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Abstract
In this article, we use the Nehari manifold and the eigen-

value problem for the negative Laplacian with Dirichlet

boundary condition to analytically study the minimiz-

ers for the de Gennes–Cahn–Hilliard energy with quartic

double-well potential and Dirichlet boundary condition

on the bounded domain. Our analysis reveals a bifurca-

tion phenomenon determined by the boundary value and

a bifurcation parameter that describes the thickness of

the transition layer that segregates the binary mixture’s

two phases. Specifically, when the boundary value aligns

precisely with the average of the pure phases, and the

bifurcation parameter surpasses or equals a critical thresh-

old, the minimizer assumes a unique form, representing

the homogeneous state. Conversely, when the bifurcation

parameter falls below this critical value, two symmetric

minimizers emerge. Should the boundary value be larger

or smaller from the average of the pure phases, symmetry

breaks, resulting in a unique minimizer. Furthermore, we

derive bounds of these minimizers, incorporating boundary

conditions and features of the de Gennes–Cahn–Hilliard

energy.
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1 INTRODUCTION

The Cahn–Hilliard functional

ECH[u] = ∫Ω

(
𝜅

2
|∇u|2 + W(u)

)
𝑑x (1.1)

is extensively employed as a phenomenological diffuse-interface model to characterize the free energy

of a system undergoing phase separation [6, 7]. Here Ω is a bounded domain in Rn
, u is the relative

concentration of the two phases and W(u) is a double-well potential with two equal minima at u−
< u+

corresponding to the two pure phases, and 𝜅 > 0 is a parameter such that

√
𝜅 is proportional to the

thickness of the transition region between the two phases.

The Cahn–Hilliard functional and the related Cahn–Hilliard equation and Allen-Hilliard equation

have been used as models to understand many physical properties of two-phase materials. These prop-

erties include but are not limited to phase separation, coarsening dynamics and pattern formation.

These studies are done on a domain Ω, thus the interaction of the mixture and the boundary 𝜕Ω is

equally important. The Neumann boundary condition 𝜕nu = 0 is commonly used, where n is the exte-

rior unit normal at the boundary [2, 5, 18, 22, 26, 31–33, 36]. Other forms of boundary conditions

such as the periodic boundary conditions are also popularly used, especially in computational studies

[8–10, 12, 13, 20, 23–25, 37]. Recently Dai et al. [14] investigated the characterization of the min-

imizer of the Cahn–Hilliard functional for the free energy (1.1) with quartic double-well potential

under the strong anchoring condition, that is, the Dirichlet condition. The authors required that u to

be strongly anchored on the boundary, by matching a prescribed function g on 𝜕Ω pointwisely, which

is the strongest possible match. This type of strong anchoring conditions is very important in physi-

cal modeling [17, 27]. The anchoring could be weakened by requiring the match to be within a small

tolerance when measured in some norm say L2
.

It is worth mentioning that the study of the Cahn–Hilliard functional under Dirichlet boundary

condition has been scarce. Notwithstanding, Du and Nicolaides [17] proposed it for a finite element

scheme for the 1D Cahn–Hilliard equation. Bronsard and Hilhorst [4] also studied the limiting behav-

ior of the solution to the Cahn–Hilliard equation with the Dirichlet boundary condition using the

energy method. Other avenues where the Dirichlet boundary condition was considered can be found

in [3, 21, 29].

This article was motivated by the recent work of Dai et al. [14] where in particular they showed

that if the Dirichlet boundary value is the average of the two pure phases then there is a bifurcation of

the minimizer for the Cahn–Hilliard energy functional. In fact, such bifurcation depends on the value 𝜅

and this range for 𝜅 is related to the first eigenvalue of the negative Laplacian with Dirichlet boundary

condition. Moreover, they also showed that for the boundary value that is between the average of the

two pure phases, the symmetry is broken and there is only one minimizer in the same range. Their

analysis was conducted via the Nihari manifold and linked the problem to the negative Laplacian with

homogenous boundary data.

