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ABSTRACT: We present a method to downscale idealized geophysical fluid simulations using generative models based
on diffusion maps. By analyzing the Fourier spectra of fields drawn from different data distributions, we show how a diffu-
sion bridge can be used as a transformation between a low-resolution and a high-resolution dataset, allowing for new sam-
ple generation of high-resolution fields given specific low-resolution features. The ability to generate new samples allows
for the computation of any statistic of interest, without any additional calibration or training. Our unsupervised setup is
also designed to downscale fields without access to paired training data; this flexibility allows for the combination of multi-
ple source and target domains without additional training. We demonstrate that the method enhances resolution and cor-
rects context-dependent biases in geophysical fluid simulations, including in extreme events. We anticipate that the same
method can be used to downscale the output of climate simulations, including temperature and precipitation fields, without
needing to train a new model for each application and providing a significant computational cost savings.

SIGNIFICANCE STATEMENT: The purpose of this study is to apply recent advances in generative machine learning
technologies to obtain higher-resolution geophysical fluid dynamics model output at lower cost compared with direct simu-
lation while preserving important statistical properties of the high-resolution data. This is important because while high-
resolution climate model output is required by many applications, it is also computationally expensive to obtain.
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1. Introduction

Climate simulations are powerful tools for predicting and
analyzing climate change scenarios, but they are often limited
by computational resources and hence in their spatial and
temporal resolution. As a result, simulations can both lack the
high-resolution detail needed for many applications as well as
carry an inherent bias due to the lack of representation of
small-scale dynamical processes which feed back on larger
scales. For example, horizontal resolutions of O(10–100) km
are still too coarse to accurately simulate important phenom-
ena such as convective precipitation, tropical cyclone dynam-
ics, and local effects from topography and land cover, and
hence, these simulations can be of limited use for making pre-
dictions on regional and subregional scales. In particular, the
low-resolution fields suffer from biases in extreme tempera-
tures and precipitation rates, which in turn can reduce the ac-
curacy of projections of climate hazards on smaller spatial
scales, e.g., Abatzoglou and Brown (2012), Gutmann et al.
(2014), and Hwang and Graham (2014).

Several approaches have been developed to address biases
and increase resolution in fluid and climate simulations, a pro-
cess referred to as “downscaling” of fluid flows (Fowler et al.
2007; Salathé et al. 2007; Maurer and Hidalgo 2008). Nudging
techniques, which involve constraining the solution of a dynamical

system to follow the large-scale information, are applied dur-
ing simulation time and are a form of dynamical downscaling.
On the other hand, statistical downscaling refers to methods
which use a data-derived model to make a correction to a fluid
simulation or to computed statistic after the simulation has
been run, which can keep the computational budget compara-
tively lower. This is usually achieved by amortizing the training
cost of these models over many evaluations during postpro-
cessing, as opposed to solving the highly resolved fluid system
whenever the output is needed (but not requiring any training
time).

The predominant statistical method for bias correction
and resolution enhancement of climate variables is the bias-
correction spatial disaggregation (BCSD) algorithm (Panofsky
et al. 1958; Wood et al. 2002, 2004; Thrasher et al. 2012). BCSD
uses quantile mapping to correct biases and Fourier transforms
to enhance resolution. However, the BCSD algorithm has lim-
itations, including its inability to incorporate auxiliary datasets
and its lack of multivariate capability. Quantile mapping can
also adversely affect large-scale features such as the evolution
of mean values (Hagemann et al. 2011; Pierce et al. 2013;
Maurer and Pierce 2014; Ballard and Erinjippurath 2022).
Constructed analogs and variants thereof are a multivariate
method for downscaling which have been shown to outper-
form other methods, perhaps due to the fact that they take
into account correlations between variables (Pierce et al. 2014;
Abatzoglou and Brown 2012). However, these methods do
not truly allow for sampling high-resolution data from a
distribution.

At the same time, generative machine learning models like gen-
erative adversarial networks (GANs; e.g., Goodfellow et al. 2020),
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variational autoencoders (VAEs; e.g., Kingma and Welling
2019), and normalizing flows (NFs; e.g., Papamakarios et al.
2021) have been demonstrated to be effective for superreso-
lution and for domain translation (e.g., Wang et al. 2021; Zhu
et al. 2017) and are now being applied to the downscaling
task. In these use cases, the models are deep convolutional
neural networks which map fields with multiple channels
(e.g., fields of climate model variables at low resolution) into
output fields with multiple channels (e.g., fields of climate
model variables at high resolution). Statistical relationships
between datasets are learned implicitly in supervised input–
output or “generative” fashion. In supervised approaches,
data points from the input and output spaces are aligned.
When paired data points are unavailable or when the map be-
tween spaces is not injective, the domain translation task
must become one of the modeling conditional data distribu-
tions and then generate samples from these distributions.

In this work, we propose to use generative models based on
diffusion maps for generating downscaled fluid flows using un-
paired training data. Diffusion models have shown great flexi-
bility in generating realistic samples from a variety of learned
high-dimensional probability distributions (e.g., fields, audio,
and video; Dhariwal and Nichol 2021; Kong et al. 2021; Ho
et al. 2022a,b). With respect to domain translation and down-
scaling, i.e., transforming a sample from a source distribution
into a sample from a target distribution, generative diffusion
models have distinct advantages over classical methods:

• Generative models allow for sampling from high-dimensional
probability distributions. From these samples, any statistical
quantity can be computed.

• Diffusion-based models can be trained with unpaired data
and can therefore be used for multiple domain translation
tasks without retraining for each source domain/target do-
main pair (Su et al. 2023).

• Pretrained diffusion-based models can be “repurposed” to
sample from specific parts of the domain using guided
sampling (e.g., Ho and Salimans 2022; Dhariwal and Nichol
2021).

These points put diffusion-based models into a class distinct
from classical methods and in some cases distinct even from
GAN-based methods, many of which require paired data or
paired source/target domains. This suggests diffusion-based
models as a promising candidate well suited for applications
in fluid dynamics and climate science because

• retraining machine learning models frequently is undesir-
able due to the potentially high training cost involving
high-dimensional data points (e.g., full climate fields);

• for downscaling tasks, paired datasets of high- and low-
resolution climate simulations do not truly exist, due to deter-
ministic chaos and the feedback of small-scale motion to large
scales;

• extreme events with biased tail probabilities can be corre-
lated across climate variables and spatial locations, and cali-
brating a downscaling method for all statistics of interest is
challenging. As a result, the ability to generate samples can
be highly desirable.

In this work, we provide a demonstration of how diffusion
models can be used for domain translation between low- and
high-resolution fluid simulations, without customization to
the specific translation task under consideration. We focus on
the generation of consistent high-resolution information given
a low-resolution input and on the correction of important sta-
tistical biases, e.g., shifts in mean values, unresolved spatial
scales, and underestimated tail events.

a. Related work

1) DOWNSCALING OF CLIMATE DATA

Machine learning–based methods for downscaling and bias
correction have been applied to climate simulations success-
fully in prior works. Pan et al. (2021) use GANs to bias correct
climate simulation data over the continental United States and
focus on matching various statistical quantities of corresponding
observational data. Using paired high-resolution radar measure-
ments, ECMWF simulation data, and other contextual informa-
tion, Harris et al. (2022) use GANs to downscale simulated
low-resolution precipitation fields. They found that their model
outperformed many conventional approaches, including on
extreme rainfall events. Similarly, Price and Rasp (2022) show
that conditional GANs can be used to directly bias correct
and downscale low-resolution precipitation forecasts using
high-resolution ground truth radar observations. Ballard and
Erinjippurath (2022) use contrastic translation GANs and
high-resolution observations to downscale CMIP low-resolution
simulation data for daily maximum temperature and precipita-
tion. This particular variant of the GAN model allows for train-
ing in an unsupervised, unpaired fashion (Park et al. 2020).
Again, the authors find comparable or improved performance
compared to existing methods. Similarly, Groenke et al. (2021)
use unpaired datasets to learn a domain translation map from
low-resolution simulation data to high-resolution, unbiased
data by combining normalizing flows with a cycle consistency
loss function similar to that of cycle GANs (CycleGANs) (Zhu
et al. 2017). Methods based on CycleGANs generally require
that a model is trained with access to both the source and the
target data, so that a new model must be created for each trans-
lation task.

2) DIFFUSION MODELING

Diffusion is a dynamical process which erases initial condi-
tions on long time scales. Using observed data (which are
samples from an unknown data distribution) as initial condi-
tions, we can integrate a trajectory forward in time under a
diffusion model chosen so that as t " ‘, the long-time steady
state of the system corresponds to samples from a known dis-
tribution like a Gaussian (the prior distribution). Using sam-
ples from the prior distribution as initial conditions, solving
the reverse-diffusion model will generate samples from the
unconditional data distribution. Those diffusive processes can
then be used as generative models, transforming samples
from a known prior distribution into samples from an un-
known data distribution via a diffusive process, which has
been established by several authors, e.g., Sohl-Dickstein et al.
(2015), Song and Ermon (2019), and Ho et al. (2020). Indeed,
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more recently, Song et al. (2021b) showed that images created
by generative diffusion models can be understood to be nu-
merical solutions to “reverse diffusion” stochastic differential
equations, with initial conditions equal to samples from the
prior distribution. This relies on the fact that (forward) diffu-
sion processes can be reversed if the score, related to the gra-
dient of the data distribution, is known (Anderson 1982).
Moreover, while the unconditional data distribution can be
challenging to approximate directly, Hyvärinen and Dayan
(2005) and Vincent (2011) have demonstrated how to approx-
imate the score of the distribution using neural networks and
gradient descent of a tractable loss function.

