JAMES

RESEARCH ARTICLE
10.1029/2023MS004028

Special Collection:
The CliMA Earth System Model

Key Points:

e A calibration framework for warm-rain
bulk microphysics parameterizations is
presented

o The framework relies on a library of
super-droplet simulations of a rain
shaft

e Calibrating a single-moment micro-
physics scheme with the calibration
framework substantially reduces the
model-data mismatch

Correspondence to:

S. Azimi,
azimi@caltech.edu

Citation:

Azimi, S., Jaruga, A., de Jong, E., Arabas,
S., & Schneider, T. (2024). Training warm-
rain bulk microphysics schemes using
super-droplet simulations. Journal of
Advances in Modeling Earth Systems, 16,
€2023MS004028. https://doi.org/10.1029/
2023MS004028

Received 20 SEP 2023
Accepted 30 JUN 2024

Author Contributions:

Conceptualization: Sajjad Azimi,

Anna Jaruga, Emily de Jong,

Sylwester Arabas, Tapio Schneider

Data curation: Sajjad Azimi

Formal analysis: Sajjad Azimi,

Anna Jaruga, Emily de Jong,

Sylwester Arabas, Tapio Schneider
Funding acquisition: Sajjad Azimi,
Tapio Schneider

Investigation: Sajjad Azimi, Anna Jaruga,
Emily de Jong, Sylwester Arabas,

Tapio Schneider

Methodology: Sajjad Azimi, Anna Jaruga,
Emily de Jong, Sylwester Arabas,

Tapio Schneider

Project administration: Tapio Schneider
Resources: Tapio Schneider

© 2024 The Author(s). Journal of
Advances in Modeling Earth Systems
published by Wiley Periodicals LLC on
behalf of American Geophysical Union.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

'.) Check for updates

A n . l ADVANCING
nu EARTH AND

-~ SPACE SCIENCES

Journal of Advances in
Modeling Earth Systems®

'

Training Warm-Rain Bulk Microphysics Schemes Using
Super-Droplet Simulations

Sajjad Azimi' ©©, Anna Jaruga' ©, Emily de Jong® (), Sylwester Arabas® ©, and

Tapio Schneider'*

'Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA,
Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, USA, *Faculty of
Physics and Applied Computer Science, AGH University of Krakow, Krakéw, Poland, “Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA, USA

Abstract Cloud microphysics is a critical aspect of the Earth's climate system, which involves processes at
the nano- and micrometer scales of droplets and ice particles. In climate modeling, cloud microphysics is
commonly represented by bulk models, which contain simplified process rates that require calibration. This
study presents a framework for calibrating warm-rain bulk schemes using high-fidelity super-droplet
simulations that provide a more accurate and physically based representation of cloud and precipitation
processes. The calibration framework employs ensemble Kalman methods including Ensemble Kalman
Inversion and Unscented Kalman Inversion to calibrate bulk microphysics schemes with probabilistic super-
droplet simulations. We demonstrate the framework's effectiveness by calibrating a single-moment bulk
scheme, resulting in a reduction of data-model mismatch by more than 75% compared to the model with initial
parameters. Thus, this study demonstrates a powerful tool for enhancing the accuracy of bulk microphysics
schemes in atmospheric models and improving climate modeling.

Plain Language Summary Cloud microphysics is a complex set of processes that determine the
formation and evolution of particles in clouds, which affects the Earth's climate by regulating precipitation and
cloud cover. However, the vast difference in scale between the microphysics and large-scale atmospheric flows
makes it impossible to simulate these processes in climate models directly. Instead, climate models use
simplified methods to represent cloud microphysics, which can result in inaccuracies. In this study, we focus on
calibrating the simplified models with more detailed simulations of cloud microphysics using the super-droplet
method. We demonstrate a framework for calibrating the simplified models using high-fidelity simulations,
which improves the accuracy of these models.

1. Introduction

Cloud microphysics refers to the microscale processes within clouds that control the formation and evolution of
hydrometeors, such as cloud droplets, ice crystals, and raindrops. These processes are essential for regulating
many mesoscale properties of clouds, such as precipitation and cloud albedo, which are important factors in the
Earth's climate system. Despite the crucial role of cloud microphysics, climate models cannot resolve these
processes, mainly due to the vast scale separation between the micro-scale dynamics of hydrometeors and large-
scale atmospheric flows. As a result, climate models commonly represent cloud microphysics by representing
particle size distributions (PSD) of hydrometeors through bulk methods. Bulk methods track the evolution of
aggregate properties of the PSD, such as the total mass or number of particles. While bulk schemes are the
dominant numerical approach in climate modeling, they have significant uncertainty in both the structure of the
model and the parameters (Igel et al., 2022; Khain et al., 2015; Morrison et al., 2019). However, the uncertainty in
the parameters can be reduced through calibration against more detailed methods such as spectral bin methods and
particle-based super-droplet methods (SDMs) (e.g., Gettelman et al., 2021; Noh et al., 2018; van Lier-Walqui
et al., 2020). In this paper, we will focus on calibrating parameters in bulk methods with detailed results of the
particle-based SDM to improve the accuracy of climate models.

While bulk methods have the advantage of reducing the computational cost of microphysics modeling, their
accuracy is limited by several factors. First, bulk methods follow the evolution of a few moments of the PSD,
while many process rates depend on higher moments. Therefore, the bulk methods require closures that express
higher moments in terms of the tracked moments. These closures are typically derived by assuming specific
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functional forms for the size distribution, such as a gamma or exponential distribution (e.g., Khairoutdinov &
Kogan, 2000; Liu & Daum, 2004; Morrison & Grabowski, 2007; Seifert & Beheng, 2006). However, in reality,
the size distribution of hydrometeors can be multimodal. Consequently, bulk methods consider different particle
categories, such as cloud droplets and raindrops, each represented by different unimodal distributions. The
conversion rate between these categories is parameterized, leading to uncertainties in climate modeling.
Furthermore, the use of multiple categories is an artificial representation of the continuous real-world physics of
hydrometeors, and the conversion rates may not be able to capture the collective physics of hydrometeors well.
Studies such as Kogan and Belochitski (2012), Bieli et al. (2022), and Igel et al. (2022) explore alternative ap-
proaches to avoid artificial water categories and conversion rates between them in bulk models. Second, pa-
rameterizations in bulk schemes typically include several process rate parameters that need to be calibrated with
reference physics, which can be observational data or high-fidelity numerical simulations. However, despite the
abundance of satellite observations available, it remains challenging to leverage them effectively for the
development of microphysics schemes due to the difficulties in accurately mapping from these observations to
microphysical variables (Morrison et al., 2020).

Despite their limitations, bulk methods are widely used in climate modeling due to their simplicity and low
computational cost, motivating researchers to continually develop new parameterizations to improve their ac-
curacy (e.g., Kessler, 1969; Milbrandt & Yau, 2005; Morrison & Milbrandt, 2015; Morrison et al., 2019; Tripoli
& Cotton, 1980). The complexity of bulk methods depends not only on the number of prognostic moments they
track but also on the number of categories, the variety of processes simulated, and the complexity of process rate
equations. Regardless of the complexity of a new bulk parameterization, poorly estimated parameters can impact
the performance of the entire modeling system. Therefore, careful attention must be given to this aspect of bulk
method development to ensure that new parameterizations are effective and reliable. Several recent studies
highlighted the application of Bayesian techniques in parameter estimation for bulk microphysics schemes.
Posselt and Vukicevic (2010) and Posselt (2016) employed a Markov chain Monte Carlo algorithm to investigate
the relationship between cloud microphysical parameters and deep moist convection simulations. Morrison
et al. (2019) and van Lier-Walqui et al. (2020) introduced the Bayesian observationally constrained statistical-
physical scheme, a flexible framework designed to learn microphysical parameter distributions through
Bayesian inference. Bieli et al. (2022) proposed a bulk microphysics scheme with adjustable complexity, and
presented an efficient parameter learning approach using the calibrate-emulate-sample algorithm (Cleary
et al., 2021; Dunbar et al., 2021). Notably, both of these studies demonstrated learning parameters of their bulk
schemes by using perfect-model experiments with data generated by the same models. Additionally, Schrom
et al. (2021) applied Bayesian inference to radar observations to constrain ice growth processes, demonstrating
the effectiveness of radar measurements to inform parameter estimates in ice microphysics.