Some numerical simulations for applications in materials science utilize a model that deviates

slightly from the original Cahn–Hilliard equation [30, 35]. In particular, these simulations incorporate

an additional degeneracy, and the equation is represented by the following non-variational system of

equations, named the doubly degenerate Cahn–Hilliard (DDCH) equation:

ut = ∇ ⋅ (M0(u)∇𝜇), (1.2)

G0(u)𝜇 = −𝜅Δu + W ′(u). (1.3)
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Here the diffusion mobility M(u) is nonnegative and generally depends on u, and can be degener-

ate. The additional degeneracy comes from the diffusion restriction function G0(u) [35]. Numerical

simulations and asymptotic analysis indicate that the DDCH equation has the potential to be a more

precise approximation of surface diffusion [1]. Nevertheless, there was a drawback to this model—it

lacks variationality. In simpler terms, Equations (1.2) and (1.3) lack a recognized free energy. Hav-

ing an expression for the energy facilitates the numerical analysis and analytical validation of the

model’s properties. For instance, the absence of energy makes it impossible to construct variational

derivatives. As a solution to these limitations, a variational diffuse interface model, called the de

Gennes–Cahn–Hilliard (dGCH) model, was developed in [35] and studied in [15]. Similar to the

expression of the free energy in (1.1), the free energy is defined as

EdGCH[u] = ∫Ω

1

g0(u)

(
𝜅

2
|∇u|2 + W(u)

)
𝑑x, u ∈ H1(Ω). (1.4)

Here

W(u) = 𝛾(u − u+)2(u − u−)2 (1.5)

is a double well potential with two equal minima at u−
< u+

corresponding to the two pure phases, and

𝛾 is a normalizing constant which satisfies ∫ u+
u−

√
2W(s)𝑑s = 1. g0 is a function of the form g0(u) =

|(u−u+)(u−u−)|p, p > 0. We are only going to analyze the numerically convenient case p = 1, that is,

g0(u) = |(u − u+)(u − u−)|. (1.6)

The factor
1

g
0

is called the energy restriction function or the de Gennes coefficient [16, 28]. Due to the

singularity of g0(u) at u = u±
, it is tempting to conjecture that we need only to consider u ∈ H1(Ω)

with values confined between u−
and u+

. However, realizing that W(u)∕g0(u) = 𝛾|(u − u+)(u − u−)|
and that

∇u = 0 a.e. in the set {x ∈ Ω ∶ u(x) = u±},

it is natural to interpret the integrand of (1.4) as

⎧
⎪⎨⎪⎩

1

g
0
(u)

(
𝜅

2
|∇u|2 + W(u)

)
if u ≠ u±

0 if u = u±
.

In this sense, all u ∈ H1(Ω) aer allowable for EdGCH, although some of them may make EdGCH[u] = ∞.

More discussions regarding the chemical potential and the dGCH system with a degenerate mobility

can be found in the references above. It is also worth mentioning that Dai, Renzi and Wise recently

established the Gamma convergence of (1.4) [15].

2 MAIN RESULT

In this article, we are interested in characterizing minimizers for the dGCH energy EdGCH. The starting

point is to use a transformation to obtain a form that is easier to handle the challenges imposed by the

factor
1

g
0

. For convenience and without loss of generality we can rescale the energy and boundary data

such that u− = −1, u+ = 1, and

W(u) = 1

4
(u2 − 1)2, g0(u) = |u2 − 1|. (2.1)
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Introduce the transformation

h(t) ∶= ∫
t

0

𝑑s√
g0(s)

. (2.2)

Since g0(s) is zero at s = ±1, this transformation is a singular integral. Now let w(x) = h(u(x)) for

all x ∈ Ω. Then we can construct a new set of energy functional using a change of variables and the

Sobolev chain rule

Ẽ[w] = ∫Ω

(
𝜅

2
|∇w|2 + W(h−1(w))

g0(h−1(w))

)
𝑑x.

For our choices of g0 and W in (2.1), we have the following explicit expressions for h(t) and h−1
[34]

h(t) ∶=
⎧
⎪⎨⎪⎩

− ln(
√

t2 − 1 − t) − 𝜋

2
, if t < −1

sin
−1(t), if t ∈ [−1, 1]

ln(t +
√

t2 − 1) + 𝜋

2
, if t > 1

(2.3)

and

h−1(t) ∶=

⎧
⎪⎪⎨⎪⎪⎩

− 1

2

(
e−

(
t+ 𝜋

2

)
+ e

(
t+ 𝜋

2

))
, if t < −1

sin(t), if t ∈ [−1, 1]
1

2

(
e−

(
t+ 𝜋

2

)
+ e

(
t+ 𝜋

2

))
, if t > 1.

(2.4)

If we restrict on the region u ∈ [−1, 1] and hence w ∈ [−𝜋

2
,
𝜋

2
], we then have that

W(h−1(w))
g0(h−1w)

= cos
2(w)
4

.

This motivated us to study the following energy

E[w] = ∫Ω

(
𝜅

2
|∇w|2 + cos

2(w)
4

)
𝑑x, w ∈ H1(Ω), (2.5)

with the hope that under appropriate boundary conditions, minimizers for E(w) indeed lie in

[−𝜋∕2, 𝜋∕2]. See Lemma 3.1 for details.