The mathematical results for unconditional distributions,
described above, can be extended to conditional distributions,
allowing for conditional sampling (Song et al. 2021b; Batzolis
et al. 2021). Many conditional diffusion models require paired
input data points, and many important conditional generation
tasks provide this type of data [e.g., superresolution, inpaint-
ing, colorization, and other imputation tasks, including with
temporal sequences}Tashiro et al. (2021), Saharia et al.
(2023), Giannone et al. (2022), Ho et al. (2022a), and Saharia
et al. (2022)]. Alternatively, Meng et al. (2022) show how to
generate photo-realistic images from simple stroke paintings
with little detail by choosing an appropriate starting point
(initial condition) and starting time for a reverse-diffusion tra-
jectory. As we will discuss, this can be interpreted as generat-
ing a high-resolution image conditional on the input stroke
painting. Crucially, it is carried out using a model trained only
on the high-resolution data (target domain data), without ac-
cess to the stroke paintings (source domain data).

In contrast to CycleGANs (Zhu et al. 2017), Su et al. (2023)
show how diffusion models can be used for domain transla-
tion such that a model is trained once per data domain and
not once per translation of interest [StarGANS are another
solution but at the expense of increased complexity Choi et al.
(2018)]. This feature of diffusion models arises because diffu-
sion models for two domains have easily relatable prior distri-
butions and is advantageous because it allows for the same
model to be used in many translation tasks. The translation
works by completely diffusing an image from one domain,
then turning that final state into a sample from the other do-
main’s prior, and carrying out the reverse diffusion for the
other domain using its model. The approach we will showcase
in this work is based on combination of the ideas of Meng
et al. (2022) and Su et al. (2023), where a chain of diffusion
models acts as a bridge between data domains, although the
general idea has been around for much longer (Chetrite et al.
2021).

b. Our contribution

Our long-term goal is to develop a flexible and performant
method for unsupervised downscaling of fluid simulations
which can be applied to climate simulations. As a first step to-
ward this, here we develop and validate our method with a
simpler dynamical system that exhibits sufficiently complex at-
tributes: forced two-dimensional turbulence with non-Gaussian
statistics and contextual information.

The method presented is based on chaining together
diffusion-based generative models. It relies on the fact that
coarsely resolved and highly resolved climate simulations dif-
fer on small and intermediate spatial scales but mostly agree
on the largest scales. Because the diffusion processes we em-
ploy here erase information on the smallest scales first, we
can start with samples from a source domain (low resolution),
diffuse them until small-scale information is lost, and then re-
verse diffuse them using a pretrained diffusion model for the
target domain (high resolution). How well the resulting fields
match the source field on large scales while simultaneously
containing fine-scale features which match statistics of the
high-resolution data is governed by the time at which we stop
the forward noising process and begin the reverse-diffusion
process. Following Meng et al. (2022) and Su et al. (2023), we
will refer to such a source-to-target diffusion model as a diffu-
sion bridge. As described already, this approach has advan-
tages over existing downscaling methods as it allows for
sample generation, use with unpaired data, and the reusability
of trained models, but it has not been tested yet for this
application.

Additionally, we introduce architectural improvements for
the neural network employed in the diffusion model. These
improvements are secondary to our overall goal but improve
performance metrics and decrease training time. Score-based
diffusion models are known to suffer from a “color shift”:
generated fields may have the correct spatial features but are
shifted to different average colors relative to the training
data. The error grows for larger fields. One approach for im-
proving this artifact is to use an exponential moving average
(EMA) of the model parameters, typically using a very long
memory implied by the exponential moving average (Song
and Ermon 2020). As a consequence, a large number of train-
ing iterations are required to reach good performance. While
alleviation of the color shift via other techniques is possible,
e.g., Choi et al. (2022), we reduce the effect by introducing a
bypass layer in the neural network architecture. This removes
the need for the exponential moving average even for large
field sizes (e.g., 5123 512 pixels in spatial resolution).

2. Data and simulations

We use a two-dimensional advection–condensation model
similar to the one proposed in O’Gorman and Schneider
(2006) to create the fluid simulation data used in this work.
The model is intended to provide an approximate representa-
tion of the dynamics of moisture on isentropes in the extra-
tropical atmosphere on Earth-like planets (O’Gorman and
Schneider 2006). As such, it is an idealized toy model. Never-
theless, the model allows for detailed investigations of spec-
tral and distributional properties of its vorticity and moisture
fields at low computation cost compared to a full climate
model. Throughout this study, we focus on two quantities
with nearly isotropic statistics, vorticity and an advected
tracer that represents the supersaturation q′ 5 q 2 qs in an
Earth-like atmosphere, where q is the mass fraction of water
relative to moist air (specific humidity) and qs is the mass frac-
tion when the air is saturated (saturation specific humidity).
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The vorticity evolves according to the two-dimensional
Euler equations with random forcing and linear dissipation.
The supersaturation is advected by the flow field implied
by the vorticity field. It is forced by a spatially homogeneous
source e that can be interpreted as an evaporation field, adding
moisture to the flow, as well as a spatially varying condensa-
tion which decreases moisture in situations of supersaturation
q . qs (q′ . 0). Condensation therefore represents the tail of
the supersaturation tracer distribution, and extreme condensation
events are correspondingly even further into the tail. For more
mathematical details on the idealized advection–condensation
model, see appendix A.

To mimic the meridional decay of the saturation specific
humidity qs along isentropes in Earth’s atmosphere, we assume
a linearly decaying profile that is modulated by a spatially peri-
odic perturbation. The spatially periodic perturbation is useful
because it can be used to impose spatial inhomogeneities in super-
saturation tracer statistics at different length scales. Loosely
speaking, these inhomogeneities can be interpreted as a very
idealized version of orographic impact on the saturation spe-
cific humidity fields.

The time-independent form of qs is given by the following
expression:

qs(x, y) 5 gy 1 A sin
2pkxx
L

( )
sin

2pkyy

L

( )
, (1)

where g denotes a background saturation specific humidity
gradient, A is the modulation amplitude, L is the domain size
in the x and y direction, and kx 5 ky denotes wavenumbers
that take values kx,y 2 {1, 2, 4, 8, 16} that allow for different
large-scale saturation specific humidity profiles. As such, we
can generate a dataset of supersaturation tracer fields with
different idealized orographic or supersaturation tracer forc-
ings. Our goal is to understand how well the diffusion model
can make use of contextual information when downscaling, as
high frequency variations in topography, surface coverage,
and other fields affect the atmospheric flow in a more realistic
climate simulation. This site-specific information is often in-
cluded in generative models, including the ones described in
section 1. Training the model with context will in principle
lead to better performance and to better generalization. It
will be crucial in the climate simulation case as downscaling
will be carried out in patches (smaller regions, as opposed to
downscaling the entire globe at once), and because we may
not have high-resolution data everywhere on the globe, and
hence, we must rely on contextual information to generalize.

To generate data for training the denoising diffusion model,
we performed a series of simulations at different resolutions
and with different saturation specific humidity profiles, vary-
ing only the wavenumbers kx, ky of the saturation specific
humidity modulation. We generated a set of high-resolution
dataset (512 3 512 pixels) with varying background satura-
tion specific humidity profiles and a low-resolution dataset
(64 3 64 pixels) with a fixed and unmodulated background
saturation specific humidity field, i.e., A 5 0. The parameters
used in the simulations are given in Table A1. Snapshots of
these simulations once a steady state was reached were saved

and used as training data for the diffusion model. We trained
the diffusion model on the entire high-resolution dataset, in-
cluding all context wavenumbers. Examples from the two-
dimensional fluid dynamics models are shown in Fig. 1. The
top row shows high-resolution snapshots, while the bottom
row shows low-resolution snapshots. The left column shows
the supersaturation tracer field, and the right column shows
the vorticity field, respectively. Finally, we resized the low-
resolution 64 3 64 fields using nearest-neighbor weighting to
a resolution of 512 3 512 and removed high-frequency aliases
by applying a low-pass filter. We ensured that the spectral in-
formation did not change between the true 64 3 64 fields and
our resized ones.

3. Downscaling with diffusion bridges

a. Diffusion models

Our implementation of score-based generative models fol-
lows that of Song et al. (2021b). The forward diffusion
(“noising”) process involves adding independent samples of
Gaussian noise to each pixel, where the added noise has a
mean of zero and a variance that depends on time in a
prescribed fashion. Concretely, given an initial condition
x(t 5 0) ; pdata(x) drawn from the data distribution, the
noising process is defined by the stochastic differential equa-
tion (SDE):

dx 5 g(t)dW, (2)

where g(t) is a nonnegative prescribed function of time and
dW implies a Wiener process. At any time t, the solution to
this SDE is the “noised” field x(t), which is drawn from a nor-
mal distribution

x(t) ; N x(0), s2(t)( )
5 p

(
x(t)|x(0)), (3)

where s(t)2 is the variance defined by

s2(t) 5
� t

0
g2(t′)dt′: (4)

Here, we have chosen g(t) such that at t 5 1, the variance
s 2(t 5 1) is much larger in magnitude than the original pixel
values, and hence, all memory of initial conditions is lost, i.e.,

p
(
x(1)|x(0)) ’ N 0, s2(1)( )

: (5)

In this view, diffusion is a process which embeds a source field
into a latent space, such that samples in the latent space x(1)
are drawn approximately from a known distribution, which is
independent of the source data.

