
DynaCut: A Framework for Dynamic and Adaptive Program
Customization

Abhijit Mahurkar
∗

Virginia Tech

Blacksburg, USA

abhijitm@vt.edu

Xiaoguang Wang
∗

University of Illinois Chicago

Chicago, USA

xgwang9@uic.edu

Hang Zhang
†

Indiana University Bloomington

Bloomington, USA

hz64@iu.edu

Binoy Ravindran

Virginia Tech

Blacksburg, USA

binoy@vt.edu

ABSTRACT

Software is becoming increasingly complex and feature-rich, yet

only part of any given codebase is frequently used. Existing soft-

ware customization and debloating approaches target static bina-

ries, focusing on feature discovery, control-flow analysis, and binary

rewriting. As a result, the customized program binary has a smaller

attack surface as well as less available functionality. This means

that once a software’s use scenario changes, the customized binary

may not be usable.

This paper presents DynaCut, for dynamic software code cus-

tomization. DynaCut can disable “not being used” code features

during software runtime and re-enable them when required again.

DynaCut works at the binary level; no source code is needed. To

achieve its goal, DynaCut includes a dynamic process rewriting

technique that seamlessly and transparently updates the image of a

running process, with specific code features blocked or re-enabled.

To help identify potentially unused code, DynaCut employs an

execution trace-based differential analysis to pinpoint the code

related to specific software features, which can be dynamically

turned on/off based on user configuration. We also develop auto-

matic methods to locate code that is only temporally used (e.g.,

initialization code), which can be dropped in a timely manner (e.g.,

after the initialization phase).

We prototype DynaCut and evaluate it using 3 widely used

server applications and the SPECint2017_speed benchmark suite.

The result shows that, compared to existing static binary customiza-

tion approaches, DynaCut removes an additional 10% of code on

average and up to 56% of temporally executed code due to the

dynamic code customization.

CCS CONCEPTS

• Security and privacy → Software and application security;

Systems security.

∗
A. Mahurkar and X. Wang made equal contributions to this work. Most of X. Wang’s

work was done while he was at Virginia Tech.

†
Most of H. Zhang’s work was done while he was at Georgia Tech.

Middleware ’23, December 11–15, 2023, Bologna, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in 24th International

Middleware Conference (Middleware ’23), December 11–15, 2023, Bologna, Italy, https:

//doi.org/10.1145/3590140.3629121.

KEYWORDS

Software Customization, Process Rewriting, Dynamic Attack Sur-

face Reduction, Software Security

ACM Reference Format:

Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran.

2023. DynaCut: A Framework for Dynamic and Adaptive Program Cus-

tomization. In 24th International Middleware Conference (Middleware ’23),

December 11–15, 2023, Bologna, Italy. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3590140.3629121

1 INTRODUCTION

Software is increasingly becoming larger in code size and com-

plex in functionality. According to recent research and online re-

ports, more than half of the functionality in many software sys-

tems is rarely used [13, 21, 52]. A study on an industrial business

information system reveals that more than 25% of its code has

never been used for years [21]. Such unused components not only

burden the code maintainers but also expose potential attack sur-

faces [21, 44, 45, 50].

In addition to code blocks that go unused for years, there exists

code blocks with only temporal liveliness. For example, the initial-

ization code of a long-running server program only executes during

the boot-up phase. Since such code usually has access to sensitive

system calls and configuration files, a good security practice is to

remove them from memory after initialization [24]. However, this

is often not the case in many server programs. Similarly, in some

software systems, a good security practice would be to use certain

features only under certain circumstances. For example, in a search

engine database, it would be desirable to keep the data read-only

for searching services during peak load times, while re-indexing or

updating them during idle times (e.g., at midnight) [18, 29]. Keep-

ing all program functionality accessible all the time increases attack

opportunities.

This raises the question of how software can be debloated so that

only the necessary code is kept in memory at any given time? Software

developers can get rid of unused code with the aid of, for example,

static code coverage measuring tools [5, 25] that can help identify

unused features [32]. However, this is generally not possible for

end-users, especially for customizing off-the-shelf software without

source code. To address this problem, recent works have focused on

removing unused code directly from program binaries. For example,

a number of efforts use control-flow information [23, 44] and static

https://orcid.org/0009-0009-0567-8877
https://orcid.org/0000-0001-5055-4552
https://orcid.org/0009-0003-6089-1079
https://orcid.org/0000-0002-8663-739X
https://doi.org/10.1145/3590140.3629121
https://doi.org/10.1145/3590140.3629121
https://doi.org/10.1145/3590140.3629121

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

program analysis [2, 45, 50] to locate unused code and remove them

through static binary rewriting or binary recompilation [44, 45, 57,

58, 65]. As a result, existing approaches take a vanilla binary as

input and generate a debloated binary.

Such code removal is a static and one-time effort. Once modified,

the code no longer changes. Such static debloating is sub-optimal

in many real-world scenarios, where code that needs to be kept and

removed may change as the program executes. On the one hand,

it can be risky if static debloating is aggressive since the removed

code may be required later. On the other hand, a conservative

debloating strategy (e.g., only exclude dead code [34]) may fail to

maximize security benefits as it may retain code that is not used for

a long time. This dilemma stems from the fundamental limitation

of binary-oriented static debloating strategies, i.e., they ignore the

program execution time dimension, and are unable to dynamically

and seamlessly remove and re-enable code.

Motivated by these concerns, we develop DynaCut, a dynamic

and adaptive code customization system. DynaCut can disable and

re-enable code paths of a process at run-time without interrupting

its execution. This capability enablesDynaCut to perform dynamic

code customization: at any time during program execution, the

required and undesired code can be individually configured (e.g.,

initialization code can be kept during the setup phase and discarded

later), maximizing debloating’s security benefits.

DynaCut uses a process rewriting technique to modify a process

at run-time. More specifically, DynaCut can efficiently snapshot a

running process at any time and then transparently resume it with

an updated snapshot (e.g.,with undesired code pages or basic blocks

removed). This mechanism enables flexible dynamic debloating:

different code blocks can be enabled/disabled during different time

windows. While the required/unnecessary code can be identified

either manually or by existing tools [23, 44, 50], DynaCut also con-

tains a component to extract coverage information from execution

traces and locate code blocks related to different software features,

which can then be dynamically enabled/disabled. DynaCut can

also help to automatically identify the temporally unused code (e.g.,

initialization- or termination-related code) using the sequential exe-

cution order of code blocks and disable them, for example, after the

initialization phase. This allows DynaCut to be used as a dynamic

program debloating tool out of the box.

We implement a prototype of DynaCut and evaluate it using

ten real-world applications, including widely used and security-

critical web servers. The results show that DynaCut can identify

and debloat up to 56% of executed code that is only used during

initialization and can keep less than 17% code blocks visible in

memory due to execution phase-based code customization. When

dynamically customizing code features, the service interruption

time is only≈400 ms, resulting in no observable overall performance

overhead. Our security analysis shows that DynaCut can mitigate

several CVEs and known attacks including CVE-2021-32625, CVE-

2021-29477 and BROP attack [9]. To the best of our knowledge,

DynaCut is the first dynamic code customization framework.

The paper’s contributions include:

• We propose the concept of dynamic code debloating, which

provides stronger security protection and flexibility over

existing debloating approaches.

• We design and implement DynaCut, a first-of-its-class sys-

tem for dynamic and seamless code customization.DynaCut

is open-sourced.
1

• We evaluate DynaCut’s effectiveness and efficiency using

real-world applications and benchmark suites and show that

they can be dynamically customized with minimal service

interruption.

The rest of this paper is organized as follows: Section 2 provides

background information on code customization and describes the

motivation. We then describe the design and implementation of

DynaCut in Section 3. The evaluation is presented in Section 4.

We discuss the future work in Section 5. Afterward, we summarize

the related work in Section 6 and conclude the paper in Section 7.

2 BACKGROUND AND MOTIVATION

Software customization is a technique to selectively disable or en-

able software features [33]. Its primary applications include reduc-

ing the code size for easy software distribution and minimizing the

program attack surface [23, 24, 30, 44, 46]. To minimize the software

runtime attack surface, an ideal intelligent machine may control a

tiny sliding window for code execution. In an extreme case, only

one correct instruction is executable (visible) in the memory (Fig-

ure 1 (a)). Therefore, an attacker cannot arbitrarily jump to any

vulnerable code that is marked as invisible, nor can he leaks any

information about the code layout. However, such a machine does

not exist for now. To make it more realistic, a number of efforts

have focused on software customization from different perspec-

tives. Feature-based software customization removes unnecessary

code features using user-defined policies or program analysis re-

sults [33, 45, 46]. For example, a program’s dependency graph can

be obtained and embedded into the binary for customized program

loading [45]. User inputs, specifications that distinguish unused

features, and execution traces can be used to identify bloated code

paths [23, 30, 44]. After retrieving feature-related code paths, many

efforts re-assemble the binary to permanently eliminate unused

code [57, 58] (Figure 1 (b)). Therefore, the resulting binary will be

unusable in other scenarios that require the removed features.

Exec Timeline

Ideal case: One instr visible

Exec Timeline

Exec Timeline

DynaCut: Timeline-aware Dynamic Debloating

Static binary debloating:
Code removed throughout the lifetime

(a)

(b)

(c) Initialization

Figure 1: Software debloating for a reduced attack surface.

