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1 | INTRODUCTION

The Cahn—Hilliard functional
Ecnlu] =/(g|Vu|2+W(u)>dx (1.1)
Q

is extensively employed as a phenomenological diffuse-interface model to characterize the free energy
of a system undergoing phase separation [6, 7]. Here Q is a bounded domain in R”, u is the relative
concentration of the two phases and W(u) is a double-well potential with two equal minima at u~ < u™*
corresponding to the two pure phases, and k¥ > 0 is a parameter such that \/E is proportional to the
thickness of the transition region between the two phases.

The Cahn—Hilliard functional and the related Cahn—Hilliard equation and Allen-Hilliard equation
have been used as models to understand many physical properties of two-phase materials. These prop-
erties include but are not limited to phase separation, coarsening dynamics and pattern formation.
These studies are done on a domain €2, thus the interaction of the mixture and the boundary 0Q is
equally important. The Neumann boundary condition d,u = 0 is commonly used, where # is the exte-
rior unit normal at the boundary [2, 5, 18, 22, 26, 31-33, 36]. Other forms of boundary conditions
such as the periodic boundary conditions are also popularly used, especially in computational studies
[8-10, 12, 13, 20, 23-25, 37]. Recently Dai et al. [14] investigated the characterization of the min-
imizer of the Cahn—Hilliard functional for the free energy (1.1) with quartic double-well potential
under the strong anchoring condition, that is, the Dirichlet condition. The authors required that u to
be strongly anchored on the boundary, by matching a prescribed function g on 0£2 pointwisely, which
is the strongest possible match. This type of strong anchoring conditions is very important in physi-
cal modeling [17, 27]. The anchoring could be weakened by requiring the match to be within a small
tolerance when measured in some norm say L?.

It is worth mentioning that the study of the Cahn-Hilliard functional under Dirichlet boundary
condition has been scarce. Notwithstanding, Du and Nicolaides [17] proposed it for a finite element
scheme for the 1D Cahn-Hilliard equation. Bronsard and Hilhorst [4] also studied the limiting behav-
ior of the solution to the Cahn—Hilliard equation with the Dirichlet boundary condition using the
energy method. Other avenues where the Dirichlet boundary condition was considered can be found
in [3, 21, 29].

This article was motivated by the recent work of Dai et al. [14] where in particular they showed
that if the Dirichlet boundary value is the average of the two pure phases then there is a bifurcation of
the minimizer for the Cahn—Hilliard energy functional. In fact, such bifurcation depends on the value «
and this range for « is related to the first eigenvalue of the negative Laplacian with Dirichlet boundary
condition. Moreover, they also showed that for the boundary value that is between the average of the
two pure phases, the symmetry is broken and there is only one minimizer in the same range. Their
analysis was conducted via the Nihari manifold and linked the problem to the negative Laplacian with
homogenous boundary data.

Some numerical simulations for applications in materials science utilize a model that deviates
slightly from the original Cahn—Hilliard equation [30, 35]. In particular, these simulations incorporate
an additional degeneracy, and the equation is represented by the following non-variational system of
equations, named the doubly degenerate Cahn—Hilliard (DDCH) equation:

ur =V - (Mo(m)Vu), (1.2)
Go(wp = —xAu+ W (u). (1.3)
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Here the diffusion mobility M(u«) is nonnegative and generally depends on u, and can be degener-
ate. The additional degeneracy comes from the diffusion restriction function Gy(u) [35]. Numerical
simulations and asymptotic analysis indicate that the DDCH equation has the potential to be a more
precise approximation of surface diffusion [1]. Nevertheless, there was a drawback to this model—it
lacks variationality. In simpler terms, Equations (1.2) and (1.3) lack a recognized free energy. Hav-
ing an expression for the energy facilitates the numerical analysis and analytical validation of the
model’s properties. For instance, the absence of energy makes it impossible to construct variational
derivatives. As a solution to these limitations, a variational diffuse interface model, called the de
Gennes—Cahn—Hilliard (dGCH) model, was developed in [35] and studied in [15]. Similar to the
expression of the free energy in (1.1), the free energy is defined as

_ 1 K 2 1
Eycenlu] = /g e ( SIvul + W(u))dx, ue H(Q). (1.4)
Here
W) =yu—u")w—u)? (1.5)

is a double well potential with two equal minima at u~ < u* corresponding to the two pure phases, and
+

y is a normalizing constant which satisfies /M " V2W(s)ds = 1. go is a function of the form go(u) =

[(w—ut)wu—u)|P, p > 0. We are only going to analyze the numerically convenient case p = 1, that is,

go(w) = |(u = u")(u —u)|. (1.6)

The factor gi is called the energy restriction function or the de Gennes coefficient [16, 28]. Due to the

0
singularity of go(u) at u = u*, it is tempting to conjecture that we need only to consider u € H'(Q)
with values confined between u~ and ut. However, realizing that W(u)/go(u) = y|(u — u™)(u — u™)|
and that

Vu=0 ae. intheset {x € Q : u(x) = u*},

it is natural to interpret the integrand of (1.4) as

1 (x 2 ; +
gu(u)<2|Vu| +W(u)> ifu#u

0 if u = u*.

