remove 11 potential contaminants as those ASVs that were more prevalent in negative controls
325 (i.e., extraction blanks, no template controls) than in experimental samples. Those ASVs
326 classified as mitochondria (627) or chloroplast (3) and those which could not be classified at the
327 Phylum level (0) were removed as well as those not found at least 10 times in at least 1% (2) of
328 samples. Samples (12) with fewer than 1,000 reads were also removed. The final dataset
329 included 170 samples and 1,636 ASVs. The data were rarefied to an even depth of 1,159 reads
330 per sample. Given the ongoing debate about the value of rarefaction (McMurdie and Holmes
331 2014), more than one normalization method was employed where appropriate. The final dataset
332 was subdivided into two phyloseq objects for individual analysis. First, the effects of the sugar
333 diet alone were explored, prior to any immune challenge (n = 69). A separate phyloseq object
334 was made to look at the effects of diet and immune challenge together 24 hr (n = 29) and 72 hr (n
335 = 34) post-primary immune challenge, and 4 weeks post-secondary challenge, approximately
336 two months after the first immune treatment (n = 36). These time points were chosen based on
337 the response time to LPS injection in other reptiles such as *Lithobates catesbeianus* and *Uta*
338 *stansburiana* (see methods above) (Figueiredo et al., 2021; Smith et al., 2017). Upon visual
339 inspection of Principal Coordinates Analysis (PCoA) plots and comparison with field and
340 laboratory notes, two outliers were removed from the 72 hr post LPS dataset. The following set
341 of analyses were performed separately for each of these datasets.

342 Overall differences in microbial communities were visualized across treatments with
343 PCoA applied to Bray-Curtis distance matrices of log-transformed abundance data. Variance in
344 the multivariate microbiome community was partitioned by variables of interest with adonis2 in
345 vegan (Jari Oksanen et al. 2019) based on a Bray-Curtis distance matrix of relative abundances
346 over 9,999 permutations. To assess the effects of the glucose diet independent of immune
347 challenge, the model included diet and time, as well as their interaction, and was stratified across
348 iguana ID to account for repeated sampling of the same animal at two time points. Then,
349 pairwise comparisons between diet-time levels using 9,999 permutation MANOVAs and a
350 Benjamini-Hochberg (BH) correction of p-values were used. To assess the combined effects of
351 diet and immune challenge at different times, a model that included diet, immune treatment, and
352 time point (24 hr, 72 hr, 4week post immune challenge), as well as their interactions, stratified
353 across iguana ID was used. This revealed significant effects of each factor, as well as their two-
354 way interactions; thus, a single variable that encoded diet, immune treatment, and time point to
355 look for pairwise differences was used. ASVs with significant differences in abundance were
356 identified for samples collected 24 h past the primary immune challenge. Counts were
357 transformed to a geometric mean and DeSeq2 (v1.39.8) was applied to a model that included diet
358 + immune treatment. P-values were adjusted using the Benjamini-Hochberg method.

359 Differences in beta diversity was tested as a function of diet-time or diet-immune
360 treatment-time with independent iterations of betadisper in vegan followed by pairwise
361 comparisons with the Tukey Honest Significant Difference method (TukeyHSD) (Anderson et al.
362 2006).

363 Alpha diversity was estimated with the Shannon index and observed species richness,
364 computed with the estimate_richness function in the ‘vegan’ R package using non-filtered
365 datasets. Then, the Shannon index and observed species richness were modelled as a function of
366 diet-time with iguana ID included as a random effect for the first dataset using lmer in the lme4
367 package (v. 1.1-30) (Bates et al. 2015). For the second dataset, alpha diversity was modeled
368 separately for each time point as a function of diet-immune challenge. Model assumptions were
369 tested via visual inspection of sample distributions and an Anderson-Darling test for normality,
370 and Tukey adjusted pairwise tests were used for posthoc comparisons. Box-Cox transformation
371 was used to fit linear models where necessary (MASS v. 7.3, Venables & Ripley 2002).

372 The correlations between microbiome composition and physiology were explored using
373 the ‘associate’ function in the microbiome package (v.1.18-0) (Lahti & Shetty 2019). All
374 correlations were run with method = “spearman” and p.adj.method = “BH”. To investigate the
375 relationship between bacterial diversity and blood physiology, ‘cor.test’ was used to calculate
376 Spearman’s rank correlations between Shannon index and observed species richness at 24 hr and
377 72 hr post immune challenge with agglutination at the same time points.

378 **Results**

379 Immune Metrics

380 *BKA*

381 We use a beta regression model with a logit link to analyze the relationship between the
382 BKA values and diet (while accounting for random effects amongst iguanas). The model was a
383 good fit to the data with an AIC of -27.6 and a BIC of -14.1 and preferred above other models
384 (different combinations of diet, time, and immune challenge). A high sugar diet was associated
385 with reduced bacterial killing independent of immune challenge or time point ($X^2 = 13.56$, df =
386 3, $p < 0.001$). There was a significant effect of diet ($z = 3.72$, df = 212, $p < 0.001$) on BKA
387 during the second immune challenge (Fig. 2). The sugar group had a bacterial killing of $49.1\% \pm$
388 3.50% while the control diet group performed better, at $68.7\% \pm 2.83\%$ killing. We omitted
389 results for BKA from the first immune challenge due to procedural issues.

390 *Agglutination*

391 A significant effect of diet on agglutination was detected for the timepoint before the first
392 ($W = 194.5$, $p = 0.034$) and the second ($W = 204$, $p = 0.039$) challenge (Fig. 1, and 3). The
393 median for the sugar group was higher than that of the control diet group before both challenges.
394 In a separate model examining differences in the change in agglutination scores pre and 24 hr
395 post injection between diet groups, we detected significant differences during both challenges. In
396 the first challenge, the sugar group had a larger reduction in agglutination score 24 hr after the
397 immune challenge relative to the control diet group ($W = 186$, $p = 0.029$). In the second
398 challenge, the control diet group had a larger increase in agglutination score than the sugar group

399 (W = 165, p = 0.03) (Fig. 3B). There was a significant effect of the immune challenge on
400 agglutination that was independent of both diet and time (time referring to the multiple time
401 points we measured agglutination throughout the experiment (Fig 1)). Significant effects of the
402 immune challenge first appeared at 72 hr following the primary injection, when the LPS treated
403 iguanas had 3-fold higher agglutination scores than the PBS treated iguanas (72 hr W = 61.5, p =
404 0.006; 1 week W = 29, p = 0.002; 2-week W = 76.5, p = 0.019) (Fig 3A). LPS iguana sustained
405 an increase in agglutination through the first challenge into the second challenge (24 hr W = 62,
406 p = 0.002; 72 hr W = 41, p = 0.001; 1 week W = 71.5; p = 0.021; 2-week W = 89, p = 0.034).

407 *Lysis*

408 We detected significant differences during the first challenge but not the second when
409 examining differences in the change in lysis scores pre and 24-hr post injection between diet
410 groups. Iguanas given the sugar diet had a larger reduction in lysis 24 hr after the primary
411 immune challenge than did the control diet group (W = 181, p = 0.047). In a separate model,
412 there was a significant main effect of the immune challenge on lysis independent of diet and
413 time, but it was not detected until 24 hr after the second immune injection (W = 97.5, p = 0.041).
414 Specifically, groups injected with LPS had significantly higher lysis scores. In

415 *IgY antibodies*

416 There were no effects of diet across both challenges. For the first immune challenge,
417 immune challenge ($F_{1,15} = 25.5$, p < 0.001), time ($F_{5,75} = 13.4$, p < 0.001), and their interaction
418 ($F_{5,75} = 8.9$, p < 0.001) had a significant effect on IgY concentrations. One week after the first
419 challenge, IgY concentrations increased and remained elevated above that of the PBS-treated
420 iguanas for the 4 weeks that the animals were evaluated (Fig. 4A). During the second immune
421 challenge, there was a main effect of LPS ($F_{1,10} = 14.7$, p = 0.003) with the LPS group having
422 higher IgY concentrations than the PBS group for all time points. IgY concentrations were
423 already elevated before the second challenge, apparently a residual effect from the first
424 challenge, so there was no effect of time (Fig. 4B).

425 *Energy Metabolites*

426 After 1 month of diet treatment (before any immune challenge), there was a significant
427 effect of diet for plasma glucose levels, glycerol, total triglycerides, and mass (Table 1). Iguanas
428 on a high sugar diet increased blood glucose by 1.5-fold, glycerol levels by 14-fold, and total
429 triglycerides levels by >2.5-fold relative to the control group. Iguanas that received a high sugar
430 diet gained approximately 4 times as much weight as control iguanas after a month of the altered
431 diet.

432 In terms of blood glucose levels after the first immune challenge, there was only a
433 significant effect of time and no effect of immune challenge nor diet. Iguanas in all treatment
434 groups had decreased circulating blood glucose 72 hr after the first immune challenge ($F_{3,96} =$
435 4.3, p = 0.007). Glucose concentrations, regardless of treatment, were about twice as high pre-
436 immune challenge than 72 hr after. After the second immune challenge, there were no effects of
437 time, diet, nor immune challenge.

438 In terms of total triglycerides, there were significant effects of diet and an interaction of
439 the immune challenge and time during the first challenge. Iguanas in the sugar group had a 1.5-
440 fold increase in concentration relative to the control diet group ($F_{1,25} = 19.7$, $p < 0.001$). The
441 interaction between LPS and time takes place at 24 hr after the first challenge; the iguanas
442 injected with LPS had fewer circulating total triglycerides than the PBS-injected iguanas ($F_{5,125} =$
443 3.2, $p = 0.01$) regardless of diet (Fig. 5A). After the second immune challenge, there continued to
444 be significant effects of diet at every timepoint ($F_{1,25} = 19.8$, $p < 0.001$). The ANOVA also
445 detected an interaction between the immune challenge and time but the pairwise test was unable
446 to determine in which groups where the significance is ($F_{1,25} = 3.59$, $p = 0.005$). From Figure
447 5B., it would appear to be at the 24 hr post injection time point, similar to the first challenge.
448

Morphometrics

449 There was a significant 3-way interaction between diet, immune challenge, and time
450 ($F_{5,160} = 2.3$, $p=0.047$). Specifically, before the first immune challenge, iguanas fed a sugar diet
451 and injected with PBS had the highest mass (g) relative to the other groups (sugarPBS:
452 60.2 ± 3.78 ; sugarLPS: 55.9 ± 4.14 ; controlPBS: 55.0 ± 3.06 ; controlLPS: 53.8 ± 5.50). This was also
453 the only time point in which there was a difference between the groups as any differences in
454 mass were not detected during the rest of the primary challenge. During the second immune
455 challenge, there was a significant effect of time regardless of diet or LPS treatment ($F_{5,160} =$
456 106.94 , $p < 0.001$). Specifically, all iguanas weighed more at the end of the experiment relative
457 to any time points throughout the second challenge. In terms of SVL, there was a significant
458 effect of time but not diet nor immune challenge ($F_{2,64} = 10.1$, $p < 0.001$). All iguanas were ~ 4 cm
459 longer by the end of the experiment relative to the initial measurement at the beginning of the
460 experiment.