To demonstrate the existence of code bloating and better un-

derstand the size and distribution of unused code blocks across a

process’s lifetime, we analyzed the basic block liveness of a compute-

intensive program (i.e., 605.mcf_s in SPEC CPU2017) and a server

1
https://github.com/ssrg-vt/DynaCut

https://github.com/ssrg-vt/DynaCut

DynaCut: A Framework for Dynamic and Adaptive Program Customization Middleware ’23, December 11–15, 2023, Bologna, Italy

(a) 605.mcf_s (b) Lighttpd

Figure 2: Visualization of process memory footprints for

executed basic blocks (blue and red), unused basic blocks

(gray), and initialization-related basic blocks (red) in SPEC

INT2017 605.mcf_s benchmark and Lighttpd web server.

application (i.e., Lighttpd) and visualize the results in Figure 2. As

can be seen, a significant percentage of basic blocks (in gray) has

never been executed, showing the necessity and practicality of

software debloating. Even though traditional static debloating tech-

niques can eliminate the never-used code blocks (in gray), it cannot

remove, for example, the initialization code blocks (in red) when

they are no longer needed after the relatively short initialization

phase. Given the considerable amount of such temporally alive

code blocks, we argue that temporally removing them can further

reduce the attack surface and increase security benefits.

Threat Model: We assume the attacker has remote access to

the target process through a standard I/O interface, specifically, a

socket connection. The attacker may also have access to the target

binaries, such as the application and its libraries.DynaCut does not

bring any exploit mitigations, but only reduces the attack surfaces

through (dynamic) code customization and debloating. We assume

the implementation of the disassembler is correct and sound; we

also assume a strong trusted computing base (TCB), including the

operating system kernel and the ELF loader. Side-channel attacks

and kernel vulnerability exploits and mitigations are out of the

scope of this paper.

3 SYSTEM DESIGN AND IMPLEMENTATION

DynaCut aims to dynamically customize code features of a pro-

cess without interrupting its execution. To achieve this, DynaCut

leverages a process rewriting technique to remove unwanted code

blocks and transform the process’s memory. Process rewriting can

also re-customize the code features for the target process when the

application scenario changes. For example, it can restore the re-

moved code blocks and re-customize the code for a new application

scenario.

At its heart, DynaCut is a dynamic code customization mech-

anism independent of the techniques determining what code to

disable or enable. DynaCut can use existing binary analysis and

debloating tools [23, 44] to find feature-related code paths. For ex-

ample, control-flow trimming [23] analyzes execution traces and

identifies the program Control-Flow Graph (CFG) edges that can

be trimmed. Razor [44] similarly determines the desired code paths

using execution trace logs. However, existing tools do not identify

initialization code or do not support multi-threading applications.

Therefore, we extend tracing-based code coverage techniques in

DynaCut.

Figure 3 illustrates DynaCut. DynaCut has two major com-

ponents: an undesired code block identifier and a process rewriter.

The first component collects basic blocks from different execution

traces and generates code coverage graphs. DynaCut uses trace

log merging and code coverage graph comparison (i.e., diff) to de-

termine wanted/undesired code blocks. The feature customization

is based on the fact that most server programs handle different

requests (features) using a big switch-case statement. DynaCut

simply needs to locate the code dispatcher and cut the control flow

edge to undesired features. DynaCut can also identify undesired

initialization code that would not be executed post-initialization by

analyzing execution logs.

Once the list of undesired code blocks is determined, it is input to

the process rewriter. The process rewriter dynamically customizes

the process based on the given code block list and a customiza-

tion policy. For example, we can block the undesired features by

replacing their corresponding code blocks (or only the first byte of

each basic block) with the int3 instruction2. We can also unmap

corresponding code pages if the undesired feature consists of a

large memory footprint. Subsequently, when undesired code blocks

are executed, an exception will be raised. The process rewriter can

further customize the program behavior when the exception is

raised. For example, it can inject signal handlers into the target

process’s address space and update the process’s default signal han-

dlers. Users can also specify policies, such as terminating program

execution or safely skipping undesired requests. DynaCut also

allows users to restore the removed features by replacing the int3
instructions with the original instruction bytes. All changes to the

process are applied during the process’s runtime. Therefore, even

if the application scenario changes, end users can instantly update

available features without restarting the process.

3.1 Undesired Code Block Identification

This component mainly uses execution traces to identify feature

dispatchers and temporally undesired code.

Identify Feature-Related Code Blocks for Dynamic Cus-

tomization: Similar to existing feature-oriented binary debloating

techniques [23, 44], DynaCut also requires end users to specify

the wanted and undesired features with sample inputs and record

the corresponding execution traces to distinguish the undesired

code blocks. The trace collector can either use a single trace file

containing all the desired requests or merge multiple trace files

of different requests. The undesired code identifier only needs ex-

ecution traces of the basic block addresses and sizes (i.e., tuples

of <BB addr, BB size>) to differentiate the executions. The exe-

cution traces of undesired features are used to construct a code

coverage graph𝐶𝑜𝑣𝐺𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 . Similarly, the wanted inputs can be

used to construct a corresponding graph 𝐶𝑜𝑣𝐺𝑤𝑎𝑛𝑡𝑒𝑑 . Since each

graph contains a set of basic blocks, we can infer that the undesired

code block blk satisfies the property: blk ∈ 𝐶𝑜𝑣𝐺𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 and blk
∉𝐶𝑜𝑣𝐺𝑤𝑎𝑛𝑡𝑒𝑑 . DynaCut narrows down the undesired code blocks

2
The int3 instruction is a one-byte breakpoint instruction in x86 CPUs. Upon executing
int3, a breakpoint exception (#BP) is raised [31]. Other architectures have similar

instructions for this purpose [53].

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

Process Rewriting

Code coverage
profiling

Temporally
unused BBs

Feature-
related BBs

Customized ProcVanilla Proc

User Input

Customization
Policy

Execution trace

Existing binary
debloating tools

(optional)

Feature Validation
(optional)

Process
Images

+

(!ection 3.2)(!ection 3.1)

Figure 3: Overview of DynaCut. DynaCut consists of 1) feature-related code discovery (Section 3.1) and 2) runtime code feature

customization with process writing (Section 3.2).

by filtering out basic blocks that appear in program libraries. Fig-

ure 4 shows an example of a feature-related basic block discovered

from this process.

libc.so

Feature-related code block
locations in Redis-server

Figure 4: Diff -based feature-related basic block discovery:

our tracediff.py tool automatically calculates undesired basic

blocks using different execution traces.

The method of using basic block diff s from execution trace logs

has a similar effect to that of using control-flow edges to identify

unnecessary code blocks [23, 30, 44]. Both methods can find and

remove undesired features (see Section 4). However, the code cover-

age diff -based approach is much easier to implement, as there is no

need to reconstruct the CFG, especially for binaries without source

code. We argue that our dynamic, code coverage-based approach is

orthogonal to existing static program analysis approaches [23, 44].

They can be used together for accurate feature discovery.

Identify Temporally Undesired Basic Blocks: To identify

the basic blocks of the temporally undesired code, we could at-

tach timestamps for each executed basic block and assume that

the blocks that completed before a particular timestamp as the ini-

tialization code. However, such an approach requires knowledge

of code behaviors and manual analysis. For example, it’s difficult

to determine when the initialization code completes simply using

the timestamps. Also, a basic block may execute during the ini-

tialization phase, and may also execute later. A similar problem is

reported by Ghavamnia et al. [24]. In that work, the authors define

a transition point between an application’s initialization phase and

its subsequent phase. For web server applications, they manually

analyzed the source code to determine the transition points, such as

Nginx’s ngx_worker_process_cycle() function and Lighttpd’s

server_main_loop() function. For other applications, user anno-

tations are expected for identifying transition points.

In DynaCut, we use a simple yet efficient approach to semi-

automatically profile basic blocks only executed during the initial-

ization phase. During code profiling, we ask end-users to notify

the code coverage profiling tool that the target server program has

initialized. The end of a program’s initialization phase can be easily

observed by reading the printed log or using experience knowledge

to wait a while after launching the program. Upon receiving that

signal, the tool dumps the execution trace collected so far, which is

the code coverage of the initialization phase (𝐶𝑜𝑣𝐺𝑖𝑛𝑖𝑡). The tool

also clears the code cache and continues recording code execution.

When the program finishes execution, the tool generates a second

code coverage file containing the trace executed during the post-

initialization phase (𝐶𝑜𝑣𝐺𝑠𝑒𝑟𝑣𝑖𝑛𝑔). From this, we infer the “not used”

initialization code block blk that satisfies: blk ∈ 𝐶𝑜𝑣𝐺𝑖𝑛𝑖𝑡 and blk ∉

𝐶𝑜𝑣𝐺𝑠𝑒𝑟𝑣𝑖𝑛𝑔 . We also use the tracediff.py tool shown in Figure 4

to obtain an accurate list of the initialization basic blocks. Once the

(temporal) undesired basic block list has been retrieved, we input it

to the DynaCut runtime for dynamic code customization, together

with the customization policy.

3.2 Dynamic Code Customization

DynaCut dynamically customizes a process without interrupting

its execution. To achieve this, DynaCut relies on an online process

rewriter. The process rewriter takes as input a process snapshot

(i.e., a process image), rewrites the snapshot by removing unwanted

code, and then restores the process. End users can specify how

undesired code should be removed. DynaCut allows users to sim-

ply block features or to fully delete them (e.g., wipe code memory,

unmap code pages). End users can also inject a customized excep-

tion handler for handling (unintended) undesired code access. For

example, the handler can directly exit the program execution or

return a customized error code but keep the program alive.

3.2.1 Process Rewriting. The process rewriter rewrites a static pro-
cess image. To achieve this,DynaCut leverages CRIU [15], which is

a userspace mechanism for checkpointing and restoring a running

process for live process (or container) migration. DynaCut uses

DynaCut: A Framework for Dynamic and Adaptive Program Customization Middleware ’23, December 11–15, 2023, Bologna, Italy

CRIU to checkpoint a running process into a static process image.