In this sense, all u € H'(Q) aer allowable for Eggen, although some of them may make Eygcylu] = oo.
More discussions regarding the chemical potential and the dGCH system with a degenerate mobility
can be found in the references above. It is also worth mentioning that Dai, Renzi and Wise recently
established the Gamma convergence of (1.4) [15].

2 | MAIN RESULT

In this article, we are interested in characterizing minimizers for the dGCH energy E4qgcn. The starting
point is to use a transformation to obtain a form that is easier to handle the challenges imposed by the
factor gi. For convenience and without loss of generality we can rescale the energy and boundary data

0
such thatu™ = -1, ut = 1, and

mm=§#—w, gow) = [u? = 1. 2.1
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Introduce the transformation

! ds
he) = / . 2.2)
0 V&o(s)

Since go(s) is zero at s = 1, this transformation is a singular integral. Now let w(x) = h(u(x)) for
all x € Q. Then we can construct a new set of energy functional using a change of variables and the

Sobolev chain rule 1
Froa K 2, W™ (W)
E[w] = /Q <2 |Vw|~ + go(h‘l(w))>dx

For our choices of go and W in (2.1), we have the following explicit expressions for /() and h1l[34]

—In(V2-1-1— g ift < -1
h(t) :={sin” (), ifre[-1,1] (2.3)

[In(7 + \/t2—1)+§, ifr>1

and .
_;<e—(’+§) +e(f+§>>, ifr < —1
(1) 1= {sin(0), ifre[-1,1] 2.4
;<e_(t+§) +e<t+%)>, if£> 1.

If we restrict on the region u € [—1, 1] and hence w € [—%, %], we then have that

W(h='(w)) _ cos?(w)

goh~lw) 4
This motivated us to study the following energy
2
E[w] = / <§|Vw|2+ COS4(W)>dx, we H\(Q), 2.5)
Q

with the hope that under appropriate boundary conditions, minimizers for E(w) indeed lie in
[—7 /2,7 /2]. See Lemma 3.1 for details.

Now we consider a given boundary value m(x) € H 3 (0Q). Using direct method in the calculus of
variations, one can prove that the energy functional (2.5) has a minimizer in the admissible set

Ay = {we H(Q) : w=m(x) on 0Q}. (2.6)

Due to the lack of convexity of W(u), uniqueness of such minimizers is not guaranteed. Every
minimizer w € A,, satisfies the Euler-Lagrange equation

sin(2w)

—KAWwW — YR 0 in Q. 2.7
Note that the above equation is defined in the weak sense, more specifically in the sense that
(SE[w],v) = / <KVW- Vv — %(zw))dx for all v € HL(Q). 2.8)
Q

In this article, we analyze the minimizers of (2.5) under the following three situations of boundary
data.

1. m(x) =0, for all x € 09,
2. 0 <m(x) < /2, forall x € 09,
3. —z/2 <m(x) <0, for all x € 0Q.
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Analysis of these minimizers with different boundary data boils down to the parameter x, which
is a bifurcation parameter, and the minimum eigenvalue A; of the negative Laplacian with Dirichlet
boundary data, that is, the minimum value A that solves the eigenvalue problem

—Aw = Awin Q,

29
w = 0 on 0Q. 29)

We can now summarize our results as follows.
Theorem 2.1. Assume m(x) = 0 for all x € 0Q2.

(i) If x > i, then w = 0 is the only minimizer for E in A,, and
1

min{E[w] : we A,,} = l%,
(ii)) If 0 <k < i, then there exist two and only two minimizers wy, w_ for E in A, and
1
1L

min{E[w] : w e A,,} < o

Moreover, wy +w_ =Oand—§ <w_<0<wy< g in Q.

Theorem 2.2. Let m(x) € C(0Q).

(i) If 0 < m(x) < gfor all x € 09, then there exists a unique minimizer for E in A,,.

Moreover
V4

minm < wy , <
00 +,m 2

(ii) If —g < m(x) < 0 for all x € 0Q, then there exists a unique minimizer for E in A,,.
Moreover

T
—= <w_, <maxm.
2 oQ

Theorems 2.1 and 2.2 will easily translate back into the following results about E4gcp-

Theorem 2.3. Let W be defined by (1.5), g be defined by (1.6), and h € C(0Q2). Consider
minimizers for the energy Eqgcy in the the admissible set

Ay ={ue H(Q) : u=hondQ}.

e
Forh:”;” s

.
(i) If « > i, thenu =" er” is the only minimizer for Eqgcn in Ay, and
1

+ )2
min{Egcenlul 1 u € Ay} = Lo,

(ii) If 0 <k < i, then there exist two and only two minimizers u,u—_ for Eqgcu in Ay,
1

and

+_ )2
min{Escenlul © u € Ay} < Mw.

