DYNACuT: A Framework for Dynamic and Adaptive Program

Customization
Abhijit Mahurkar* Xiaoguang Wang’"
Virginia Tech University of Illinois Chicago
Blacksburg, USA Chicago, USA
abhijitm@vt.edu xgwang9@uic.edu
Hang Zhang" Binoy Ravindran
Indiana University Bloomington Virginia Tech
Bloomington, USA Blacksburg, USA
hz64@iu.edu binoy@vt.edu
ABSTRACT KEYWORDS

Software is becoming increasingly complex and feature-rich, yet
only part of any given codebase is frequently used. Existing soft-
ware customization and debloating approaches target static bina-
ries, focusing on feature discovery, control-flow analysis, and binary
rewriting. As a result, the customized program binary has a smaller
attack surface as well as less available functionality. This means
that once a software’s use scenario changes, the customized binary
may not be usable.

This paper presents DYNACUT, for dynamic software code cus-
tomization. DYNACUT can disable “not being used” code features
during software runtime and re-enable them when required again.
DyNACuUT works at the binary level; no source code is needed. To
achieve its goal, DYNACUT includes a dynamic process rewriting
technique that seamlessly and transparently updates the image of a
running process, with specific code features blocked or re-enabled.
To help identify potentially unused code, DyNACUT employs an
execution trace-based differential analysis to pinpoint the code
related to specific software features, which can be dynamically
turned on/off based on user configuration. We also develop auto-
matic methods to locate code that is only temporally used (e.g.,
initialization code), which can be dropped in a timely manner (e.g.,
after the initialization phase).

We prototype DYNACUT and evaluate it using 3 widely used
server applications and the SPECint2017_speed benchmark suite.
The result shows that, compared to existing static binary customiza-
tion approaches, DYNACUT removes an additional 10% of code on
average and up to 56% of temporally executed code due to the
dynamic code customization.

CCS CONCEPTS

« Security and privacy — Software and application security;
Systems security.

*A. Mahurkar and X. Wang made equal contributions to this work. Most of X. Wang’s
work was done while he was at Virginia Tech.
T Most of H. Zhang’s work was done while he was at Georgia Tech.

Middleware 23, December 11-15, 2023, Bologna, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 24th International
Middleware Conference (Middleware 23), December 11-15, 2023, Bologna, Italy, https:
//doi.org/10.1145/3590140.3629121.

Software Customization, Process Rewriting, Dynamic Attack Sur-
face Reduction, Software Security

ACM Reference Format:

Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran.
2023. DYNACUT: A Framework for Dynamic and Adaptive Program Cus-
tomization. In 24th International Middleware Conference (Middleware *23),
December 11-15, 2023, Bologna, Italy. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3590140.3629121

1 INTRODUCTION

Software is increasingly becoming larger in code size and com-
plex in functionality. According to recent research and online re-
ports, more than half of the functionality in many software sys-
tems is rarely used [13, 21, 52]. A study on an industrial business
information system reveals that more than 25% of its code has
never been used for years [21]. Such unused components not only
burden the code maintainers but also expose potential attack sur-
faces [21, 44, 45, 50].

In addition to code blocks that go unused for years, there exists
code blocks with only temporal liveliness. For example, the initial-
ization code of a long-running server program only executes during
the boot-up phase. Since such code usually has access to sensitive
system calls and configuration files, a good security practice is to
remove them from memory after initialization [24]. However, this
is often not the case in many server programs. Similarly, in some
software systems, a good security practice would be to use certain
features only under certain circumstances. For example, in a search
engine database, it would be desirable to keep the data read-only
for searching services during peak load times, while re-indexing or
updating them during idle times (e.g., at midnight) [18, 29]. Keep-
ing all program functionality accessible all the time increases attack
opportunities.

This raises the question of how software can be debloated so that
only the necessary code is kept in memory at any given time? Software
developers can get rid of unused code with the aid of, for example,
static code coverage measuring tools [5, 25] that can help identify
unused features [32]. However, this is generally not possible for
end-users, especially for customizing off-the-shelf software without
source code. To address this problem, recent works have focused on
removing unused code directly from program binaries. For example,
a number of efforts use control-flow information [23, 44] and static


https://orcid.org/0009-0009-0567-8877
https://orcid.org/0000-0001-5055-4552
https://orcid.org/0009-0003-6089-1079
https://orcid.org/0000-0002-8663-739X
https://doi.org/10.1145/3590140.3629121
https://doi.org/10.1145/3590140.3629121
https://doi.org/10.1145/3590140.3629121

Middleware *23, December 11-15, 2023, Bologna, Italy

program analysis [2, 45, 50] to locate unused code and remove them
through static binary rewriting or binary recompilation [44, 45, 57,
58, 65]. As a result, existing approaches take a vanilla binary as
input and generate a debloated binary.

Such code removal is a static and one-time effort. Once modified,
the code no longer changes. Such static debloating is sub-optimal
in many real-world scenarios, where code that needs to be kept and
removed may change as the program executes. On the one hand,
it can be risky if static debloating is aggressive since the removed
code may be required later. On the other hand, a conservative
debloating strategy (e.g., only exclude dead code [34]) may fail to
maximize security benefits as it may retain code that is not used for
a long time. This dilemma stems from the fundamental limitation
of binary-oriented static debloating strategies, i.e., they ignore the
program execution time dimension, and are unable to dynamically
and seamlessly remove and re-enable code.