Now we consider a given boundary value m(x) ∈ H
1

2 (𝜕Ω). Using direct method in the calculus of

variations, one can prove that the energy functional (2.5) has a minimizer in the admissible set

m ∶= {w ∈ H1(Ω) ∶ w = m(x) on 𝜕Ω}. (2.6)

Due to the lack of convexity of W(u), uniqueness of such minimizers is not guaranteed. Every

minimizer w ∈ m satisfies the Euler-Lagrange equation

−𝜅Δw − sin(2w)
4

= 0 in Ω. (2.7)

Note that the above equation is defined in the weak sense, more specifically in the sense that

⟨𝛿E[w], v⟩ = ∫Ω

(
𝜅∇w ⋅ ∇v − v sin(2w)

4

)
𝑑x for all v ∈ H1

0
(Ω). (2.8)

In this article, we analyze the minimizers of (2.5) under the following three situations of boundary

data.

1. m(x) ≡ 0, for all x ∈ 𝜕Ω,

2. 0 < m(x) < 𝜋∕2, for all x ∈ 𝜕Ω,

3. −𝜋∕2 < m(x) < 0, for all x ∈ 𝜕Ω.
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Analysis of these minimizers with different boundary data boils down to the parameter 𝜅, which

is a bifurcation parameter, and the minimum eigenvalue 𝜆1 of the negative Laplacian with Dirichlet

boundary data, that is, the minimum value 𝜆 that solves the eigenvalue problem

−Δw = 𝜆w in Ω,
w = 0 on 𝜕Ω.

(2.9)

We can now summarize our results as follows.

Theorem 2.1. Assume m(x) = 0 for all x ∈ 𝜕Ω.

(i) If 𝜅 ≥ 1

2𝜆
1

, then w = 0 is the only minimizer for E in m and

min{E[w] ∶ w ∈ m} = |Ω|
4

,

(ii) If 0 < 𝜅 <
1

2𝜆
1

, then there exist two and only two minimizers w+,w− for E in m and

min{E[w] ∶ w ∈ m} <

|Ω|
4

.

Moreover, w+ + w− = 0 and − 𝜋

2
< w− < 0 < w+ <

𝜋

2
in Ω.

Theorem 2.2. Let m(x) ∈ C(𝜕Ω).

(i) If 0 < m(x) < 𝜋

2
for all x ∈ 𝜕Ω, then there exists a unique minimizer for E in m.

Moreover
min
𝜕Ω

m < w+,m <

𝜋

2
.

(ii) If − 𝜋

2
< m(x) < 0 for all x ∈ 𝜕Ω, then there exists a unique minimizer for E in m.

Moreover
−𝜋

2
< w−,m < max

𝜕Ω
m.

Theorems 2.1 and 2.2 will easily translate back into the following results about EdGCH.

Theorem 2.3. Let W be defined by (1.5), g be defined by (1.6), and h ∈ C(𝜕Ω). Consider
minimizers for the energy EdGCH in the the admissible set

h = {u ∈ H1(Ω) ∶ u = h on 𝜕Ω}.

For h = u++u−

2
,

(i) If 𝜅 ≥ 𝛾

8𝜆
1

, then u = u++u−

2
is the only minimizer for EdGCH in h and

min{EdGCH[u] ∶ u ∈ h} = 𝛾(u+ − u−)2
4

|Ω|,

(ii) If 0 < 𝜅 <
𝛾

8𝜆
1

, then there exist two and only two minimizers u+, u− for EdGCH in h

and

min{EdGCH[u] ∶ u ∈ h} <

𝛾(u+ − u−)2
4

|Ω|.

Moreover, u+ + u− = 0 and u−
< u− < 0 < u+ < u+ in Ω.
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Furthermore,

(i) If u−+u+

2
< h(x) < u+ for all x ∈ 𝜕Ω, then there exists a unique minimizer for EdGCH

in h. Moreover
min
𝜕Ω

h < u+,h < u+
.

(ii) If u− < h(x) < u−+u+

2
for all x ∈ 𝜕Ω, then there exists a unique minimizer for EdGCH

in h. Moreover
u−

< u−,h < max
𝜕Ω

h.

Remark 2.4. Note that the translation of Theorem 2.1 and 2.2 into Theorem 2.3 is possible

thanks to the transformation (2.2).

Remark 2.5. We want to emphasize that similar to [14], in this article we concentrate on

the quartic double well potential (1.5). There are technical challenges if we apply the same

framework to other potentials such as the logarithmic potential

Wlog(u) =

{
𝜃

2
((1 + u) ln(1 + u) + (1 − u) ln(1 − u)) + 1

2
(1 − u2) if |u| < 1,

+∞ otherwise.