Access to microphysics observations for calibration and validation of bulk schemes is often limited, making high-
fidelity simulations using detailed microphysics representations a critical data source. Researchers have
commonly used spectral bin methods to calibrate and evaluate bulk schemes (e.g., Gettelman et al., 2021;
Khairoutdinov & Kogan, 2000; Kogan, 2013; Kogan & Belochitski, 2012; Zeng & Li, 2020). However, bin
methods can be susceptible to numerical diffusion, and, in the case of modeling coalescence, they inherit the
limiting assumptions necessary to derive the underlying deterministic Smoluchowski equations, both of which
limit their accuracy (Grabowski et al., 2019). Another detailed method that has gained increasing attention in
recent years is the particle-based SDM (Andrejczuk et al., 2010; Riechelmann et al., 2012; Shima et al., 2009).
This method uses a probabilistic particle-based approach to track individual super-droplets explicitly and allows
for a more realistic representation of the microphysics involved in cloud and precipitation processes. Each super-
droplet is treated as an ensemble of actual particles that share the same attributes, such as size, composition and
location. SDM simulations are probabilistic because they involve random sampling of the attribute space at
initialization and feature Monte-Carlo representation of stochastic processes such as coagulation and breakup.
Each SDM simulation yields a single realization of the system evolution, which includes tracking of each super-
droplet's properties through particle processes such as aerosol activation, condensation, evaporation, collision,
coalescence, and break-up.

Both bin methods and the SDM aim to provide a detailed representation of microphysical processes. However, it
is crucial to acknowledge that neither method is exempt from assumptions and uncertainties, particularly
regarding their collection kernels, which rely on assumptions about the physics of the evolution of drops and their
populations. These assumptions are necessary for computational feasibility but introduce uncertainties.

AZIMI ET AL.

2 of 23

A ‘L “PTOT ‘99¥TTH61

:sdiy woxy papeoy

ASU2DIT suoWIWo)) dAnear) a[qeatjdde ayy Kq pauIdaA0S aIe SA[ONIE V() ‘2SN JO $3[NI 10§ AIRIQIT dUI[UQ) A3[IAY UO (SUOLIPUOD-PUB-SULIS)/WI0d K1M’ ATeIq[aut]uo//:sdiy) SuonIpuo)) pue suid |, 3yl 23S “[$20z/01/60] uo Areiqry aurjuQ La[ip “ASojouyoa ], Jo jsuj eiuIojie)) £q 8Z0r00SINETOT/6T01 0 /10p/wod Aafim',



NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004028

Furthermore, both methods are often evaluated against a limited set of observational data, which may not fully
capture the complexities of natural cloud and precipitation processes. Despite these challenges, the SDM offers a
promising approach toward a more accurate and physically based representation of cloud and precipitation
processes. Structurally, SDM's Lagrangian nature marks a fundamental advantage over bin methods. This
approach nullifies numerical diffusion issues associated with bin methods by avoiding the confinement of super-
particles to grid box centers or vertices and eliminating advection from one size bin to the next. Moreover, SDM
inherently avoids the computational inefficiencies associated with empty bins in bin methods, as it does not
predetermine bins for water content.

Unlike bulk schemes that require parameterizations of conversion rates between artificial categories, the SDM
avoids such parameterizations, providing a more detailed and physically justified representation of cloud and
precipitation processes. As such, the particle-based super-droplet approach has the potential to provide more
realistic and detailed data for improving the accuracy of bulk schemes in simulating cloud and precipitation
processes. Noh et al. (2018) employed the particle-based super-droplet approach to evaluate several bulk pa-
rameterizations for collisional growth in shallow cumulus clouds. However, their study is limited to few simu-
lations initialized with a single thermodynamic condition and excludes considerations of raindrop breakup and
evaporation.

Here, we present a framework for calibrating warm-rain bulk schemes using high-fidelity super-droplet simu-
lations. We implement the one-dimensional kinematic driver (KiD-1d) model (Shipway & Hill, 2012), and
generate a library of super-droplet simulations in this model. The KiD-1d model is a one-dimensional warm rain
shaft model with a prescribed flow field and constant temperature profile. The flow and temperature fields are
prescribed to isolate microphysics processes from their feedbacks with dynamics and thermodynamics, enabling
us to calibrate and validate microphysics schemes with consistent dynamics. This means that any variations in the
results can only be attributed to changes in microphysics schemes. We utilize ensemble Kalman methods,
including Ensemble Kalman Inversion (EKI) (Iglesias et al., 2013) and Unscented Kalman Inversion (UKI)
(Huang et al., 2022), to calibrate bulk microphysics schemes with the super-droplet simulations. EKI and UKI are
ensemble-based gradient-free methods that have demonstrated remarkable success in a wide variety of calibration
studies (e.g., Dunbar, Howland, et al., 2022; Kovachki & Stuart, 2019; Xiao et al., 2016). EKI is more robust than
UKI concerning noise in observations, while UKI provides parameter uncertainties and allows for model error
quantification (Lopez-Gomez et al., 2022). We demonstrate the application of the calibration framework by
calibrating a single-moment warm-rain bulk scheme, targeting parameters of conversion rates such as conden-
sation, auto-conversion, accretion, sedimentation, and evaporation rates. Remarkably, calibrations using EKI and
UKI obtain two different sets of optimal parameters, both resulting in a similar reduction of model-data mismatch.
The difference between these two parameter sets is supported by parameter relationships revealed through
parameter correlation analysis by UKI. Through our calibration process, we achieve a significant enhancement in
the accuracy of the bulk model by more than 75% compared to the model with initial parameter values.

The calibration framework presented here has several notable properties compared to previous studies, such as
Khairoutdinov and Kogan (2000), Morrison et al. (2019), and Gettelman et al. (2021). First, we employ the SDM
as a tool capable of providing a physically based representation of microphysics for generating benchmark
simulations. Second, the framework offers an efficient setup to calibrate and evaluate bulk methods by using a
diverse set of rain shaft simulations with a wide variety of precipitation conditions. Finally, by using ensemble
Kalman methods, which are gradient-free (meaning they do not require the computation of derivatives, making
the training process simpler and more robust), we ensure both efficient parameter learning and the ability to
quantify parameter uncertainties and model error. The calibration framework presented in this study provides a
promising tool for enhancing the accuracy of bulk microphysics schemes in atmospheric models, with potential
implications for improving climate modeling.

The manuscript is organized as follows: Section 2 provides an overview of the KiD-1d model, along with a
discussion of the SDM used to generate simulations of the KiD-1d model. The section also describes the cali-
bration methods employed in our framework for calibrating bulk schemes. In Section 3, we present a library of
super-droplet simulations of the KiD-1d model and report the results of calibrating a single-moment bulk scheme
using this library of rain shaft simulations. Finally, Section 4 summarizes our findings and provides an outlook for
future research.
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Table 1

Data Points for Interpolating the Initial Water Vapor Mixing Ratio r, , and

Potential Temperature 6

2. Methods

This section provides an overview of the methods employed in this study. We

describe the one-dimensional rain-shaft model, which serves as a testbed for

Height (m) ro (kg kg™ ¢ (K) calibrating and evaluating warm-rain bulk schemes in relation to high-fidelity
0 0.015 297.9 particle-based simulations. Subsequently, we discuss the SDM utilized to
740 0.0138 297.9 generate a comprehensive library of simulations for benchmarking bulk
3.260 0.0024 312.66 schemes. Next, we present a specific example of a single-moment warm-rain

bulk scheme used to demonstrate the application of the calibration frame-
work. Lastly, we explain the calibration methods employed to refine and
optimize the bulk scheme.

2.1. System: One-Dimensional Kinematic Driver Model

The calibration framework utilizes an implementation of the one-dimensional kinematic driver (KiD-1d) model
as a testbed for calibrating and evaluating warm-rain bulk schemes. The KiD-1d model is specifically designed to
facilitate the assessment of microphysics parameterizations by prescribing both the velocity and temperature
fields (Hill et al., 2023; Shipway & Hill, 2012). This prescription effectively prevents any feedback from
microphysics processes on dynamics and thermodynamics, thereby also preventing any subsequent feedback loop
back to microphysics. This ensures that observed variations in the results can be solely attributed to changes in
microphysics parameterizations. In the employed implementation of the KiD-1d model, we consider a stratified
air density profile, and thus prescribe the flow by using an air momentum profile, unlike Hill et al. (2023) where a
constant density is used.

The KiD-1d model represents shallow convection in a column of moist air over a height range of 3 km from the
ground level. The prescribed flow field represents an updraft, which is uniform in height z and sinusoidal in time ¢,
as given by the equation

pw(z, 1) = (pw), sin(zt/ty), 0<t<ty. (1

Here, p represents the dry-air density, w denotes the vertical velocity component, and (pw), is the maximum
updraft momentum. The parameter ¢, represents the duration of the updraft. Beyond ¢,, there is no updraft, and pw
remains at 0. This updraft motion lifts moist air to higher, colder levels, facilitating condensation of water vapor
and cloud formation. The initial vapor mixing ratio r,, and the potential temperature € are represented as
piecewise linear profiles interpolated from data points provided in Table 1. The initial temperature profile 7(z) at
t = 0 is computed from the potential temperature 8(z) and is held constant throughout the simulations.