To approximately sample from the data distribution, we re-
verse this process. First, we sample from the latent-space prior
distribution to obtain x(1). This is the initial condition for the
reverse-diffusion equation, which is solved from t 5 1 to t 5 0.
The equation which reverses Eq. (2) is given by Anderson
(1982) as

dx 52g(t)2s(x, t)dt 1 g(t)dW, (6)
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where s(x, t) is the score of the data distribution,

s(x, t) ; =x logpdata(x): (7)

The goal of the training process used in diffusion modeling
is to determine a parameterized representation of the score
su(x, t) ’ s(x, t) through gradient descent on an appropri-
ately chosen loss function. That is, we parameterize the
time derivative appearing in the reverse SDE and learn it
from the data. The final field x(t 5 0) resulting from this re-
verse simulation, with a trained model for the score, is the
new data sample.

b. Diffusion bridges using spectral information

Using a diffusion bridge for domain translation entails chain-
ing together the forward model for a source dataset and the re-
verse model for a target dataset (e.g., Meng et al. 2022; Su et al.
2023)}note that the forward model [Eq. (2)] requires no train-
ing, while the reverse model [Eq. (6)] requires the score, which
must be learned. Our downscaling procedure builds on this idea;
the discussion below makes it explicit why the approach works
by making the connection to differential noising of spatial scales.

According to Eq. (3), the noised field x(t) is the sum of x(0)
and Gaussian noise, and so we can write its Fourier transform

FIG. 1. Random snapshots from the two-dimensional fluid dynamics models. The top row shows high-resolution
snapshots, while the bottom row shows low-resolution snapshots. The left column shows the supersaturation tracer
field, and the right column shows the vorticity field. The values corresponding to the colors are irrelevant for the
methods presented in this paper, but for the supersaturation field, positive values (blue colors) correspond to regions
in which the condensation term in the simulation model is active (e.g., idealized rainfall events occur). The white re-
gions in the supersaturation field are areas of saturation deficits (no idealized rainfall events). For the vorticity field,
red colors correspond to positive values (cyclonic vorticity), while blue values correspond to negative values (anticy-
clonic vorticity).
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as the sum of the Fourier transform of x(0) and Gaussian
noise [as the Fourier transform of Gaussian noise is (complex
valued) Gaussian noise]. As these are uncorrelated, we can
approximate the power spectral density of PSDx(t)(k), where
k5

����������
k2x 1 k2y

√
is the wavenumber, as

PSDx(t)(k) ’ PSDx(0)(k) 1 PSDh(t)(k), (8a)

h(t) ; N 0, s2(t)( )
: (8b)

The power spectral density of white noise is independent of
the wavenumber: PSDh(t)(k) 5 s(t)2/N2, where N is the field
size. The power spectral density reduces the 2D Fourier trans-
form into a 1D signal which is independent of direction. For
arbitrary 2D fields, this procedure loses a significant amount
of information; for isotropic and homogeneous 2D fields, the
phase information lost is less important. More details are pro-
vided in appendix C. Snapshots of fluid flows exhibit a charac-
teristic decay in power with increasing k. Hence, as the
diffusion time increases from t5 0 to t5 1, and s(t) increases,
the smallest scales (largest k) are noised first, cf. Fig. 2 (see
also Choi et al. 2022; Rissanen et al. 2023).

We assume the existence of a spatial scale l* above which
the low-resolution data are unbiased; a high-resolution simu-
lation passed through a low-pass filter would agree with the
low-resolution simulation for l . l*. The existence of l* im-
plies that the expected power spectral density PSD(k) of the
low-resolution data and the high-resolution data agree for
wavenumbers k , k*, where k* 5 2p/l*. Given the value of
k*, one can therefore estimate the diffusion time t* at which
signals on all spatial scales smaller than l* have a signal-to-
noise ratio of�1,

t* 5 s21[ ���������������
N2PSD(k*)√ ], (9)

since s(t) is a known analytic function.
We are interested in translating a field from a source domain

xS 2 S into a field from a target domain xT 2 T . More con-
cretely, our samples from T are 5123 512 fields generated by
solving a fluid simulation at high resolution, and our samples
from S are 512 3 512 fields generated by solving a fluid simu-
lation at 64 3 64 resolution and then upsampling and low-pass
filtering. All data x lie in R

5123512; by “target” and “source” do-
mains S and T , we refer to the lower-dimensional manifolds
within R

5123512 that we assume the data lie on.1 The downscal-
ing (domain translation) algorithm defines a function mapping
from S 2 R

5123512 to T 2 R
5123512. We use a sample xS as an

initial condition and solve the forward noising model of the
source domain to time t*. We then use x(t*) as an initial condi-
tion and solve the reverse denoising model of the target do-
main to t 5 0. The resulting field x(0) is the generated field
from T . This transport map is probabilistic because different

evaluations yield different samples from the target domain.
That this process approximately samples from the conditional
p(xT |xS ) is not proven here, and may not be exact, but it is in-
tuitive: the large-scale features between the two fields are kept
fixed during this sampling process. The downscaling algorithm
is defined more precisely in Algorithm 1.

ALGORITHM 1DOWNSCALING ALGORITHM. STEPS 1–3
ONLY ARE CARRIED OUT ONCE, WHILE STEPS 4–7 ARE

CARRIED OUT FOR EACH DOWNSCALED DATA SAMPLE

1) Compute the expected power spectral densities for the
source and target domains, PSDS (k) and PSDT (k)

2) Solve for k* such that PSDS (k*)5 PSDT (k*); PSD*

3) Compute t*(PSD*) [Eq. (9)]
4) Sample xS ; pdata,S (x)
5) Obtain x(t*) by solving Eq. (2) from t 5 0 to t 5 t*, using

xS as an initial condition
6) Obtain x(0) by solving Eq. (6), with sT (x, t) as the score,

from t 5 t* to t 5 0, using x(t*) as an initial condition
7) Return x(0)5 xT ; p(xT |xS )

Figure 3 shows the generated fields resulting from the
downscaling procedure for different values of t*. For t* � 0:5,
the diffusion bridge has preserved the large-scale features of
the low-resolution field, but only the finest-scale high-resolution
features have been filled in. Intermediate scales are missing. For
t* � 0:5, the forward noising process has erased some or all
of the large-scale features we wish to preserve. In the limit of
t* 5 1, we have sampled a high-resolution field from pdata,T
without any information from the source field preserved. The
optimal value, with respect to downscaling, is near t* 5 0.5, as
also shown in Fig. 2.

The core idea of finding an optimal value of t* was also ex-
plored in Meng et al. (2022) but without explaining the con-
nection to spatial scales. In that work, they used a trade-off

FIG. 2. The power spectral density for the vorticity field for both
the low- and high-resolution datasets, along with the power spectral
density of Gaussian white noise of different variance s(t)2. As
larger amplitude Gaussian noise is added at larger diffusion times
(t" 1), the noising process will erase the information on the small-
est scales first; see also Rissanen et al. (2023).

1 Those trajectories generated by fluid simulations are con-
strained to lower-dimensional manifolds seem plausible given the
conserved quantities and partial differential equations governing
the flow, and many large dimensional datasets are observed to lie
on lower-dimensional manifolds, e.g., Brown et al. (2023).
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between faithfulness to the “guide” field (equivalent to our
low-resolution field) and realism with respect to the target
field and employed kernel inception scores and L2 norms.
Choosing the optimal t* will rely on the metrics of interest to
a given problem, and many methods may work well.

It is important to note that this process requires that the
power spectral density of the fields of interest decrease with
wavenumber. Additionally, our current implementation relies
on the fact that different channels of the field have similar
spectral density shapes, so that a single value of t* works for
each channel. A more general algorithm would allow the dif-
ferent channels to have different schedules s(t).

c. Contextual information

In the case of real climate simulations and data, the trans-
port map may also depend on contextual information, such as
surface properties and topography. This is because the high-
resolution flow is affected by these contextual fields on small
scales, and so they can provide additional information with
which to accurately downscale. Furthermore, when downscal-
ing global climate data, it may be useful to first split the global
data fields into smaller patches and perform downscaling on
individual patches. The contextual information is crucial for
encoding location-specific attributes to the flow. Ideally, the
contextual information would have the same resolution as the
high-resolution climate data. For example, global elevation
data at 1-km resolution is available (Sandwell et al. 2014), and
some land surface properties are available from satellite data.
To use in training, these data would first need to be put on
the same grid as the high-resolution climate fields and then
appended as an additional “channel” to each snapshot of cli-
mate simulation data. To study how well the diffusion model
can make use of contextual information, we employ a pre-
scribed contextual field which our data-generating model, an
advection–condensation model, depends on (the dependence
is explained in section 2 and appendix A). This context has no

physical connection to topography, but it is used in the same
way that a topography field would be in downscaling realistic
climate data.