By rewriting a static process image, we avoid the complications of

dealing with potential race conditions such as in a dynamic process

transformation system [7, 39, 64].

The process rewriter supports updating memory contents, increas-

ing or unmapping the virtual memory areas (VMAs), and inserting (or

unloading) position-independent shared libraries into (from) the vir-

tual memory space. Updating the memory content allows replacing

arbitrary instructions with one-byte int3 instructions, thus remov-

ing small code features of a couple of bytes. We can also replace

the first byte of an undesired basic block with an int3 instruction,

which blocks the code execution of an unwanted feature in a code

dispatcher. Although this is sufficient to block that basic block from

being executed
3
, a powerful attacker may redirect the control flow

to the middle of a basic block, launching an ROP attack [49]. To

address this issue, the rewriter also allows an end user to wipe out

a block of code memory or even unmap an entire memory page.

This prevents access to any instructions of undesired code blocks.

DynaCut also supports updating a process’s exception handler and

loading/unloading a shared library dynamically. The transformed

process image can be safely restored using CRIU.

In summary, the DynaCut process rewriter can safely trans-

form a live program to enhance the security of specific execution

phases dynamically. The DynaCut process rewriting differs from

dynamic binary instrumentation (DBI) [11, 38]. DBI tools such as

DynamoRIO [11] and PIN [38] generate the code on-the-fly and use

a code cache to store the translated code at runtime. In contrast,

DynaCut statically updates the target code within a small time

window. This prevents potential race conditions between the target

process and the process rewriter. Moreover, once the process is

restored, static process rewriting has almost zero runtime overhead,

which is impossible using DBI tools. To support multi-process ap-

plications, DynaCut iterates through each process’s memory space

and updates the corresponding code.

3.2.2 Block Undesired Features. Once a list of basic blocks has been
identified as an undesired code feature during the analysis phase,

DynaCut blocks the feature by placing an int3 instruction in the

first byte of the first basic block executed in this list. As mentioned

earlier, basic blocks in the undesired feature list are unique code for

that feature. Therefore, blocking the first instruction (byte) from

being executed is enough to disable that feature. Alternatively,

end-users can specify a more aggressive policy to entirely remove

unwanted code by replacing basic blocks on that code path with

int3 instructions. The second policy increases security as it does

not allow code reuse attacks on unwanted code. However, it adds

performance overhead if the end-user wants to restore that feature.

DynaCut also allows an end-user to define how the program

behaves when inadvertently accessing the blocked feature. Most

existing binary debloating works terminate the program if users

accidentally execute the blocked code feature [23, 44, 50], which

brings usability issues. DynaCut addresses this problem by allow-

ing end-users to program applications’ behavior when accidentally

accessing blocked features. Specifically, DynaCut allows insert-

ing a signal handler to capture the unexpected int3 execution

3
A basic block is a straight-line code sequence with no branches in except to the entry

and no branches out except at the exit.

(SIGTRAP exception). There are multiple strategies for the signal

handler to deal with SIGTRAP. For example, users can call exit() to
terminate execution, like most existing works do. For applications

with default error handling code, users can program the behavior of

accidental access to the blocked code.

When the blocked code is touched, the DynaCut-inserted signal

handler can capture the exception and obtain the execution context.

It then updates the instruction pointer by adding an offset value to

the exception address so that upon signal return, the instruction

pointer points to a new location where the application handles

the wrong request. For example, when we disable PUT and DELETE
methods (L5 and L8 in Listing 1) in a web server, we can program the

fault handler to jump to the code that responds a 403 Forbidden
(L12 in Listing 1). Therefore, even if end-users inadvertently access

a disabled method, they only receive a 403 Forbidden response

instead of terminating the web server.

1 static ngx_int_t
2 ngx_http_dav_handler(ngx_http_request_t *r)
3 {
4 switch (r->method) {
5 case NGX_HTTP_PUT:
6 ...
7 return NGX_DONE;
8 case NGX_HTTP_DELETE:
9 return ngx_http_dav_delete_handler(r);
10
11 }
12 return NGX_DECLINED;
13 }

Listing 1: Code snippet of Nginx’s request handler.

Figure 5 illustrates DynaCut’s runtime code feature blocking

capability using process rewriting. The updated memory is shown

on the right of Figure 5. DynaCut allows multiple code features

to be blocked by replacing the first byte with an int3 instruction
(machine code 0xCC). When the unwanted code is inadvertently

accessed, a SIGTRAP will be raised (steps 1○ and 2○). The execu-

tion redirects to the fault handler, where we update the instruction

pointer so that upon signal restoration, the application jumps to the

code that responds with a 403 forbidden message to the HTTP

client (step 3○). Thus, the web server’s available features are dynam-

ically blocked without interrupting the service. Similarly, end-users

can restore the original instructions for those disabled features if

the use scenario changes. By such a “bidirectional” process trans-

formation, end-users can dynamically maintain a minimal available

code feature set to reduce the attack surface.

Currently, we support programming the unintended behavior

only if the target program has an error handler. We also require

that the entries of the default error handler and unwanted code

features reside within the same function. This is common for server

applications as they often have a large switch-case statement to

dispatch different client requests to their respective handlers. Thus,

updating the instruction pointer with an offset does not mess up

the function call stack. In the future, we expect to use program

analysis and stack rewriting techniques to update the execution

context if the entrances of the code handlers are in different func-

tions. We terminate program execution for applications that do not

have default error handlers, similar to most software debloating

works [23, 44, 50].

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

Vanilla Process

Signal Handler
(Shared Library)

Fault handler

403 forbidden

unwanted feature 1

Modified Process Layout

①

②

③

unwanted feature 2

0xCC

0xCC

initialization code

0xCC … …

+

initialization code

features code

Process Rewriter
(Modified CRiU)

Feature
Restore

Figure 5: Illustration of DynaCut’s code feature blocking

and control flow redirection capabilities.

3.2.3 Validate Functionality for Removed Code. Similar to many

existing binary debloating works [23, 30],DynaCutmay also suffer

from over elimination during the unused code identification phase.

This is because the sample input for trace gathering may not be

sufficient to cover all desired code paths, leading to some potential

code paths being wrongly classified as unused. To validate the

correctness of a customized process image, DynaCut allows end-

users to inject a verifier library to check if any desired basic blocks

have been falsely classified and removed as unintended code. This

is similarly accomplished through the SIGTRAP handler. Instead of

terminating program execution upon executing an unintended trap

instruction, the verifier library restores the original instructions and

logs the false addresses. This allows end-users to validate whether

the functionality remains correct after code customization.

3.2.4 Other Code Customization Policies (Use Cases). Although
DynaCut focuses on the mechanism for dynamic program cus-

tomization, its flexible process transformation capabilities allow

different customization policies. For example, the DynaCut users

(or administrators) can dynamically expose the minimal function-

alities of server programs according to the required workloads.

Specifically, an administrator can disable any data write capabilities

of web and database servers to prevent attackers from maliciously

modifying data on an online system. Meanwhile, only re-enable

the write capability when the administrator needs to update the

content. This minimizes the time window for an attack.

Similarly, the administrator can use DynaCut to minimize po-

tential vulnerabilities of new versions of software components.

New software versions often likely contain zero-day bugs since

they are less tested and deployed [63]. Also, many new features in

new software versions may not be used by other legacy software

components. With DynaCut, the administrator can disable unused

new features and re-enable them only when these features are re-

quired. The feature customization is instant and will not interrupt

the service. This reduces the attack window since the longer new

features are used and tested, the fewer bugs they are likely to have.

3.3 Implementation

We implemented a prototype of DynaCut. Our implementation

leverages CRIU [15] to checkpoint a running process and save

its memory pages, register states, opened files, and network con-

nections into several process images. After being transformed by

DynaCut, the saved data will be used to restore the process ex-

actly as it was during the checkpoint. CRIU is especially useful

for transforming stateful programs with live connections, such as

most web servers and key-value stores, as it supports TCP_REPAIR,
which allows re-establishing saved TCP connections.

Modifications to CRIU:. To implement DynaCut, we made

several changes to CRIU. CRIU only dumps the anonymous pages

of a process to a file. This saves network bandwidth for transmitting

process image files during process migration. Code pages do not

have to be saved because file-backed memory can be reconstructed

by the page fault handler when a restored process attempts to access

the virtual memory again. InDynaCut’s implementation, we added

an option in criu/mem.c to dump the private and executable pages

(i.e., PROT_EXEC and FILE_PRIVATE).
We also extended the CRIU image tool to support process rewrit-

ing. CRIU has an image checking tool called CRIT [16] that is used

to examine process images in the protocol buffer format (proto-

buf) [26], decode them to human-readable JSON files (decode), and
encode them back to the protobuf format (encode). For example,

users can use CRIT to print all memory regions of the application

(i.e., crit x <dir> mems) or check the register values of a process

snapshot (i.e., crit show core.img). We made extensive changes

to CRIT to provide easy-to-use APIs for process transformation.

We added support to update memory contents, enlarge or unmap

the VMAs, and insert position-independent shared libraries to the

virtual memory space. Our CRIT extension also supports removing

a single basic block/function given a base address, the size of the

basic block/function, and its file offset.

DynaCut can dynamically load a customized exception handler.