Microbiome

General characteristics of the green iguana microbiome

463 The filtered combined dataset had 170 samples from 36 iguanas sampled at 3-6 time
464 points, each with an average of $24,740.82 \pm 629.62$ s.e. reads. The green iguana hindgut
465 microbiome in this dataset was composed primarily of bacteria from 11 Phyla (Fig. 6), and the
466 mean number of ASVs per sample was 238.69 ± 111.70 s.e. There were no significant
467 correlations between blood physiology (glucose, total triglycerides, agglutination, or lysis) with
468 microbial relative abundance (ASVs or Families) at the start of the experiment (Table S1, S2).

Effects of a high sugar diet on the microbiome

470 Both diet and time were significant sources of variance in microbiome composition of the
471 green iguana gut microbiome. In an analysis of community-wide differences, both diet and time
472 (but not their interaction) were a significant source of variance in community composition ($F_{\text{diet}} =$
473 1.96, $p_{\text{diet}} = 0.0001$; $F_{\text{time}} = 6.69$, $p_{\text{time}} = 0.0001$). The interaction between diet and time was not a
474 significant predictor of relative abundance ($F_{\text{diet} \times \text{time}} = 1.07$, $p_{\text{diet} \times \text{time}} = 0.27$). Pairwise
475 comparisons suggested that iguanas given a sugar diet versus a control diet did not have
476 significantly different microbiomes at the start of the experiment, as would be expected (BH-
477 adjusted $p = 0.26$). The microbiome composition of iguanas in both diet treatments changed

478 significantly over time (sugar baseline vs 1-month BH-adjusted $p = 0.0003$; water baseline vs 1-
479 month BH-adjusted $p = 0.0006$). However, significant differences (BH-adjusted $p = 0.05$) in
480 community composition between sugar and water-treated iguanas after a month of diet treatment
481 suggest that diet influenced temporal shifts in the microbiome. This pattern was consistent with
482 the visual pattern observed with a PCoA of log-transformed abundances (Fig. 7). Overall and
483 pairwise results were consistent when this analysis was repeated on rarefied data ($F_{\text{diet}} = 1.95$,
484 $p_{\text{diet}} = 0.0001$; $F_{\text{time}} = 6.65$, $p_{\text{time}} = 0.0001$; $F_{\text{diet} \times \text{time}} = 1.04$, $p_{\text{diet} \times \text{time}} = 0.30$).

485 No direct relationships between bacterial abundance and blood physiology were detected.
486 There were no ASVs or bacterial families for which abundance was significantly correlated with
487 blood glucose, or total triglycerides after one month on a high sugar diet or the change in blood
488 physiology during the month-long diet treatment (BH-adjusted $p > 0.1$; Table S3, S4).
489 Abundance of any particular taxa or bacterial family was not predictive of blood physiology
490 throughout the one month of diet treatment, the primary immune challenge, and the secondary
491 immune challenge (~3 months) on a high-sugar diet (BH-adjusted $p > 0.1$; Table S3, S4).

492 Analyses of diversity revealed the microbiome was highly consistent among individuals
493 in each diet group. There were no significant differences in multivariate dispersion between diet-
494 time groups, which is a measure of beta diversity ($F = 1.18$, $p = 0.32$). There were also no
495 significant differences in alpha diversity, measured with either the Shannon index or the
496 observed species richness (Shannon: $X^2 = 1.89$, $p = 0.59$; Richness: $X^2 = 0.94$, $p = 0.82$; Fig S1).
497 Results were similar with rarefied data (Shannon: $X^2 = 4.67$, $p = 0.20$; Richness: $X^2 = 2.05$, $p =$
498 0.56).

499 *Effects of diet and immune challenge on the microbiome*

500 The composition and diversity of the microbiome was affected by both diet and immune
501 challenge (IC in subscript of results), but this effect was short-lived. Diet, immune challenge,
502 time, and the interaction between immune challenge and diet or time point were significant
503 sources of variance in microbiome composition ($F_{\text{diet}} = 3.78$, $p_{\text{diet}} = 0.0001$; $F_{\text{IC}} = 4.09$, $p_{\text{IC}} =$
504 0.0001; $F_{\text{time}} = 2.86$, $p_{\text{time}} = 0.0001$; $F_{\text{diet} \times \text{IC}} = 1.90$, $p_{\text{diet} \times \text{IC}} = 0.0007$; $F_{\text{time} \times \text{IC}} = 1.86$, $p_{\text{time} \times \text{IC}} =$
505 0.0002). The interaction between diet and time did not have a significant effect on microbiome
506 composition ($F_{\text{diet} \times \text{time}} = 1.09$, $p_{\text{diet} \times \text{IC}} = 0.09$), nor did the three-way interaction between diet,
507 immune challenge, and time ($F_{\text{diet} \times \text{IC} \times \text{time}} = 0.85$, $p_{\text{diet} \times \text{IC} \times \text{time}} = 0.29$). This pattern was
508 consistent with that revealed by visual assessment of a PCoA at each time point (Fig. 8).
509 Pairwise comparisons revealed these results were largely driven by the effects of the immune
510 challenge (Fig. S2). Overall and pairwise results were consistent when this analysis was repeated
511 on rarefied data ($F_{\text{diet}} = 3.72$, $p_{\text{diet}} = 0.0001$; $F_{\text{IC}} = 3.95$, $p_{\text{IC}} = 0.0001$; $F_{\text{time}} = 2.78$, $p_{\text{time}} = 0.0001$;
512 $F_{\text{diet} \times \text{IC}} = 1.90$, $p_{\text{diet} \times \text{IC}} = 0.001$; $F_{\text{time} \times \text{IC}} = 1.84$, $p_{\text{time} \times \text{IC}} = 0.0004$; $F_{\text{diet} \times \text{time}} = 1.12$, $p_{\text{diet} \times \text{IC}} =$
513 0.08; $F_{\text{diet} \times \text{IC} \times \text{time}} = 0.85$, $p_{\text{diet} \times \text{IC} \times \text{time}} = 0.30$).

514 There were 13 ASVs with significant differences in abundance related to diet 24 hr after
515 the immune challenge. These ASVs belonged to nine families from four Phyla, with all but one
516 (Bacteroidaceae) decreasing in abundance on a sugar diet (Table S5). There were 32 ASVs with
517 significant differences in abundance related to the immune challenge at 24 hr. These immune-

518 responsive ASVs belonged to 16 families from 7 Phyla (Table S6). Most notably, five ASVs
519 from the Bacteroidaceae were significantly reduced following the immune challenge, and four
520 ASVs from the Micrococcaceae were significantly increased.

521 Bacterial diversity was most affected by the short-term response to an immune challenge.
522 There were no significant differences in multivariate dispersion, a metric of beta diversity,
523 between diet and immunity treatments at any time point ($F = 0.64$, $p = 0.79$). There were
524 significant differences across treatment groups in alpha diversity at 24 hours post-injection,
525 measured as both the Shannon index ($X^2 = 40.25$, $p = 9.45e-9$) and observed number of ASVs
526 ($X^2 = 36.44$, $p = 6.04e-8$). In fact, the immune challenge reduced the median number of observed
527 ASVs after 24 hr by a factor of 3 in iguanas on the sugar diet (363 vs 115) and by nearly an order
528 of magnitude in the iguanas on the water diet (298.5 vs 31) (Fig. 9). However, there were no
529 longer significant differences in alpha diversity by 72 hr and 4 weeks post-injection ($p > 0.05$).
530 Results were consistent when repeated with rarefied data (Shannon: $X^2 = 52.12$, $p = 2.59e-7$;
531 Observed ASVs: $X^2 = 58.83$, $p = 1.53e-8$).

532 There were no significant correlations between microbial abundance and iguana blood
533 physiology. There were no ASVs or families for which relative abundance was significantly
534 correlated with blood glucose or total triglycerides at 24 hr post immune challenge (BH-adjusted
535 $p > 0.05$). The initial correlation analysis identified three families with marginally (BH-adjusted
536 $p = 0.05$) significant correlations with agglutination 24 hr after the immune challenge. However,
537 visual inspection revealed this to be driven by one sample with unusually high agglutination
538 levels. There were also no ASVs or families for which relative abundance was significantly
539 correlated with glucose, total triglycerides, lysis, or agglutination 72 hr after the immune
540 challenge (BH-adjusted $p > 0.64$). The set of 32 immune responsive (differentially abundant)
541 ASVs at 24 h were not significantly correlated with any metrics of physiological immunity at 24
542 h -- agglutination, lysis, BKA (BH-adjusted $p > 0.71$). This was also true when the ASVs were
543 agglomerated at the family level. There were also no correlations between alpha diversity
544 (Shannon index or observed ASVs) and agglutination 24 hr ($\rho_{\text{Shannon}} = 0.44$, $p_{\text{Shannon}} = 0.17$;
545 $\rho_{\text{richness}} = 0.16$, $p_{\text{richness}} = 0.64$) or 72 hr ($\rho_{\text{Shannon}} = -0.08$, $p_{\text{Shannon}} = 0.79$; $\rho_{\text{richness}} = -0.16$, $p_{\text{richness}} =$
546 0.57) after the immune challenge.