The contextual information, which we denote generically as
xC , is aligned with the fluid state variable fields, denoted by
x. As such, we are able to sample pairs from the data distribu-
tion (x, xC ); p(x, xC ). For the low-resolution runs, the con-
text is taken to be flat. At high resolution, the context is
available at the same resolution as the fluid state variable
fields and is spatially varying. As described above, we treat
the context as an additional channel as input into the convolu-
tional neural network modeling the score function. We do not
carry out any “diffusion” on these channels. More details on
this can be found in appendix B.

Including contextual information does not change the ex-
planation given above with respect to the diffusion bridge.
We assume the existence of a spatial scale above which the
low-resolution simulation is unbiased and above which con-
textual information has not affected the flow. A data point
from the source (low resolution) domain is noised via Gauss-
ian noise until the small-scale information is lost while the
very largest scales remain approximately the same. Reverse
diffusion is then applied to map the noised field toward the
target (high resolution) domain. It is in the reverse-diffusion
process where contextual information enters and plays a role.
This means that depending on the contextual information, a
different segment of the target domain is reached. This high-
lights how contextual information can be used to guide the
generative process.

The process is illustrated in Fig. 4, where we use the same
source field to generate downscaled fields with different con-
texts (we only show the supersaturation field; vorticity is unaf-
fected by the context in our setup). For the kx 5 ky 5 (8, 16)
cases (top two rows), the same value of t* can be used because
the high-resolution and low-resolution power spectral densi-
ties only agree on spatial scales larger than the spatial scale of

FIG. 3. The effect of t* on the generated downscaled fields of the (top) supersaturation tracer and (bottom) vorticity. Too small a value
does not result in realistic looking high-resolution fields, while too large a value leads to realistic, but randomly chosen, high-resolution
fields. An optimal value of t* � 0:5 yields a realistic downscaled version of the low-resolution source field (t 5 0). For the supersaturation
field, positive values (blue colors) correspond to regions in which the condensation term in the simulation model is active (e.g., idealized
rainfall events occur). The white regions in the supersaturation field are areas of saturation deficits (no idealized rainfall events). For the
vorticity field, red colors correspond to positive values (cyclonic vorticity), while blue values correspond to negative values (anticyclonic
vorticity).
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the contextual perturbation. On the other hand, for the
kx 5 ky 5 2 case (bottom row), we must use a larger value of
t* in order to recover the signal from the contextual field. At the
same time, this value of t* is in the regime where low-resolution
information is being lost (as shown in Fig. 3). The wavenumber
kx 5 ky 5 4 case is in between. The large-scale features of the
source field are present but distorted, and the modulation is less
obvious than in the randomly drawn data sample with the same
context. In section 4, we show the power spectral densities for
the low- and high-resolution datasets, making this discussion
more quantitative.

With respect to Fig. 4, note that 1) even if each downscaling
simulation used the same contextual fields, the generated
high-resolution fields would be different due to the probabilistic
nature of the downscaling process, and 2) there is a single diffu-
sion model used to generate the samples with different contexts.
All data across all contexts were used to train this model.

d. A bypass for spatial mean bias reduction

As discussed in the introduction, diffusion models can struggle
to produce fields with correct spatial means [“color shifts” in
red–blue–green (RGB) fields] while producing realistic spatial
variations (e.g., power spectra appear reasonable). The recom-
mended solution to this is to employ an EMA of the parameters
of the model with a long memory (Song and Ermon 2020). In
some score network architectures, attention blocks are used
(e.g., Ho et al. 2020) which may also improve the color shift,

as self-attention allows for learning nonlocal features
(Wang et al. 2018). Most of these approaches incur addi-
tional computational cost during training, which are not
necessarily prohibitive but may nevertheless be avoided.

Errors in the spatial means of fields can only result from er-
rors in the spatial mean of the score. Though the neural net-
works used in score modeling have the capability to predict
this, they do not learn to do so efficiently. A practical solution
is to split the network’s task into two individual, and indepen-
dent, tasks: predicting the spatial mean of the score and pre-
dicting the spatial variation about the mean of the score. We
realize this by predicting the spatial mean of the score in a by-
pass layer of our network with independent parameters. This
allows us to keep our neural network architecture simple, es-
sentially consisting only of a basic U-Net (Ronneberger et al.
2015) and does not require the longer training process re-
quired by other methods during the training process. By
avoiding more complex solutions, we are able to keep the
number of trainable parameters smaller, thereby keeping our
training and sampling procedures as computationally efficient
as possible. As a result, our generated fields exhibit no dis-
cernible color shifts even when we generate samples with a
simple Euler–Maruyama sampler.

e. Downscaling diffusion bridges

To carry out our diffusion-based downscaling method, we
train a contextual diffusion model for our high-resolution

FIG. 4. Downscaling the same low-resolution supersaturation tracer field, using four different contexts (by row). On the left is the source
field, at t5 0. Progressing to the right is equivalent to progressing through the downscaling procedure: the forward model of the source do-
main is used to noise the fields, and at t5 t*, we switch to the reverse model to integrate back to t5 0. The generated high-resolution sam-
ples (at t 5 0) have different periodic signals in the fluid flow; these are due to their specific context (second to rightmost column). A ran-
domly chosen data sample for each context is also shown (rightmost column). All noised fields have been scaled to have the same range,
which is necessary as the variance of the added noise grows with time. For the supersaturation field, positive values (blue colors) corre-
spond to regions in which the condensation term in the simulation model is active (e.g., idealized rainfall events occur). The white regions
in the supersaturation field are areas of saturation deficits (no idealized rainfall events).

AR T I F I C I AL I N TELL IGENCE FOR THE EARTH SY S TEMS VOLUME 38

Brought to you by Caltech Library | Unauthenticated | Downloaded 10/09/24 05:15 PM UTC



dataset. Since the forward noising process is independent of
the score function, we do not need to train a model for the
low-resolution dataset (we would only need that if we wanted
to generate low-resolution samples as well). In other words,
the noising direction acts like a pretrained encoder does
within a hierarchical autoencoder setup (Luo 2022).

Details on the construction of the diffusion models, the net-
work architecture, the loss function, the training procedures,
and the sampling method are provided in appendixes B and C.
We note here that our network architecture does not preserve
the doubly periodic nature of the flow fields. This is because
this is a unique feature of this dataset which will not be present
in most applications, for example, in downscaling patches of a
larger fluid simulation.

4. Results

In this section, we assess the quality of the samples gener-
ated from our diffusion bridge according to several metrics.
In terms of bias correction, we focus on biases in spatial
mean values, intermediate scale biases, and biases in more
extreme tail events (e.g., tails of distributions). We addition-
ally quantify how well large-scale information is retained
and how well small-scale information is added by our model
and explore how the model generalizes to an unseen contex-
tual field.

In what follows, we focus on comparing distributions and
summary statistics between the low-resolution data, the
generated downscaled data, and the real high-resolution
data. We do this not because we do not have access to a
ground truth (e.g., paired high-resolution and low-resolution
data) but because the generative model samples from a distri-
bution. This is a desirable feature since many high-resolution
flow fields will be consistent with any given low-resolution
simulation output. A demonstration of this is provided in
appendix E.

a. Distributions of supersaturation tracer vorticity values

Figures 5 and 6 show probability density functions for the
supersaturation tracer and vorticity fields for four different
context fields. The value of kx 5 ky indicates the modulation
wavenumber used in the context field, according to Eq. (1).
The green probability density functions show the distribution
of values for the real low-resolution data, while the orange
probability density functions show the values for the real
high-resolution data. The purple probability density functions
show the distribution of values from the downscaled (e.g.,
generated) high-resolution samples using the context-dependent
diffusion bridge approach.

Figures 5 and 6 show that the context-dependent diffusion
bridge approach shifts the distribution of the field values com-
puted from the low-resolution dataset close to the distribution

FIG. 5. Probability density function estimates for values of the supersaturation tracer field. Columns correspond to different high-resolution
data subsets, where k indicates the saturation specific humidity modulation wavenumber. Orange distributions show distributions of real
high-resolution samples, purple distributions show distributions of generated and downscaled high-resolution samples, and green distribu-
tions show distributions of real low-resolution samples. Estimates of probability densities are performed via kernel density estimation.
Shaded areas are computed from 10000 bootstrap samples at the 99% confidence interval.

FIG. 6. As in Fig. 5, but we are now plotting all quantities for vorticity. Unlike for the supersaturation tracer field values, vorticity field
values are distributed nearly symmetrical around zero because the vorticity forcing in the simulations also has this property, whereas this
is not the case for the supersaturation tracer.
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of values computed from the high-resolution dataset. One can
see that both the mean and variance of the distribution are ad-
justed by downscaling so that the generated and high-resolution
distributions are much closer to each other than generated and
low-resolution distributions. However, the left tails remain con-
sistently underestimated, for the supersaturation tracer, and con-
sistently overestimated for the vorticity, by an O (1) factor. We
checked that random generated high-resolution fields (not
downscaled low-resolution fields) demonstrated the same behav-
ior (not shown), indicating that these errors originate in the
model itself and not in the downscaling procedure. To improve
the diffusion model, more training data could be used, or hyper-
parameter tuning could be carried out for the architecture or op-
timizer parameters.