To accomplish this,DynaCutmodifies the CRIU images and inserts

the library into the process address space. In particular, DynaCut

rewrites the following images:

The core image file. This file contains process information in-

cluding binary name and location, signal handlers and masks, and

register values, among others. DynaCut modifies this file to add

the signal handler address, restorer address, and signal mask into the

SIGTRAP sigaction field of the file. For the signal restorer, instead of

using the default one present in the application, we add the restorer

code from the code pages of the signal handler library itself. It is a

9-byte code that issues a rt_sigreturn syscall. The signal handler

address is calculated by adding the file offset of the signal handling

function with the VMA base address of the user’s choice.

pages, pagemap and mm image files. The raw page contents are

stored in the pages.img file, while the pagemap.img file contains
information about which virtual memory regions are populated

with data. To load a shared library into the target address space, we

need to create new virtual memory regions and insert new memory

pages that contain the library’s code and data. DynaCut’s process

rewriter parses the shared library and calculates the size of each

ELF section. This is very similar to a traditional ELF loader, but

DynaCut loads the shared binary and dynamically injects it into

running processes. DynaCut allows the end-user to specify where

the shared library must be loaded. By default, DynaCut loads the

shared library into a randomized but unused location. DynaCut

DynaCut: A Framework for Dynamic and Adaptive Program Customization Middleware ’23, December 11–15, 2023, Bologna, Italy

further encodes the new pagemap information into the protobuf im-

age. The mm file contains information about the application’s VMA

regions: their start addresses, end addresses, file offsets, shared

memory IDs, permission flags, and status flags. The mm.img file

differs from the pagemap.img file in that the pagemap.img file only
contains details about pages that are populated, whereas the mm.img
file is a collection of all the VMA regions of the application. Dyna-

Cut also modifies the mm.img file to update the VMA information,

such as adding the start address, the end address, the file offset, and

the corresponding permissions for the added shared library.

We leverage the pyelftools [6] to parse ELF libraries. Pyelftools

reads raw data from the shared library ELF; we then add this data

to the CRIU pages.img file by creating new pages and ordering

them according to the pagemap.img file. End-users can specify any

64-bit userspace address that is not used by the process as the base

address of the signal handler. DynaCut also performs global data

relocations and procedure linkage table (PLT) relocations [36] with

respect to the user-specified address. Global data relocations are

performed by adding the VMA base address of the library to the

st_value field of the symbol. For PLT relocations, we first find the

external libc function symbol offset from the libc binary. Next, we
add the runtime VMA base address of libc to these symbol offsets

and write the new addresses to the global offset table (GOT) [36] of

the signal handler library.

Trace Collection: DynaCut leverages a user specification to

profile the application to generate different execution traces. Dy-

naCut also requires the end user to generate as many use cases

as possible for both wanted and unwanted features. In this regard,

fuzzing techniques can partially help to achieve higher code cov-

erage [66]. To collect code coverage logs, we run the target binary

under DynamoRIO’s drcov tool [19]. DynaCut provides a script

to directly print feature-related code blocks from traces of wanted

and unwanted features (Figure 4’s tracediff.py). We extended

DynamoRIO to enable dumping of the initialization phase’s code

coverage.We used DynamoRIO’s communicationmechanism called

nudges [20], to dump the code coverage of the initialization phase.

Our extended DynamoRIO tool dumps the rest of the code coverage

when the program finishes.

A Prototype of DynaCut: We added 630 lines of C code and

2,696 lines of Python code to CRIU/CRIT for process rewriting. For

implementing profiling of the initialization basic blocks, we added

108 lines of C code to DynamoRIO. We also developed scripts to

automatically rewrite processes for given tasks, such as finding

feature-related basic blocks and dynamically disabling code blocks.

These scripts run externally to the target program. To reduce the

time for storing a process image on the hard disk, we checkpoint

the process images into an in-memory filesystem, i.e., tmpfs [47].

4 EVALUATION

In evaluating DynaCut, our primary goals include understanding

its runtime overhead and security benefits. We also aim to use

DynaCut to reduce the attack surface of a real-world application

by dynamic code customization. We demonstrate this using the

Nginx web server.

Experimental setup. Our experiments were performed on a

laptop with an Intel i5-10210U CPU (1.60GHz, 16GB RAM, Ubuntu

20.04 LTS with kernel version 5.8.0). To evaluate DynaCut’s differ-

ent functionality and features, we chose a diverse set of applications.

We used the SPEC INT2017 benchmark suite as representative of

CPU- andmemory-intensive workloads. Since web servers are often

security-, performance-, and reliability-critical (e.g., low tolerance

to service interruption), they pose high requirements for a dynamic

code customization tool. We used two web servers, Nginx (v1.18.0)

and Lighttpd (v1.4.59), as representative server applications. Ng-

inx uses multiple processes, organized in a master-worker style.

Lighttpd has an event-driven single-process architecture. Similar to

web servers, in-memory key-value stores also have high security,

performance, and reliability requirements. In addition, they have a

well-defined feature set, which makes them suitable for evaluating

DynaCut’s feature removal functionality. We chose Redis (v6.2.3)

as a representative key-value store.

4.1 Performance Overhead

We evaluate DynaCut’s overhead by measuring how long it takes

to rewrite a running program and the duration of the service in-

terruption. DynaCut supports two types of code removal: feature

removal and initialization code removal. Since the process rewriting

policies are slightly different, we report the time costs separately.

For both types of overhead measurement, we created a tmpfs for
storing the intermediate process state. We measured the time cost

using Linux’s date command in nanosecond precision.

Feature removal overhead. For feature removal, DynaCut

modifies CRIU images to disable feature-related code paths and

loads a fault handler for handling unintended feature requests.

Therefore, the overhead includes process dumping and restoring,

instruction replacement, and loading the dynamic shared library

code. We configured both web servers to use the web distributed

authoring and versioning (WebDAV) extension [62]. We selected a

few request types as potential unintended features. For example,

we chose the PUT and DELETE requests in Nginx and Lighttpd as

unintended requests, and chose the SET command as the unintended

request in the Redis key-value server. We used these features as

unintended features simply because they can potentially be used

to alter read-only data in the servers.

Lighttpd (2.7MB) Nginx (2.7MB+2.2MB) Redis (4.1MB)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ti
m

e
us

ed
 (s

)

insert sighandler
disable code w/ int3
checkpoint
restore

Figure 6: DynaCut’s overhead for dynamically customizing

code features.

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

As shown in Figure 6, DynaCut takes about 0.274 seconds and

0.56 seconds to customize the Lighttpd and Nginx instances, respec-

tively, for feature customization. For Redis, the time taken is about

0.29 seconds. These are average numbers of repeating 10 times,

with a standard deviation of 17 ms. The time taken for customizing

the features of the applications are similar, but the checkpointing

times are slightly different. For example, it takes 0.3 seconds to

checkpoint Nginx, as Nginx has two processes to snapshot (2.7MB

and 2.2MB are the sizes of each Nginx process image, as shown in

Figure 6). For feature customization, DynaCut only needs to find

the unintended code block by its address, replace the first byte of

the feature-related basic block, and insert the fault handler. Thus,

the time cost is almost constant.

Initialization code removal. As described before, initialization

code removal replaces the code blocks that are used only during

the initialization phase. Unlike feature removal, the overhead of

initialization code removal is mainly due to replacing all unused

basic block instructions. Figure 7 shows DynaCut’s time taken for

removing initialization functions. The sizes of the .text section

and the CRIU process image for each application are shown in the

table included in the figure. For Nginx and Lighttpd, the overhead

incurred for modifying the images is about 3.5 seconds and 0.93 sec-

onds, respectively. Most of this time is used to analyze the process

images and remove the initialization code (e.g., replace instructions

with int3 or unmap certain pages).

Lig
htt

pd
Ngin

x

60
0.p

erl
be

nch

60
5.m

cf

62
0.o

mne
tpp

62
3.x

ala
ncb

mk

62
5.x

26
4

64
1.l

ee
la

0

5

10

15

20

Ti
m

e
us

ed
 (s

)

Checkpoint/Restore
Code Update

code size 335KB 853KB 1.96MB 18.36KB 1.56MB 4.6MB 570KB 189KB
image size 2.3MB 4.9MB 184MB 28MB 214MB 191MB 156MB 9.7MB

Figure 7: DynaCut’s overhead for customizing initialization

code in process images.

DynaCut’s evaluation for the SPEC benchmarks is slightly differ-

ent from that of the servers. The SPEC benchmarks are CPU/mem-

ory intensive, and unlike servers, they do not have a clear boundary

between the initialization and serving phases. We chose the ini-

tialization point that we observed when the application was fully

started. We used SPEC’s INTSpeed suite and evaluated seven C/C++

benchmarks of the suite.
4 605.mcf_s is the smallest benchmark

in the suite, and when compared to the other benchmarks, the

overhead of modifying it, 0.22 seconds, was negligible (Figure 7).

4
We got an out-of-memory error when applying DynamoRIO’s code coverage tool on

602.gcc_s and 657.gx_s benchmarks. We believe that DynaCut can customize the

code using other code coverage tools.

In contrast, 600.perlbench is the most expensive case for initial-

ization code removal, taking about 18 seconds.

The time for modifying the process images of the different

benchmark programs depends on various factors, such as the ini-

tialization/serving transition point, the size of the CRIU images,

and the number of initialization code blocks. Figure 7’s graphs

for 600.perlbench_s and 623.xalancbmk_s illustrate this. Even
though 623.xalancbmk_s has a larger .text section size and both

programs have a comparable size for their image dumps (184MB

vs. 191MB), the time taken to modify 600.perlbench_s’s image is

about 4 seconds more than 623.xalancbmk_s’s. This is because, we
chose an initialization point that is much deeper for perlbench_s
than for xalancbmk_s, causing the extra overhead. The number

of initialization basic blocks identified for removal also varies. For

perlbench_s, we identified about 10,808 basic blocks that can be

removed. However, we only identified 6,497 of the same kind for

xalancbmk_s. The overhead incurred is almost proportional to the

length of this list of basic blocks. This is also evident in the graph:

since perlbench_s has about 60% more basic blocks to remove

than xalancbmk_s, perlbench_s takes about 50% more time than

xalancbmk_s to remove initialization basic blocks.