547 Discussion

548 General Overview

549 This study tested the effects of a sugar-supplemented diet on the energy metabolites,
550 immune function, and gut microbiome of green iguanas. As expected, sugar treatment elevated
551 plasma energy metabolites, glucose, and total triglycerides during the first month of the
552 experiment. While the effects of diet on blood glucose did not persist beyond the first month, the
553 effects of diet continued to elevate total triglycerides through both immune challenges (second
554 and third month of the experiment). Our results also establish a link between diet and immune
555 response, showing that a high sugar diet alters bacterial killing, agglutination, and lysis (but not
556 IgY levels) following a primary or secondary immune challenge relative to the control group,
557 and agglutination prior to the immune challenges. Diet treatment significantly affected the

558 overall composition of the gut microbiome, but not the diversity, following one month of
559 treatment. Thus, sugar supplementation was successful in altering both the gut microbiome and
560 physiology in just one month. Following the immune challenge, there were overall shifts in
561 microbial community composition and a reduction in alpha diversity in response to the immune
562 challenge, and these effects were exaggerated on a high sugar diet. By 72 hr post LPS injection,
563 the microbiome was mostly recovered. However, a lack of significant correlations between
564 microbial relative abundance and blood physiology indicates the two responses may be
565 unrelated. While we expected significant interactive effects between diet and immune challenge
566 (specifically with a sugar diet exacerbating effects of the immune challenge), we did not find
567 such results in the physiological changes over the course of the experiment. These results
568 highlight the complex relationships among sugar, physiology, and the gut microbiome.
569 Specifically, sugar affects composition of the microbiome and separately alters overall immune
570 function.

571 *Energy Metabolites*

572 While sugar-treated iguanas were expected to have higher circulating glucose, there
573 were no effects of diet or LPS treatment on circulating glucose. This may be due to the timing of
574 the sampling occurring first thing in the morning before the iguanas were fed. It is also possible
575 that this is the result of physiological compensation, where the sugar fed animals developed a
576 greater ability to manage glucose intake throughout the experiment. There was, however, an
577 increase in total triglycerides in the sugar groups during both immune challenges. Similar to
578 humans, reptiles ingesting higher amounts of sugar have been found to have higher triglyceride
579 levels as seen in the Northern Bahamian rock iguana (*Cyclura cychlura*) (French et al., 2022).
580 There was also an interaction between LPS and time during the first challenge. Specifically, 24
581 hr after the first LPS challenge, the LPS group had lower total triglyceride levels. This decrease
582 in total triglyceride levels could be due to the breakdown of triglycerides to use in immune
583 activation because of the LPS injection. Mounting an immune response is energetically
584 demanding which could explain the increase in circulating energy metabolites like triglycerides
585 which is one of the main fuel sources for immune cells (Demas & Nelson, 2011; Ganeshan &
586 Chawla, 2014; Hudson et al., 2021).

587 *Immune Status, diet, and the Gut Microbiome*

588 Following the immune challenge, there was an elevated response in agglutination, lysis,
589 and IgY, demonstrating activation of the immune system in response to this simulated bacterial
590 infection. In terms of response and timing, our findings are similar to those from other
591 ectotherms, including bullfrogs (*Lithobates catesbeianus*) and side-blotched lizards (*Uta*
592 *stansburiana*) (Figueiredo et al., 2021; Hudson et al., 2021). While there was a significant effect
593 of LPS during the first and second immune challenge on both agglutination and IgY, as
594 expected, there was not an effect of LPS on lysis until the second challenge. This may be due to
595 the relatively slower immune responses that have been documented in reptiles (Rios &
596 Zimmerman, 2015). Specifically, during subsequent exposures, the latent period for immune
597 responses often shortens, which may explain why we did not observe a significant effect of LPS

598 on lysis activity until the second challenge (Rios & Zimmerman, 2015; Zimmerman et al., 2010).
599 Alternatively, the first challenge may prime the immune system such that a greater, detectable
600 response occurred during the second challenge. Moreover, there was an elevated response for
601 agglutination and IgY across the entire second challenge, even prior to LPS-injection. This was
602 likely a continuation of the immune activation following the first challenge. However, the
603 present study provides evidence that green iguanas can mount specific antibody (IgY) responses
604 as early as 1 week following an immune challenge and peaking at 2 weeks (as opposed to the
605 previously thought 6-8 weeks). This rapid antibody response is more on par with mammalian
606 immune responses which has a latent period of about 1 week depending on the antigen
607 (Zimmerman et al., 2010). The idea that reptiles have a long antibody response time comes
608 mainly from studies on turtles (i.e., chelonians) (Zimmerman et al., 2010). However, as reptiles
609 are an incredibly diverse paraphyletic clade, with turtles and iguanids being distantly related, it is
610 unsurprising that different reptiles can have vastly different immune responses.

611 We found clear but differential effects of sugar on bacterial killing ability, agglutination,
612 and lysis. Prior to the primary and secondary immune challenges, sugar groups exhibited
613 elevated agglutination relative to controls, suggesting sugar may induce an increase in
614 constitutive immunity in the form of inflammation. Sugar is known to have pro-inflammatory
615 effects on human monocytes by increasing toll-like receptors and there is also evidence that
616 sugar can increase oxidative stress, further contributing to inflammation signaling to immune
617 cells and acute phase proteins (Dasu et al., 2008; Leung et al., 2014; Valera-gran et al., 2022;
618 Burr et al., 2020; Kim, 2018; Yu et al., 2018). However, following the LPS challenges, there was
619 a large reduction in agglutination and lysis scores when comparing scores before and 24 hr after
620 the first immune challenge (relative to the control diet group) but this was not observed in the
621 second challenge. During the second challenge, we observe that sugar group iguanas do not
622 differ in their agglutination nor lysis ability after the immune challenge. The transient reduction
623 in lysis and agglutination during the first challenge observed in iguanas given a high sugar diet
624 may be explained by the documented suppressive effects of sugar on immunity. For example,
625 sugar has been found to impede IgG and complement proteins in rats, impair phagocytosis in
626 fruit flies (*Drosophila*), and inhibit neutrophil migration and microbial killing in humans (Jafar et
627 al., 2016; Mauriello et al., 2014; Yu et al., 2018). In vitro experiments support a similar trend
628 with human neutrophils that are cultured in glucose having impaired neutrophil extracellular trap
629 formation, and human B cells producing less IgM, reducing proliferation, and reducing cell
630 function in response to a bacterial antigen stimulus (Joshi et al., 2013; Sakowicz-Burkiewicz et
631 al., 2013). It is interesting, however, that during the secondary challenge, the IgY concentrations,
632 and lysis ability of iguanas given high sugar were not affected by diet, but the overall functional
633 bacterial killing ability was still reduced. An organism's bacterial killing ability represents the
634 integrated immune function that encompasses agglutination, lysis, opsonizing proteins, acute
635 phase proteins, natural antibodies, the complement system, and other peptides. These different
636 responses between the two immune challenges demonstrate the nuanced effects that a high sugar
637 diet can have on different components of the immune system across time. Although the sugar

638 group seemed to have a more robust immune system than the control group (agglutination was
639 initially higher), when faced with an immune challenge, immune function is actually reduced
640 (bacterial killing dropped).

641 Given the current focus on relationships among diet, the microbiome, health, and
642 crosstalk between the immune system and microbiome, this study tested whether gut microbial
643 changes corresponded with our treatments (Kim & Kim, 2017; Ooi et al., 2014; Shi et al., 2022;
644 Siddiqui et al., 2022; Tamburini et al., 2016). The immune challenge led to rearrangement of the
645 gut microbial community composition after 24 hr, especially in the high sugar group. Likewise,
646 there was a transient (24 hr) reduction in alpha diversity following the immune challenge.
647 Together, these results indicated that the immune challenge influenced how the gut microbiome
648 was impacted by dietary sugar. Thus, there are three potential mechanisms by which a high sugar
649 diet may be jointly interacting with the immune system and the microbiome. First, the diet may
650 be interacting with the immune system directly, and changes in immune activity alter the gut
651 microbiome. Sugar can directly modify immunity as it is an important fuel source and can be
652 metabolized directly by neutrophils, T-cells, dendritic cells, and macrophages (Burr et al., 2020).
653 While there was not a direct increase of circulating glucose due to diet or immune challenge, it is
654 not surprising as glucose changes are highly labile and blood was sampled first thing in the
655 morning before the daily feeding. There was, however, an increase in total triglycerides in the
656 sugar diet iguanas, regardless of LPS treatment. Triglycerides can also be used by immune cells
657 as fuel in the form of fatty acids which can directly activate toll-like receptor 4 (TLR4) on
658 macrophages which activates proinflammatory pathways (Shi et al., 2006). The iguanas in the
659 sugar group, generally, had suppressed immunity. Furthermore, there is evidence that the
660 immune system uses antimicrobial proteins, IgA, phagocytes, and CD4 cells to control and limit
661 contact between the gut and the systemic immune system (Alexander & Turnbaugh, 2020;
662 Hooper & MacPherson, 2010). Iguanas in this study had an immediate decrease in gut microbial
663 diversity 24 hr after LPS treatment, suggesting immune activation changes the gut microbiome.
664 However, this effect was transient and disappeared after 72 hr. Thus, while diet and immunity
665 can alter the gut microbiome, the effects are only temporary with the gut microbiome re-
666 establishing balance after perturbation.

667 Alternatively, the high sugar diet may change the gut microbiome directly which then
668 alters immunity. Our study provides evidence that a high sugar diet changes gut microbial
669 composition, trends towards increasing alpha diversity, and hinders functional bacterial killing.
670 However, there were no direct correlations between blood physiology and bacterial abundance,
671 family abundance, or diversity. One potential mechanism is that the sugar-induced change in
672 microbial diversity altered production of sugar-related metabolites such as short chain fatty acids
673 (SCFA), which can modulate the immune system (Alexander & Turnbaugh, 2020). These SCFA
674 are the products of sugar fermentation and triglyceride hydrolysis, which is notable as the sugar
675 groups in our study had elevated levels of circulating triglycerides, and thus may have produced
676 SCFA at different rates than controls (Karasov & Douglas, 2013). SCFA receptors have been
677 identified on neutrophils, macrophages, and dendritic cells (C. H. Kim, 2018; Siddiqui et al.,

678 2022); thus, an increase in sugar intake may increase SCFA production, leading to more
679 interactions with the immune system.