To better quantify the similarity between these distribution
functions, we computed the Kolmogorov–Smirnov distance
between the real and generated high-resolution data and be-
tween the real high-resolution and real low-resolution data.
To compute the Kolmogorov–Smirnov (KS) distance, we
used 1.6 million random pixel samples from 800 independent
fields in each dataset and computed the empirical cumulative
distribution functions F(x) for each. We then computed the
distances as

KSgh,rh 5 sup
x
{|Fgh(x) 2 Frh|}

KSrl,rh 5 sup
x
{|Frl(x) 2 Frh|}, (10)

where r and g stand for real and generated, respectively, and
l and h stand for low and high resolution, respectively. The re-
sults are provided in Table 1.

b. Spatial means of supersaturation tracer and vorticity

Figure 7 shows the probability density function estimates
for the spatial mean of the supersaturation tracer field. These
demonstrate that the low-resolution simulations differ from
the high-resolution simulations even in the spatial mean of
the supersaturation tracer field. This indicates that the diffu-
sion-bridge-based downscaling approach does more than just
adding in the small spatial scale features; it corrects biases in
large-scale features as well. Although we find that the spatial
mean biases get corrected, the variance of spatial mean values
is larger in the generated data samples than it is for the real
high-resolution data. It is possible that a refinement of the
mean-bypass layer could help alleviate this discrepancy.

Figure 8 shows the probability density function estimates
for spatial means of the vorticity field. By design of the two-
dimensional fluid dynamics model, the spatial mean of the
vorticity fluctuates around zero and is nearly conserved. This
is recovered in the generated data samples and is the result
of our choice of including a mean-bypass layer in our neural
network design, as described in section 3d and appendix C.
Without the mean-bypass layer in our modified U-Net archi-
tecture, we find that it is more difficult to obtain data samples
with minimal spread in spatial mean vorticity.

Again, we checked that random generated high-resolution
fields (not downscaled low-resolution fields) demonstrated
the same behavior (not shown), indicating that these errors
originate in the model itself and not in the downscaling
procedure.

c. Power spectral densities and the role of contextual
information

Our fluid simulations depend on the contextual field via the
supersaturation tracer equation, and the vorticity field is unaf-
fected by this information. However, the role that the context
plays in the high-resolution supersaturation field is not clear
from the distribution of pixel values and spatial means (Figs. 5
and 7). Here, we explore the role of contextual information
via the power spectral density of the flow. This metric also
allows us to understand how well the downscaling method

TABLE 1. Kolmogorov–Smirnov distances between the pixel
distributions of downscaled high-resolution (gh) and real high-
resolution (rh), and between real low-resolution (rl) and real
high-resolution data. Note that the vorticity channel is unaffected
by the context wavenumber. Please see the text for additional
details.

Field Wavenumber KSgh,rh KSlh,rh

Supersaturation tracer 2 0.078 0.360
Supersaturation tracer 4 0.040 0.391
Supersaturation tracer 8 0.038 0.369
Supersaturation tracer 16 0.089 0.324
Vorticity 2 0.009 0.087
Vorticity 4 0.011 0.087
Vorticity 8 0.011 0.087
Vorticity 16 0.011 0.087

FIG. 7. Probability density function estimates for spatial means of the supersaturation tracer field. Columns correspond to different
high-resolution data subsets, where k indicates the saturation specific humidity modulation wavenumber. Orange distributions show distri-
butions of real high-resolution samples, purple distributions show distributions of generated and downscaled high-resolution samples, and
green distributions show distributions of real low-resolution samples. Shaded areas are computed from 10000 bootstrap samples at the
99% confidence interval.
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fills in information on small scales and corrects intermediate
biases.

Figures 9 and 10 show how the context-dependent diffusion
bridge downscaling algorithm performs in spectral space. Figure 9
shows the mean azimuthally averaged power spectral density
for the supersaturation tracer field, and Fig. 10 shows the
mean azimuthally averaged power spectral density for the
vorticity field. The green spectra show the distribution of val-
ues for the real low-resolution data, while the orange spectra
show the values for the real high-resolution data. The purple
spectra show the distribution of values from the downscaled
(i.e., generated) high-resolution samples using the context-
dependent diffusion bridge approach. One can see that the
real low-resolution spectra decay rapidly already at relatively
low spatial wavenumbers. This is due to the increased damp-
ing of small scales in the fluid dynamical simulations. The
context-dependent diffusion bridge approach not only “fills
in” the missing part of the spectra when comparing low-resolution
and high-resolution datasets but also corrects the intermediate
scale bias stemming from the contextual information, i.e., the
modulation of the background saturation specific humidity field
in the high-resolution simulations.

For all wavenumbers, there can be an overall lack of power
at all scales of the generated fields, compared with the real
high-resolution fields, though the overall shape is correct.
This implies that the correct spatial patterns are being
learned, but that the overall contrast of the generated fields

is slightly muted. This was observed during training; we
speculate that a more refined neural network architecture for
the score combined with more data would alleviate this dis-
agreement. Again, this same behavior was seen in random
generated fields and is therefore due to the model itself, and
not to the downscaling procedure.

More importantly, the generated fields at wavenumbers
kx,y 5 4 and kx,y 5 2 are lacking power at the wavenumber
that the context imposes on the flow. This was also observed
in Fig. 4 and discussed in section 3c. It is because our algo-
rithm requires choosing a value of t* which balances preserv-
ing the large-scale features of the flow with adding in the
intermediate- and small-scale features. For the larger wavenum-
ber contexts, this balance does not exist. That is, if the high-
resolution and low-resolution fluid flows differ on essentially all
scales, our method cannot work. Whether this type of transla-
tion would still be “downscaling” is unclear. We verified that
this lack of power at the contextual wavenumbers in the gen-
erated fields was not due to the model itself; the purely gen-
erative high-resolution model (using t* 5 1) does correctly
add in the contextual features in all cases; such a value of t*

would completely lose the low-resolution features we are
trying to preserve in downscaling.

These figures also demonstrate the role that context plays
in the downscaling procedure, as it clearly affects the power
spectrum of the resulting fields. We took an initial step of test-
ing our contextual diffusion model on an unseen context. To

FIG. 8. As in Fig. 7, but we are now plotting all quantities for vorticity. Spatial mean vorticity is not conserved in our simulation but
fluctuates around zero with small amplitude. The different simulations running with different contexts have slightly different mean
vorticity values, leading to multiple peaks in the real data distributions. The generative model does not capture these small
differences.

FIG. 9. Azimuthally averaged spectral density function estimates of supersaturation tracer field values. Columns correspond to different
high-resolution data subsets, where k indicates the saturation specific humidity modulation wavenumber (the peak in the spectrum ap-
pears at the context modulation wavenumber). Orange spectra show spectra of real high-resolution samples, purple spectra show spectra
of generated and downscaled high-resolution samples, and green spectra show spectra of real low-resolution samples. Shaded areas are
computed from 10000 bootstrap samples at the 99% confidence interval.
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assess this, we created a new context using two wavenumbers,
one of which was not used during training, and carried out
the downscaling algorithm. The generated field, context field,
and power spectral density of the supersaturation tracer are

shown in Fig. 11. The model correctly imposes the modula-
tion, though it is hard to quantify its performance more quan-
titatively given that we do not have real fluid simulations with
this context.

FIG. 10. As in Fig. 9, but we are now plotting all quantities for vorticity field values (e.g., the enstrophy spectrum).

FIG. 11. Demonstration of the diffusion bridge algorithm using a contextual field that was not seen during training.
(left) A downscaled supersaturation tracer field, (right) the context used during sampling, and (bottom) the power spectral
density of the downscaled field. The dashed lines indicate the wavenumber of the two contextual spatial frequencies.
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d. Spatial correlations between vorticity and
supersaturation tracer

The results presented in sections 4a–4c focused on the
performance of the downscaling method by looking at the
vorticity and supersaturation tracer fields independently.
These fields are also correlated with each other, and it is im-
portant to also assess how well spatial correlations between
these two fields are preserved as a function of scale. To do
so, we computed the power spectral density of the compos-
ite field

y 5
(z 2 z)(q′ 2 q′ )

sq′sz

, (11)

where z is the vorticity, q′ is the supersaturation tracer, over-
bars denote the computed spatial mean from the training
data, and s denotes the standard deviation computed using
the training data. Figure 12 shows the computed power
spectral density of y for each of the contextual wavenum-
bers. The results are similar in quality to those in section 4c:
the downscaling procedure adds small-scale (large wave-
number) correlations between the two fluid fields with a
magnitude that is comparable to that seen in the real high-
resolution data.

e. Condensation rate distributions

To further assess the performance of our downscaling
method, we compute the distribution of the condensation rate
for low- and high-resolution datasets. To do this, we calculate
a kernel density estimate of positive condensation rates over
the data. The calculation of the condensation rate is given in
appendix A and can be thought of as a rain formation rate in
the idealized model. Figure 13 shows how the downscaling
algorithm performs when evaluating the distributions of the
condensation rate. The green distributions show the con-
densation rates for the low-resolution data, while the orange
distributions show the condensation rates for the real high-
resolution data. The purple distributions show the condensation
rates from the downscaled (e.g., generated) high-resolution
samples using the context-dependent diffusion bridge approach.
One can see that the tails of the high-resolution data are
underestimated by the low-resolution distribution by one or
two orders of magnitude, especially for very rare events. This
is because sharp peaks are smoothed out in low-resolution nu-
merical simulations of fluid flows. The downscaling procedure
“lifts” the tails up and alleviates the biases in condensation
rate tail events.