We also want to clarify that the results in this study are about global minimizers of the

dGCH energy (1.4) under Dirichlet boundary conditions. it is an interesting question

whether we could relate these results with properties of solutions for the H−1
and L2

gra-

dient flows, that is, the dGCH equations or de Gennes–Allen–Cahn equations. It is also

interesting to study properties of other critical points of this energy, local minimizers in

particular. We will save these topics for future explorations.

The rest of the article is devoted to proving Theorems 2.1 and 2.2. First in Section 3 we prove that,

if the boundary value m(x) satisfies −𝜋∕2 ≤ m(x) ≤ 𝜋∕2 for all x ∈ 𝜕Ω, then the minimizers for E
are bounded between −𝜋∕2 and 𝜋∕2. In Section 4, we discuss the results about the Nehari manifold,

which are essential for the proof of Theorem 2.1. In Sections 5, we prove Theorems 2.1 and 2.2.

3 BOUNDEDNESS OF MINIMIZERS WHEN −𝝅∕2 ≤ m(x) ≤ 𝝅∕2 ON 𝝏Ω

The following lemma justifies our motivation to transform the minimization of EdGCH into the

minimization of E.

Lemma 3.1. Suppose −𝜋∕2 ≤ m(x) ≤ 𝜋∕2 on 𝜕Ω and w ∈ m is a minimizer for E in
the admissible set m. Then we have −𝜋∕2 ≤ w(x) ≤ 𝜋∕2 for all x ∈ Ω.

Proof. Let A ∶= {x ∈ Ω ∶ |w(x)| > 𝜋∕2}. Suppose |A| > 0. Define

w̃(x) =
⎧
⎪⎨⎪⎩

𝜋∕2 if w(x) > 𝜋∕2,

w(x) if − 𝜋∕2 ≤ w(x) ≤ 𝜋∕2,

−𝜋∕2 if w(x) < −𝜋∕2.

(3.1)

Then w̃ ∈ m. Since ∇w̃ = 0, cos(w̃) = 0 in A and E[w] ≤ E[w̃], we have

0 ≤ ∫A

(
𝜅

2
|∇w|2 + cos

2(w)
4

)
𝑑x = E[w] − E[w̃] ≤ 0.
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Then we must have ∇w = 0 and cos(w) = 0 in A. That is, for x ∈ A, w(x) can only take

discrete values k𝜋 + 𝜋∕2 for k ∈ Z. This is impossible since w ∈ H1(Ω) and w(x) ∈
[−𝜋∕2, 𝜋.2] for x ∈ Ω ⧵ A. Consequently |A| = 0 and hence −𝜋∕2 ≤ w(x) ≤ 𝜋∕2 for all

x ∈ Ω. ▪

4 THE NEHARI MANIFOLD (FOR m(x) ≡ 0)

Considering the energy functional (2.5) we define the associated Nehari manifold

S = {w ∈ H1

0
(Ω) ∶ ⟨𝛿E[w],w⟩ = 0},

where ⟨𝛿E[w], v⟩ is the first variations defined in (2.8). Then by Equation (2.8), w ∈ S if and only if

w ∈ H1

0
(Ω) and

∫Ω

(
𝜅|∇w|2 − w sin(2w)

4

)
𝑑x = 0. (4.1)

Note that every critical point of the energy functional (2.5) lies in S and also 0 ∈ S. Next we will show

that S is bounded in H1

0
(Ω).

Lemma 4.1. The set S is bounded in H1

0
(Ω).

Proof. Let w ∈ S. By (4.1), Hölder’s inequality, and Poincaré’s inequality, we have

𝜅||∇w||2L2(Ω) = 𝜅 ∫Ω
|∇w|2 𝑑x = ∫Ω

w sin(2w)
4

𝑑x

≤ 1

4 ∫Ω
|w| 𝑑x ≤ 1

4
|Ω|1∕2||w||L2(Ω) ≤ C||∇w||L2(Ω).

Here C depends only on Ω. So ||∇w||L2(Ω ≤ C∕𝜅 < ∞. This completes the proof. ▪

Our goal is to classify the minimizers of E. To that end, let E|S be the restriction of the energy

functional E on S. We will show that critical points of E|S are indeed critical points of E. To do so, for

each w ∈ H1(Ω) define the associated fiber

Fw = {ws ∶ s ∈ R} = span{w}.

We can also define the fiber map

Tw(s) ∶= E[sw],∀s ∈ R.