680 Finally, there is a possibility that a high-sugar diet may be altering other physiological
681 factors such as insulin and glucagon, which can influence both immunity and gut microbiome.
682 Together, insulin (glucose uptake) and glucagon (glucose production) regulate energy
683 metabolism and energetic tradeoffs with the immune system. In rats and mice, hyperglycemia
684 can impair immune response but the effect was reversible with insulin treatment (Mandel &
685 Mahmoud, 1978; Mauriello et al., 2014). Similarly, glucagon has been found to improve
686 intestinal immunity in mice, and normalize immune response of rats recovery from a burn injury
687 There is some evidence that insulin and glucagon have roles in regulating energy metabolism in
688 reptiles (similar to mammals), but there is limited evidence as to the action of these hormones so
689 comparisons to mammalian hormones are cautioned (Marques, 1967; Penhos & Ramey, 1973;
690 Putti et al., 1986). Squamates also tolerate a wider range of blood glucose concentrations; thus,
691 regulation of blood glucose may have different or less impactful effects on other physiological
692 systems.

693

694 **Summary**

695 Our study provides evidence to partly support our hypothesis that sugar supplementation
696 alters immune responses, energy metabolites, and the gut microbiome. Total triglycerides but not
697 glucose was elevated in the sugar groups throughout the entire study. We originally expected that
698 glucose would also remain elevated but timing of sampling and/or physiological plasticity to
699 accommodate higher doses of sugar may account for the fact that blood glucose did not change
700 due to a sugar or immune challenge after the first month of the study. Additionally, a sugar diet
701 has distinct and differential effects on immunity, such that it is markedly immunosuppressive
702 following an immune challenge but potentially stimulatory at baseline. We see elevated
703 agglutination prior to immune challenges with added sugar, but a decrease in bacterial killing
704 ability and a greater reduction in agglutination and lysis ability in the first 24 hrs after an
705 immune challenge. However, these changes are not permanent (does not always continue into the
706 second challenge) and not all components of the immune system are affected (IgY
707 concentrations were not affected by diet). The gut microbiome composition and alpha diversity
708 was altered/reduced transiently after an immune challenge and the effects were exaggerated in
709 the sugar group. We present 3 possible explanations for the relationships among diet, immune
710 function, and microbiome; 1) diet affects the immune system which affects the gut microbiome,
711 2) diet affects the gut microbiome which affects the immune system, and 3) diet affects an un-
712 measured physiological factor which then affects the immune system and the gut microbiome.
713 While we only present 3 explanations, it is also possible that the effects of diet on the immune
714 system and gut microbiome are completely independent of each other. Considerable further
715 study is required to better understand the mechanism involved in these relationships.

716

717 **Acknowledgements**

718 We are grateful to the DeNardo lab undergraduate research team for taking part in the animal
719 care and sample collection of this project.

720 Competing Interests

721 No competing interests declared.

722 Funding

723 This work was supported by the National Science Foundation (IOS-1752908 for S.S.F. and IOS-
724 1752765 for D.D.).

725 Data Availability

726 <https://github.com/KiClaudia/greeniguana>

727 <https://github.com/kapheimlab>

728 References

729 Ademokun, A. A., & Dunn-Walters, D. (2010). Immune Responses: Primary and Secondary.
730 *ELS, September*. <https://doi.org/10.1002/9780470015902.a0000947.pub2>

731 Alexander, M., & Turnbaugh, P. J. (2020). Deconstructing Mechanisms of Diet-Microbiome-
732 Immune Interactions. *Immunity*, 53(2), 264–276.
733 <https://doi.org/10.1016/j.immuni.2020.07.015>

734 Amenyogbe, N., Kollmann, T. R., & Ben-Othman, R. (2017). Early-life host-microbiome
735 interphase: The key frontier for immune development. *Frontiers in Pediatrics*, 5(May), 1–
736 12. <https://doi.org/10.3389/fped.2017.00111>

737 Broom, L. J., & Kogut, M. H. (2018). The role of the gut microbiome in shaping the immune
738 system of chickens. *Veterinary Immunology and Immunopathology*, 204(May), 44–51.
739 <https://doi.org/10.1016/j.vetimm.2018.10.002>

740 Burr, A. H. P., Bhattacharjee, A., & Hand, T. W. (2020). Nutritional Modulation of the
741 Microbiome and Immune Response. *The Journal of Immunology*, 205(6), 1479–1487.
742 <https://doi.org/10.4049/jimmunol.2000419>

743 Dasu, M. R., Devaraj, S., Zhao, L., Hwang, D. H., & Jialal, I. (2008). High glucose induces toll-
744 like receptor expression in human monocytes Mechanism of activation. *Diabetes*, 57(11),
745 3090–3098. <https://doi.org/10.2337/db08-0564>

746 Demas, G., & Nelson, R. (2011). *Ecoimmunology: Chapter 8 Mechanisms Mediating Trade-offs
747 in Ecoimmunology*. Oxford University Press.

748 Figueiredo, A. C. d., Titon, S. C. M., Titon, B., Vasconcelos-Teixeira, R., Barsotti, A. M. G., &
749 Gomes, F. R. (2021). Systemic hormonal and immune regulation induced by intraperitoneal
750 LPS injection in bullfrogs (*Lithobates catesbeianus*). *Comparative Biochemistry and
751 Physiology -Part A : Molecular and Integrative Physiology*, 253(August 2020), 110872.
752 <https://doi.org/10.1016/j.cbpa.2020.110872>

753 French, S. S., Hudson, S. B., Webb, A. C., Knapp, C. R., Virgin, E. E., Smith, G. D., Lewis, E.
754 L., Iverson, J. B., & DeNardo, D. F. (2022). Glucose tolerance of iguanas is affected by
755 high-sugar diets in the lab and supplemental feeding by ecotourists in the wild. *The Journal
756 of Experimental Biology*, 225(8). <https://doi.org/10.1242/jeb.243932>

757 French, S. S., Lewis, E. L., Ki, K. C., Cullen, Z. E., Webb, A. C., Knapp, C. R., Iverson, J. B., &
758 Butler, M. W. (2023). Blood chemistry and biliverdin differ according to reproduction and
759 tourism in a free - living lizard. *Journal of Comparative Physiology B*.
760 <https://doi.org/10.1007/s00360-023-01483-8>

761 French, S. S., & Neuman-Lee, L. A. (2012). Improved ex vivo method for microbiocidal activity
762 across vertebrate species. *Biology Open*, 1(5), 482–487.

763 <https://doi.org/10.1242/bio.2012919>

764 French, S. S., Webb, A. C., Wilcoxon, T. E., Iverson, J. B., Denardo, D. F., Lewis, E. L., &
765 Knapp, C. R. (2022). Complex tourism and season interactions contribute to disparate
766 physiologies in an endangered rock iguana. *Conservation Physiology*, 10(1), 1–17.
767 <https://doi.org/10.1093/conphys/coac001>

768 Ganeshan, K., & Chawla, A. (2014). Metabolic regulation of immune responses. *Annual Review*
769 *of Immunology*, 32, 609–634. <https://doi.org/10.1146/annurev-immunol-032713-120236>

770 Hooper, L. V., & MacPherson, A. J. (2010). Immune adaptations that maintain homeostasis with
771 the intestinal microbiota. *Nature Reviews Immunology*, 10(3), 159–169.
772 <https://doi.org/10.1038/nri2710>

773 Hudson, S. B., Virgin, E. E., Kepas, M. E., & French, S. S. (2021). Energy expenditure across
774 immune challenge severities in a lizard: Consequences for innate immunity, locomotor
775 performance and oxidative status. *Journal of Experimental Biology*, 224(17).
776 <https://doi.org/10.1242/jeb.242608>

777 Jafar, N., Edriss, H., & Nugent, K. (2016). The effect of short-term hyperglycemia on the innate
778 immune system. *American Journal of the Medical Sciences*, 351(2), 201–211.
779 <https://doi.org/10.1016/j.amjms.2015.11.011>

780 Joshi, M. B., Lad, A., Bharath Prasad, A. S., Balakrishnan, A., Ramachandra, L., &
781 Satyamoorthy, K. (2013). High glucose modulates IL-6 mediated immune homeostasis
782 through impeding neutrophil extracellular trap formation. *FEBS Letters*, 587(14), 2241–
783 2246. <https://doi.org/10.1016/j.febslet.2013.05.053>

784 Karasov, W. H., & Douglas, A. E. (2013). Comparative Digestive Physiology. *Comparative*
785 *Physiology*, 3(12), 741–783. <https://doi.org/doi:10.1002/cphy.c110054>.

786 Kassambara A. (2020). ggpubr: 'ggplot2' Based Publication Ready Plots. R package version
787 0.4.0. <https://CRAN.R-project.org/package=ggpubr>

788 Kassambara A. (2021). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package
789 version 0.7.0. <https://CRAN.R-project.org/package=rstatix>

790 Kawahito, S., Kitahata, H., & Oshita, S. (2009). Problems associated with glucose toxicity: Role
791 of hyperglycemia-induced oxidative stress. *World Journal of Gastroenterology*, 15(33),
792 4137–4142. <https://doi.org/10.3748/wjg.15.4137>

793 Kawano, Y., Edwards, M., Huang, Y., Bilate, A. M., Araujo, L. P., Tanoue, T., Atarashi, K.,
794 Ladinsky, M. S., Reiner, S. L., Wang, H. H., Mucida, D., Honda, K., & Ivanov, I. I. (2022).
795 Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from
796 metabolic syndrome. *Cell*, 185(19), 3501–3519.e20.
797 <https://doi.org/10.1016/j.cell.2022.08.005>

798 Kelm, D. H., Simon, R., Kuhlwein, D., Voigt, C. C., & Ristow, M. (2011). High activity enables
799 life on a high-sugar diet: Blood glucose regulation in nectar-feeding bats. *Proceedings of*
800 *the Royal Society B: Biological Sciences*, 278(1724), 3490–3496.
801 <https://doi.org/10.1098/rspb.2011.0465>

802 Kim, C. H. (2018). Immune regulation by microbiome metabolites. *Immunology*, 154(2), 220–
803 229. <https://doi.org/10.1111/imm.12930>