For a typical resolution, a KID-1d simulation features four orders of magnitude fewer spatial points compared to a
standard resolution three-dimensional large-eddy simulation, resulting in significantly enhanced computational
efficiency. This efficiency makes KID-1d simulations particularly well suited for our microphysics calibrations,
which require numerous simulations of the system.

2.2. Particle-Based Simulation Method

To generate a library of particle-based simulations of the KiD-1d model, we use the PySDM package (Bartman,
Bulenok, et al., 2022; de Jong et al., 2023). PySDM is a Python-based code designed to run particle-based
simulations of clouds and precipitation using super-droplets. Each super-droplet corresponds to multiple parti-
cles sharing the same properties, including size and composition, with their location being tracked explicitly while
their process rates are calculated for the gridbox in which they are located. The multiplicity of a super-droplet
indicates the number of actual particles it represents. For further details on the models employed in PySDM,
refer to Bartman, Bulenok, et al. (2022) and de Jong et al. (2023).

While the SDM provides detailed and physically grounded results, it has several notable limitations. The treat-
ment of collision-coalescence processes relies on the geometric collection kernel (Berry, 1967), which involves
simplifying assumptions about droplet interactions. Additionally, the pragmatic grouping of real particles into
super-droplets, aimed at balancing detailed representation against computational feasibility, introduces additional
uncertainties. Furthermore, due to representing microphysical behavior with fewer particles, the inherent
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variability among different realizations produced by the SDM is larger than that occurring in nature (Morrison
et al., 2020). Moreover, many microphysical processes (e.g., drop breakup) are poorly understood, presenting a
challenge for all microphysics models, including SDM.

Because the particle-based simulations are inherently stochastic, we generate 100 simulations for each config-
uration to determine the mean and variability of the results used for calibration purposes. In each simulation, we
utilize an average of N,; = 512 super-droplets per grid box, with a grid spacing of dz = 50 m and a time step of
dt = 5 s. The Python-based code PYMPDATA (Bartman, Banaskiewicz, et al., 2022) is used for solving the
advection equation. We study the independence of the results from the chosen numerical values by performing
simulations with doubled N, halved dz, and halved dt. The results from these simulations show excellent
agreement with the original findings, indicating that the numerical values employed are sufficient to ensure
numerical accuracy of the results. (For more detailed information, see Appendix A.)

2.3. Single-Moment Warm-Rain Bulk Scheme

To demonstrate the application of our calibration framework, we focus on calibrating and evaluating a single-
moment warm-rain bulk scheme. Specifically, we examine the single-moment bulk scheme implemented in
CloudMicrophysics.jl, an open-source Julia package developed and utilized within the CliMA project (clima.
caltech.edu). This bulk scheme is based on the original concept introduced by Kessler (1969). It divides the total
water content into three categories: water vapor, cloud water, and rainwater. The conversion of water vapor into
cloud water occurs through condensation. The conversion of cloud water to rainwater involves two processes:
auto-conversion, accounting for the collision and coalescence of droplets in the cloud phase to form raindrops,
and accretion, representing the collection of cloud droplets by raindrops. The sedimentation of raindrops causes
them to descend to subsaturated regions, leading to the partial conversion of rainwater back into water vapor
through evaporation. It is worth noting that, within this scheme, rainwater can be produced only through auto-
conversion and accretion from cloud water; it cannot be produced through condensation alone.

The auto-conversion rate is represented as the ratio of the specific content of cloud water to the auto-conversion
time scale. This time scale is determined by a power-law function of the cloud droplet number density (V,). The
auto-conversion rate is expressed as follows:

aq,
ot

9¢,
ot

) N —Qucny
_ 4 ( a ) . @

acny acnv  Tacnv, 0 100cm™>

In this equation, g, and g, represent the specific content of cloud and rainwater, respectively. The constant
Tueny, o denotes the reference auto-conversion time scale, and «a,,,,, represents the power law parameter of the
number density. This representation of the auto-conversion rate is effectively a power law function of g, and N,
which is consistent with the parameterization of Khairoutdinov and Kogan (2000), among others. In this study, the
aerosol number density, N, is directly mapped to the cloud droplet number density, N, bypassing aerosol
activation parameterizations. Thus, the auto-conversion rate is computed based on the prescribed aerosol con-
centration N,.

The process rate equations provided in the CloudMicrophysics.jl package are based on the following assumptions
regarding the raindrop size distribution dN/dr, mass m, area a, and terminal velocity v as functions of the particle

radius r:
dN/dr = ny exp(—Air) 3)
\3
m(r) = m()(—) )
o
\2
a(r) = ao(—> (%)
o
S\ 1/2HA,
w=rn(L) ©
o
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where r, denotes the reference raindrop radius used for nondimensionalization. The values of the reference

raindrop mass my, area a,, and terminal velocity v, are calculated as follows: my = (4/3) zp,, 13, ap = = 13, and

_ N
e (n= D) o

3C,

Here, p,, represents the density of water, p,, is the moist-air density, g denotes the acceleration due to gravity, and
C, is a constant drag coefficient. The coefficients y, and A, represent the terminal velocity coefficients and are
free parameters that can be adjusted during model calibration. The parameters n, and 1 serve as distribution
parameters. Integrating the mass of particles over the distribution, we obtain the following equation for A:

1= (4 P, Mo 1"(4))3’ ®

34 P

where I" denotes the gamma function. The condensation of water vapor is modeled by relaxing the excess of water
vapor toward the saturation specific humidity over the condensation time scale:

44

9 — 4,
:—V 9
2 O]

>

cond Tcond

where g, represents the specific humidity, g; is the saturation specific humidity, and 7

cona Fepresents the time scale

of condensation. The accretion rate is obtained by integrating the rate of collection of cloud droplets by raindrops
while falling at their terminal velocity over the assumed raindrop size distribution. This collection rate is rep-
resented by y,E..q.a(r)v(r)(r/ ro)™, where E.. denotes the collision efficiency between cloud droplets and
raindrops, and y, and A, are the accretion coefficients that can be adjusted during the model's calibration process.
The accretion rate is expressed as follows:

dg,
dt

1

1 Zaw
= ngy Ha,v qc Ecr 1—‘(z“a,v + 1) E <r07) s (10)

dq,
dr

accr accr

where I, , = ag v x, x,» and X, , = 5/2 + A, + A,. The sedimentation of rain is accounted for by the following
equation, which describes the fall speed of g,:
1\ 10/2+A,) an
V, = vo | — _—
IR P @)

Finally, the rate of rain evaporation is modeled by integrating the evaporation of individual particles over the
spectrum of raindrops. This leads to the following expression:

dq,

_ 471'}’10
dr -

S = DG(T)A™?
(12)

1 1
V(1N 7 2y, vV (11 A
by | =) | — - r(—+—]|
%”“&J&J “M)@+J

In this equation, S = ¢,/¢; represents the saturation, T denotes the temperature, D, is the diffusivity of water
vapor, v, is the kinematic viscosity of air, and a,,,, and b,,,, are ventilation parameters. The function G(T) is

evap m

X

defined as:

-1
G(T) = <kiT< L _ 1)+;"DT> 13)
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Table 2 where L is the latent heat of vaporization, k is the thermal conductivity of air,
Parameters of the Single-Moment Bulk Scheme R, is the gas constant of water vapor, and p; represents the saturation vapor
Parameter name Description Value pressure.
% Cendkneion e =ik 10 s, KM2003 The single-moment bulk scheme considered in this study involves several
o Auto-conversion time scale 1,000 s, GS1996 notable 51_mp1-1f1cz.1t10ns.. First, the functlonalhforr.n of the al_lto—conve.rsmn
. . parameterization is straightforward, representing it as the ratio of available
*X ey Auto-conversion coefficient 1, LD2004 . .
cloud water to an auto-conversion time scale. Second, the scheme assumes
e il velzeliy cosl ieent 1 that the distribution of raindrops follows an exponential distribution, char-
A, Terminal velocity coefficient 0 acterized by a constant scaling parameter n,. Third, in the parameterization of
Y Accretion coefficient 1 terminal velocity, a constant drag coefficient is employed, which is assumed
A, Acerien e iR 0 to apply uniformly to all particles, while in reality, the drag coefficient is a
Gy Srpeiion cas e 1.5. GS1996 fugct.lon of. raindrop size. lflnglly, the sche‘rne adopts a con.stant‘ ?oll%swn
) o efficiency in the parameterization of accretion rate. These simplifications,
*Dyont Evaporation coefficient 0.53, GS1996 . . . .. ,
_ _ ~ while enhancing computational efficiency, can affect the model's
T Reference raindrop radius 107" m performance.
ng Size distribution parameter 16 - 10° m_4, MP1948 ) ) )
. . Table 2 provides a list of parameters of the single-moment bulk method, along
C, Raindrop drag coefficient 0.55, GS1996 . . . .
with their prior values. We select a subset of the parameters for calibration,
E,. Collision efficiency 0.8, G1998