Note that if w is a local minimizer of E then Tw has a local minimizer at s = 1. Just like the first varia-

tions, the second variation 𝛿
2E[w] ∶ H1

0
(Ω) ×H1

0
(Ω) → R plays an important role in the classification

of the set S. This is defined as

𝛿
2E[w](u, v) = ∫Ω

(
𝜅∇u ⋅ ∇v − uv cos(2w)

2

)
𝑑x, ∀u, v ∈ H1

0
(Ω). (4.2)

The first and second variations and the fiber map Tw(s) are related as follows.

Lemma 4.2. If w ∈ H1

0
(Ω) then

T ′
w(s) = ⟨𝛿E[sw],w⟩ = ∫Ω

(
𝜅|s∇w|2 − w sin(2sw)

4

)
𝑑x (4.3)
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8 of 15 DAI and RAMADAN

and

T ′′
w (s) = 𝛿

2E[sw](w,w) = ∫Ω

(
𝜅|s∇w|2 − w2

cos(2sw)
2

)
𝑑x. (4.4)

Proof. The proof follows from the limit definition of variations. ▪

The above lemma allows us to get the following characterization.

Corollary 4.3. If w ∈ H1

0
(Ω) ⧵ {0} and s ∈ R ⧵ {0} then sw ∈ S ⇔ T ′

w(s) = 0.

Proof. By (4.3) we have that

T ′
w(s) = ⟨𝛿E[sw],w⟩ = 1

s
⟨𝛿E[sw], sw⟩.

Thus we have the equivalency. ▪

Observe that 0 ≠ w ∈ S ⇔ w is a critical point of E|Fw . This motivates the splitting of the

set S into local minimum, local maximum or inflection points of E along the fiber. Thus define the

following sets

S+ = {w ∈ S ∶ 𝛿
2E[w](w,w) > 0},

S− = {w ∈ S ∶ 𝛿
2E[w](w,w) < 0},

S0 = {w ∈ S ∶ 𝛿
2E[w](w,w) = 0}.

Lemma 4.4. Let w0 ∈ S − S0 be a local minimizer of E|S then 𝛿E[w0] = 0.

Proof. The proof is analogous to Lemma 3.4 of [14]. ▪

Since we concentrate on the global minimizers for E, by Lemma 3.1, we only need to classify the

functions w ∈ S ∩ X, where

X ∶= {w ∈ H1

0
(Ω) ∶ |w(x)| ≤ 𝜋∕2 a.e. in Ω}.

Corollary 4.5. We have the following characterization of S, S0
, S+

, S− and their intersec-
tions with X.

S =
{

w ∈ H1

0
(Ω) ∶ ∫Ω

(
𝜅|∇w|2 − w sin(2w)

4

)
𝑑x = 0

}
, (4.5)

S+ =
{

w ∈ S ∶ ∫Ω

(
𝜅|∇w|2 − w2

cos(2w)
2

)
𝑑x > 0

}
, (4.6)

=
{

w ∈ S ∶ ∫Ω

(
w sin(2w)

4
− w2

cos(2w)
2

)
𝑑x > 0

}
, (4.7)

S− =
{

w ∈ S ∶ ∫Ω

(
w sin(2w)

4
− w2

cos(2w)
2

)
𝑑x < 0

}
, (4.8)

S0 =
{

w ∈ S ∶ ∫Ω

(
w sin(2w)

4
− w2

cos(2w)
2

)
𝑑x = 0

}
. (4.9)

In addition,

S+ ∩ X = {w ∈ S ∩ X ∶ w ≠ 0}, (4.10)
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S− ∩ X = ∅, (4.11)

S0 ∩ X = {0}. (4.12)

Proof. Equation (4.5)–(4.9) follow from the definitions of the set S of and the second

variation (4.2). For the rest, we only need to prove (4.10).

1. Define 𝜙(t) ∶= sin t
t
− cos t for t ≠ 0 and 𝜙(0) = 0. For −𝜋 ≤ t ≤ 𝜋 and t ≠ 0, by Taylor

expansion,

𝜙(t) = sin t
t

− cos t = 1

t

(
t − t3

3!
+ t5

5!
− t7

7!
+ t9

9!
− · · ·

)
−
(

1 − t2

2!
+ t4

4!
− t6

6!
+ t8

8!
− · · ·

)

=
(

1

2!
− 1

3!

)
t2 −

(
1

4!
− 1

5!

)
t4 +

(
1

6!
− 1

7!

)
t6 −

(
1

8!
− 1

9!

)
t8 + · · ·

= 2t2

3!
− 4t4

5!
+ 6t6

7!
− 8t8

9!
+ · · ·

= t2

(
2

3!
− 4t2

5!