Note that the time taken to remove the initialization code is

a one-time cost; it does not add any overhead to actual software

deployment. Instead, end-users can directly restore the “customized”

process image, which can be even faster than launching the program

from the start.
5

0 10 20 30 40 50 60 70
Timeline (s)

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (k

ilo
 re

q/
s)

Disable SET command Re-enable SET command

w/ DynaCut
w/o DynaCut

Figure 8: Redis server’s throughput underDynaCut for mod-

ifying process images.

Service interruption time for dynamically customizing the

Redis server. We measured the service interruption time when

applying DynaCut during an application’s execution. In this ex-

periment, we set up a Redis server on our test machine and started

a Redis benchmark instance (redis-benchmark) on the same ma-

chine, sending GET requests in an infinite loop. During the test, we

dynamically applied DynaCut to the Redis server and rewrote the

process to remove the code for handling the SET command, and

later re-enabled it. We measured the throughput and latency and

baselined them against an unmodified Redis server instance.

As shown in Figure 8, DynaCut does not terminate the Redis

server. Instead, it only degrades the server’s throughput within a

5
Restoring a process image often takes a few hundred ms and is faster than running

through the whole initialization process.

DynaCut: A Framework for Dynamic and Adaptive Program Customization Middleware ’23, December 11–15, 2023, Bologna, Italy

small time window of about one second. After the process rewriting,

the customized process performs similar to the vanilla Redis server.

We applied DynaCut again at the 48th second to re-enable the

SET command. Both feature removal and re-enabling have similar

performance costs. In this test, we did not trigger the SET request as
it will fall through to the error-handling code, which will terminate

the server’s execution.

4.2 Security Evaluation

We evaluated DynaCut’s security benefits by measuring the re-

moved code block numbers and analyzing the attack surface reduc-

tion.

Number and size of code blocks removed. Unlike existing

binary-based code customization approaches [23, 44, 50], DynaCut

dynamically removes code blocks not used for current scenarios. For

feature removal, the number of unused code blocks that DynaCut

can disable heavily depends on the (undesired) feature selection.

Recall that DynaCut’s main contribution is not to find the undesired

features but to remove them dynamically. Furthermore, existing

binary debloating solutions are orthogonal to DynaCut in terms

of feature removal. Therefore, we do not directly compare the code

size reduction rate for feature removal with existing works. Instead,

we report the number of initialization-related basic blocks removed

(Figure 9) and show how many basic blocks live in the memory for

each execution phase under DynaCut and compare them against

previous works [30, 44] (Figure 10).

Lig
htt

pd
NGINX

60
0.p

erl
be

nch

60
5.m

cf

62
0.o

mne
tpp

62
3.x

ala
ncb

mk

62
5.x

26
4

63
1.d

ee
psj

en
g

64
1.l

ee
la

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f B
as

ic
Bl

oc
ks

Basic block executed
Basic block removed

total BB # 17.8k 35.4k 139k 1180 115k 310k 22.2k 5026 10.6k
code size 335KB 853KB 1.96MB 18.36KB 1.56MB 4.6MB 570KB 81KB 189KB
init code rm 31.6KB 100KB 178KB 2.46KB 102KB 92KB 22.9KB 7.14KB 4KB

Figure 9: Number of executed basic blocks, number of basic

blocks removed by DynaCut, and the size of initialization

code removed.

Figure 9 shows the result of removing initialization code. The

first bar of each application shows the total number of basic blocks

executed and the second bar shows the number of initialization

basic blocks removed. The total number of basic blocks executed

is a deduplicated number calculated from the drcov trace. We also

report the number of total basic blocks, the code size, and the size

of initialization code removed in each binary. The number of to-

tal basic blocks of each binary is obtained using Angr [51]. As

seen in Figure 9, DynaCut can remove up to 56% of the executed

basic blocks in Nginx with an overhead of about 3.5 seconds (Fig-

ure 7). Similarly, DynaCut removes about 46% of the executed

basic blocks in a Lighttpd process. Many executed code blocks

can be removed mainly because web server applications spend an

extensive amount of cycles loading their configuration files and

initializing worker threads. Once the server applications are fully

initialized, they usually execute an event loop to dispatch differ-

ent client requests. Therefore, the “hot” code block numbers are

relatively smaller than that of other applications. For SPEC bench-

marks, DynaCut removes 8.4% to 41.4% of executed code blocks

with an average of 22.3%. The highest percentage case in SPEC

INTSpeed is 600.perlbench_s with about 41.4% of the executed

basic blocks identified as initialization code blocks and removed.

Interestingly, this is a Perl application that processes email text and

also executes in a loop. We also show the removed code size in

Figure 9. For server applications, DynaCut removes about 10% of

the unused initialization code in size.

Next, we use Lighttpd as an example to show theminimal amount

of live code DynaCut can maintain over time. Here, “live” means

code blocks that an attacker can reach.Wemimic a scenario of using

a web server to serve web pages most of the time and dynamically

opening a time window for the system administration (e.g., upload-

ing files to the server). Figure 10 shows the result. The dashed lines

indicate the percentage numbers of live basic blocks in different

code customization techniques (i.e., Razor [44] and Chisel [30])

and are normalized against the vanilla Lighttpd binary. The line of

DynaCut shows the number of live basic blocks in each execution

phase. After Lighttpd finishes initialization, the administrator sends

DynaCut a command to remove the initialization code. When he

needs uploading files, he can enable the HTTP PUT method. This

allows him to manipulate files on the server (time slot 8-9 in Figure

10). Since DynaCut allows dynamically updating code liveness (in

the aforementioned sense), it maintains a smaller amount of code

for each phase. As a result, DynaCut keeps less than 17% of code

blocks visible in memory during the lifetime of Lighttpd, better

than the state-of-the-art binary debloating techniques [30, 44].

0 2 4 6 8 10 12
Time

0%
10%
20%
30%
40%
50%
60%
70%
80%

Liv
e

Ba
sic

 B
lo

ck
s %

Finish initialization Enable HTTP PUT/DELETE

Terminate Program

DynaCut
RAZOR
CHISEL

Figure 10: Number of live basic blocks over time.

We should note that the live basic blocks in each stage can be com-

pletely different, although the numbers are slightly different in each

execution phase. Specifically, live basic blocks before timestamp 2

(i.e., initialization-related) mostly differ from live basic blocks after

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

timestamp 2 (i.e., initialization code removed). Feature-related code

can also be dynamically enabled when the workload changes. In

contrast, existing binary-oriented debloating techniques cannot

minimize code footprint [30, 44]. According to Qian et al. [44], Ra-

zor and Chisel remove an average of 53.1% and 66% basic blocks,

respectively. Due to their static design, the amount of live code

blocks is significantly larger than what DynaCut achieves (i.e., a

maximum of 17% code blocks visible in memory). In this experiment,

we manually run scripts to rewrite the process for each execution

phase. In future work, we plan to fully automate this.

Attack surface reduction. DynaCut can remove undesired

code features on the fly; thus, those features cannot be maliciously

executed whenever they are not in use. DynaCut can also be used

in an alternative way to maintain a minimal set of needed features:

developers can first disable new features in an upgraded software.

When a new feature is required, DynaCut can dynamically enable

that feature. This can be especially helpful in keeping the whole

system secure when integrating new software versions into existing

systems. New code features often contain zero-day bugs. For exam-

ple, newer Redis versions support complex algorithms for string

operations (e.g., the STRALGO command). Such new commands may

not be needed for legacy code developed using older Redis versions.

Using DynaCut, software system maintainers can simply disable

such not-in-use new commands until they are required. This al-

lows legacy code to be protected from vulnerabilities introduced by

new features (if these features are not in use). CVE-2021-32625 and

CVE-2021-29477 are two such vulnerabilities found in recent Redis

versions. We also examined Redis’s other CVEs and confirmed that

DynaCut could disable the vulnerable code paths (Table 1).

List of Redis CVEs [14] mitigatable using DynaCut

CVE # Description

CVE-2021-32625 STRALGO LCS command in Redis versions

6.0+ (integer overflow).

CVE-2021-29477 STRALGO LCS command in Redis versions

6.0+ (integer overflow).

CVE-2019-10193 SETRANGE command (stack-buffer over-

flow).

CVE-2019-10192 SETRANGE command (heap-buffer over-

flow).

CVE-2016-8339 CONFIG SET command in Redis 3.2.x prior

to 3.2.4 (buffer overflow).

Table 1: Redis CVEs that could bemitigated usingDynaCut’s

feature blocking capability.

We conducted another case study on DynaCut’s security ben-

efit obtained by removing the initialization code. Return-to-PLT

(ret2plt) attack [48] is a variant of code reuse attack that invokes

sensitive library code (e.g., execve()) through exposed PLT entries.

The procedure linkage table (PLT) is a small piece of trampoline

code used to call external functions whose addresses are unknown

at link-time. The PLT and the global offset table (GOT) provide ap-

plication codewith access to dynamically linked libraries.DynaCut

wipes out initialization code, including the PLT entries used after

initialization. In our evaluation, we found that DynaCut removes

43 out of 56 executed PLT entries in Nginx after the initialization

phase is completed. After Nginx finishes the initialization, basic

blocks that performed the fork were disabled because the worker

process had already been created.
6
More importantly, the PLT en-

try for the libc fork() function was also disabled, preventing any

ret2plt attacks that use the fork() function.