However, we find that the generated samples overestimate
the occurrence of very rare events (e.g., 1/1000 events). There

FIG. 13. Probability density function estimates for the instantaneous condensation rate. Columns correspond to different high-resolution
data subsets, where k indicates the saturation specific humidity modulation wavenumber. Orange distributions show distributions of real
high-resolution samples, purple distributions show distributions of generated and downscaled high-resolution samples, and green distribu-
tions show distributions of real low-resolution samples. Shaded areas are computed from 10000 bootstrap samples at the 99% confidence
interval. The vertical line approximately indicates the 90th percentile of true high-resolution condensation rates.

FIG. 12. Azimuthally averaged spectral density function estimates of the normalized composite field, defined in Eq. (11), created by mul-
tiplying the supersaturation tracer and vorticity field values at the pixel level. Columns correspond to different high-resolution data sub-
sets, where k indicates the saturation specific humidity modulation wavenumber. Orange spectra show spectra of real high-resolution samples,
purple spectra show spectra of generated and downscaled high-resolution samples, and green spectra show spectra of real low-resolution
samples. Shaded areas are computed from 10000 bootstrap samples at the 99% confidence interval.
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are many reasons why this could be the case. In general, ma-
chine learning models may perform poorly in the tails of dis-
tributions due to the lack of training data from this part of the
data domain. However, we speculate that apart from this gen-
eral difficulty, diffusion models can also leave a small amount
of residual noise in the generated samples that is impercepti-
ble to the human eye, but that manifests itself in tail statistics.
This is due to the specific choice of noising schedule of many
diffusion models in which the final noise added during sample
generation is not equal to zero. To make further improve-
ments to this issue, it may be necessary to find an improved
noising schedule. Due to numerical instabilities that can ap-
pear when the final noise amplitude approaches zero, we
leave this technical challenge for future work. We also note
that errors in the tail of a distribution can arise from errors in
the means. Our generated fields have larger variance in the
means compared with the real fields (Fig. 7), which may also
contribute to a shift in the tails.

f. Conditional sampling assessment

Using the notation from section 3c, we expect that a reason-
able downscaling algorithm approximately generates samples
from the conditional distribution p(xT |xS ), where T is the
high-resolution data domain and S is the low-resolution data
domain. More concretely, we expect the large-scale spatial fea-
tures to be preserved between xT and xS . To test how well our
algorithm meets this requirement, we compute the distance be-
tween downscaled fields and their low-resolution source fields
using the pixelwise L2 metric. We additionally compute the
same statistic for two randomly chosen low-resolution fields and
compare the distribution of these distances in each case to each
other.

The resulting distribution of L2-metric values is shown via
boxplot in Fig. 14. This demonstrates that the downscaled
fields are more similar to their low-resolution source fields
than two randomly chosen low-resolution fields are to each
other, indicating that broad spatial features are preserved by
the diffusion bridge algorithm. Note that because biases exist
between the high- and low-resolution datasets, as demon-
strated in Figs. 7, 9, and 10, we first carried out the following
transformation before computing the distance metric. We
low-pass filtered the fields such that only spatial frequencies
with k , k* are present. We then normalized the fields using
the mean pixel value and standard deviation of the pixel val-
ues for the data domain in question. If we do not account for
this, the L2-metric value between the downscaled and real
source fields can be very large but mostly due to the biases of
the low-resolution data.

5. Conclusions

We have shown that a downscaling approach using context-
dependent diffusion bridges can correct spatial mean biases
and intermediate scale biases, as well as improve resolution in
idealized low-resolution fluid dynamics simulations. In addi-
tion, we showed that this approach can help “lift the tails” of
low-resolution condensation rates, leading to at least an order
of magnitude correction in probability density values for the

condensation rate tails. This suggests that diffusion-based
generative models may be able to correct biases in extreme
event rates even in more realistic settings and even without
any explicit emphasis in the training loss function. We also
demonstrated that the diffusion bridge method creates down-
scaled fields which match the statistics of the azimuthally av-
eraged power spectrum and distributions of supersaturation
tracer and vorticity values of the original high-resolution data
and which match the statistics of the correlations between
these variables as a function of scale. By introducing a bypass
connection in the neural network used to model the score in
the reverse-diffusion process within the diffusion bridge, the
method alleviates the spatial mean bias (e.g., color shift) prob-
lem and preserves the value of the spatial mean vorticity. This
implies that conservation laws based on global integrals may
naturally be respected by diffusion models without further ex-
plicit emphasis in the loss function. While this may not be im-
portant for applications to realistic climate simulations, where
smaller patches of the flow are downscaled one at a time, it
may be useful in other contexts.

As pointed out in the introduction, diffusion models can
have advantages over classical and other generative machine
learning methods for downscaling. We find that their useful-
ness can be summarized as follows:

• Diffusion models are flexible and reusable. The downscal-
ing approach developed and applied in this work did not
require any special tuning for the datasets at hand, and it
did not require the low-resolution data during training at
all. Domain translation tasks between data generated with
other models or taken from observations only require train-
ing a diffusion model for each domain, thereby reducing
the computational effort required during training.

• The loss functions used for training diffusion models in this
work where generic and essentially unmodified and as such
did not have any particular emphasis on extreme events.
No quantile loss or spectral loss function was used in the
training of our models.

FIG. 14. Comparison of downscaled fields, by channel and by
wavenumber, with their low-resolution source fields. The statistics of
the pixelwise L2-metric values between a filtered downscaled field and
its filtered source (low resolution) field are shown in purple; the same
statistics between two random low-resolution fields are shown in
green.
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• Diffusion bridges are able to approximately generate sam-
ples from high-resolution conditional distributions. This
can be useful in application scenarios where complex statis-
tical quantities need to be computed or where it is not
known what kind of statistical quantities need to be com-
puted later on after training.

While some of these advantages may not apply in every
modeling scenario, we find that overall, the large flexibility of
diffusion-based models makes them an appealing choice in
generative modeling scenarios.

Alternatives and future directions

The data used in this work are comprised of a two-dimensional
forced turbulent fluid and a supersaturation tracer. It included
several features which are similar to a more complex climate
simulation (non-Gaussian statistics of the supersaturation
tracer and the influence of site-specific orography-like fea-
tures). However, an obvious next step is to test the approach
presented in this work with a realistic climate dataset and com-
pare its performance more directly to other existing downscal-
ing methods. In particular, it will be important to test with
climate data the assumption that there is some scale above
which the coarse-resolution simulations are unbiased (i.e., the
existence of l* in section 3b), as it is possible that biases exist
on the largest scales as well as intermediate scales. This of
course will depend on what “large” and “intermediate” mean in
terms of physical distances. An alternative is to split the de-
biasing and superresolution into two steps. As shown by Wan
et al. (2023), this preserves many of the advantages discussed
above, i.e., using unpaired data and using diffusion models,
but this would not require our assumption. In addition, we
also identify some possible research directions and outstand-
ing questions:

• The work of Song et al. (2022) also suggests that one could
use a projection step during sample generation to enforce
constraints (e.g., matching small wavenumber features).

• Temporal coherence of samples may be achievable with
diffusion models that are used in the context of video gen-
eration (Ho et al. 2022a). It would be interesting to test
their performance on physical systems, but there may be
drawbacks with respect to computational cost that need to
be addressed.

• Guided sampling techniques for diffusion models, as intro-
duced in Ho and Salimans (2022), may be useful in order to
generate samples that have additional desirable characteris-
tics, such as high values of certain climate indices.

However, there is still room to extend the scope of the cur-
rent work. We have already identified minor discrepancies in
the downscaled fields compared with the real high-resolution
fields, as discussed in section 4, and determined that these
were largely due to the model itself (rather than the downscal-
ing procedure). A study refining network architectures and
the training procedure may improve the model and results.
Additionally, using more varied contexts in training, and truly
demonstrating generalization to out-of-sample contexts, is an
important next step.

Overall, it appears that diffusion-based models are promis-
ing candidates for future applications in the Earth sciences.
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APPENDIX A

Data-Generating Model

The data-generating model used in this work consists of a
dynamical system that mimics the advection and condensation
of moisture along isentropes Earth’s extratropical atmosphere.
It is idealized but contains enough complexity to test the per-
formance of the machine learning algorithms outlined in this
work. Specifically, it exhibits some desirable dynamical and sta-
tistical properties. For example, the supersaturation field is
highly variable in space, and the associated idealized instan-
taneous condensation rate follows a distribution with approx-
imately exponential tails (O’Gorman and Schneider 2006).
These properties are useful when evaluating the skill of gen-
erative machine learning models in terms of spectral and sta-
tistical accuracy, especially with respect to extreme events.