)
+ t6

(
6

7!
− 8t2

9!

)
+ · · ·

≥ t2

(
2

3!
− 4𝜋

2

5!

)
+ t6

(
6

7!
− 8𝜋

2

9!

)
+ · · ·

(4.13)

It is easy to check every term in the right-hand side of (4.13) is positive for t ≠ 0. So

𝜙(t) = sin t
t

− cos t > 0 for all − 𝜋 ≤ t ≤ 𝜋, t ≠ 0. (4.14)

Note that we may allow |t| to be in a range bigger than 𝜋, but it is not our priority to

find the optimal bound on |t|.
2. For any w ∈ S ∩ X with w ≠ 0, let B ∶= {x ∈ Ω ∶ w(x) ≠ 0}. Then |B| > 0 and for

x ∈ B, we have 𝜙(2w) > 0 by (4.14). Therefore

∫Ω

(
w sin(2w)

4
− w2

cos(2w)
2

)
𝑑x = ∫Ω

w2

2

(
sin(2w)

2w
− cos(2w)

)
𝑑x = ∫Ω

w2

2
𝜙(2w) 𝑑x > 0.

By (4.7), we see that w ∈ S+
.

▪

Lemma 4.6. Let w ∈ H1

0
(Ω) ⧵ {0}.

1. If

∫Ω
𝜅|∇w|2 𝑑x ≥ 1

2 ∫Ω
w2

𝑑x, (4.15)

then Tw has no positive critical points or positive turning points, T ′
w(s) > 0, T ′′

w (s) >
0 for all s > 0 and

lim
s→∞

Tw(s) = ∞.

2. If

∫Ω
𝜅|∇w|2 𝑑x >

1

2 ∫Ω
w2

𝑑x, (4.16)

then s = 0 is the unique critical point for Tw.

3. If

∫Ω
𝜅|∇w|2 𝑑x <

1

2 ∫Ω
w2

𝑑x (4.17)
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10 of 15 DAI and RAMADAN

then there exists some sw > 0 such that T ′
w(sw) = 0, that is Tw has a critical point

sw. Moreover, if |sww| ≤ 𝜋∕2 for all x ∈ Ω then T ′′
w (sw) > 0, which implies that

sww ∈ S+
.

Proof. From the definition of Tw(s) and (2.5) we have

Tw(s) = ∫Ω

(
s2
𝜅

2
|∇w|2 + cos

2(ws)
4

)
𝑑x.

1. Suppose (4.15) holds and s > 0. Since w(x) ≢ 0, there exists 𝛿 > 0 such that the set

Ω𝛿 ∶= {x ∈ Ω ∶ |w(x)| ≥ 𝛿}

has positive measure. By the following elementary inequality

t2 − t sin t ≥ t2

0
− t0 sin(t0) > 0 for all |t| ≥ |t0| > 0,

for all x ∈ Ω we have

sw2

2
− w sin(2ws)

4
= 1

8s
((2sw)2 − (2sw) sin(2sw)) ≥ 0

and for all x ∈ Ω𝛿 we can go one step further to obtain

sw2

2
− w sin(2ws)

4
= 1

8s
((2sw)2 − (2sw) sin(2sw))

≥ 1

8s
((2s𝛿)2 − (2s𝛿) sin(2s𝛿)) = 𝛿

4
(2s𝛿 − sin(2s𝛿)) > 0.

So by (4.15)

T ′
w(s) = ∫Ω

(
s𝜅|∇w|2 − w sin(2ws)

4

)
𝑑x ≥ ∫Ω

(
sw2

2
− w sin(2ws)

4

)
𝑑x

≥ ∫Ω
𝛿

(
sw2

2
− w sin(2ws)

4

)
𝑑x ≥ 𝛿

4
(2s𝛿 − sin(2s𝛿))|Ω𝛿| > 0.

Integrating the above inequality, we have

Tw(s) ≥ Tw(0) +
(

s2
𝛿

2

4
+ cos(2s𝛿)

8

)
|Ω𝛿| → ∞ as s → ∞.

The second derivative

T ′′
w (s) = ∫Ω

(
𝜅|∇w|2 − w2

cos(2ws)
2

)
𝑑x ≥ 1

2 ∫Ω
w2(1 − cos(2ws)) 𝑑x > 0.

The last inequality is because w2(1 − cos(2ws) ≥ 0 and equality holds if and only if

w = k𝜋∕s for k ∈ Z, which is impossible since we need w ∈ H1

0
(Ω) ⧵ {0}. This

completes the proof of Statement (1).