Note. The columns show parameter names, brief descriptions, and prior
values with references. The references are KM2003 (Korolev &
Mazin, 2003), GS1996 (Grabowski & Smolarkiewicz, 1996), and LD2004
(Liu & Daum, 2004), MP1948 (Marshall & Palmer, 1948), and G1998
(Grabowski, 1998). Note that the values of a,,,, and b, are determined to
achieve a close agreement with the evaporation rate of GS1996 at a specific
humidity of 15 g/kg and 7' = 288 K. Additionally, the value of C,is chosen to
closely approximate the terminal velocity of GS1996. Parameters selected
for calibration are indicated by an asterisk preceding their names.

specifically focusing on those that do not have easily definable physical
values. These choices aim to comprise a set of parameters that uniquely
govern auto-conversion, accretion, the terminal velocity of raindrops, and the
rain evaporation rate. To ensure coverage of these processes, we selected one
or two parameters from each process, each capable of significantly modifying
that specific process. Specifically, we select 7, to represent the conden-
sation process, 7,.,, o and a,.,, for auto-conversion, y, and A, for raindrop
terminal velocity, and y, and A, for accretion. Additionally, we include b,,,,,
to regulate the rate of evaporation. Other parameters of the model that are
modulated by the calibrated parameters remain constant during model cali-

bration. For instance, n, is held constant because the product of y, and n, governs the accretion rate, and we

choose to calibrate y,.

2.4. Algorithms for Learning Parameters

The problem of learning parameters for the bulk method is formulated as an inverse problem, represented by the

equation

y=HoWoT HO) +5+n. (14)

Here, y represents the vector of observations, and @ represents the vector of learnable parameters, which are

transformed into an unconstrained space & € R”. The operator 7 is a transformation map that converts parameters

¢ from their constrained subspace (where they satisfy constraints such as positivity) to the unconstrained space,

such that @ = T(¢). The mapping ¥ represents the dynamical model, while H denotes the observational map

incorporating necessary post-processing operations to generate model predictions aligned with the observations.
For example, y may represent averaged specific water content data from particle-based simulations, ¥ represents
bulk scheme simulation results, and H could involve spatial and temporal averaging. The observational noise

associated with the observations y is indicated by #, and the model error by 8. Both  and ¢ are assumed to follow a

Gaussian distribution with zero mean.

To ensure the generalizability of the calibrated model, we train it using multiple system configurations, which

include various setups of the KiD-1d model with differences in the updraft amplitude and initial aerosol number

density. We refer to the set of system configurations used for model training as C. In this study, ICl = 49 con-

figurations are used for the calibrations. The observation vector y consists of observations obtained from all

T
system configurations: y = [yl, Yoo cees lel] . For each system configuration, 100 SDM simulations are con-

ducted, and the mean values of specific contents of cloud water, rainwater, and water vapor over intervals of
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100 m and 10 min are extracted. The data are then normalized by dividing each field by the maximum of its
standard deviation across the 100 simulations. Subsequently, the observation vector y, and the noise covariance I,
are computed for each configuration ¢ using the normalized data obtained from the 100 SDM simulations.

To calibrate the parameters of the bulk scheme using particle-based simulations, we employ two gradient-free
algorithms available in the EnsembleKalmanProcesses.jl package (Dunbar, Lopez-Gomez, et al., 2022): EKI
and UKI. These algorithms, derived from the extended Kalman filter, heavily rely on Gaussian conditioning,
which involves approximating the parameter distributions as Gaussian for the derivation of their update rules. EKI
utilizes an iterative procedure to search for the optimal parameter set (maximum a posteriori, MAP, or maximum
likelihood estimator, MLE, if Bayesian regularization is not applied (Lopez-Gomez et al., 2022)) by updating an
ensemble of J parameter sets with J ~ p. For our calibrations, we choose J = 20. The initial ensemble is formed by
randomly sampling parameters from a Gaussian distribution. On the other hand, UKI adopts a deterministic
approach to update an initial Gaussian estimate represented by an ensemble of J = 2p + 1 parameter sets, aiming
to approximate the posterior distribution around the MAP or the likelihood centered around the MLE. EKI shows
greater robustness against observation noise than UKI, while UKI quantifies model error and estimates parameter
uncertainties. For a detailed discussion on both algorithms, refer to Lopez-Gomez et al. (2022). It is important to
note that, while both EKI and UKI have the capability to estimate the MAP through Bayesian regularization, our
application does not leverage this aspect. Instead, our approach concentrates on maximizing the likelihood to find
the optimal parameter sets that best fit our data. For EKI, the “optimal parameter set” refers to the convergence
point of the parameter ensemble, and for UKI, it refers to the mean of the obtained parameter distribution, which,
due to the Gaussian approximation, coincides with its mode.

The primary challenge with EKI and UKI is their derivation under assumptions that the dynamical model can be
linearly approximated and the observational noise is Gaussian (Bocquet et al., 2010). Despite these assumptions,
EKI and UKI have proven effective in nonlinear and non-Gaussian settings (e.g., Dunbar, Howland, et al., 2022;
Lopez-Gomez et al., 2022). Their gradient-free nature allows for flexibility in handling discontinuities in the
dynamical model, although fully addressing processes with sharp thresholds remains a challenge. Another
concern is enforcing parameter constraints, such as positivity, which can be mitigated through the use of
transformation maps. These maps convert parameters from their original constrained spaces to unconstrained
spaces, enabling Gaussian distribution assumptions while retaining physically meaningful bounds. Notably, for
high-dimensional systems the ensemble size requirement of J ~ p could render EKI impractical; UKI faces even
greater challenges, requiring an ensemble size of J = 2p + 1. Recent studies, such as the localized EKI,
demonstrate the feasibility of solving high-dimensional inverse problems with a modest ensemble size (Tong &
Morzfeld, 2023). This approach is inspired by localization techniques in ensemble data assimilation methods that
are commonly used in weather forecasting to estimate millions of unknowns with an ensemble size of just a few
hundred (e.g., Ott et al., 2004). In our study, an ensemble size of J = 20 for EKI is found to be practical and
effective.

Training the model involves minimizing the average configuration loss function that penalizes the mismatch
between observations and model outputs. The average configuration loss is given by

1 & -
L(6;y) =m2 |y = HeoWeo T O)IIF. . (15)
c=1

where ||. |, represents the Mahalanobis norm, with ||.||%L = (-,['7!.). Both EKI and UKI require evaluating the
loss at each iteration, which involves running the model for all configurations. However, this can be computa-
tionally expensive. To address this, we employ mini-batches of configurations denoted as B C C to approximate
the average configuration loss:

1

L(6;yp) = 2B

Dillye—H 0¥ 0T (O (16)

cEB

Batching is a commonly used technique that helps prevent convergence to local minima and thus improves
generalization (Li et al., 2014). For our study, we choose a batch size of IBl = 6 for running the calibrations.
During model training, EKI and UKI receive data from a mini-batch of IBl configurations at each iteration. The
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mini-batches are randomly drawn without replacement from the set of training configurations C. An epoch
corresponds to a complete cycle through all available configurations such that no other mini-batch can be
composed of the remaining configurations. At the end of each epoch, the configurations are reshuffled. With
ICl = 49 and IBl = 6, each epoch consists of eight iterations.

The initial parameter ensembles for both EKI and UKI are determined randomly, centered around the prior means.
Standard deviations are set to 20% of the prior means for parameters where the prior mean is nonzero. For the
parameters A, and A, with a prior mean of zero, standard deviations are set to 0.4 and 0.1, respectively.

3. Results and Discussion

In this section, first, we discuss a library of particle-based simulations of the KiD-1d model for different system
configurations. Then, we continue by demonstrating the calibration of the single-moment bulk scheme using the
library of particle-based simulations as a benchmark.

3.1. Library of Rain Shaft Simulations

We have generated a library of KiD-1d model simulations using the SDM. This library includes simulations with
varying values of the updraft amplitude ((pw),), initial aerosol number density (V,), and ground-level pressure
(po)- The updraft amplitude ranges from 1.0 kg m™ s™'-4.0 kg m™2 s™" in increments of 0.5 kg m™> s™". The
initial aerosol number density takes values of N, = [10, 20, 50, 100, 200, 500, 1,000] cm_3, all corresponding to
concentration at standard temperature and pressure conditions for dry air. The aerosol concentrations are selected
to span conditions from very clean to heavily polluted atmospheres, ensuring the robustness of our calibration
across a wide range of aerosol conditions. Simulations are conducted for five different surface air pressures,
ranging from p, = 988 hPa to p, = 1,012 hPa in increments of 6 hPa. Each increment in air pressure corresponds
to an approximate increase of 0.5 K in the prescribed temperature profile, which impacts the cloud condensate
profile. For each combination of variables, we produce 100 simulations to compute the average and variability of
the results.