804 Kim, M., & Kim, C. H. (2017). Regulation of humoral immunity by gut microbial products. *Gut*
805 *Microbes*, 8(4), 1–8. <https://doi.org/10.1080/19490976.2017.1299311>

806 Kohl, K. D., Brun, A., Magallanes, M., Brinkerhoff, J., Laspiur, A., Acosta, J. C., Bordenstein,
807 S. R., & Caviedes-Vidal, E. (2016). Physiological and microbial adjustments to diet quality
808 permit facultative herbivory in an omnivorous lizard. *Journal of Experimental Biology*,

219(12), 1903–1912. <https://doi.org/10.1242/jeb.138370>

Konstantinidis, T., Tsigalou, C., Karvelas, A., Stavropoulou, E., Voidarou, C., & Bezirtzoglou, E. (2020). Effects of antibiotics upon the gut microbiome: A review of the literature. *Biomedicines*, 8(11), 1–15. <https://doi.org/10.3390/biomedicines8110502>

Leung, C. W., Laraia, B. A., Needham, B. L., Rehkopf, D. H., Adler, N. E., Lin, J., Blackburn, E. H., & Epel, E. S. (2014). Soda and cell aging: Associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the national health and nutrition examination surveys. *American Journal of Public Health*, 104(12), 2425–2431. <https://doi.org/10.2105/AJPH.2014.302151>

Liebl, A. L., & Ii, L. B. M. (2009). *Simple quantification of blood and plasma antimicrobial capacity using spectrophotometry*. 1091–1096. <https://doi.org/10.1111/j.1365-2435.2009.01592.x>

Mandel, M. A., & Mahmoud, A. A. F. (1978). Impairment of Cell-Mediated Immunity in Mutation Diabetic Mice (db / db). *The Journal of Immunology*, 120(4), 1375–1377.

Marques, M. (1967). Effects of Prolonged Glucagon Administration to Turtles (Chrysemys d'Orbignyi). *General and Comparative Endocrinology*, 9, 102–109.

Mauriello, C. T., Hair, P. S., Rohn, R. D., Rister, N. S., Krishna, N. K., & Cunnion, K. M. (2014). Hyperglycemia inhibits complement-mediated immunological control of *S. aureus* in a rat model of peritonitis. *Journal of Diabetes Research*, 2014. <https://doi.org/10.1155/2014/762051>

Musselman, L. P., Fink, J. L., Narzinski, K., Ramachandran, P. V., Hathiramani, S. S., Cagan, R. L., & Baranski, T. J. (2011). A high-sugar diet produces obesity and insulin resistance in wild-type *Drosophila*. *DMM Disease Models and Mechanisms*, 4(6), 842–849. <https://doi.org/10.1242/dmm.007948>

O'Sullivan, A., He, X., McNiven, E. M. S., Haggarty, N. W., Lönnnerdal, B., & Slupsky, C. M. (2013). Early diet impacts infant rhesus gut microbiome, immunity, and metabolism. *Journal of Proteome Research*, 12(6), 2833–2845. <https://doi.org/10.1021/pr4001702>

Ooi, J. H., Waddell, A., Lin, Y. D., Albert, I., Rust, L. T., Holden, V., & Cantorna, M. T. (2014). Dominant effects of the diet on the microbiome and the local and systemic immune response in mice. *PLoS ONE*, 9(1), 1–10. <https://doi.org/10.1371/journal.pone.0086366>

Orams, M. B. (2002). Feeding wildlife as a tourism attraction: A review of issues and impacts. *Tourism Management*, 23(3), 281–293. [https://doi.org/10.1016/S0261-5177\(01\)00080-2](https://doi.org/10.1016/S0261-5177(01)00080-2)

Penhos, J. C., & Ramey, E. (1973). Studies on the endocrine pancreas of amphibians and reptiles. *Integrative and Comparative Biology*, 13(3), 667–698. <https://doi.org/10.1093/icb/13.3.667>

Potter, J. H. T., Drinkwater, R., Davies, K. T. J., Nesi, N., Lim, M. C. W., Yohe, L. R., Chi, H., Zhang, X., Levantis, I., Lim, B. K., Witt, C. C., Tsagkogeorga, G., dos Reis, M., Liu, Y., Furey, W., Whitley, M. J., Aksentijevic, D., Dávalos, L. M., & Rossiter, S. J. (2021). Nectar-feeding bats and birds show parallel molecular adaptations in sugar metabolism enzymes. *Current Biology*, 31(20), 4667-4674.e6. <https://doi.org/10.1016/j.cub.2021.08.018>

Putti, R., Varano, L., Cavagnuolo, A., & Laforgia, V. (1986). Blood glucose levels in the lizard *podarcis sicula sicula raf.* After insulin and glucagon administration during the winter. *Bullettino Di Zoologia*, 53(4), 377–379. <https://doi.org/10.1080/11250008609355526>

Rand, S. A., Dugan, B. A., Monteza, H., & Vianda, D. (1990). Society for the Study of Amphibians and Reptiles The Diet of a Generalized Folivore : *Iguana iguana* in Panama. *Society for the Study of Amphibians and Rptiles*, 24(2), 211–214.

855 Rios, F. M., & Zimmerman, L. M. (2015). Immunology of Reptiles. *ELS*, 1–7.
856 <https://doi.org/10.1002/9780470015902.a0026260>

857 Ruxton, C. H. S., Gardner, E. J., & McNulty, H. M. (2010). *Is sugar consumption detrimental to*
858 *health? A review of the evidence 1995–2006* (pp. 1–19). Taylor & Francis.

859 Sakowicz-Burkiewicz, M., Kocbuch, K., Grden, M., Maciejewska, I., Szutowicz, A., &
860 Pawelczyk, T. (2013). High glucose concentration impairs ATP outflow and
861 immunoglobulin production by human peripheral B lymphocytes: Involvement of P2X7
862 receptor. *Immunobiology*, 218(4), 591–601. <https://doi.org/10.1016/j.imbio.2012.07.010>

863 Shi, Hang, Kokoeva, M. V., Inouye, K., Tzameli, I., Yin, H., & Flier, J. S. (2006). TLR4 links
864 innate immunity and fatty acid-induced insulin resistance. *Journal of Clinical Investigation*,
865 116(11), 3015–3025. <https://doi.org/10.1172/JCI28898>

866 Shi, Huiqing, ter Horst, R., Nielen, S., Bloemendaal, M., Jaeger, M., Joosten, I., Koenen, H.,
867 Joosten, L. A. B., Schweren, L. J. S., Vasquez, A. A., Netea, M. G., & Buitelaar, J. (2022).
868 The gut microbiome as mediator between diet and its impact on immune function. *Scientific*
869 *Reports*, 12(1), 1–10. <https://doi.org/10.1038/s41598-022-08544-y>

870 Siddiqui, R., Maciver, S. K., & Khan, N. A. (2022). Gut microbiome–immune system interaction
871 in reptiles. *Journal of Applied Microbiology*, 132(4), 2558–2571.
872 <https://doi.org/10.1111/jam.15438>

873 Smith, G. D., Neuman-Lee, L. A., Webb, A. C., Angilletta, M. J., DeNardo, D. F., & French, S.
874 S. (2017). Metabolic responses to different immune challenges and varying resource
875 availability in the side-blotched lizard (*Uta stansburiana*). *Journal of Comparative*
876 *Physiology B: Biochemical, Systemic, and Environmental Physiology*, 187(8), 1173–1182.
877 <https://doi.org/10.1007/s00360-017-1095-4>

878 Sun, L., Zhang, X., Zhang, Y., Zheng, K., Xiang, Q., Chen, N., Chen, Z., Zhang, N., Zhu, J., &
879 He, Q. (2019). Antibiotic-induced disruption of gut microbiota alters local metabolomes and
880 immune responses. *Frontiers in Cellular and Infection Microbiology*, 9(APR), 1–13.
881 <https://doi.org/10.3389/fcimb.2019.00099>

882 Tamburini, S., Shen, N., Wu, H. C., & Clemente, J. C. (2016). The microbiome in early life:
883 Implications for health outcomes. *Nature Medicine*, 22(7), 713–722.
884 <https://doi.org/10.1038/nm.4142>

885 Valera-gran, D., Prieto-botella, D., Hurtado-pomares, M., Baladia, E., Petermann-rocha, F.,
886 Alicia, S., & Navarrete-muñoz, E. (2022). The Impact of Foods , Nutrients , or Dietary
887 Patterns on Telomere Length in Childhood and Adolescence : A Systematic Review.
888 *Nutrients*, 14(3885), 1–14.

889 Webb, A. C., Iverson, J. B., Knapp, C. R., DeNardo, D. F., & French, S. S. (2019). Energetic
890 investment associated with vitellogenesis induces an oxidative cost of reproduction. *Journal*
891 *of Animal Ecology*, 88(3), 461–472. <https://doi.org/10.1111/1365-2656.12936>

892 Wright, R., & Schapiro, H. (1973). Primary and Secondary Immune Responses of the Desert
893 Iguana , *Dipsosaurus Dorsalis*. *Allen Press*, 29(3), 275–280.