Blind ROP (BROP) [9] is a variation of ROP attacks that remotely

locates ROP gadgets. It requires the server application to re-spawn

crashed worker processes so that an attacker can brute-force the

stack canary value. It also gathers and sends process information to

the remote attacker through PLT entries like write(). DynaCut
reduces the viability of attacks like BROP in two ways. First, Dy-

naCut disables many executed but not-in-use PLT entries. Thus,

finding a PLT entry for mounting the attack would be difficult.

Second, DynaCut disables about 56% of the executed basic blocks,

reducing the amount of available code for launching the attack.

Even if the attacker can circumvent the disabled PLT entries and

find enough gadgets, it would still be difficult to mount a BROP

attack on the customized Nginx server. This is because, DynaCut

also removes any code that can invoke fork() after initialization. If
an attacker mounts a BROP attack on DynaCut-customized Nginx

server, the first attempt to brute-force the stack canarywill crash the

worker process. We did a similar security evaluation for Lighttpd.

Out of 57 total executed PLT entries, DynaCut was able to remove

33 of them. Some PLT entries that we disabled include strcmp(),
dlopen(), and socket(). DynaCut’s PLT entry removal sets it

apart from existing debloating techniques. Existing techniques can

remove unused code and, by extension, unused PLT entries, but

DynaCut can remove executed PLT entries used only in particular

execution phases.

5 DISCUSSION AND FUTUREWORK

The paper’s main contribution is exploring the pros and cons of

dynamic software feature customization by designing and imple-

menting the DynaCut prototype. We acknowledge that DynaCut

may suffer similar problems and challenges of using limited test

inputs to precisely distinguish wanted and unwanted features, as

many existing binary debloating systems have [23, 30, 44]. A com-

plete and sound solutionmay require source-code level feature-code

relationship analysis [22]. For example, we may improve DynaCut

by automatically analyzing the source code to find each feature

and the corresponding code blocks. We can then separate each

feature-related code block into separate memory pages. As such,

we can dynamically unload these code pages with DynaCut, faster

than replacing code with int3 instructions.

Combining program behavior with code debloating is another

interesting future direction. For example, coarse-grained section-

level binary information can be used to infer code intent [4]. Code

usage under particular workloads can be machine-learned [37].

Moreover, we can monitor specific system calls to determine the

end of the initialization phase, making DynaCut fully automatic.

We leave these optimizations as our future works.

Currently, DynaCut only targets dynamically customizing fea-

tures in application binaries. However, our approach can be ex-

tended to customize library code. There is a significant amount of

6
Here, we configured Nginx to use only one worker process.

DynaCut: A Framework for Dynamic and Adaptive Program Customization Middleware ’23, December 11–15, 2023, Bologna, Italy

initialization code in the standard C library (e.g., glibc) and other

helper libraries (e.g., ld.so). Some features in server applications

are also loaded using shared libraries. We anticipate that unused

shared library code can be dynamically unloaded through the pro-

cess rewriting approach. Removing them from the process address

space can further reduce the attack surface.

Lastly, we believe that process rewriting can be a general tech-

nique to solve other security and system problems, such as dy-

namically enabling/disabling seccomp filtering [24], live code re-

randomization [64], dynamic software update [40, 42], and cross-

architecture process migration and execution randomization [55,

60], among others. Process rewriting allows dynamically trans-

forming the process state and memory layout from outside of the

target process, preventing the transformation logic from being hi-

jacked [64].

6 RELATED WORK

The first category of related work includes efforts on binary de-

bloating, analysis, and rewriting. Binary debloating, which is closest

to DynaCut, aims to reduce the binary size to reduce the attack

surface. A number of debloating works focus on analyzing and

removing unnecessary features [23, 30, 33, 44–46]. A major chal-

lenge is to accurately find control-flow transfer edges to unwanted

code as over-identifying such edges can cause wanted features

to be removed. Many recent works address this challenge from

different perspectives [23, 30, 44]. For example, Razor [44] uses

user-specified input cases and control-flow heuristics to ensure

that all user-expected code blocks are removed. Chisel [30] ap-

plies reinforcement learning to build a statistical model that cap-

tures semantic dependencies between program elements and guides

the search towards a desirable minimal program. Ghaffarinia and

Hamlen [23] similarly apply a machine learning approach to exe-

cution traces generated from test suites to learn a subgraph of the

developer-intended control flows. We argue that these approaches

are orthogonal to DynaCut’s central contribution, i.e., a process

rewriting mechanism to disable/enable code blocks from a process’s

memory layout at run-time. These prior works can therefore be

used in DynaCut to infer a more accurate feature-related code

path for dynamic customization.

After obtaining the feature-related control-flow transfer edges,

many existing approaches use binary rewriting techniques to re-

move bloated code paths or simply block the related control-flow

transfer edges [3, 12, 23, 44, 65]. For example, Uroboros [58] re-

assembles the disassembled code for program instrumentation. The

reassembler recovers the semantic information from program as-

sembly code and rearranges code and data on reassembling [57, 58].

However, program reassembling is a hard problem as compilers

often discard linkage information. Even state-of-the-art reassem-

blers cannot achieve a 100% successful reassembly rate [57, 58].

BinRec [3] lifts a binary to an intermediate representation format,

dynamically removes code features by allowing end-users to de-

termine the required features based on a dependency graph, and

then regenerates the target binary. However, binary recompilation

cannot be directly used when feature requirements change during

the lifetime of a program.DynaCut recognizes this, and enables dy-

namic code customization based on changing requirements. Other

approaches use program analysis to find reachable code. BinTrim-

mer [46] uses value-flow domains to find and eliminate dead code.

Quach et al. use a piece-wise compiler to embed the program depen-

dency graph in a special section of the binary so that a piece-wise

loader can directly load the needed code [45]. In contrast, Dyna-

Cut dynamically finds reachable code. Furthermore, DynaCut also

allows a minimal amount of code features executable; the allow-list

of features can then be gradually enlarged on demand.

The second category of related work includes efforts on dynami-

cally reducing the attack surface [1, 24, 28, 35]. For example, Ghavam-

nia et al. [24] use static analysis to determine the syscall require-

ments for server applications after the initialization phase. Based on

the analysis results, a customized seccomp filter is used to block un-
necessary yet sensitive syscalls (e.g., execve(), fork()) in the post-

initialization phase. However, this approach still retains unused

code in memory, creating potential attack opportunities through

code reuse (e.g., ROP). Shard [1] is a context-aware kernel spe-

cialization system that dynamically switches the execution context

between a security-hardened kernel and a vanilla kernel. Face-

Change [28] similarly profiles syscalls used by each application

and changes the kernel view according to different application

contexts. Compared to DynaCut, the dynamic kernel switching

approaches are more heavy-weight. They require using a modified

virtual machine monitor and also must recompile the target kernels.

Dynamic software patching (software repair) is another way to

fix vulnerable codewithout stopping the process [27, 40, 42, 43]. Gin-

seng [40] uses a source-to-source compiler to generate update-able

code and redirects function calls at runtime to make the updated

code live. Kpatch [43] allows patching the Linux kernel without

restarting or rebooting any processes using the ftracemechanism.

In contrast, DynaCut focuses on vulnerable code removal, but we

believe similar dynamic software patching or software repairing

systems can be built using DynaCut.

DynaCut also shares the ideas of the principle of least privilege

and software fault isolation [8, 10, 17, 56, 67]. The principle of least

privilege ensures that any entity of a computing system (e.g., a

process or a user) has access to only the necessary information for

the intended functions [8]. Least privilege is often implemented

using the concept of privilege separation, i.e., splitting a system

into different components with different levels of trust [10]. In

practice, untrusted components are isolated into fault domains, pre-

venting untrusted code from compromising the trusted computing

base (TCB) [56]. Several efforts split complex software systems

into multiple reduced-privilege compartments [10, 17, 67], and iso-

late different components of the application code [10, 41, 54, 56],

untrusted third-party libraries [61, 67], or even different OS com-

ponents [17, 59]. DynaCut dynamically updates the visibility of

different code features and maintains the minimal code required

for running software in a given scenario.

7 CONCLUSIONS

We presented DynaCut, a dynamic software customization system.

DynaCut’s key innovation is a novel process rewriting mechanism

to update a process’s state and memory layout at run-time. We

built a prototype of DynaCut and used it to dynamically remove

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

unused code features and temporally unused code from nine appli-

cations. Our evaluation shows that DynaCut dynamically removes

up to 56% of executed but unused code blocks with ≈400 ms service

interruption time. Compared to existing static binary debloating

approaches, DynaCut minimizes the number of live code blocks

in memory, further reducing the attack surface.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments.

This work is supported in part by the US Office of Naval Research

(ONR) under grants N00014-19-1-2493 and N00014-22-1-2672 and

the US National Science Foundation (NSF) under grant CNS 2127491.

Any opinions, findings, and conclusions expressed in this material

are those of the authors and do not necessarily reflect the views of

these agencies.

REFERENCES

[1] Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu. 2021.

SHARD: Fine-Grained Kernel Specialization with Context-Aware Hardening. In

30th USENIX Security Symposium (USENIX Security 21).