By varying the values of the updraft speed and surface pressure, we can influence the amount of condensed cloud
water and, consequently, the precipitation. Additionally, changing the initial aecrosol number density influences
the collision and coalescence of droplets, thereby influencing the formation of rain (Tao et al., 2012). The se-
lection of different values for these control parameters allows us to generate various rain formation conditions.
This variety is crucial for providing the calibration process with diverse training data, thus enhancing the
generalizability of the trained model.

In addition to the simulations of the KiD-1d model involving all processes, we conducted additional simulations
where the collision and coalescence processes were excluded. These simulations, referred to as condensation-only
cases, do not result in rain formation as droplets do not grow large enough to sediment through condensation
alone. We performed these simulations with the intention of using them as a reference to evaluate the numerical
advection of ambient moisture and the condensation scheme of the bulk model separately from other process
parameterizations. Figure 1 (left panels) illustrates an example simulation of a condensation-only case. The figure
shows the height-time contours of the cloud water and rainwater specific content, as well as the cloud water path
(CWP), rainwater path (RWP) and surface rain rate (RR) over time. The CWP and RWP represent the total
amount of cloud water and rainwater in a column of moist air per unit area, respectively. As is evident in Figure 1
(left panels), condensation primarily occurs within the first 10 min of the simulation (¢ < ¢;) when the updraft
speed is non-zero. After 1, = 10 min, no rainwater forms as collision and coalescence processes are not
considered, and the cloud water is preserved.

When collision and coalescence processes are involved, formation of raindrops is observed. We use a fixed radius
threshold of 50 pm to differentiate raindrops from cloud droplets for simulation output analysis. We found the
sensitivity of the results to the exact value of this threshold to be insignificant. Figure 1 (right panels) illustrates
the generation of rain in the simulation of the KiD-1d model with the inclusion of rain production through particle
collision and coalescence. Following the coalescence of particles and the formation of raindrops, the raindrops
descend due to sedimentation, moving below the cloud base where water vapor is not saturated. Consequently,
rain evaporation occurs, resulting in only some of the initial rain water reaching the surface.
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Figure 1. Simulations of the KiD-1d model using the super-droplet method, both without (left panels) and with (right panels)

the inclusion of rain production through particle collision and coalescence. The simulations employ an updraft momentum
amplitude of 3 kg m~2 s~! and an initial acrosol number density of 100 cm™~>. Height-time contours for the average specific

cloud water content, g, (a and b), as well as the average specific rainwater content, g, (c and d) are shown. Panels (e and f)
illustrate the evolution over time of cloud water path, rainwater path, and surface rain rate. In panel (f), variations in the
graphs are represented by shading, indicating one standard deviation above and below the mean.

Varying the updraft speed and aerosol number density impacts precipitation processes by influencing the
availability of water vapor for condensation and the number of particles contributing to rain formation through
collision and coalescence. Increases in updraft speed enhance supersaturation and cloud water content, thereby
leading to increased rain production. Conversely, higher aerosol concentrations lead to the formation of smaller
droplets, reducing the efficiency of collision-coalescence and, consequently, rain production (Lohmann
etal., 2016). Figure 2 illustrates these effects in the context of KiD-1d simulations with a fixed surface pressure of
po = 1,000 hPa. It demonstrates that the maximum CWP (Figure 2a), RWP (Figure 2b), and RR (Figure 2c)
increase with updraft speed. Additionally, an increase in aerosol concentration leads to a decrease in both the
maximum RWP and RR. Furthermore, Figure 2d illustrates that increasing the updraft speed and decreasing the
aerosol number density result in an earlier rain initiation time. The rain initiation time is defined as the time at
which the specific rainwater content surpasses a chosen small threshold (g, = 107 g kg™"). Generally, higher
updraft amplitudes and lower aerosol number densities lead to earlier and more substantial rain formation. Note
that similar behavior can be observed at other surface pressures, with less rain observed for higher surface
pressures. These observations highlight the sensitivity of rain formation to the values of updraft speed and aerosol
number density, suggesting that the microphysical processes governing rain formation are susceptible to certain
parameters. These findings are consistent with the results of Hill et al. (2023), where they demonstrate the high
sensitivity of rain initiation time and amount to specific parameters and different super-droplet implementations.

The simulations conducted with the KiD-1d model using the SDM serve as a benchmark for calibrating warm-rain
bulk microphysics schemes. This data set encompasses a wide range of precipitation conditions, from instances
with no rain formation to those with substantial rainfall, with a maximum RWP exceeding 1.6 kg m™> for

AZIMI ET AL.

10 of 23

A ‘L “PTOT ‘99¥TTH61

:sdiy woxy papeoy

2SULDIT suowwo)) dANeaI) a[qesrjdde ayy Aq pauIaA0S aIe sa[o1IE V() SN JO SN 10J AIRIqIT dul[uQ) AJ[IA\ UO (SUONIPUOI-PUE-SULI) /WO’ KA]1m KIeIqijaut[uo//:sdny) suonipuo)) pue sud [, 3y 23S “[$70z/01/60] uo Areiqry autjuQ Lo[ipy ‘ASojouyoa ], yo jsuj eruiojife)) Aq §Z0#00SINEZ0T/6201 0 1/10p/wod Kafim"



A7

A\I Journal of Advances in Modeling Earth Systems 10.1029/2023MS004028
a b
CWPmax [kg/m?] RWPmax [kg/m?]
4 . 4 -
2.0 /
_/_1.0
@ i /ﬁ
~ 30 1.4 ~ 3 /0,7 /
é 12 g /0,6
2 1.0 2 _/0,45/
<, o <, 0,30/
S 2 S
o 0 O — oxs/_
0.4
0.2 "
tor 102 103 tor 102 103
N, [1/cm3] Na[1/cm?]
c
4 RRax [mm/hr] 4 Rain initiation time[min]
— ; "
AA%Oé
P _ /
n /__._———//—/ n
3 " : ~3F ¢ 1
:O :O I3
= 2t 1 = 2r ~ 2 1
e e
pa = 2
LA
tor 102 103 tor 103
Na [1/Cm3] Na [1/Cm3]

Figure 2. Sensitivity of outputs from the KiD-1d model using the super-droplet method to varying updraft momentum
amplitude and initial aerosol number density. The panels display contours of (a) the maximum cloud water path CWP,
(b) the maximum rainwater path RWP, ... (c) the maximum surface rain rate RR,
results are averaged over 100 simulations.

max?

and (d) the rain initiation time. The

max>

Ppo = 1,000 hPa. The observed sensitivities of cloud water content, rain initiation time, and rainwater content
suggest that the data set represents diverse rates for microphysics processes, including condensation, auto-
conversion, accretion, and rain evaporation. We anticipate that these sensitivities greatly contribute to the
generalizability and effectiveness of the calibrated bulk microphysics schemes. However, it's important to note
that the decoupling of microphysics from dynamics, particularly ignoring turbulence effects on collision-
coalescence processes, is a limitation of this study. Additionally, the lack of lateral mixing and entrainment in
the KiD-1d model represents a significant limitation. In a three-dimensional turbulent atmospheric environment,
mixing and entrainment tend to broaden the droplet size distribution, impacting the efficiency of collision-
coalescence and the formation of precipitation. The absence of these processes in our modeling framework
means that the droplet size distributions produced might be narrower than those expected in a three-dimensional
turbulent environment, influencing the modeled collision-coalescence and the precipitation formation. These
limitations may introduce biases in the calibration results and negatively impact the performance of calibrated
schemes in more complex setups like large eddy simulations or earth system models.

It is worth noting that the simulations in the KiD-1D model are not aimed at accurately representing the complex
physics of a real precipitating cloud. Specifically, the KiD-1d model does not take into account turbulence or
temperature fluctuations. Its design isolates microphysics from dynamics and thermodynamics, allowing for a
focused study of microphysics phenomena. This isolation ensures that any variations observed in the results can
be attributed solely to changes in the microphysics schemes being investigated. An alternative approach to
decouple microphysical feedbacks from dynamics and thermodynamics is “microphysical piggybacking”
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Figure 3. Variations of the loss function during calibration for the (a) training set and (b) validation set. Graphs in both panels
are normalized by the loss of the model with the initial parameters to allow comparison.

(Grabowski, 2015; Grabowski & Morrison, 2016). The idea of piggybacking centers on the use of two sets of
thermodynamic variables within a single simulation: one set actively interacts with and drives the simulation,
while the second set, “piggybacking” the simulation, adapts to the flow dynamics without affecting it.