The motivation for and behavior of this model are described
extensively in O’Gorman and Schneider (2006), and as a result,
we only recapitulate the main ingredients of the model here.
At its heart, the model consists of the two-dimensional vorticity
equation on a periodic domain forced randomly and damped
via linear drag and hyperdiffusion (spectral filtering is an alter-
native). The governing equations of the vorticity field read

­tz 1 ­yC­xz 2 ­xC­yz 5 f 2 az 2 kD8z, (A1)

DC 5 z, (A2)

where z denotes the vorticity, C is the streamfunction, f is a
stochastic forcing with an isotropic wavenumber spectrum
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and power contained in a narrow ring in wavenumber space
centered on kf with bandwidth Dk, a denotes a frictional time
scale, and k acts as a hyperdiffusivity parameter. The equation
for the specific humidity field q is given by

­tq 1­yC­xq 2­xC­yq 5 e 2 c 2 kD8q, (A3)

c 5
1
t
(q 2 qs)Q(q 2 qs), (A4)

where C is again the streamfunction, e is an evaporation
rate, taken as fixed in space and time, and c denotes the
instantaneous condensation rate. Here, k is the same hyper-
diffusivity as in Eq. (A1). The condensation rate c is pro-
portional to the difference between the specific humidity q
and the saturation specific humidity qs, but condensation is
only active when q . qs, as it would be in Earth’s atmo-
sphere. In our simulations, we consider the case where the
condensation time scale t is small and finite. In other
words, supersaturated (q . qs) regions are relaxed back to
the saturation specific humidity qs over a time scale t. The
finiteness of t mimics nonequilibrium thermodynamic pro-
cesses but is not essential for the conclusions of this work.
As described in the main text, we vary qs as a function of
space to mimic both the decay of qs along isentropes in
Earth’s atmosphere and to impose spatial inhomogeneities
at different length scales [Eq. (1)]. For large mean satura-
tion deficits (q , qs), condensation events are rare and the
mean condensation rate tends to zero. For large evaporation
rates, evaporation overpowers the ability of the turbulence to
generate subsaturated fluid parcels through advection up the
mean moisture gradient (cf. O’Gorman and Schneider 2006).

The complete dataset consists of six subsets, one low-
resolution subset and five high-resolution subsets, with a to-
tal of 12 000 data points. A summary of the parameters
used to generate the complete dataset is given in Table A1.

APPENDIX B

Score Modeling Details

a. Diffusion models

As described in the main text, our diffusion model’s noising
process adds Gaussian noise to the field at each time step. We
have adopted the so-called variance-exploding schedule where

g(t) 5 smin

smax

smin

( )t ���������������
2 log

smax

smin

( )√
, (B1a)

s2(t) 5 s 2
min

smax

smin

( )2t
2 1

[ ]
’ s2

min
smax

smin

( )2t
, (B1b)

where smin and smax are scalar parameters determining the shape
of the variance with time. Other noising processes, including in
the coefficient space after projecting onto a set of basis functions
(Phillips et al. 2022) and via a blurring process (Rissanen et al.
2023; Hoogeboom and Salimans 2022), have also been used, but
they do not change the core idea of the diffusionmodel.

Diffusion modeling parameterizes the score function
su(x, t) ’ s(x, t) and optimizes the parameters through gra-
dient descent on an appropriately chosen loss function. In
practice, one usually represents the score function su with a
neural network fu defined by

su(x, t) 5
fu(x, t)
s(t) ’ s(x, t): (B2)

The benefit of this is that the neural network output will always
be of O(1), which can lead to an easier training task for the
neural network [as opposed to forcing it to learn the prescribed
s(t) dependence as well]. The downside is that s(t 5 0) should
ideally be zero, and as a result, this introduces a singularity at
s(t 5 0). To avoid this, it is a standard practice (Song and
Ermon 2020) to instead set s(t 5 0) 5 smin, as given in the ap-
proximation of the expression for s2(t) given by Eq. (B1).

TABLE A1. Parameter values for the data-generating model. The complete dataset generated for this work consists of six subsets, a
low-resolution dataset without any saturation specific humidity modulation and five high-resolution subsets with varying modulation
wavenumbers. All simulations were run for 200 000 time steps, and the first 100 000 time steps were discarded as spinup for the
purposes of the work presented here. The subset size reported includes the spinup. All values are in nondimensional form.

Shared parameters

Domain size (L) Time step (Dt) Time steps (Nt) Drag coefficient (a) qs gradient (g) Evaporation rate (e)

2p 1 3 1023 100 000 1 3 1022 1.0 1.0

Relaxation time (t) Forcing
wavenumber (kf)

Bandwidth
(Dk)

Energy input
rate (e)

1 3 1022 3 2 0.1

Subset parameters

Name Resolution (L 3 L) Amplitude (A) Wavenumber (kx,y) Hyperdiffusivity (k) Subset size (Nd)

low-res 64 3 64 0 No modulation 1 3 1028 2000
high-res-1 512 3 512 1 1 1 3 10216 2000
high-res-2 512 3 512 1 2 1 3 10216 2000
high-res-4 512 3 512 1 4 1 3 10216 2000
high-res-8 512 3 512 1 8 1 3 10216 2000
high-res-16 512 3 512 1 16 1 3 10216 2000
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The denoising score-matching loss function (Ho et al.
2020; Song et al. 2021b) is given by

L (u) 5 Et,x(0),x(t) l(t)2
fu(x, t)
s(t) 2 =x logp[x(t)|x(0)]

{ }2[ ]

(B3a)

5 Et,x(0),x(t) l(t)2
fu(x, t)
s(t) 2

[x(t) 2 x(0)]
s2(t)

{ }2[ ]
(B3b)

5 Et,x(0),x(t)
l(t)2
s(t)2 [fu(x, t) 2 e]2
[ ]

, (B3c)

where

Et,x(0),x(t) 5 E
t;U(0,1],x(0);p

(
x(0)

)
,x(t);p

(
x(t)|x(0)

), (B4)

and x(t) 5 x(0) 1 s(t)e is a noised field at time t, e;N (0, 1)
is a Gaussian random vector, and l(t) is a weighting factor
taken to be equal to s(t) (see Song et al. 2021a). From the last
step in Eq. (B3), one can see that the score-matching loss is
equivalent to making the neural net learn the added noise at
time t. Note that although this involves an L2 loss between the
score function and the gradient of the logarithm of the condi-
tional distribution, optimizing L (u) results in an approximation
to the true score of the unconditional distribution (Vincent
2011).

We slightly modified the above loss function to monitor
the specific loss values with respect to spatial means and
variations about the mean. As e in Eq. (B3) is random
Gaussian noise, the mean e is independent of the variations
about the mean, e′ 5 e2 e. Since fu seeks to match e, we
anticipate that the same will be true for it once the network
is well trained. In that case, we can rewrite the loss as

L (u) 5 Et,x(0),x(t)
l(t)2
s(t)2 [fu(x, t) 2 e]2
[ ]

(B5)

’Et,x(0),x(t)
l(t)2
s(t)2 [f′u(x, t) 2 e′]2 1 [fu(x, t) 2 e]2

{ }[ ]
: (B6)

In practice, this should not affect the training procedure;
we found it useful mainly to track errors in the means
which result in color shifts.

b. Contextual diffusion models

When conditioning sampling on contextual information in
climate modeling scenarios, such as topography, bathymetry, or
land surface properties, we do have paired data points for high-
and low-resolution fields. Denoting these contextual fields as
xC , we have access to samples from the joint distributions

zS 5 (xS , xC ) ; p(zS ), (B7a)

zT 5 (xT , xC ) ; p(zT ), (B7b)

where, as in the main text, T and S denote the target and
source domains. Then, we can follow Song et al. (2021b) to al-
low for conditional sampling. By optimizing the loss function,

L (u) 5 Et,z(0),z(t) l(t)2
fu(z, t)
s(t) 2 =x logp[z(t)|z(0)]

{ }2[ ]
, (B8)

where

Et,z(0),z(t) 5 E
t;U(0,1],z(0);p

(
z(0)

)
,z(t);p

(
z(t)|z(0)

), (B9)

and z(t)5 x(t), xC (t)( )
is the tuple containing the state of

the fluid flow or climate model x(t) and the corresponding
contextual information xC (t). We choose not to noise the
context variables so that

p
(
z(t)|z(0)) 5 p

(
x(t)|x(0))d xC (t) 2 xC (0)( )

, (B10)

and hence, the score functions can be related as

=x logp
(
z(t)|z(0)) 5 =x logp

(
x(t)|x(0)): (B11)

The resulting score function in this contextual setup is then a
known function, just like in the case of unconditional diffu-
sion models. As shown in Batzolis et al. (2021), optimizing
this loss function is equivalent to learning a function
fu(z, t)5=x logp x(t)|xC

( )
, i.e., one that represents the condi-

tional score. In implementation, we realize this by inputting
xC as an additional channel of the diffusion model input.
More discussion of the architecture is given in appendix C.

APPENDIX C

Network Architecture

a. Network architecture

The foundation of our score network is a U-Net (Ronneberger
et al. 2015), which maps two inputs [X, a tensor of size (N, N,
Cin, B), and t, a tensor of size (B)], to a single output Y, a ten-
sor of size (N, N, Cout, B). That is, U-Net returns

Y 5 U (X, t; u), (C1)

where U denotes the U-Net with parameters u described
in more detail below.

The first input X holds a batch of fields, and the second t is a
batch of times; B is the size of the batch. Any individual channel
of the input or output is a field of size (N,N); there are Cin input
channels and Cout output channels. For our dataset, our input
fields have two noised channels: the fluid vorticity and supersatu-
ration tracer concentration. Including the contextual information,
we haveCin5 3 andCout5 2.