2. Clearly s = 0 is a critical point for Tw since T ′
w(0) = 0 by (4.3). We need to show

that Tw has no other critical points if (4.16) holds. Note that T ′
w(s) = 0 is equivalent to

s ∫Ω 𝜅|∇w|2𝑑x = ∫Ω w sin(2ws)
4

𝑑x. Let

𝛼 ∶= ∫Ω
𝜅|∇w|2𝑑x, 𝜑(s) ∶= ∫Ω

w sin(2ws)
4

𝑑x.
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Then T ′
w(s) = 0 if and only if 𝛼s = 𝜑(s), or equivalently, s is a fix point for G(s) ∶=

𝜑(s)∕𝛼. Observe that for any s ≠ t we have

|G(s) − G(t)| ≤ 1

4𝛼 ∫Ω
|w|| sin(2ws) − sin(2wt)|𝑑x

≤ 1

2𝛼 ∫Ω
w2|s − t|𝑑x

≤ |s − t| 1

2𝛼 ∫Ω
w2

𝑑x.

This is a contraction since
1

2𝛼
∫Ω w2

𝑑x < 1 by (4.16). Thus G has a unique fixed point

and hence s = 0 is the unique critical point for Tw.

3. Now suppose (4.17) holds. Then T ′′
w (0) = ∫Ω

(
𝜅|∇w|2 − w2

2

)
𝑑x < 0. Since T ′

w(0) = 0,

by the definition of derivative there exists s1 > 0 such that T ′
w(s1) < 0. However

T ′
w(s) = s∫Ω

𝜅|∇w|2 𝑑x − ∫Ω

w sin(2ws)
4

𝑑x ≥ s∫Ω
𝜅|∇w|2 𝑑x − 1

4 ∫Ω
|w| 𝑑x

→ ∞ as s → ∞.

(4.18)

By the continuity of T ′
w(s) in s, there exists sw > s1 such that T ′

w(sw) = 0.

To show that T ′′
w (sw) > 0, we need to notice T ′

w(sw) = 0 implies

∫Ω
𝜅|∇w|2 𝑑x = ∫Ω

w sin(2wsw)
4sw

𝑑x.

Hence

T ′′
w (sw) = ∫

(
𝜅|∇w|2 − w2

cos(2wsw)
2

)
𝑑x

= ∫Ω

(
w sin(2wsw)

4sw
− w2

cos(2wsw)
2

)
𝑑x

= ∫Ω

w2

2

(
sin(2wsw)

2wsw
− cos(2wsw)

)
𝑑x.

If |sww| ≤ 𝜋∕2 then by (4.14) we have T ′′
w (sw) > 0. Hence by Corollaries 4.5 and 4.3

sww ∈ S+
.

▪

5 PROOF OF THEOREMS 2.1 AND 2.2

Now we are ready to begin the proof of Theorem (2.1). First note that there exists w∗ ∈ H1

0
(Ω) that

minimizes the energy functional E defined by (2.5) over H1

0
(Ω), compare Theorem 3.3 in [11]. By

Lemma 3.1 we know also |w∗| ≤ 𝜋∕2 for all x ∈ Ω. We recall that if w ≠ 0 is a minimizer for E,

then the corresponding fiber map Tw(s) = E[sw], s ∈ R has a minimum at s = 1 and hence s = 1 is

a critical point of Tw. Utilizing the Dirichlet eigenvalue problem (2.9) and by Rayleigh’s quotient, we

have

𝜆1 = min

{∫Ω |∇w|2𝑑x
∫ w2

𝑑x
∶ w ∈ H1

0
(Ω) ⧵ {0}

}
, (5.1)
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from which we can clearly get that for all w ∈ H1

0
(Ω) we have

∫Ω
|∇w|2𝑑x ≥ 𝜆1 ∫Ω

w2
𝑑x. (5.2)

Case 1. 𝜅 ≥ 1

2𝜆
1

. In this case, by (5.2) we have

𝜅 ∫Ω
|∇w|2 𝑑x ≥ 1

2 ∫Ω
w2

𝑑x, for all w ∈ H1

0
(Ω).

By Case 1 of Lemma 4.6, if w ≠ 0 then Tw(s) has no positive critical point. Hence w ≠ 0

cannot be a minimizer for E. In other words, w = 0 is the unique minimizer for E and

min{E[w] ∶ w ∈ H1

0
(Ω)} = E[0] = |Ω|

4
.

Case 2. 0 < 𝜅 <
1

2𝜆
1

. In this case we first show that the minimum of E is less than
|Ω|
4

.

Since

cos
2w = 1

2
(1 + cos 2w) ≤ 1

2

(
1 + 1 − (2w)2

2
+ (2w)4

4!