3.2. Calibration of a Bulk Scheme With the Library of Super-Droplet Simulations

In this subsection, we present the calibration results of the single-moment bulk microphysics scheme using the
library of the SDM simulation results. For training the model, we use all SDM simulations with varying updraft
amplitude and aerosol number density at the fixed surface pressure of p, = 1,000 hPa. In total, the training set
contains |Cl = 49 cases. From each individual simulation in a case, we extract mean values of specific cloud water
content g, rainwater content g,, and humidity g, over intervals of 100 m and 10 min to use in the calibration
process. We utilize a mini-batching technique, randomly selecting 6 configurations at a time for each calibration
iteration, which facilitates effective and efficient training. Each epoch consists of 8 calibration iterations (for
details see Section 2.4).

The validation set, on the other hand, is intentionally selected from configurations at a different ground-level
pressure than the training set. This intentional selection allows us to assess whether the calibrated model can
effectively capture simulations from a data set that is not used for training. Specifically, the validation set consists
of simulations performed with the surface pressure p, = 994 hPa with updraft amplitudes of (pw), = [2, 3, 4]
kg m™2 5! and aerosol number density N, = [50, 200] cm™. It is worth noting that the lower ground-level
pressure of the validation set corresponds to approximately 0.5 K lower temperature. This leads to higher su-
persaturation and increased rain, providing a distinct data set for validation compared to the training data. As a
result, it is unnecessary to modify the value of the updraft amplitudes and initial aerosol number densities in the
validation set from those used in training.

It is important to note that aerosol-cloud interactions are treated differently between the reference SDM simu-
lations and the bulk scheme model. While SDM provides a detailed representation of condensation processes,
which resolves supersaturation-driven cloud condensation nuclei activation into cloud droplets, the bulk scheme
simplifies this process by mapping aerosol concentration (N,,) to droplet concentration (N,). In the context of our
one-dimensional simulations, this mapping from N, to N, used in bulk parameterizations provides a reasonable
approximation and does not significantly impact the calibration results.

Figure 3a shows the evolution of the configuration-averaged loss during calibrations for both EKI and UKI. Both
EKI and UKI achieve a reduction of the loss to less than 25% of the initial loss observed with prior parameter
values, demonstrating their effectiveness in identifying parameter sets that substantially improve model perfor-
mance. Although calibration is continued for 50 epochs, significant loss reduction mainly occurs within the first
15 epochs, with EKI reducing the error more rapidly. It is important to note that the calibration process exclu-
sively involves the training set to optimize the model parameters. The validation set, which comprises different
atmospheric conditions not used in training, is employed solely for assessing the model's generalizability and
performance. Figure 3b shows the evolution of the configuration-averaged loss based on the validation set for
both EKI and UKI. When applying the calibrated model parameters to the validation set, we observe that the loss
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Table 3

Results of the Calibration of the Single-Moment Bulk Scheme by Ensemble
Kalman Inversion and Unscented Kalman Inversion
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Figure 4. Evolution of (a) the two accretion coefficients, y, and A, and (b) the two terminal velocity coefficients, y, and A ,
during calibrations for both Ensemble Kalman Inversion (EKI) (dashed blue) and Unscented Kalman Inversion (UKI)
(dashed orange). The initial ensembles of parameters are represented by blue circles (EKI) and orange circles (UKI), while
the final ensembles of parameters are indicated by blue squares (EKI) and orange squares (UKI). Insets provide a zoomed-in
view of the final parameter ensemble from UKI, illustrating the distribution as an indicator of parameter uncertainty. The
final ensemble means for all parameters are given in Table 3.

reduction is almost equal to that of the training set, indicating that the calibrated model generalizes well to the
precipitation conditions in the validation set.

Depending on the stochastic initialization of the parameter ensemble for EKI, EKI and UKI may converge to
different sets of parameter values that minimize the mismatch between bulk method results and SDM simulations.
This is demonstrated in Figure 4, which shows the evolution of the two accretion coefficients, y, and A, as well as
the two terminal velocity coefficients, y, and A,, by both EKI and UKI. While EKI and UKI converge to similar
results for y, and A, the evolution of the two accretion coefficients y, and A, during the EKI and UKI calibrations
shows significant differences, which indicates the convergence of EKI and UKI toward two distinct sets of pa-
rameters. The evolution of all parameters during the EKI and UKI calibrations is provided in Appendix B. The
final values of all parameters obtained by EKI and UKI are provided in Table 3.

The main difference between the two parameter sets obtained by EKI and UKI is in the auto-conversion and
accretion parameters. In the UKI set, the auto-conversion parameters, that control the auto-conversion time scale,
are significantly larger than those in the EKI set. Consequently, the UKI set predicts larger auto-conversion time
scales, leading to lower auto-conversion rates. However, this change is counterbalanced by the smaller values of
the accretion coefficients, including A,, which governs the exponent of g, in the accretion process rate. With a
smaller exponent, the accretion process yields larger rain production rates for
small g, values, particularly in the early stages of rain production. Thus, larger
accretion rates compensate for the smaller auto-conversion rates, resulting in
comparable rain formations in the simulations.

Parameter name  Prior value  EKI optimal value =~ UKI optimal value . . . .
Notably, the optimal auto-conversion time scale, 7, o, obtained by both
Teond s S — EKI and UKI are larger than the auto-conversion time scale of 1,000 s
Tacnv, 0 1.0x10° s 13.4x10° s 549.1 X 10° s documented in Grabowski and Smolarkiewicz (1996). This difference may be
Aoy 1.0 0.52 2.09 attributed to the fact that, unlike Grabowski and Smolarkiewicz (1996), we do
% 1.0 0.205 0.213 not consider any auto-conversion threshold. Moreover, the exponent of g, in
A, 0.0 0228 0351 the‘accretlon parameterl.zat.lon, (A.a + Av)/.4 + 7/8, is close to one‘ for. UKI
10 Gl il optimal parameters. This is consistent with bulk schemes of Tripoli and
Aa ’ ’ ’ Cotton (1980), Beheng (1994), and Seifert and Beheng (2006). In contrast, the
Aq Ly Sl e exponent for EKI optimal parameters is relatively larger. Since both EKI and
b 0.53 0.98 1.48

vent

UKI achieve an approximate 75% reduction in loss, we accept both sets of

Note. Columns represent parameter names, the prior parameter values, and
the optimal parameter values from EKI and UKI calibrations. The optimal
values are obtained by averaging the final ensembles of parameters.

parameters as valid calibrations for the bulk method. Incorporating detailed
auto-conversion and accretion rate information in the training data could
provide further insights and help obtain a unique set of optimal parameters.
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Figure 5. Comparison of the simulations of the KiD-1d model without collision processes using the super-droplet method

(SDM) and the calibrated bulk method by Ensemble Kalman Inversion. Updraft amplitude is set to 3 kg m ™2 s~", and the

initial aerosol number density is 100 cm™>. The left panel shows height-time contours of specific cloud water content, while
the right panel displays the specific cloud water content at 7 = 20 min. The results from both methods, the SDM and the
calibrated bulk method, are in excellent agreement showing that the bulk scheme well captures the condensation process.

In addition to identifying optimal parameter values, UKI offers insights into parameter uncertainty bounds. We
observe that the standard deviation of the parameter ensemble obtained by UKI defines a narrow range of pa-
rameters (see Figure B1). Remarkably, both the initial parameter values and the estimates from EKI fall outside
these uncertainty bounds. This may arise from the low variability in the reference data set and the methodological
assumptions of UKI, including its reliance on Gaussian approximations for parameter distributions. These as-
sumptions might not fully represent the complexity and inherent nonlinearities of cloud microphysics, leading to
the observed discrepancies between expected and observed parameter ranges. Despite these considerations, the
uncertainty estimates from UKI provide valuable insights. They offer a quantifiable measure of confidence in the
parameter estimates and illuminate correlations between parameters, indicating directions for model
improvement.

In the simulation of the KiD-1d model, when precipitation processes are not included (condensation-only case),
the only parameterized process is the condensation of water vapor into cloud water by Equation 9. Given the
controlled dynamics and thermodynamics within the KiD-1D framework, we anticipate a close agreement be-
tween the simulation results of the condensation-only cases using the bulk method and SDM. Including pre-
cipitation in the simulations presents a more stringent challenge, testing the effectiveness of the bulk model's
calibration under complex conditions. Despite this, the comparison of the bulk method and SDM for the
condensation-only case serves as a key evaluation, validating the representation of condensation and water vapor
advection processes within the bulk method against the SDM benchmark. Figure 5 shows results of the simulation
of the KiD-1d model with (pw), =3 kgm™>s~', N, = 100 cm ™ and p, = 1,000 hPa in the condensation-only case
by using the calibrated bulk method and SDM. Height-time contours of specific cloud water content g, and the
profiles of g, at t = 20 min are compared. Note that in the condensation-only case the observed differences
between the bulk method simulation with prior values and both EKI and UKI optimal values are relatively small.
We thus only show the results of the EKI calibrated bulk method. The simulation results by the calibrated bulk
method are in excellent agreement with the results of the SDM. This excellent agreement confirms the satisfactory
performance of the implementation of condensation and water vapor advection in the bulk method simulations.