Moreover,u, +u_=0and u™ <u_- <0 <up <utinQ.
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Furthermore,

-t
(i) If % < h(x) < u" for all x € 0Q, then there exists a unique minimizer for Eqccn
in Ay. Moreover
minh < uy; < ut.
ol +h

-4t
(ii) If u= < h(x) < * er” for all x € 0Q, then there exists a unique minimizer for Eqgcn
in Ay. Moreover
U~ < u_j < maxh.
oQ

Remark 2.4. Note that the translation of Theorem 2.1 and 2.2 into Theorem 2.3 is possible
thanks to the transformation (2.2).

Remark 2.5. We want to emphasize that similar to [14], in this article we concentrate on
the quartic double well potential (1.5). There are technical challenges if we apply the same
framework to other potentials such as the logarithmic potential

Wiog) = { g((l +uw)n(l +u)+ (1 —uw)ln(l — w) + %(1 —u?) if |ul < 1,

+o00 otherwise.
We also want to clarify that the results in this study are about global minimizers of the
dGCH energy (1.4) under Dirichlet boundary conditions. it is an interesting question
whether we could relate these results with properties of solutions for the H~! and L? gra-
dient flows, that is, the dGCH equations or de Gennes—Allen—Cahn equations. It is also

interesting to study properties of other critical points of this energy, local minimizers in
particular. We will save these topics for future explorations.

The rest of the article is devoted to proving Theorems 2.1 and 2.2. First in Section 3 we prove that,
if the boundary value m(x) satisfies —z/2 < m(x) < z/2 for all x € 0Q, then the minimizers for E
are bounded between —z /2 and x /2. In Section 4, we discuss the results about the Nehari manifold,
which are essential for the proof of Theorem 2.1. In Sections 5, we prove Theorems 2.1 and 2.2.

3 | BOUNDEDNESS OF MINIMIZERS WHEN -7/2 <m(x) < /2 ON 0Q
The following lemma justifies our motivation to transform the minimization of E4gcy into the
minimization of E.

Lemma 3.1. Suppose —n/2 < m(x) < n/2 on 0Q and w € A,, is a minimizer for E in

the admissible set A,,. Then we have —z /2 < w(x) < n /2 for all x € Q.

Proof. LetA :={x€ Q : |wkx)| > =/2}. Suppose |A| > 0. Define

/2  if wx) > /2,
W) =qwkx) if —x/2 <wk) <n/2, (3.1
—r/2 if wx) < —x/2.

Then w € A,,. Since Vw = 0, cos(w) = 0 in A and E[w] < E[W], we have

OS/<’;|VW|2+Cosjl(w)>dx=E[W]—E[V~V]SO
A
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Then we must have Vw = 0 and cos(w) = 0 in A. That is, for x € A, w(x) can only take
discrete values kx + 7 /2 for k € Z. This is impossible since w € H'(Q) and w(x) €
[z /2,7.2] for x € Q \ A. Consequently |A| = 0 and hence —z /2 < w(x) < z/2 for all
x € Q. ]

4 | THE NEHARI MANIFOLD (FOR m(x) =0)

Considering the energy functional (2.5) we define the associated Nehari manifold
S={weH)Q) : (SE[w],w) =0},

where (SE[w], v) is the first variations defined in (2.8). Then by Equation (2.8), w € § if and only if
w € Hj(Q) and

/<K|VW|2—M)dx=O. 4.1)
Q 4

Note that every critical point of the energy functional (2.5) lies in S and also 0 € S. Next we will show
that S is bounded in H} ().

Lemma 4.1. The set S is bounded in Hé (Q).

Proof. Letw € S. By (4.1), Holder’s inequality, and Poincaré’s inequality, we have

K”le'iZ(Q) = K/ |VW|2 d_x: / de
Q a 4
1 1
< 1/ lwl dx < Zlﬂll/zllwlly(g) < VWl
Q
Here C depends only on Q. So ||Vw/|| ;2 < C/k < oo. This completes the proof. n

Our goal is to classify the minimizers of E. To that end, let E|g be the restriction of the energy
functional E on S. We will show that critical points of E|g are indeed critical points of E. To do so, for
each w € H'(Q) define the associated fiber

F,, = {ws : s € R} = span{w}.

We can also define the fiber map

T,(s) := E[sw],Vs € R.