[2] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-

gios Portokalidis. 2019. Nibbler: debloating binary shared libraries. In Proceed-

ings of the 35th Annual Computer Security Applications Conference, ACSAC 2019,

San Juan, PR, USA, December 09-13, 2019, David Balenson (Ed.). ACM, 70–83.

https://doi.org/10.1145/3359789.3359823

[3] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou,

Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida,

Herbert Bos, and Michael Franz. 2020. BinRec: Dynamic Binary Lifting and

Recompilation. In Proceedings of the Fifteenth European Conference on Computer

Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery,

NewYork, NY, USA, Article 36, 16 pages. https://doi.org/10.1145/3342195.3387550

[4] Julian Bangert, Sergey Bratus, Rebecca Shapiro, Michael E Locasto, Jason Reeves,

Sean W Smith, and Anna Shubina. 2013. ELFbac: using the loader format for

intent-level semantics and fine-grained protection. Dartmouth College Computer

Science Technical Report (2013).

[5] Ned Batchelder. 2021. Coverage.py. https://coverage.readthedocs.io/en/coverage-

5.5.

[6] Eli Bendersky. 2022. pyelftools. https://github.com/eliben/pyelftools.

[7] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed

Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications

Security. ACM, 268–279.

[8] Andrea Bittau. 2009. Toward least-privilege isolation for software. Ph. D. Disserta-

tion. University College London, UK. http://discovery.ucl.ac.uk/18902/

[9] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh.

2014. Hacking Blind. In Security and Privacy (SP), 2014 IEEE Symposium on. IEEE,

227–242.

[10] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:

Splitting Applications into Reduced-Privilege Compartments. In 5th USENIX

Symposium on Networked Systems Design & Implementation, NSDI 2008, April

16-18, 2008, San Francisco, CA, USA, Proceedings, Jon Crowcroft and Michael

Dahlin (Eds.). USENIX Association, 309–322. http://www.usenix.org/events/

nsdi08/tech/full_papers/bittau/bittau.pdf

[11] Derek Bruening. 2004. Efficient, Transparent, and Comprehensive Runtime Code

Manipulation. Ph. D. Dissertation. Massachusetts Institute of Technology.

[12] Yurong Chen, Tian Lan, and Guru Venkataramani. 2017. DamGate: Dynamic

Adaptive Multi-feature Gating in Program Binaries. In Proceedings of the 2017

Workshop on Forming an Ecosystem Around Software Transformation, FEAST@CCS

2017, Dallas, TX, USA, November 3, 2017, Taesoo Kim, Cliff Wang, and Dinghao

Wu (Eds.). ACM, 23–29. https://doi.org/10.1145/3141235.3141243

[13] Mike Cohn. 2015. Are 64% of Features Really Rarely or Never

Used? https://www.mountaingoatsoftware.com/blog/are-64-of-features-really-

rarely-or-never-used.

[14] MITRE Corporation. 2022. Redislabs Security Vulnerabilities. https:

//www.cvedetails.com/vulnerability-list/vendor_id-18560/product_id-

47087/Redislabs-Redis.html.

[15] CRIU. 2021. Checkpoint Restore in Userspace. https://criu.org/Main_Page.

[16] CRIU. 2021. CRIT: CRiu Image Tool. https://criu.org/CRIT.

[17] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and

Vikram Adve. 2015. Nested kernel: An operating system architecture for intra-

kernel privilege separation. In Proceedings of the Twentieth International Confer-

ence on Architectural Support for Programming Languages and Operating Systems.

ACM, 191–206.

[18] Sheng Di, Derrick Kondo, and Franck Cappello. 2013. Characterizing Cloud

Applications on a Google Data Center. In 42nd International Conference on Parallel

Processing, ICPP 2013, Lyon, France, October 1-4, 2013. IEEE Computer Society,

468–473. https://doi.org/10.1109/ICPP.2013.56

[19] DynamoRIO. 2021. DynamoRIO: Code Coverage Tool. https://dynamorio.org/

page_drcov.html.

[20] DynamoRIO. 2021. Tool Event Model and API. https://dynamorio.org/using.html.

[21] Sebastian Eder, Maximilian Junker, Elmar Jürgens, Benedikt Hauptmann, Rudolf

Vaas, and Karl-Heinz Prommer. 2012. How much does unused code matter for

maintenance?. In 34th International Conference on Software Engineering, ICSE 2012,

June 2-9, 2012, Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro

Pezzè (Eds.). IEEE Computer Society, 1102–1111. https://doi.org/10.1109/ICSE.

2012.6227109

[22] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. 2003. Locating Features

in Source Code. IEEE Trans. Software Eng. 29, 3 (2003), 210–224. https://doi.org/

10.1109/TSE.2003.1183929

[23] Masoud Ghaffarinia and Kevin W. Hamlen. 2019. Binary Control-Flow Trimming.

In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS 2019, London, UK, November 11-15, 2019, Lorenzo Cavallaro,

Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM, 1009–1022.

https://doi.org/10.1145/3319535.3345665

[24] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.

2020. Temporal System Call Specialization for Attack Surface Reduction. In

29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020,

Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 1749–1766.

https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia

[25] GNU. 2021. Using the GNU Compiler Collection (GCC): Gcov. https://gcc.gnu.

org/onlinedocs/gcc/Gcov.html.

[26] Google. 2021. Protocol Buffers. https://developers.google.com/protocol-buffers.

[27] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated

Program Repair. Commun. ACM 62, 12 (nov 2019), 56–65. https://doi.org/10.

1145/3318162

[28] Zhongshu Gu, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2014.

FACE-CHANGE: Application-Driven Dynamic Kernel View Switching in a Vir-

tual Machine. In 44th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014. IEEE Com-

puter Society, 491–502. https://doi.org/10.1109/DSN.2014.52

[29] Alexander Halavais. 2017. Search engine society. John Wiley & Sons.

[30] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective

Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto,

ON, Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes,

and XiaoFeng Wang (Eds.). ACM, 380–394. https://doi.org/10.1145/3243734.

3243838

[31] Intel 2018. Intel 64 and IA-32 Architectures Software Developerś Manual. Intel.

[32] Marko Ivankovic, Goran Petrovic, René Just, and Gordon Fraser. 2019. Code

coverage at Google. In Proceedings of the ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering,

ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas,

Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM, 955–963. https:

//doi.org/10.1145/3338906.3340459

[33] Yufei Jiang, Can Zhang, DinghaoWu, and Peng Liu. 2016. Feature-Based Software

Customization: Preliminary Analysis, Formalization, and Methods. In 17th IEEE

International Symposium on High Assurance Systems Engineering, HASE 2016,

Orlando, FL, USA, January 7-9, 2016, Radu F. Babiceanu, Hélène Waeselynck,

Raymond A. Paul, Bojan Cukic, and Jie Xu (Eds.). IEEE Computer Society, 122–

131. https://doi.org/10.1109/HASE.2016.27

[34] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1994. Partial dead code

elimination. ACM Sigplan Notices 29, 6 (1994), 147–158.

[35] Anil Kurmus, Alessandro Sorniotti, and Rüdiger Kapitza. 2011. Attack surface

reduction for commodity OS kernels: trimmed garden plants may attract less bugs.

In Proceedings of the Fourth European Workshop on System Security, EUROSEC’11,

April 10, 2011, Salzburg, Austria, Engin Kirda and Steven Hand (Eds.). ACM, 6.

https://doi.org/10.1145/1972551.1972557

[36] John R. Levine. 1999. Linkers and Loaders. Morgan Kaufmann, San Francisco,

CA.

[37] Yi Li, Shaohua Wang, and Tien Nguyen. 2021. Fault Localization with Code Cov-

erage Representation Learning. In 2021 IEEE/ACM 43rd International Conference

on Software Engineering (ICSE). 661–673. https://doi.org/10.1109/ICSE43902.2021.

00067

[38] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Ge-

offrey Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M. Hazelwood. 2005.

Pin: building customized program analysis tools with dynamic instrumentation.

https://doi.org/10.1145/3359789.3359823
https://doi.org/10.1145/3342195.3387550
https://coverage.readthedocs.io/en/coverage-5.5
https://coverage.readthedocs.io/en/coverage-5.5
https://github.com/eliben/pyelftools
http://discovery.ucl.ac.uk/18902/
http://www.usenix.org/events/nsdi08/tech/full_papers/bittau/bittau.pdf
http://www.usenix.org/events/nsdi08/tech/full_papers/bittau/bittau.pdf
https://doi.org/10.1145/3141235.3141243
https://www.mountaingoatsoftware.com/blog/are-64-of-features-really-rarely-or-never-used
https://www.mountaingoatsoftware.com/blog/are-64-of-features-really-rarely-or-never-used
https://www.cvedetails.com/vulnerability-list/vendor_id-18560/product_id-47087/Redislabs-Redis.html
https://www.cvedetails.com/vulnerability-list/vendor_id-18560/product_id-47087/Redislabs-Redis.html
https://www.cvedetails.com/vulnerability-list/vendor_id-18560/product_id-47087/Redislabs-Redis.html
https://criu.org/Main_Page
https://criu.org/CRIT
https://doi.org/10.1109/ICPP.2013.56
https://dynamorio.org/page_drcov.html
https://dynamorio.org/page_drcov.html
https://dynamorio.org/using.html
https://doi.org/10.1109/ICSE.2012.6227109
https://doi.org/10.1109/ICSE.2012.6227109
https://doi.org/10.1109/TSE.2003.1183929
https://doi.org/10.1109/TSE.2003.1183929
https://doi.org/10.1145/3319535.3345665
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://developers.google.com/protocol-buffers
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1109/DSN.2014.52
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3338906.3340459
https://doi.org/10.1145/3338906.3340459
https://doi.org/10.1109/HASE.2016.27
https://doi.org/10.1145/1972551.1972557
https://doi.org/10.1109/ICSE43902.2021.00067
https://doi.org/10.1109/ICSE43902.2021.00067

DynaCut: A Framework for Dynamic and Adaptive Program Customization Middleware ’23, December 11–15, 2023, Bologna, Italy

In Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language

Design and Implementation, Chicago, IL, USA, June 12-15, 2005, Vivek Sarkar and

Mary W. Hall (Eds.). ACM, 190–200. https://doi.org/10.1145/1065010.1065034

[39] Robert Lyerly, XiaoguangWang, and Binoy Ravindran. 2020. Dynamic and Secure

Memory Transformation in Userspace. In Computer Security - ESORICS 2020 - 25th

European Symposium on Research in Computer Security, ESORICS 2020, Guildford,

UK, September 14-18, 2020, Proceedings, Part I (Lecture Notes in Computer Science,

Vol. 12308), Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider (Eds.).