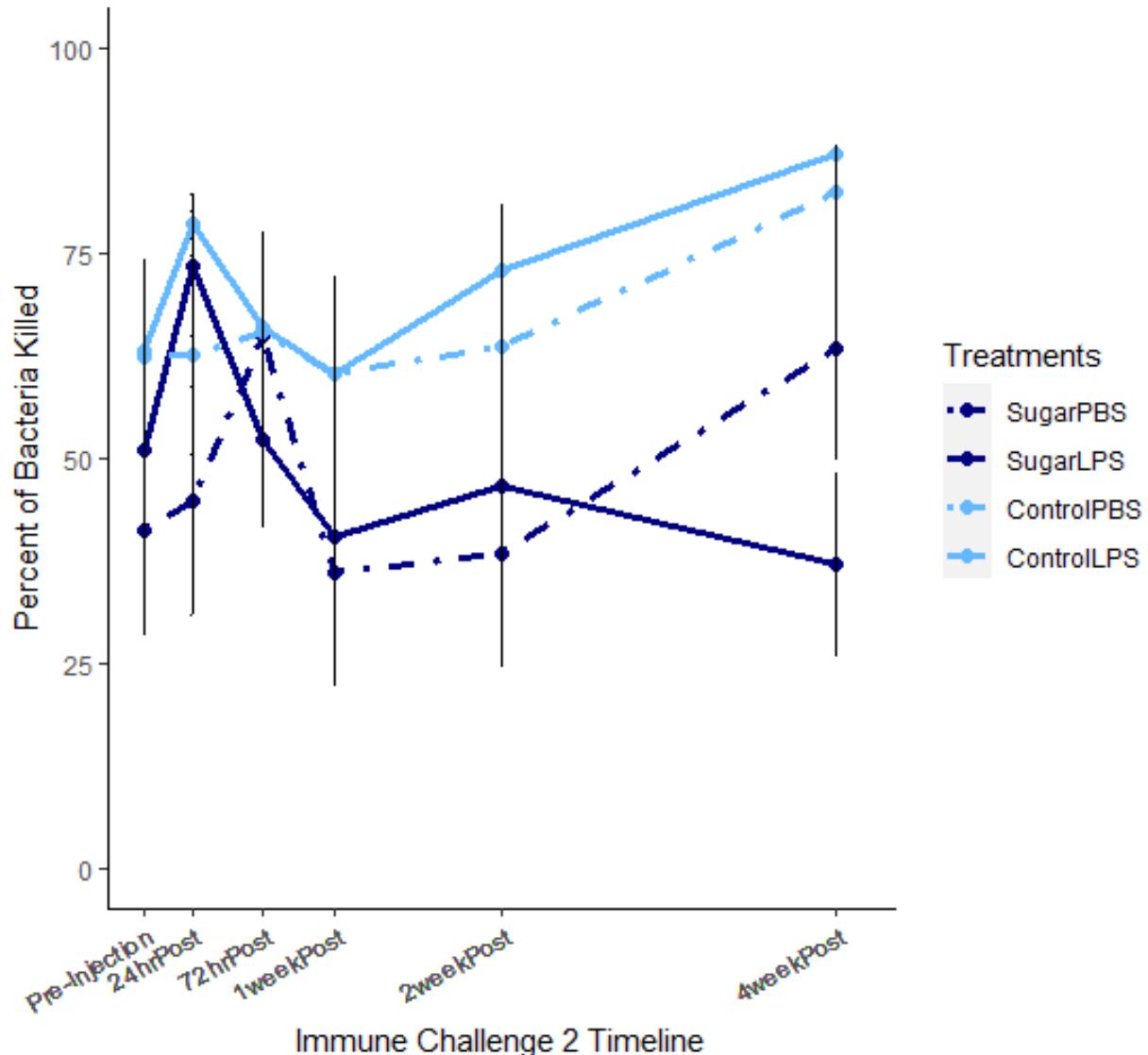
894 Yang, J. H., Bhargava, P., McCloskey, D., Mao, N., Palsson, B. O., & Collins, J. J. (2017).
895 Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and
896 Alter Immune Function. *Cell Host and Microbe*, 22(6), 757-765.e3.
897 <https://doi.org/10.1016/j.chom.2017.10.020>

898 Yu, S., Zhang, G., & Jin, L. H. (2018). A high-sugar diet affects cellular and humoral immune
899 responses in *Drosophila*. *Experimental Cell Research*, 368(2), 215–224.
900 <https://doi.org/10.1016/j.yexcr.2018.04.032>

901 Zimmerman, L. M., Vogel, L. A., & Bowden, R. M. (2010). Commentary: Understanding the
 902 vertebrate immune system: Insights from the reptilian perspective. *Journal of Experimental*
 903 *Biology*, 213(5), 661–671. <https://doi.org/10.1242/jeb.038315>

904

905 **Table and Figure Legends**


906 **Table 1. Change between diet treatment groups after 1 month of respective diet treatment**
 907 **(control or sugar) for each physiological variable.** Results are from the Welch's T-Test
 908 comparing the mean and standard error for the two diet treatments (control and sugar) before and
 909 after the treatment, and the change over a month. Bolded values are statistically significant.
 910 Samples are collected from iguanas in a laboratory setting and all samples were run in duplicate
 911 for each biochemical test. Sample sizes are noted within the table.

	BKA (%)	Agglut- ination	Lysis	Glucose (mg dL ⁻¹)	Glycerol (mg mL ⁻¹)	Total TRI (mg mL ⁻¹)	Mass (g)
n	18,18	16,15	16,15	18,18	17,15	17,15	18,18
T	-1.35	-0.43	-0.38	2.66	2.45	4.64	2.17
df	28.8	29.0	27.0	30.9	16.9	19.4	32.5
p-value	0.187	0.669	0.705	0.012	0.025	0.0001	0.038
Before sugar	80.16 ± 6.03	2.35 ± 0.33	2.69 ± 0.38	215.50 ± 11.91	0.09 ± 0.04	1.52 ± 0.15	53.61 ± 2.81
After sugar	46.81 ± 7.01	2.65 ± 0.31	2.96 ± 0.35	342.33 ± 22.08	1.45 ± 0.41	4.10 ± 0.44	58.06 ± 2.77
Δ Sugar Group	-33.35 ± 6.30	0.25 ± 0.36	0.47 ± 0.34	126.83 ± 24.04	1.37 ± 0.44	2.54 ± 0.52	4.44 ± 0.98
Before control	76.50 ± 7.51	1.19 ± 0.27	1.90 ± 0.31	258.72 ± 17.06	0.04 ± 0.07	1.44 ± 0.13	53.33 ± 3.06
After control	58.98 ± 5.30	1.65 ± 0.27	2.28 ± 0.31	306.67 ± 17.06	0.35 ± 0.07	1.52 ± 0.13	54.39 ± 3.06

Δ Control Group	-17.51 \pm 9.89	0.47 \pm 0.34	0.42 \pm 0.44	47.94 \pm 17.31	0.29 \pm 0.08	-0.002 \pm 0.17	1.06 \pm 1.22							
Day -1	Day 0	Day 30	Day 34	Day 35	Day 37	Day 41	Day 48	Day 62	Day 64	Day 65	Day 67	Day 71	Day 78	Day 92
Blood, colon swab, glucose, SVL, weight	Diet begins	Blood, colon swab, glucose, SVL, weight	Primary LPS challenge	Blood, colon swab, glucose, weight	Blood, colon swab, glucose, weight	Blood, colon swab, glucose, weight	Blood, weight	Blood, colon swab, glucose, SVL, weight	Secondary LPS challenge	Blood, colon swab, glucose, weight	Blood, colon swab, glucose, weight	Blood, colon swab, weight	Blood, weight	Blood, colon swab, glucose, SVL, weight
		Pre-1 st injection		24-hour post injection	72-hr post injection	1-week post injection	2-week post injection	4-week post injection AND pre-2 nd injection		24-hour post injection	72-hr post injection	1-week post injection	2-week post injection	4-week post injection