Note that if w is a local minimizer of E then T, has a local minimizer at s = 1. Just like the first varia-
tions, the second variation 62E[w] : Hé Q) x Hé () — R plays an important role in the classification
of the set S. This is defined as

S2E[wl(u,v) = /

(KVu L cos(2w)>
Q

dx, Yu,v € H)(Q). “4.2)
The first and second variations and the fiber map 7,,(s) are related as follows.

Lemma 4.2. If w € H}(Q) then

T/ (s) = (SE[sw], w) = / <K|SVW|2 - M)dx 4.3)
o 4
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and
2
T!"(s) = 82 E[sw](w, w) = / <K|SVW|2 _ WCO;(ZSW)>dx. (4.4)
Q
Proof. The proof follows from the limit definition of variations. (]

The above lemma allows us to get the following characterization.

Corollary 4.3. If w € Hé(Q)\ {0} and s € R\ {0} thensw e S < T, (s) =0.
Proof. By (4.3) we have that
T} (s) = (SE[sw],w) = %(6E[sw],sw).
Thus we have the equivalency. [

Observe that 0 # w € § < w is a critical point of E|r . This motivates the splitting of the
set S into local minimum, local maximum or inflection points of E along the fiber. Thus define the
following sets

St ={weS: SEwl(w,w) > 0},

S™={weS : 5E[wl(w,w) <0},

SO ={weS: 2E[wl(w,w) = 0}.

Lemma 4.4. Let wy € S — S° be a local minimizer of E|s then 8E[wg] = 0.
Proof. The proof is analogous to Lemma 3.4 of [14]. [

Since we concentrate on the global minimizers for E, by Lemma 3.1, we only need to classify the
functions w € S N X, where

X :={weHNQ) : |wx)| <x/2ae. in Q}.

Corollary 4.5. We have the following characterization of S, S°, S*, S~ and their intersec-
tions with X.

S= {weH(l)(Q) : /(K|VW|2— WSin(zW))dx:O}, 4.5)
Q 4
S+—{weS /<K|VW|2—W2C02S(2W)>dx>O}, (4.6)
Q
_ . wsin2w)  w? cos(2w)
—{WES.'/Q< 1 > )dx>0}, “.7
_ wsin2w)  w? cos(2w)
S™ = {WES /Q( 2 > )dx<0}, 4.8)
0 _ wsin2w)  w* cos(2w) _
S —{WES /Q< 1 > )dx—()}. “4.9)

In addition,

StAX={weSnX:w#0}, (4.10)
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STNX =4, 4.11)
PN x = {0}. 4.12)

Proof. Equation (4.5)—(4.9) follow from the definitions of the set S of and the second
variation (4.2). For the rest, we only need to prove (4.10).

1. Define ¢(¢) := S'Tm —costfort # 0and ¢p(0) = 0. For —z <t < w and ¢t # 0, by Taylor
expansion,

sint 1 A A R S A
(i)(t):T—cost:; t——+——-——+——--- =1 + + ==

(1l 1Na (1 1Ng ., (1 1\g (1 1\g
-(a‘ﬁy‘<a‘§y+(a‘ﬂy‘<a‘aﬁ+“‘

22 af + 615 88

TR T TRT

a2 47 of 6 87
”(5‘5’” TRT A
of 2 4x? of 6 8x°
Zl(§_? i 71 9 *
(4.13)

It is easy to check every term in the right-hand side of (4.13) is positive for t # 0. So
sint
¢(t)=T—cost>0 forall —z <t<m t#0. 4.14)

Note that we may allow |¢| to be in a range bigger than z, but it is not our priority to

find the optimal bound on [#|.
2. Foranyw € SN X withw # 0,let B := {x € Q : w(x) # 0}. Then |B| > 0 and for
X € B, we have ¢p(2w) > 0 by (4.14). Therefore

wsin(2w)  w? cos(2w) _ [ w*(sinQw) 3 / w?
/Q < 4 ) )dx—/g ) ( I COS(2W)>dX— 2 PdQ2w) dx > 0.

By (4.7), we see that w € S*.

Lemma 4.6. Let w € H}(Q) \ {0}.

1. If

/K|Vw|2dxz l/w%zx, (4.15)
Q 2 Q

then T,, has no positive critical points or positive turning points, Tj,(s) > 0, T} (s) >
0 forall s > 0 and

lim7,,(s) = 0.
§—>00

2. If

/KlVW|2 dx > l/w2 dx, (4.16)
Q 2 Q

then s = 0 is the unique critical point for T,,.

3. If
/K|VW|2 dx < l/w2 dx 4.17)
Q 2 Q
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then there exists some s,, > 0 such that T},(s,,) = 0, that is T,, has a critical point
$yw. Moreover, if |s,w| < n/2 for all x € Q then T})(s,,) > 0, which implies that
sow € ST.