Springer, 237–256. https://doi.org/10.1007/978-3-030-58951-6_12

[40] Iulian Neamtiu, Michael W. Hicks, Gareth Paul Stoyle, and Manuel Oriol. 2006.

Practical dynamic software updating for C. In Proceedings of the ACM SIGPLAN

2006 Conference on Programming Language Design and Implementation, Ottawa,

Ontario, Canada, June 11-14, 2006, Michael I. Schwartzbach and Thomas Ball

(Eds.). ACM, 72–83. https://doi.org/10.1145/1133981.1133991

[41] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.

libmpk: Software Abstraction for Intel Memory Protection Keys (Intel {MPK}).
In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19). 241–254.

[42] Luís Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar. 2019. MVED-

SUA: Higher Availability Dynamic Software Updates via Multi-Version Execution.

In Proceedings of the Twenty-Fourth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, ASPLOS 2019, Providence,

RI, USA, April 13-17, 2019, Iris Bahar, Maurice Herlihy, Emmett Witchel, and

Alvin R. Lebeck (Eds.). ACM, 573–585. https://doi.org/10.1145/3297858.3304063

[43] Josh Poimboeuf. 2014. Introducing kpatch: Dynamic Kernel Patching. https:

//www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching

[44] Chenxiong Qian, Hong Hu, Mansour Alharthi, Simon Pak Ho Chung, Taesoo

Kim, and Wenke Lee. 2019. RAZOR: A Framework for Post-deployment Soft-

ware Debloating. In 28th USENIX Security Symposium, USENIX Security 2019,

Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor

(Eds.). USENIX Association, 1733–1750. https://www.usenix.org/conference/

usenixsecurity19/presentation/qian

[45] Anh Quach, Aravind Prakash, and Lok-Kwong Yan. 2018. Debloating Soft-

ware through Piece-Wise Compilation and Loading. In 27th USENIX Security

Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018,

William Enck and Adrienne Porter Felt (Eds.). USENIX Association, 869–886.

https://www.usenix.org/conference/usenixsecurity18/presentation/quach

[46] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna,

and Christopher Kruegel. 2019. BinTrimmer: Towards Static Binary Debloating

Through Abstract Interpretation. In Detection of Intrusions and Malware, and

Vulnerability Assessment - 16th International Conference, DIMVA 2019, Gothen-

burg, Sweden, June 19-20, 2019, Proceedings (Lecture Notes in Computer Science,

Vol. 11543), Roberto Perdisci, Clémentine Maurice, Giorgio Giacinto, and Magnus

Almgren (Eds.). Springer, 482–501. https://doi.org/10.1007/978-3-030-22038-9_23

[47] Christoph Rohland. 2020. Tmpfs. https://www.kernel.org/doc/html/latest/

filesystems/tmpfs.html

[48] Will Ryan. 2021. Buffer Overflows: ret2libc, ret2plt and rop. https://medium.com/

cyber-unbound/buffer-overflows-ret2libc-ret2plt-and-rop-e2695c103c4c.

[49] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-

Into-Libc without Function Calls (on the x86). In Proceedings of the 14th ACM

Conference on Computer and Communications Security (Alexandria, VA, USA).

[50] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.

TRIMMER: application specialization for code debloating. In Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineering,

ASE 2018, Montpellier, France, September 3-7, 2018, Marianne Huchard, Christian

Kästner, and Gordon Fraser (Eds.). ACM, 329–339. https://doi.org/10.1145/

3238147.3238160

[51] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. In IEEE Symposium on Security and Privacy.

[52] Tom Taulli. 2019. Are Most Of Your Product’s Features...Useless?

https://www.forbes.com/sites/tomtaulli/2019/02/24/are-most-of-your-

products-features-useless.

[53] Scott Tsai. 2021. Debug Break: Break into the debugger programmatically. https:

//github.com/scottt/debugbreak/blob/master/debugbreak.h.

[54] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,

Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isola-

tion with Protection Keys (MPK). In 28th USENIX Security Symposium, USENIX

Security 2019, Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and

Patrick Traynor (Eds.). USENIX Association, 1221–1238. https://www.usenix.

org/conference/usenixsecurity19/presentation/vahldiek-oberwagner

[55] Ashish Venkat, Sriskanda Shamasunder, Hovav Shacham, and Dean M Tullsen.

2016. Hipstr: Heterogeneous-isa program state relocation. In ACM SIGARCH

Computer Architecture News, Vol. 44. ACM, 727–741.

[56] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.

Efficient Software-Based Fault Isolation. In Proceedings of the Fourteenth ACM

Symposium on Operating System Principles, SOSP 1993, The Grove Park Inn and

Country Club, Asheville, North Carolina, USA, December 5-8, 1993, Andrew P. Black

and Barbara Liskov (Eds.). ACM, 203–216. https://doi.org/10.1145/168619.168635

[57] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John

Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. 2017. Ramblr:

Making Reassembly Great Again. In 24th Annual Network and Distributed System

Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March

1, 2017. The Internet Society. https://www.ndss-symposium.org/ndss2017/ndss-

2017-programme/ramblr-making-reassembly-great-again/

[58] Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Disassembling.

In 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA,

August 12-14, 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Associa-

tion, 627–642. https://www.usenix.org/conference/usenixsecurity15/technical-

sessions/presentation/wang-shuai

[59] Xiaoguang Wang, Yong Qi, Zhi Wang, Yue Chen, and Yajin Zhou. 2019. Design

and Implementation of SecPod, A Framework for Virtualization-Based Security

Systems. IEEE Trans. Dependable Secur. Comput. 16, 1 (2019), 44–57. https:

//doi.org/10.1109/TDSC.2017.2675991

[60] Xiaoguang Wang, SengMing Yeoh, Robert Lyerly, Pierre Olivier, Sang-Hoon Kim,

and Binoy Ravindran. 2020. A Framework for Software Diversification with

{ISA} Heterogeneity. In 23rd International Symposium on Research in Attacks,

Intrusions and Defenses (RAID 2020). 427–442.

[61] Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran. 2020.

Secure and efficient in-process monitor (and library) protection with Intel MPK. In

Proceedings of the 13th European Workshop on Systems Security, EuroSec@EuroSys

2020, Heraklion, Greece, April 27, 2020, Lorenzo Cavallaro and Andrea Lanzi (Eds.).

ACM, 7–12. https://doi.org/10.1145/3380786.3391398

[62] Jim Whitehead. 2021. WebDAV Resources: Web-based Distributed Authoring

and Versioning . http://www.webdav.org/.

[63] Wikipedia. Accessed: 2023-01-31. Zero-day (computing). https://en.wikipedia.

org/wiki/Zero-day_(computing).

[64] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,

Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,

and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code Re-

Randomization.. In OSDI. 367–382.

[65] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-

terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis. 2020.

Egalito: Layout-Agnostic Binary Recompilation. In 25th International Confer-

ence on Architecture Support for Programming Languages and Operating Systems

(ASPLOS ’20).

[66] Michał Zalewski. 2021. american fuzzy lop (2.52b). https://lcamtuf.coredump.cx/

afl/.

[67] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. ARMlock:

Hardware-based Fault Isolation for ARM. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’14).

https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1007/978-3-030-58951-6_12
https://doi.org/10.1145/1133981.1133991
https://doi.org/10.1145/3297858.3304063
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://doi.org/10.1007/978-3-030-22038-9_23
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html
https://medium.com/cyber-unbound/buffer-overflows-ret2libc-ret2plt-and-rop-e2695c103c4c
https://medium.com/cyber-unbound/buffer-overflows-ret2libc-ret2plt-and-rop-e2695c103c4c
https://doi.org/10.1145/3238147.3238160
https://doi.org/10.1145/3238147.3238160
https://www.forbes.com/sites/tomtaulli/2019/02/24/are-most-of-your-products-features-useless
https://www.forbes.com/sites/tomtaulli/2019/02/24/are-most-of-your-products-features-useless
https://github.com/scottt/debugbreak/blob/master/debugbreak.h
https://github.com/scottt/debugbreak/blob/master/debugbreak.h
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://doi.org/10.1145/168619.168635
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/ramblr-making-reassembly-great-again/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/ramblr-making-reassembly-great-again/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
https://doi.org/10.1109/TDSC.2017.2675991
https://doi.org/10.1109/TDSC.2017.2675991
https://doi.org/10.1145/3380786.3391398
http://www.webdav.org/
https://en.wikipedia.org/wiki/Zero-day_(computing)
https://en.wikipedia.org/wiki/Zero-day_(computing)
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 System Design and Implementation
	3.1 Undesired Code Block Identification
	3.2 Dynamic Code Customization
	3.3 Implementation

	4 Evaluation
	4.1 Performance Overhead
	4.2 Security Evaluation

	5 Discussion and Future Work
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