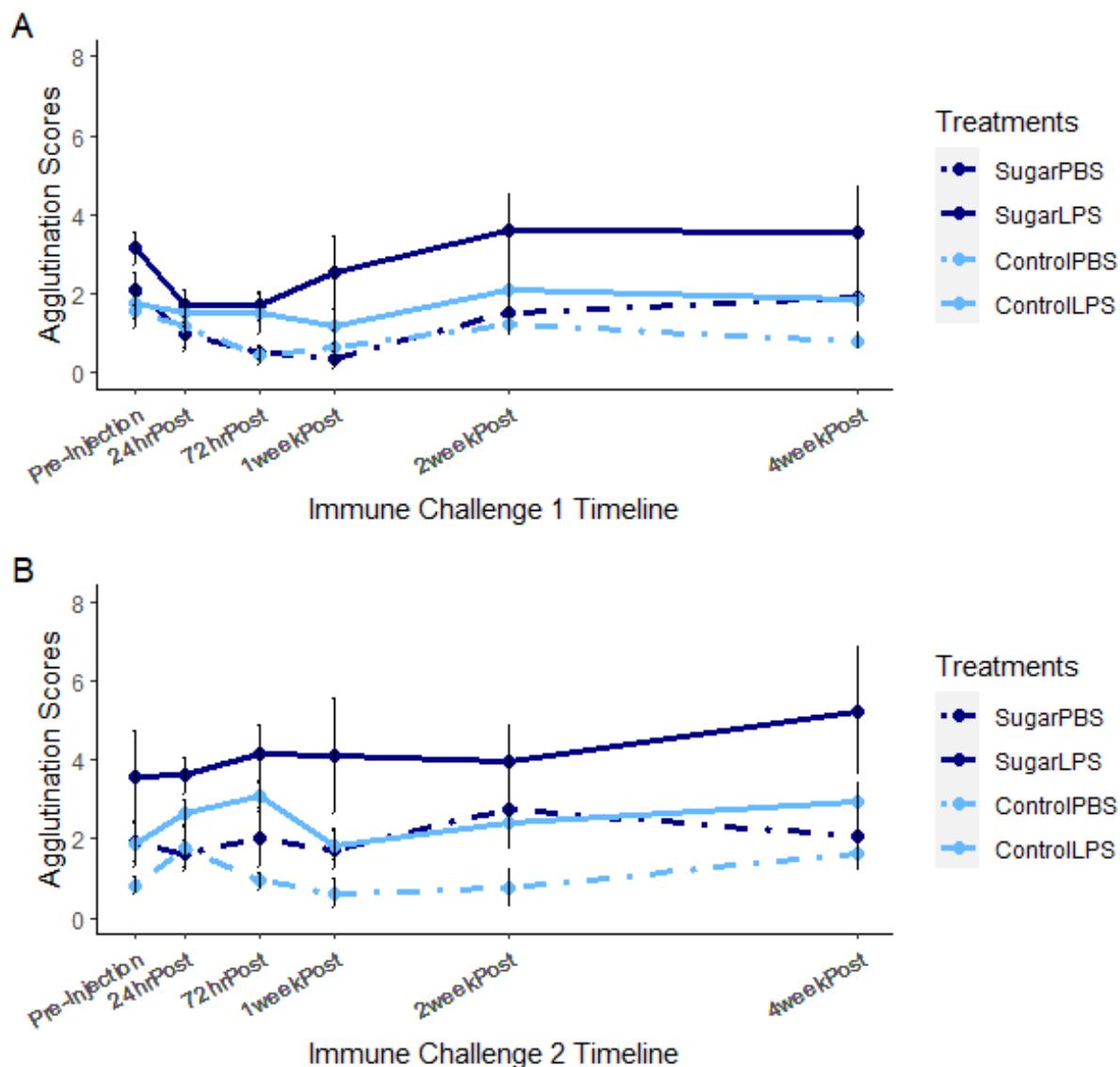
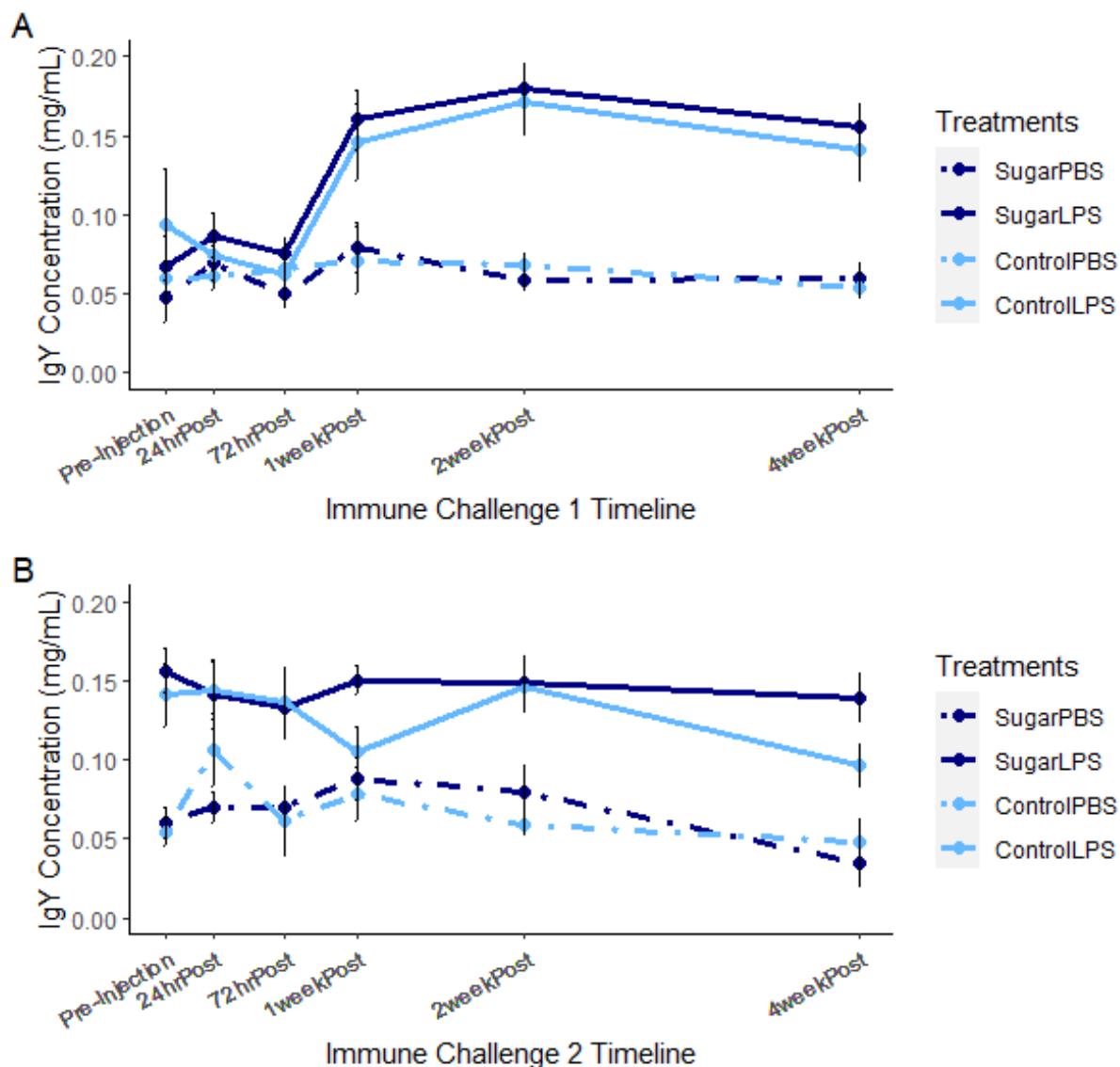
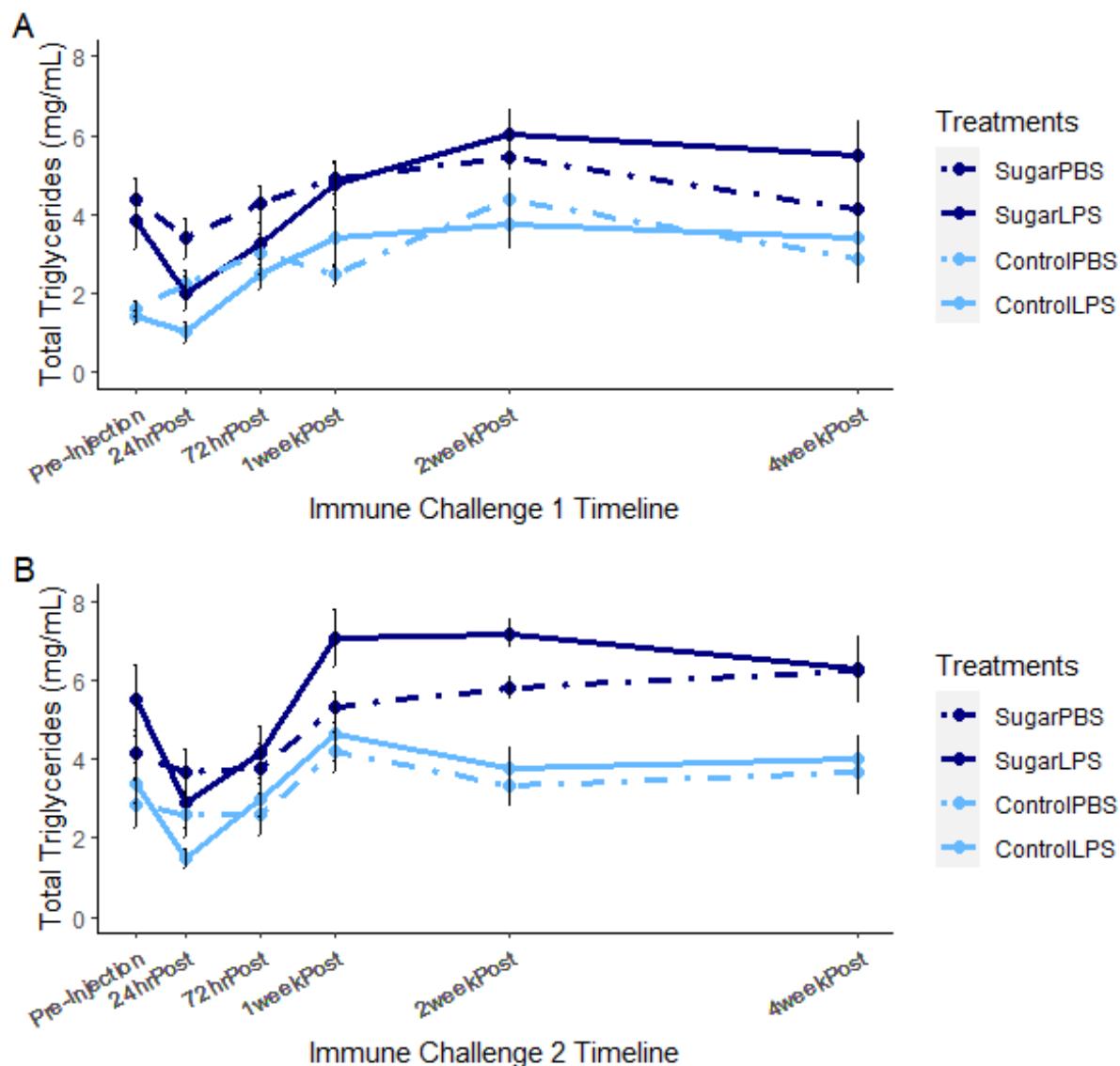

912
913
914

Fig. 1. Timeline of the study indicating when treatments began and when/which samples were collected.


915

916 **Fig. 2. Effect of diet on BKA.** A beta regression reveals that iguanas treated with a high sugar
 917 diet have significantly lower BKA than iguanas on the control diet. The x-axis indicates
 918 timepoints throughout the experiment (post denoting post-LPS/PBS injection). The y-axis
 919 indicates percent of bacteria killed with 0% meaning no bacteria killed and 100% indicating all
 920 bacteria were killed. Diet treatment is denoted by color and immune challenge treatment is
 921 denoted by line type. Black vertical lines represent the standard error. There were 18 animals in
 922 each diet group and across 6 time points. Samples were collected from iguanas in a laboratory
 923 setting and all samples were run in duplicate for the BKA.