Proof. From the definition of T,,(s) and (2.5) we have
2 2
T,.(s) = / (SKWWI2 + COS(WS))dx.
a\ 2 4

1. Suppose (4.15) holds and s > 0. Since w(x) # 0, there exists 6 > 0 such that the set
={xeQ: |wklzds}
has positive measure. By the following elementary inequality
2 —tsint > 13 — tysin(to) > O for all |¢] > |£o] > 0,

for all x € ©Q we have

s .
W _ wsin@ws) _ 150,02 (2gw) sin(2sw)) = 0
2 4 8s
and for all x € Q5 we can go one step further to obtain
, .
W _ wsin@ws) _ 150,00 26w) sin(2sw)
2 4 8s
> Si((Q.Sts)2 — (256) sin(2s6)) = 2(2&3 —sin(2s6)) > 0.
S
So by (4.15)
) .
") = / oVl wsm(ZWS))de/<SW_W5m(2WS)>dx
o a\ 2 4
/ ( _¥ Sm(zws))dx > (256 — sin(256))|Q5] > 0.
Q, 4 4

Integrating the above inequality, we have

Tu(s) 2 T.(0) + (S 52 | cos(2s5)

1 g )ngl—)OOﬁSS—)OO.

The second derivative

2
T!!(s) = / <K|VW|2 - WCO;(ZWS)>dx > %/wz(l — cos(2ws)) dx > 0.
Q Q

The last inequality is because w?(1 — cos(2ws) > 0 and equality holds if and only if
= kx /s for k € Z, which is impossible since we need w € H}(Q) \ {0}. This
completes the proof of Statement (1).
2. Clearly s = 0 is a critical point for T,, since T;,(0) = 0 by (4.3). We need to show
that T,, has no other critical points if (4.16) holds. Note that T},(s) = 0 is equivalent to
sz k|Vw|?dx = fQ de. Let

a ::/K|Vw|2a’x, @(s) :=/de.
Q Q 4
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Then T,,(s) = 0 if and only if as = @(s), or equivalently, s is a fix point for G(s) :=
@(s)/a. Observe that for any s # ¢ we have

|G(s) — G()| < 1 / |w|| sin(2ws) — sin(2wt)|dx
4o Q

SL/wzls—tldx
2a Q

< |s—t|L/w2dx.
20 Q

This is a contraction since i Jow*dx < 1by (4.16). Thus G has a unique fixed point
and hence s = 0 is the unique critical point for T,.

3. Now suppose (4.17) holds. Then T}, (0) = fg (KleI2 - W?z)dx < 0. Since T7,(0) = 0,

by the definition of derivative there exists s; > 0 such that 7},(s;) < 0. However

TV'V(s)=s/K|VW|2 dx—’/w(zws)des/Kle2 dx—l/lwl dx
Q Q 4 Q 4 Ja

— o0 as § — 0.

(4.18)
By the continuity of T},(s) in s, there exists s,, > s; such that T},(s,,) = 0.
To show that T}/ (s,,) > 0, we need to notice T},(s,,) = 0 implies

/KIVW|2 dx=/wdx.
Q Q 4ds,,

2
Tl = | (x]vw]? = 2e0s@wsw) )
2

_ / wsin(ws,) _ w* cosws,,) dx
Q 4SW 2

2 .
- / w <Sm(2wsw) . cos(2wsw)>dx.
o 2 2ws,,

If |s,w| < =/2 then by (4.14) we have T}, (s,,) > 0. Hence by Corollaries 4.5 and 4.3
sow € ST,

Hence

5 | PROOF OF THEOREMS 2.1 AND 2.2

Now we are ready to begin the proof of Theorem (2.1). First note that there exists w* € Hé (Q) that
minimizes the energy functional E defined by (2.5) over H}(€), compare Theorem 3.3 in [11]. By
Lemma 3.1 we know also |w*| < z/2 for all x € Q. We recall that if w # 0 is a minimizer for E,
then the corresponding fiber map 7',(s) = E[sw], s € R has a minimum at s = 1 and hence s = 1 is
a critical point of 7,,. Utilizing the Dirichlet eigenvalue problem (2.9) and by Rayleigh’s quotient, we
have

2
Al :min{% : weHg(sz)\{O}}, 5.1)
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from which we can clearly get that for all w € H}(Q) we have

/ [Vw|?dx > 4, / w?dx. (5.2)
Q Q

Case 1. k > i In this case, by (5.2) we have
1

K‘/ [Vw|? dx > l/w2 dx, forallweHé(Q).
Q 2 Ja

By Case 1 of Lemma 4.6, if w # 0 then 7,,(s) has no positive critical point. Hence w # 0
cannot be a minimizer for E. In other words, w = 0 is the unique minimizer for E and
min{E[w] : w € H(Q)} = E[0] = 1.