Figures 6 and 7 compare simulations using the SDM, the bulk method before training, and the calibrated bulk
method by EKI and UKI. Figure 6 visualizes contours of specific cloud water content g, and specific rainwater
content g, in height and time, while Figure 7 shows profiles of g and g, at ¢t = 10 min, ¢ = 20 min, = 30 min, and
t =50 min. As evidenced in these figures, the bulk method with the initial parameters underestimates the specific
cloud water content and incorrectly predicts an early peak in specific rainwater content. These deviations suggest
an overestimation of rain production and sedimentation rates in the bulk method before training. However, both
EKI and UKI optimal parameters significantly improve the bulk method simulations with respect to the SDM

increase, resulting in reduced auto-

results. After calibrations, the auto-conversion parameters 7, o and a,.,,

conversion rates. Additionally, the terminal velocity parameter y, decreases, leading to reduced sedimentation.
On the other hand, the accretion parameter y,, increases in both EKI and UKI calibrations. However, it is important
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Figure 6. Comparison of the KiD-1d model simulations using the super-droplet method (SDM) and the bulk method. Height-time contours of specific cloud water
content g, (left panels) and specific rainwater content ¢, (right panels) are compared for the simulations using the SDM (a and b), the bulk method with the initial
parameters (¢ and d), and the calibrated method by Ensemble Kalman Inversion (e and f) and Unscented Kalman Inversion (g and h). Black solid lines indicate
q.=03g kg™ (left panels) and q,=03g kg™ (right panels), while black dashed lines represent the same contour levels for the SDM results, overlaid on all panels for

comparison. The simulations use (pw), =3 kg m " s

-2 —1

to note that the accretion rate, which is influenced by sedimentation, is governed by the product y,y,. In the
calibrated bulk method, this product slightly increases compared to that with the initial parameters. These
parameter adjustments contribute to the overall decrease of rain formation and sedimentation, and the reasonable

, N, =50 cm™, and p, = 994 hPa. The SDM results are the average of 100 simulations.

agreement of the calibrated bulk method, by both EKI and UKI, with the SDM results.

While the simulations using the calibrated bulk method by EKI and UKI yield similar overall results, there are
differences in specific details. For example, the maximum specific rainwater content for the EKI calibrated bulk
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Figure 7. Solutions of the super-droplet method (SDM) and the bulk method with the initial and the calibrated parameters are compared. The specific cloud water content
profiles (top panels) and specific rainwater content profiles (bottom panels) are shown at times 7 = 10 min (panels a and e), = 20 min (panels b and f), # = 30 min (panels
c and g) and ¢ = 50 min (panels d and h). The calibrated bulk method results are obtained by evaluating the model using the ensemble means. For the SDM results, the
dashed lines represent the average of 100 simulations, while the shadings visualize the variability, showing plus and minus one standard deviation.

method exceeds that for the UKI calibrated bulk method by more than 30%. Also, when g, for the SDM peaks
(t ~ 20 min), the EKI calibrated bulk method underestimates q,. close to the cloud base while the UKI calibrated
bulk method overestimates it compared to SDM results. This observation suggests that the rain production rate for
the EKI calibrated bulk method is overestimated while that for the UKI calibrated bulk method is underestimated.
This is confirmed in Figure 8 where CWP, RWP and RR are visualized over time. The RWP for the SDM peaks
slightly after that for the EKI calibrated bulk method and shortly before that for the UKI calibrated bulk method,
indicating the overestimation of the rain production rate by the EKI calibrated bulk method and the underesti-
mation of the rate by the UKI calibrated bulk method. The higher rain production rates predicted by the EKI
calibrated bulk method occur around the peak of g,, which corresponds to the period when accretion is the
dominant rain formation process. This observation suggests that the EKI calibrated method predicts higher ac-
cretion rates for large values of g, compared to the UKI calibrated method. This difference in accretion rates can
be attributed to the higher value of the accretion parameter y, in the EKI parameter set. Additionally, it is notable
that the RR for the EKI calibrated bulk method is more than 30% higher than that for the UKI calibrated bulk
method. The higher RR is due to the lower evaporation rate of the EKI calibrated bulk method (caused by smaller
b,.ny) than that of the UKI calibrated bulk method. These differences highlight the uncertainty associated with
parameter values in the calibration process, emphasizing the need for further research to refine these parameters
and enhance the reliability of simulation outcomes.

The bulk method before training incorrectly predicts an early RR due to the incorrect prediction of early rain
production. The calibrated bulk methods by both EKI and UKI predict the timing of the RR very well. However,
they fail to correctly predict the magnitude of the maximum RR. The significant error in the prediction of the
maximum RR despite capturing g, well can be attributed to the inability of the single-moment bulk method to
adequately predict the terminal velocity of particles. The poor representation of terminal velocity by the single-
moment bulk scheme is inevitable as terminal velocity is simply a single-valued function of g, and the gravi-
tational size sorting is not captured (Milbrandt & McTaggart-Cowan, 2010). The prediction of the maximum RR
can be improved by using multi-moment bulk schemes with sedimentation rates that can capture gravitational size
sorting.

Figure 9 presents a comparative overview of the maximum CWP, maximum RWP, maximum RR, and the timing
of the maximum RR across all validation cases. Validation cases include various updraft amplitudes and aerosol
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a number densities, with a surface pressure of 994 hPa, which corresponds to an
: 0.5 K colder temperature profile across the domain compared to the training
--- SDM set. Similar to the observations in the single validation case discussed earlier,
1.5 4 W Bulk initial 1 the calibrated bulk methods by EKI and UKI consistently predict the
—-— Bulk EKI maximum CWP, the maximum RWP, and the timing of the RR very well
—— Bulk UKI across all validation scenarios, showing the effectiveness of the calibrated
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Figure 8. (a) Comparison of the cloud water path CWP, (b) rainwater path
RWP, and (c) surface rain rate RR for simulations using the super-droplet
method (SDM) (black dashed), the bulk method with the initial parameters
(green dotted), and the calibrated bulk method by Ensemble Kalman
Inversion (blue dash-dot) and Unscented Kalman Inversion (orange solid).
The results of the calibrated bulk method are obtained by evaluating the bulk
method with the ensemble mean. The SDM results represent the average of
100 simulations, and the profile variability is indicated by shading plus and
minus one standard deviation.

models in replicating the microphysical processes. However, a recurring
challenge observed across the validation set is the overestimation of the
maximum RR by both calibrated methods when compared to the SDM,
underscoring the limitations of the single-moment bulk scheme in capturing
sedimentation accurately.

In addition to the maximum likelihood estimator, UKI provides correlations
between model parameters. Figure 10a visualizes the correlation map between
parameters of the single-moment bulk scheme obtained by the UKI calibration.
For the employed training data set, the calibrated bulk scheme shows strong
correlations between the two auto-conversion parameters 7., o and @,
between the two accretion coefficients y, and A, as well as between the two
terminal velocity coefficients y, and A,. Also, both accretion coefficients are
moderately anti-correlated with auto-conversion and terminal velocity
coefficients.

The correlations between the two accretion coefficients and between the two
terminal velocity coefficients can be attributed to the compensatory nature of
these parameters in their corresponding process rate equations. Specifically,
an increase in the scaling factor (e.g., y, or y,) is accompanied by a corre-
sponding increase in the exponent of g, (e.g., A, or A,). The anti-correlations
between the accretion and terminal velocity parameters arise from the direct
effect of sedimentation on the accretion rate. The anti-correlation between the
accretion coefficients and the auto-conversion parameters is due to the
counterbalance between these two processes in the early stages of rain for-
mation. The strong correlation between the two auto-conversion parameters
suggests that as the initial number density N, increases, a greater adjustment
in the auto-conversion process is required to maintain a balanced rain for-
mation process.

Utilizing the correlation information provided by UKI can contribute to
refining the parameterizations of the bulk method by identifying a smaller set
of uncorrelated parameters for calibrations. For instance, the strong correla-
tion between auto-conversion parameters suggests that training the model for
only one of the two parameters might result in a similar reduction of the
model-data mismatch as training for both parameters.

The parameter correlations derived from UKI are consistent with the differ-
ences between the optimal parameter sets obtained by EKI and UKI. In the set
of UKI optimal parameters, both auto-conversion parameters are higher than

those in the EKI set, while both accretion coefficients are lower and both terminal velocity coefficients are slightly

higher. The parameter correlations and the consistent differences between the EKI and UKI optimal parameter

sets suggest the existence of a range of parameters for which the model-data mismatch remains acceptably small.