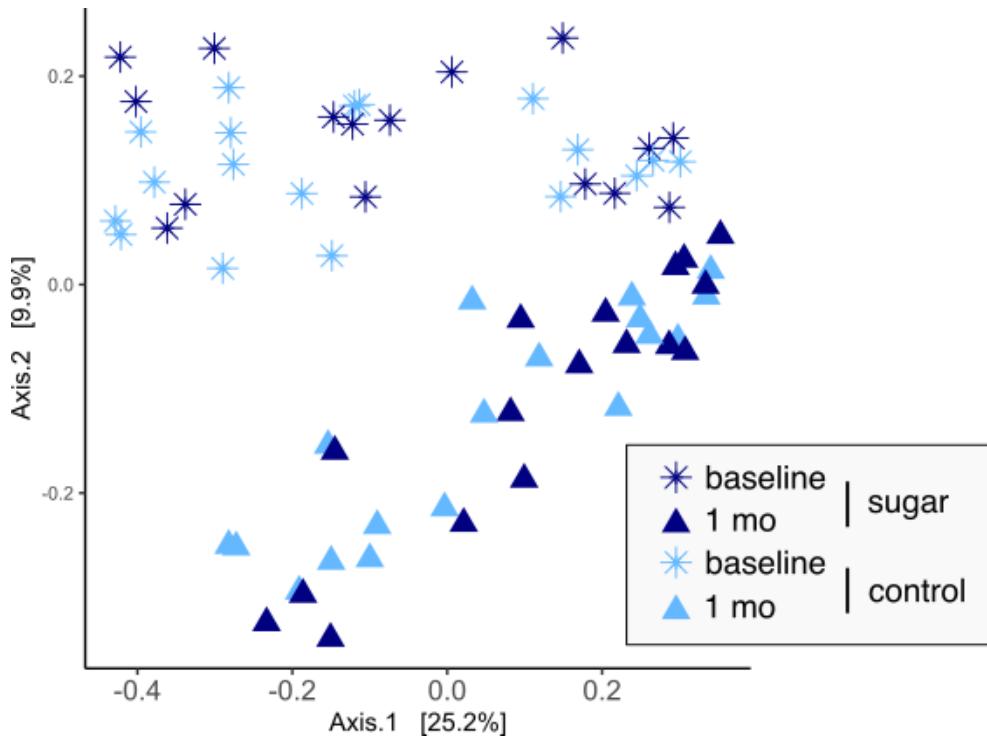


924
 925 **Fig. 3A Effect of diet and a primary immune challenge on agglutination.** A Mann-Whitney
 926 test revealed an effect of the immune challenge with LPS iguanas (n=16) having higher
 927 agglutination values than PBS iguanas (n=17). In a separate model comparing the difference in
 928 change between pre and 24 hr post immune challenge, there is an effect of diet. Initial change in

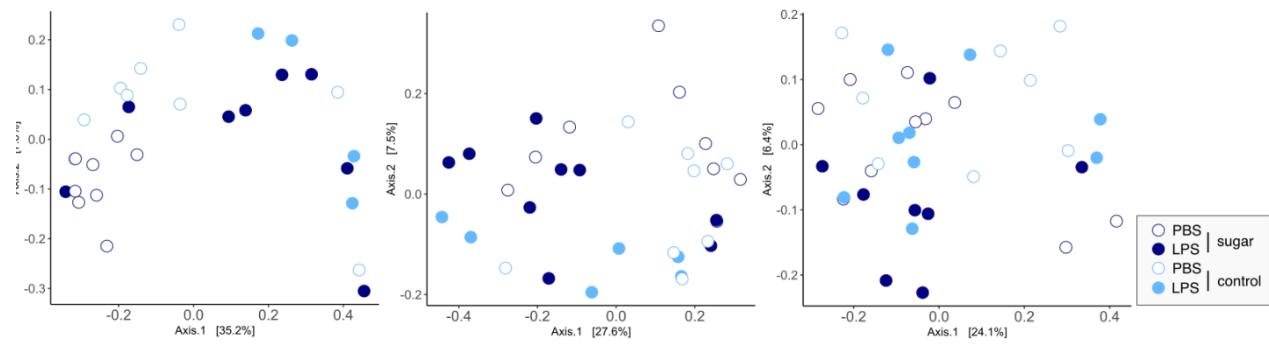
929 agglutination from baseline was significantly reduced in the sugar-treated iguanas (n=16)
 930 compared to control diet iguanas (n=16). Finally, agglutination is elevated in the sugar groups
 931 (n=16) prior to the immune challenges as opposed to the control group (n=17). **B Effect of diet**
 932 and a secondary immune challenge on agglutination. A Mann-Whitney test illustrates the
 933 continued effect of the immune challenge. LPS iguanas (n=18) have higher agglutination values
 934 than PBS iguanas (n=17). In a separate model comparing the difference in change between pre
 935 and 24 hr post immune challenge, there is an effect of diet. Control diet iguanas (n=16) had a
 936 larger increase in agglutination than sugar group iguanas (n=17). Similar to the first challenge,
 937 agglutination is elevated in the sugar groups (n=18) prior to the immune challenges relative to
 938 the control group (n=16). Black vertical lines represent the standard error in both plots. Samples
 939 were collected from iguanas in a laboratory setting and all samples were run in duplicate for
 940 agglutination.

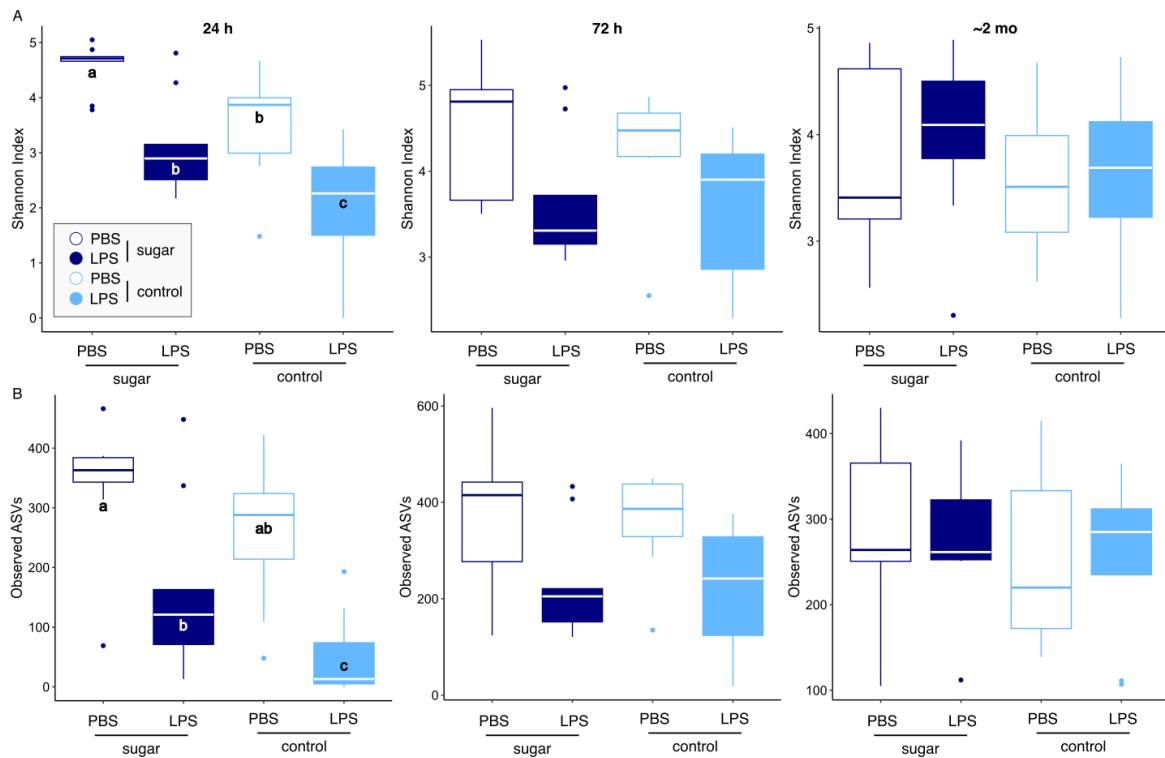


942 **Fig. 4A Effects of a primary immune challenge on IgY.** A 3-way repeated measures ANOVA
 943 found that iguanas in the LPS group (n=16) had significantly higher IgY concentrations 1 week
 944 post-LPS treatment as compared to PBS iguanas (n=15). **B Effects of a secondary immune**
 945 **challenge on IgY.** A 3-way repeated measures ANOVA found that LPS iguanas (n=16) had a
 946 significantly higher IgY concentration during the entire secondary treatment as compared to PBS
 947 iguanas (n=14). Black vertical lines represent the standard error in both plots. Samples were
 948 collected from iguanas in a laboratory setting and all samples were run in duplicate for
 949 agglutination.



950
 951 **Fig. 5A Effects of diet and a primary immune challenge on total triglycerides.** A 3-way
 952 repeated measures ANOVA showed that total triglycerides in the sugar groups (n=18) were
 953 higher than the control diet groups (n=17). LPS groups (n=17) had a momentary reduction in
 954 total triglycerides 24 hr after injection relative to the PBS group (n=17). **B Effects of diet and a**


955 **secondary immune challenge on total triglycerides.** A 3-way repeated measures ANOVA
956 showed the elevation of total triglycerides of the sugar groups continued through the second
957 challenge (In general n=18 per treatment for 6 separate time points but see methods for details).
958 Black vertical lines represent the standard error in both plots. Samples were collected from
959 iguanas in a laboratory setting and all samples were run in duplicate for agglutination.


960
961 **Fig. 6. Hindgut microbiome composition of green iguanas.** Relative abundance of Phyla
962 found at greater than 2% in each sample (collected via cloacal swab). Each row represents the
963 bacterial community of a given sample, and samples include multiple timepoints for each
964 iguana. There were 36 iguanas sampled at 3-6 times (170 samples total).

965
966 **Fig 7. Principal Coordinates Analysis (PCoA) plot of Bray-Curtis dissimilarity from log-
967 transformed abundances.** Each point represents the bacterial community of an individual
968 sample from 36 green iguanas.
969

970
971 **Fig 8. Principal Coordinates Analysis (PCoA) plot of Bray-Curtis dissimilarity from log-
972 transformed abundances.** Each point represents the bacterial community of an individual
973 sample from 36 green iguanas at three time points: (A) 24 hr, (B) 72 hr, or (C) approximately
974 2 months after immune challenge. Colors indicate diet and shades of a given color indicate
975 immune challenge treatment.

976
977 **Fig 9. Alpha diversity as an effect of diet, immune challenge, and time measured as (A)**
978 **Shannon index and (B) observed species richness.** Boxes represent the interquartile range,
979 with the line at the median. Whiskers extend to the smallest and largest values no further than 1.5
980 times the interquartile range. Outlying points are plotted individually beyond the whiskers.
981 Letters indicate significant differences ($p < 0.05$) between groups.
982

983 Abbreviations Used

984 ASV – amplicon sequence variant
985 BKA – bacterial killing ability
986 IC – immune challenge
987 LPS – lipopolysaccharide
988 PBS – phosphate buffer solution
989 PCoA – Principal Coordinates Analysis
990 SCFA – short chain fatty acids
991 SVL – snout vent length
992 TLR4 – toll-like receptor 4
993
994
995
996
997
998
999