Case2. 0 < k¥ < ﬁ In this case we first show that the minimum of E is less than 'f:—'.
1
Since
2 4
cos’w = %(1 + cos2w) < é(l +1- (2v2v) + (%‘tt?)’
we have
E[w] < E[w] forall w € H}(Q),
where
E[w]-—/ 5|Vw|2+1—VL2+VL4 dx (5.3)
oo \2 4 4 12 ' '
For each w € H(l)(Q) \ {0}, let T,,(s) be the fiber map for E. Since 0 < k < i, by similar
1
calculations as in [14], Tw(s) has exactly one critical point at
R %fngdx_’(/szlvwlz . 5.4
Sw = , .
é fg wdx

and §,, is a minimizer for 7',,. Thus, for y the corresponding eigenfunction of 4; we have

. A A . 15w | Gyw)?
E[w*] < E[8y,w1] < E[8y,y1] = / §|swl Vi |> + i ‘”14 L l dx. (5.5)
a 12
Using the corresponding Nehari manifold for £ we have
. 1 Gy w1 Q|
E[SW1W]]=4/§;<1_]3 dx<T
Together with Equation (5.4) we have
w19l
Elw'] < &2
(W] n
and hence w* # 0.
Define w, = |w*| and w_ = —|w*|. Clearly cos’(w;) = cos*(w_) = cos>(w*) and |Vw,| =
|[Vw_| = |Vw*|. Thus E[w,] = E[w_] = E[w*] and both w, and w_ are minimizer of E over HOI(Q).

Also w, > 0 and w_ < 0 in Q with
wy+w_=0 in Q.

Then w, is a nonnegative and nonzero solution for the Euler-Lagrange equation

_ sin(2w) _

—KAw 0 in Q, 5.6)
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w=0 on 0Q. 5.7

Standard regularity theory (see, e.g., [19]) shows that w, € C*(Q) n C(Q).

Next we show that w, > 0. in Q. We prove by contradiction. To that end assume that there exists
xo € Q such that w;(xp) = 0. Then w(xp) is the minimum of w,. However, since 0 < w; < 7/2, we
have

—kAw, = % > 0. (5.8)
By the strong maximum principle, w is a constant and hence is zero in Q. This contradicts the energy
estimate above. This also implies that the minimizer w* cannot have both negative and positive parts.

To show that w, < g for all x € Q, we assume there exists x; € Q such that w,(x;) = g Define
Voi=wy — g Then —% <v < 0in Q and v(x;) = 0 is the non-negative maximum of u in Q. Going
back to the Euler-Lagrange equation (5.6) we have

Ay — sin(2v + ) -0
4
Thus
_xAy = Sn@) v
4 2
and
—kAv+ 2 <0
5 =0.

Then by the strong maximum principle, v is a constant and hence v = 0. This implies that w,. = % but
this contradicts the boundary value of w, = 0. Thus w, < %
To prove the uniqueness of positive minimizers for E, we will use the following lemma.

Lemma 5.1. Suppose G[w] is an energy functional given by
Glw] := /(@(lVWI) + F(lw))dx, w e H)(Q), (5.9)
Q

where Q is a domain and F is a strictly decreasing function. Then G allows at most one
positive minimizer.

This lemma can be proved using similar arguments as in [14]. By taking ®(|Vu|) = §|Vw|2 and

Fw) = @ with |w| < 7 /2, we obtain the uniqueness of positive minimizers for E. This completes
the proof of Theorem 2.1.

Theorem 2.2 follows from the identity E[|w|] = E[w], the Euler—Lagrange equation (5.6) and (5.7)
and the strong maximum principle.

ACKNOWLEDGMENTS

We thank Dengfeng Sun for pointing out in a private communication that the trig inequality (4.14)
could be proved by writing %‘” —cost = %St(tant — 1) and then carrying out a piecewise analysis.
The work of the first author was partially supported by the U.S. National Science Foundation through

Grant DMS-1815746 and CBET 2212116.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analyzed during the current
study.

:sdny) SUONIPUOD) Ut SuHA L a1 995 “[$Z07/01/60] U0 AIRIQIT AUITUQ A9[1A\ “00[EISN L -BWEGETY JO ANSIOATUN AQ £Z1€Z°WNU/Z00T 0 1/10p/0d K[ AIeIqrous[uo;sdy woxy papeoumo °9 “bZ07 9Thz8601

Kol

5U90F] SUOWWIO)) aANEAI) A[qEondde A Aq PAUIAAOS IE SA[ITE VO S9SN JO AN 40] AIBIqIT AUIUQ A[IAL UO



14 of 15 Wl LEY DAI and RAMADAN

ORCID

Shibin Dai ‘© https://orcid.org/0000-0002-1726-4745

REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]

(71
(8]

[9]
[10]

(11]
[12]

[13]
[14]
[15]

[16]

[17]
(18]

[19]
(20]

(21]
(22]
(23]
[24]
[25]
[26]

(27]
[28]

R. Backofen, S. M. Wise, M. Salvalaglio, and A. Voigt, Convexity splitting in a phase field model for surface
diffusion, Int. J. Numer. Anal. Model 16 (2019), 192-209.