In our default configuration, the U-Net has five distinct
parts. The first is an initial lifting layer, which is a convolution
that preserves the spatial dimensionality of X, but increases
the number of channels from Cin to 32. Three downsampling
(convolutional) layers follow, which reduce the spatial dimen-
sionality by a factor of 2 and which increase the number of

B I S CHO F F AND DECK 17APRIL 2024

Brought to you by Caltech Library | Unauthenticated | Downloaded 10/09/24 05:15 PM UTC



channels by a factor of 2. These transformed data are passed
through eight residual blocks which preserve the dimensional-
ity of the transformed data (He et al. 2016). Then, three
upsampling layers, comprising nearest-neighbor upsampling, fol-
lowed by convolutions, increase the spatial dimensionality while
decreasing the number of channels, mirror the downsampling
layers. Finally, a projection layer decreases the number of
channels to Cout. We use 3 3 3 convolutional kernels, group
normalization (Wu and He 2018), and the Swish function as
a nonlinearity (Ramachandran et al. 2017).

The time variable is first embedded using a random Fourier
projection (Tancik et al. 2020). This embedded time is then
transformed by a dense network at each up- and downsam-
pling layer, after which it is added to the up- or downsampled
field. The sum is then group normalized and operated on by
the Swish function, following Song et al. (2021b) and Ho et al.
(2020), before being passed to the next layer.

b. Modifications to U-Net: Mean-bypass network

We modified the neural network architecture introduced in
the previous section of this appendix. to include a bypass con-
nection. The incoming batch is split into a component that has
spatial variations (in fact, the original field after subtracting the
channel-and-batchwise spatial means) and the spatial average
of each channel and batch member. The spatial average is
then fed through the bypass network, while the spatially vary-
ing component is fed through the U-Net. At the final layer,
the output from the U-Net and the bypass is added together,
after removing the spatial average of the output of the U-Net.
In this way, we have a completely separate network handling
the spatial means and the spatial variations about the mean.
Along with our choice of loss function, this has the added ad-
vantage of making the mean prediction and spatial variation
prediction entirely independent tasks. A diagram of this modi-
fied network architecture compared with the baseline architec-
ture is shown in Fig. C1.

Concretely, we compute the spatial mean, by channel and
batch member, of the input X, denoted by X. The spatial vari-
ation about the mean is denoted as X′ 5 X2 X and is

processed by the U-Net as discussed in the previous section of
this appendix, to produce an output U (X′, t; u). We then sub-
tract the spatial mean (by channel and batch member) from
this output, i.e., we produce a tensor Y′ 5U (X′, t; u)2
U (X′, tu) that has zero spatial mean. A separate function
M(X, t; f), with trainable parameters f operates on X and t,
and returns a tensor of the same size as X, denoted by Y. In
the last layer, we combine the outputs of these individual com-
ponents to produce the final output Y as

Y 5 U (X′, t; u) 2 U (X′, t; u) 1 M(X, t; f) 5 Y′ 1 Y:

(C2)

The network M consists of a three-layer dense feed-forward
network, consisting of two linear transformations followed
by a normalization and nonlinear activation function, and a
single final linear transformation, without an activation or
normalization. The embedded time is handled in the exact
same way as for U ; it is passed through a linear transforma-
tion before being added to the transformed input, prior to
normalization and activation.

Note that because of this, our implemented solution does not
take advantage of correlations between the spatial variations
about the mean and the mean. If spatial variations of the input
are useful for predicting the spatial mean of the score, or vice
versa, our prediction will not make use of that information.
Through limited testing, we found that letting U have access to
the entire input X yielded slightly worse performance after
training for the same number of epochs. More investigation is
required in order to take into account these correlations.

c. Model training

We follow the recommendations of Song et al. (2021b) and
Ho et al. (2020) in setting up the optimizer for score-matching
denoising diffusion models. We use an Adam optimizer with
a learning rate of l0 5 2 3 1024, e 5 1 3 1028, b1 5 0.9,
and b2 5 0.999. We employ gradient norm clipping to a
value of 1.0. We additionally employ a linear warmup sched-
ule in the learning rate, from 0 to l0, over 5000 gradient

FIG. C1. Diagram of the two score networks discussed in this work. The left network is a baseline U-Net
(Ronneberger et al. 2015), while the right network processes the spatial means of the input data separately via a non-
linear mean-bypass layer.
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updates. A batch size of 4 was used for all runs. We gener-
ally train for 125 epochs. In our tests, we found that a type
of overfitting would occur if we ran for longer, and we used
dropout in the residual layers, with a probability of 0.5, to
help alleviate this.

With respect to preprocessing the raw fields, we proceed as
follows. We first split each data sample into a constant mean
field and a field of deviations from the mean. Over these two
components of the data, we carry out an independent mini-
mum–maximum scaling, such that the minimum pixel value
(over all of the preprocessed data) is 21 and the maximum
(over all of the preprocessed data) pixel value is 1. We then
add the two back together. The resulting dataset no longer has
a minimum and maximum pixel value of exactly 61, but be-
cause the maximum and minimum values of the mean are not
necessarily correlated with the fields that have the maximum
and minimum spatial deviations from the mean, the distribu-
tion of pixels is still mostly contained within the [21, 1] range
(and at worst, in the [22, 2] range).

Our main motivation for this preprocessing step is be-
cause the total vorticity is conserved, and so the distribution
of the total vorticity is a delta function. Floating point error
turns this into a Gaussian with a very small variance. Our
preprocessing step then turns this into a much wider distri-
bution, which will be easier to learn. However, we expect
that this is beneficial in general given that means are han-
dled by an independent neural network; this is akin to pre-
processing the input of that network as is standard practice.

d. Sample generation

To generate all of the results shown here, we use the
Euler–Maruyama (EM) method with a fixed time step for
solving the stochastic differential equations. For the SDE,

dx 5 f (x, t)dt 1 g(x, t)dW, (C18)

the update rule is as follows:

x(t 1 Dt) 5 x(t) 1 f (x, t)Dt 1 g(x, t)h ���
Dt

√
, (C4)

where h;N (0, 1). For all simulations, we use a fixed time
step of 0.002, which corresponds to 500 steps from t 5 e 5

1 3 1025 to t 5 1. Field generation was not the dominant
computational cost for this project, so we did not explore
varying the time-stepping algorithm or time step. Testing al-
ternate time-stepping schemes is an activate area of re-
search in the field.

APPENDIX D

Azimuthally Averaged Power Spectral Density

For each channel in the input data, we have a two-dimensional
field of dimensions N 3 N. We compute the discrete Fourier
transformof the field,

Ĩ(kx, ky) 5 ∑
N/221

x52N/2
∑

N/221

y52N/2
I(x, y)exp[2i2p/N(kxx 1 kyy)]:

(D1)

The power spectrum for wavenumbers (kx, ky) is given by

PS(kx, ky) 5
1
N4 Ĩ(kx, ky)Ĩ *(kx, ky): (D2)

This can be converted into a power spectral density PSD(kx, ky)
by dividing by an area in wavenumber space (Youngworth et al.
2005). We may convert to polar coordinates (k, f), where
k5

����������
k2x 1 k2y

√
. For isotropic flows, the expectation of |Ĩ(k, f)|

over different regions of the flow is independent of f. This
means that carrying out an integral of the azimuthal angle f

leads to no loss of information (in expectation). We can write
the azimuthally averaged power spectral density as

PSD(k) 5 1
N4

�2p

0

�k11

k
Ĩ *Ĩk′ dk′ df�2p

0

�k11

k
k′ dk′ df

(D3)

’
1
N4

∑
kx

∑
ky

Ĩ *ĨQ[k2 # k2x 1 k2y , (k 1 1)2]

∑
kx

∑
ky

Q[k2 # k2x 1 k2y , (k 1 1)2] , (D4)

where Q(condition) is a function which returns 1 when the
condition is true and 0 otherwise. This metric becomes less
informative for fields of flows with preferred directions or
inhomogeneities, in which case, the 2D Fourier transformed
field itself may be more useful.

Our Algorithm 1 requires knowing the power spectrum
for white noise. One can show that if I(x, y);N (0, s2),
|Ĩ(kx , ky)2|; Exp[1/(s2N2)] when kx or ky is greater than
zero. This has an expected value of s2N2. Plugging this into
Eq. (D3), we see that the PSD(k) of Gaussian white noise
is independent of wavenumber k and has an expected value
of s 2/N2 for k . 0.2

APPENDIX E

Downscaling as Sampling from a Distribution

Our goal in downscaling is to sample from a distribution
of high-resolution images conditional on a biased and low-
resolution input. Sampling is a desirable feature since many
high-resolution fields are consistent with any given low-
resolution field and since statistics are often of most inter-
est, compared with any given instantaneous realization of
the dynamical system. To illustrate this, we created a syn-
thetic low-resolution “pair” to a single real high-resolution
data sample by low-pass filtering the fields and carried out
the downscaling procedure 100 times. For three pixels across
the fields, we compared the true high and low-resolution
pixel values with the distribution of values obtained from
the 100 downscaled ensemble members. The results for the

2 When kx 5 ky 5 0, |Ĩ (0, 0)2 | is not drawn from an exponential
distribution. Instead, |Ĩ (0, 0)2 |/(s2N2); x21, the chi-squared distri-
bution. We subtract the means prior to computing the PSD, so
|Ĩ (0, 0)2 |’ 0.
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supersaturation tracer variable are shown in Fig. E1. This
shows that even in the case where there is a “correct an-
swer,” obtained with paired data, the algorithm is still sam-
pling from a distribution. Because of this, the metrics that
make the most sense are those that compare distributions

or summary statistics. For example, Fig. E1 also shows the
cumulative distribution for all of the pixel values in the real
high-resolution data sample and its low-resolution pair and a
randomly chosen subset of pixels from the generated high-
resolution images.
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