This is illustrated in Figures 10b and 10c, where contours of the configuration-averaged loss function are visu-

alized for varying accretion parameters y, and A, while other parameters are fixed at the EKI or UKI optimal

values. As evidenced in this figure, the loss function value remains below 25% within a notably wide region in the

space of y, and A,. These results demonstrate the existence of a continuous range of parameter combinations that

yield satisfactory model performance, allowing for flexibility in selecting parameter values. The convergence to

different points within this low-loss region of parameter space can be attributed to the distinct update rules of EKI

and UKI, as well as differences in their initial parameter ensembles. Obtaining a unique set of parameters can be
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Figure 9. Comparison of simulation outcomes for (a) maximum cloud water path CWP_ ., (b) maximum rainwater path
RWP, .., (c) maximum surface rain rate RR ., and (d) the timing of the maximum rain rate across all cases in the validation
set. Results are shown for the super-droplet method (SDM) (black circles), the bulk method with initial parameters (green
crosses), and the bulk method calibrated using Ensemble Kalman Inversion (blue squares) and Unscented Kalman Inversion
(orange diamonds). The cases, numbered i to vi, differ by updraft amplitude ((pw), in kg m~2 s7") and aerosol number
density (N, in cm™), as follows: case i: (pw), = 2, N, = 50; case ii: (pw), = 3, N, = 50; case iii: (pw), = 4, N, = 50; case iv:
(pw)y =2, N, =200; case v: (pw), = 3, N, = 200; and case vi: (pw), =4, N, = 200. The surface pressure for the validation set
is py = 994 hPa, differing from the training set's surface pressure of p, = 1,000 hPa. The calibrated bulk method results are
evaluated with the ensemble mean, while the SDM results are based on the average of 100 samples.
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Figure 10. Parameter correlations estimated using the Unscented Kalman Inversion (UKI) method (a), and contours of the
loss function L(6; y,) for varying accretion parameters y, and A ,, while keeping other parameters fixed at the Ensemble
Kalman Inversion (EKI) (b) and UKI (c) optimal values. The markers indicate the optimal values of the accretion parameters
obtained by EKI (b) and UKI (c). The loss values are normalized by the value of the loss evaluated for the bulk model with the
initial parameters.
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achieved by providing additional constraints for parameter estimation through incorporating detailed information
about auto-conversion and accretion processes in the training data. While SDM does not directly output auto-
conversion and accretion rates, it is possible to infer these rates indirectly from the comprehensive collision-
coalescence data available within SDM simulations. By leveraging such information, it may become possible
to refine the parameterizations of the bulk method and enhance the model's capability to capture the underlying
dynamics. The investigation into incorporating auto-conversion and accretion process rates into the parameter-
ization of the bulk model is left for future research.

4. Summary and Conclusion

The aim of this study was to improve the accuracy of the representation of cloud and precipitation processes
within bulk schemes. We presented a calibration framework for training warm-rain bulk microphysics schemes
by using high-fidelity super-droplet simulations. The calibration framework uses ensemble Kalman methods for
training the models, including EKI and UKI. Calibrations are carried out by leveraging simulations of the KiD-1d
model, a one-dimensional rain-shaft model that has been widely used for studying microphysics schemes. In this
model, the updraft and the temperature profile are prescribed so that any variation in the results can only be
attributed to changes in the employed microphysics scheme.

To benchmark the performance of the bulk methods, we generated a library of super-droplet simulations of a rain
shaft model. Simulations were carried out for different updraft amplitudes, initial aerosol number density, and
surface air pressure to provide a wide range of precipitation conditions for comparing and evaluating bulk
microphysics schemes.

Our results demonstrate the effectiveness of the calibration framework by applying it to a single-moment
microphysics model. While calibrations by EKI and UKI result in two different sets of parameters, the
calibrated bulk method by both EKI and UKI shows a significant reduction in model error with respect to the
super-droplet simulations. Specifically, the prediction of cloud and rain profiles showed excellent agreement
with the reference simulations. However, while the timing of the surface precipitation rate showed
improvement, the magnitude of the maximum RR was overpredicted by the single-moment bulk scheme. This
finding emphasizes the need for further research to capture the surface precipitation rate more accurately,
particularly by exploring the potential of higher-moment schemes that can represent the gravitational size
sorting of particles.

While our results demonstrate the efficacy of our calibration approach within a one-dimensional framework, we
acknowledge that simplifications in our simulation setup, such as the lack of lateral mixing and entrainment which
causes narrower PSD, might affect the outcomes. A comprehensive validation of the calibrated model's gener-
alizability, particularly to more complex and realistic atmospheric conditions, would therefore benefit from the
application of three-dimensional simulations. The extension to three-dimensional simulations is highlighted as an
important direction for future work.

In this study, the application of ensemble Kalman methods (EKI and UKI) for calibrating a single-moment
warm-rain bulk scheme by using SDM simulations has revealed two distinct yet effective parameter sets,
illustrating the phenomenon of equifinality in model calibration. These sets, while not equivalent demon-
strate the model's flexibility and the presence of compensation effects where diverse parameter sets achieve
similar model performance. This outcome is further supported by parameter correlation analysis by UKI,
which suggests the existence of a continuous spectrum of viable parameter combinations. The insights from
the correlation analysis help us to understand the interdependencies between parameters, indicating that
multiple pathways can lead to comparable improvements in model performance. This analysis underscores
the importance of further refining the model by incorporating independent constraints on microphysical
processes, including detailed information from SDM simulations on processes like auto-conversion and
accretion, to reduce compensating parameter uncertainties. Future research will focus on integrating such
detailed process rates into the bulk scheme's parameterization, aiming to identify more constrained and
physically realistic parameter sets that improve model accuracy and reduce the ambiguity associated with
equifinality. This work underscores the complexity of microphysics simulation and the ongoing need for
comprehensive strategies to refine model parameterizations within the inherent limitations of observational
and simulation data.
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Our study highlights the potential of calibrating classic parameterizations of microphysics using high-fidelity
super-droplet simulations. Although super-droplet techniques are still in their early stages and pose potential
limitations in capturing the entirety of the underlying physical phenomena (Hill et al., 2023; Morrison
et al., 2020), leveraging the valuable insights obtained from these simulations can enhance classic microphysics
parameterizations. Unlike observational data, these simulations allow us to disentangle microphysics from other
dynamics and calibrate microphysics processes in isolation from their feedbacks with atmospheric flows.
However, with this decoupling, aspects of the cloud system evolution sensitive to these feedbacks cannot serve as
observational constraints. Despite this limitation, the ability to isolate microphysics offers a significant advantage,
enabling us to explore and refine microphysics parameterizations in a controlled manner, which would be
challenging even with abundant laboratory or observational data. Utilizing super-droplet simulations is a
promising approach to improve microphysics parameterizations, particularly in regions where clouds show strong
sensitivity to microphysics parameters. Further research in this direction is needed to explore the full potential and
capability of the super-droplet simulations in improving the accuracy of classic parameterizations of cloud
microphysics.

Appendix A: Result Independence From Numerical Values

Figure Al compares SDM simulations of the KiD-1d model with (pw), = 3 kg m> s™!, N, = 100 cm ™ and
Ppo = 1,000 hPa for different numerical setups. The reference simulation with an average of N, = 512 super-
droplets per grid box, dz = 50 m and df = 5 s is compared against simulations with doubled number of super-
droplets, halved grid spacing, and halved time step. The results are in excellent agreement, indicating the in-
dependence of the reference simulation from specific numerical values.

a b

3 qclg/kg] 3 ar[g/kg]

g2 g2

= c

2 2

ol ol

T T

% 10 20 30 40 50 60 % 10 20 30 40 50 60
Time [min] Time[min]

Figure Al1. Comparison of KiD-1d model simulations using the super-droplet method with different numerical settings.
Height-time contours of specific content for cloud water (panel a) and rain (panel b) are shown. The solid contour lines
represent the simulation with N, = 512 super-droplets, grid spacing of dz = 50 m, and time steps of dt = 5 s. This simulation
is compared with simulations using doubled number of super-droplets (dashed), halved grid spacing (dashdot) and halved
time steps (dot). The averages of 100 simulations for each set of numerical settings are shown. The excellent agreement of
results indicates that the KiD-1d model simulations are insensitive to the numerical settings used.

Appendix B: Parameter Evolution in EKI and UKI Calibrations

Figure B1 displays the evolution of all calibrated parameters during the calibration of the single-moment bulk
scheme using EKI and UKI methods. The calibrated parameters include accretion coefficients, terminal velocity
coefficients, auto-conversion coefficients, condensation time scale, and evaporation coefficient. While EKI and
UKI show comparable final converged values for the terminal velocity coefficients (y, and A,) and the
condensation time scale (z,,,,), the final converged values of the remaining parameters by EKI and UKI are
significantly different. Note that the low uncertainty bounds in Figure B1 may be attributed to the low variability
in the reference SDM simulations. After temporal and spatial averaging, the maximum standard deviation across
samples typically ranges from 5% to 10% of the maximum field values, influencing the breadth of uncertainty
bounds that can be derived through UKI.
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