V. E. Badalassi, H. D. Ceniceros, and S. Banerjee, Computation of multiphase systems with phase field models,
J. Comput. Phys. 190 (2003), 371-397.

P. Bates and J. Han, The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation, J. Math. Anal. Appl.
311 (2005), 289-312.

L. Bronsard and D. Hilhorst, On the slow dynamics for the Cahn—Hilliard equation in one space dimension, Proc.
Math. Phys. Sci. 439 (1992), 669-682.

J. W. Cahn, C. M. Elliott, and A. Novick-Cohen, The Cahn—Hilliard equation with a concentration-dependent
mobility: Motion by minus the Laplacian of the mean curvature, Eur. J. Appl. Math. 7 (1996), 287-301.

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. 1. Interfacial energy, J. Chem. Phys. 28 (1958),
256-267.

J. W. Cahn and J. E. Hilliard, Spinodal decomposition: A reprise, Acta Metall. 19 (1971), 151-161.

H. D. Ceniceros and A. Roma, A nonstiff, adaptive mesh refinement-based method for the Cahn—Hilliard equation,
J. Comput. Phys. 225 (2007), 1849-1862.

R. Choksi, M. A. Peletier, and J. F. Williams, On the phase diagram for microphase separation of diblock
copolymers: An approach via a nonlocal Cahn—Hilliard functional, SIAM J. Appl. Math. 69 (2009), 1712-1738.
R. Choksi and P. Sternberg, Periodic phase separation: The periodic Cahn—Hilliard and isoperimetric problems,
Interfaces Free Bound. 8 (2006), 371-392.

B. Dacorogna, Introduction to the calculus of variations, Imperial College Press, London, 2004.

S. Dai and Q. Du, Coarsening mechanism for systems governed by the Cahn—Hilliard equation with degenerate
diffusion mobility, Multiscale Model. Simul. 12 (2014), 1870-1889.

S. Dai and Q. Du, Weak solutions for the Cahn—Hilliard equation with degenerate mobility, Arch. Ration. Mech.
Anal. 219 (2016), 1161-1184.

S. Dai, B. Li, and T. Luong, Minimizers for the Cahn-Hilliard energy under strong anchoring conditions, SIAM
J. Appl. Math. 80 (2020), no. 5, 2299-2317.

S. Dai, J. Renzi, and S. Wise, Gamma-convergence of the de Gennes-Cahn-Hilliard energy, Commun. Math. Sci.
21 (2004), no. 8, 2131-2144.

L. Dong, C. Wang, H. Zhang, and Z. Zhang, A positivity-preserving, energy stable and convergent numerical
scheme for the Cahn-Hilliard equation with a flory-huggins-degennes energy, Commun. Math. Sci. 17 (2019),
921-939.

Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition, STAM J. Numer. Anal.
28 (1991), 1310-1322.

C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal. 27
(1996), 404-423.

L. C. Evans, Partial differential equations, 2nd ed., AMS, Ann Arbor, MI, 2010.

W. M. Feng, P. Yu, S. Y. Hu, Z. K. Liu, Q. Du, and L. Q. Chen, Spectral implementation of an adaptive moving
mesh method for phase-field equations, J. Comput. Phys. 220 (2006), 498-510.

H. Garcke and K. F. Lam, Analysis of a Cahn—Hilliard system with non-zero Dirichlet conditions modeling tumor
growth with chemotaxis, Discrete Continuous Dyn. Syst. 37 (2017), 4277-4308.

H. Garcke, B. Nestler, and B. Stoth, A multiphase field concept: Numerical simulations of moving phase boundaries
and multiple junctions, STAM J. Appl. Math. 60 (1999), 295-315.

H. Gémez, V. Calo, Y. Bazilevs, and T. Hughes, Isogeometric analysis of the Cahn—Hilliard phase-field model,
Comput. Methods Appl. Mech. Eng. 197 (2008), 4333-4352.

L. He, Error estimation of a class of stable spectral approximation to the Cahn—Hilliard equation, J. Sci. Comput.
41 (2009), 461-482.

Y. He, Y. Liu, and T. Tang, On large time-stepping methods for the Cahn—Hilliard equation, Vol 57, Imperial
College Press, London, 2007, 616-628.

A. G. Lamorgese and R. Mauri, Diffuse-interface modeling of phase segregation in liquid mixtures, Int. J. Multiph.
Flow 34 (2008), 987-995.