)
,

we have

E[w] ≤ Ê[w] for all w ∈ H1

0
(Ω),

where

Ê[w] ∶= ∫Ω

(
𝜅

2
|∇w|2 + 1

4
− w2

4
+ w4

12

)
𝑑x. (5.3)

For each w ∈ H1

0
(Ω) ⧵ {0}, let T̂w(s) be the fiber map for Ê. Since 0 < 𝜅 <

1

2𝜆
1

, by similar

calculations as in [14], T̂w(s) has exactly one critical point at

ŝw =

(
1

2
∫Ω w2

𝑑x − 𝜅 ∫Ω |∇w|2
1

3
∫Ω w4

𝑑x

)1∕2

, (5.4)

and ŝw is a minimizer for T̂w. Thus, for 𝜓1 the corresponding eigenfunction of 𝜆1 we have

E[w∗] ≤ E[ŝ𝜓
1
𝜓1] ≤ Ê[ŝ𝜓

1
𝜓1] = ∫Ω

𝜅

2
|s̃𝜓

1
∇𝜓1|2 + 1

4
−

s̃2
𝜓

1
𝜓

2

1

4
+

(s̃𝜓
1
𝜓1)4

12
𝑑x. (5.5)

Using the corresponding Nehari manifold for Ê we have

Ê[ŝ𝜓
1
𝜓1] =

1

4 ∫Ω

(
1 −

(ŝ𝜓
1
𝜓1)4

3

)
𝑑x <

|Ω|
4

.

Together with Equation (5.4) we have

E[w∗] < |Ω|
4

and hence w∗ ≠ 0.

Define w+ = |w∗| and w− = −|w∗|. Clearly cos
2(w+) = cos

2(w−) = cos
2(w∗) and |∇w+| =

|∇w−| = |∇w∗|. Thus E[w+] = E[w−] = E[w∗] and both w+ and w− are minimizer of E over H1

0
(Ω).

Also w+ ≥ 0 and w− ≤ 0 in Ω with

w+ + w− = 0 in Ω.

Then w+ is a nonnegative and nonzero solution for the Euler–Lagrange equation

−𝜅Δw − sin(2w)
4

= 0 in Ω, (5.6)
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DAI and RAMADAN 13 of 15

w = 0 on 𝜕Ω. (5.7)

Standard regularity theory (see, e.g., [19]) shows that w+ ∈ C∞(Ω) ∩ C(Ω).
Next we show that w+ > 0. in Ω. We prove by contradiction. To that end assume that there exists

x0 ∈ Ω such that w+(x0) = 0. Then w+(x0) is the minimum of w+. However, since 0 ≤ w+ ≤ 𝜋∕2, we

have

−𝜅Δw+ = sin(2w+)
4

≥ 0. (5.8)

By the strong maximum principle, w+ is a constant and hence is zero in Ω. This contradicts the energy

estimate above. This also implies that the minimizer w∗
cannot have both negative and positive parts.

To show that w+ <
𝜋

2
for all x ∈ Ω, we assume there exists x1 ∈ Ω such that w+(x1) = 𝜋

2
. Define

v ∶= w+ − 𝜋

2
. Then − 𝜋

2
≤ v ≤ 0 in Ω and v(x1) = 0 is the non-negative maximum of u in Ω. Going

back to the Euler–Lagrange equation (5.6) we have

−𝜅Δv − sin(2v + 𝜋)
4

= 0.

Thus

−𝜅Δv = − sin(2v)
4

≤ − v
2

and

−𝜅Δv + v
2
≤ 0.

Then by the strong maximum principle, v is a constant and hence v ≡ 0. This implies that w+ ≡ 𝜋

2
but

this contradicts the boundary value of w+ = 0. Thus w+ <
𝜋

2
.

To prove the uniqueness of positive minimizers for E, we will use the following lemma.

Lemma 5.1. Suppose G[w] is an energy functional given by

G[w] ∶= ∫Ω
(Φ(|∇w|) + F(|w|))𝑑x, w ∈ H1

0
(Ω), (5.9)

where Ω is a domain and F is a strictly decreasing function. Then G allows at most one
positive minimizer.

This lemma can be proved using similar arguments as in [14]. By taking Φ(|∇u|) = 𝜅

2
|∇w|2 and

F(w) = cos
2(w)
4

with |w| ≤ 𝜋∕2, we obtain the uniqueness of positive minimizers for E. This completes

the proof of Theorem 2.1.

Theorem 2.2 follows from the identity E[|w|] = E[w], the Euler–Lagrange equation (5.6) and (5.7)

and the strong maximum principle.
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