M. Li and C. K. Ober, Block copolymer patterns and templates, Mater. Today 9 (2006), 30-39.

X. Li, Q. Qiao, and H. Zhanga, A second-order convex-splitting scheme for a Cahn-Hilliard equation with variable
interfacial parameters, J. Comput. Math. 25 (2017), 693-710.

:sdpy) suonIpuo)) pue sua | ayl 33§ “[+70Z/01/60] U0 Areiqry aurjuQ Ad[1p\ “00[easn ] -BUIRqe[Y JO ANSIOATUN AQ £ €7 WNU/ZO0] (1 /10p/wod Ka[im Areiqiiaur[uo;/:sdny woy papeo[umo( ‘9 470z ‘97HI8601

Kol

5U90F] SUOWWIO)) aANEAI) A[qEondde A Aq PAUIAAOS IE SA[ITE VO S9SN JO AN 40] AIBIqIT AUIUQ A[IAL UO


https://orcid.org/0000-0002-1726-4745
https://orcid.org/0000-0002-1726-4745

DAI and RAMADAN Wl LEY 15 of 15

[29]

[30]

[31]
[32]
[33]
[34]
[35]
[36]

[37]

Y.Li, D.Jeong,J. Shin, and J. Kim, A conservative numerical method for the Cahn-Hilliard equation with Dirichlet
boundary conditions in complex domains, Comput. Math. Appl. 65 (2013), 102-115.

M. Naffouti, R. Backofen, M. Salvalaglio, T. Bottein, M. Lodari, A. Voigt, T. David, A. Benkouider, I. Fraj,
L. Favre, A. Ronda, 1. Berbezier, D. G. M. Abbarchi, and M. Bollani, Complex dewetting scenarios of ultrathin
silicon films for large-scale nanoarchitectures, Sci. Adv. 3 (2017), no. 11, 1472.

L. B. Nas and R. Niirnberg, Adaptive finite element methods for Cahn—Hilliard equations, J. Comput. Appl. Math.
218 (2008), 2—11.

L. B. Nas and R. Niirnberg, A posteriori estimates for the Cahn—Hilliard equation with obstacle free energy,
ESAIM Math. Model. Numer. Anal. 43 (2009), 1003—-1026.

R. L. Pego, Front migration in the nonlinear Cahn—Hilliard equation, Proc. R. Soc. Lond. A Math. Phys. Sci. 442
(1989), 261-278.

J. Renzi. A study of gamma and force convergence for the de Gennes-Cahn-Hilliard equation, Ph.D. dissertation,
The University of Alabama, 2023.

M. Salvalaglio, A. Voigt, and S. M. Wise. Doubly degenerate diffuse interface models of surface diffusion. arXiv
preprint arXiv:1909.04458, 2019.

G. N. Wells, E. Kuhl, and K. Garikipati, A discontinuous Galerkin method for the Cahn—Hilliard equation,
J. Comput. Phys. 218 (2006), 860-877.

X. Ye, The Fourier collocation method for the Cahn—Hilliard equation, Comput. Math. Appl. 44 (2002), 213-229.

How to cite this article: S. Dai and A. Ramadan, Minimizers for the de
Gennes—Cahn—Hilliard energy under strong anchoring conditions, Numer. Methods Partial
Differ. Eq. 40 (2024), e23127. https://doi.org/10.1002/num.23127

:sdpy) suonIpuo)) pue sua | ayl 33§ “[+70Z/01/60] U0 Areiqry aurjuQ Ad[1p\ “00[easn ] -BUIRqe[Y JO ANSIOATUN AQ £ €7 WNU/ZO0] (1 /10p/wod Ka[im Areiqiiaur[uo;/:sdny woy papeo[umo( ‘9 470z ‘97HI8601

Kol

5U90F] SUOWWIO)) aANEAI) A[qEondde A Aq PAUIAAOS IE SA[ITE VO S9SN JO AN 40] AIBIqIT AUIUQ A[IAL UO


https://doi.org/10.1002/num.23127
https://doi.org/10.1002/num.23127
https://doi.org/10.1002/num.23127
https://doi.org/10.1002/num.23127
https://doi.org/10.1002/num.23127
https://doi.org/10.1002/num.23127
https://doi.org/10.1002/num.23127

	Minimizers for the de Gennes--Cahn--Hilliard energy under strong anchoring conditions
	1 INTRODUCTION
	2 MAIN RESULT
	3 BOUNDEDNESS OF MINIMIZERS WHEN [[minus]]p/2<m(x)<p/2 ON [[part]]O
	4 THE NEHARI MANIFOLD (FOR m(x)=0)
	5 PROOF OF THEOREMS 2.1 AND 2.2

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