Motivated by these concerns, we develop DYNACUT, a dynamic
and adaptive code customization system. DYNACUT can disable and
re-enable code paths of a process at run-time without interrupting
its execution. This capability enables DYNACUT to perform dynamic
code customization: at any time during program execution, the
required and undesired code can be individually configured (e.g.,
initialization code can be kept during the setup phase and discarded
later), maximizing debloating’s security benefits.

DyNACUT uses a process rewriting technique to modify a process
at run-time. More specifically, DYNACUT can efficiently snapshot a
running process at any time and then transparently resume it with
an updated snapshot (e.g., with undesired code pages or basic blocks
removed). This mechanism enables flexible dynamic debloating:
different code blocks can be enabled/disabled during different time
windows. While the required/unnecessary code can be identified
either manually or by existing tools [23, 44, 50], DYNACUT also con-
tains a component to extract coverage information from execution
traces and locate code blocks related to different software features,
which can then be dynamically enabled/disabled. DYNACUT can
also help to automatically identify the temporally unused code (e.g.,
initialization- or termination-related code) using the sequential exe-
cution order of code blocks and disable them, for example, after the
initialization phase. This allows DYNACUT to be used as a dynamic
program debloating tool out of the box.

We implement a prototype of DYNACUT and evaluate it using
ten real-world applications, including widely used and security-
critical web servers. The results show that DYNACUT can identify
and debloat up to 56% of executed code that is only used during
initialization and can keep less than 17% code blocks visible in
memory due to execution phase-based code customization. When
dynamically customizing code features, the service interruption
time is only ~400 ms, resulting in no observable overall performance
overhead. Our security analysis shows that DYNACUT can mitigate
several CVEs and known attacks including CVE-2021-32625, CVE-
2021-29477 and BROP attack [9]. To the best of our knowledge,
DYNACUT is the first dynamic code customization framework.

The paper’s contributions include:

e We propose the concept of dynamic code debloating, which
provides stronger security protection and flexibility over
existing debloating approaches.

Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

e We design and implement DYNACUT, a first-of-its-class sys-
tem for dynamic and seamless code customization. DyNACUT
is open-sourced.!

e We evaluate DYNACUT’s effectiveness and efficiency using
real-world applications and benchmark suites and show that
they can be dynamically customized with minimal service
interruption.

The rest of this paper is organized as follows: Section 2 provides
background information on code customization and describes the
motivation. We then describe the design and implementation of
DyYNACUT in Section 3. The evaluation is presented in Section 4.
We discuss the future work in Section 5. Afterward, we summarize
the related work in Section 6 and conclude the paper in Section 7.

2 BACKGROUND AND MOTIVATION

Software customization is a technique to selectively disable or en-
able software features [33]. Its primary applications include reduc-
ing the code size for easy software distribution and minimizing the
program attack surface [23, 24, 30, 44, 46]. To minimize the software
runtime attack surface, an ideal intelligent machine may control a
tiny sliding window for code execution. In an extreme case, only
one correct instruction is executable (visible) in the memory (Fig-
ure 1 (a)). Therefore, an attacker cannot arbitrarily jump to any
vulnerable code that is marked as invisible, nor can he leaks any
information about the code layout. However, such a machine does
not exist for now. To make it more realistic, a number of efforts
have focused on software customization from different perspec-
tives. Feature-based software customization removes unnecessary
code features using user-defined policies or program analysis re-
sults [33, 45, 46]. For example, a program’s dependency graph can
be obtained and embedded into the binary for customized program
loading [45]. User inputs, specifications that distinguish unused
features, and execution traces can be used to identify bloated code
paths [23, 30, 44]. After retrieving feature-related code paths, many
efforts re-assemble the binary to permanently eliminate unused
code [57, 58] (Figure 1 (b)). Therefore, the resulting binary will be
unusable in other scenarios that require the removed features.

Ideal case: One instr visible

@

Exec Timeline
Static binary debloating:
Code removed throughout the lifetime

(b)

Exec Timeline
DynaCut: Timeline-aware Dynamic Debloating
—_—

(c) Initialization

Exec Timeline

Figure 1: Software debloating for a reduced attack surface.

To demonstrate the existence of code bloating and better un-
derstand the size and distribution of unused code blocks across a
process’s lifetime, we analyzed the basic block liveness of a compute-
intensive program (i.e., 605.mcf s in SPEC CPU2017) and a server

Uhttps://github.com/ssrg-vt/DynaCut


https://github.com/ssrg-vt/DynaCut

DYNACuT: A Framework for Dynamic and Adaptive Program Customization

(a) 605.mcf s

(b) Lighttpd

Figure 2: Visualization of process memory footprints for
executed basic blocks (blue and red), unused basic blocks
(gray), and initialization-related basic blocks (red) in SPEC
INT2017 605.mcf s benchmark and Lighttpd web server.

application (i.e., Lighttpd) and visualize the results in Figure 2. As
can be seen, a significant percentage of basic blocks (in gray) has
never been executed, showing the necessity and practicality of
software debloating. Even though traditional static debloating tech-
niques can eliminate the never-used code blocks (in gray), it cannot
remove, for example, the initialization code blocks (in red) when
they are no longer needed after the relatively short initialization
phase. Given the considerable amount of such temporally alive
code blocks, we argue that temporally removing them can further
reduce the attack surface and increase security benefits.

Threat Model: We assume the attacker has remote access to
the target process through a standard I/O interface, specifically, a
socket connection. The attacker may also have access to the target
binaries, such as the application and its libraries. DyNACUT does not
bring any exploit mitigations, but only reduces the attack surfaces
through (dynamic) code customization and debloating. We assume
the implementation of the disassembler is correct and sound; we
also assume a strong trusted computing base (TCB), including the
operating system kernel and the ELF loader. Side-channel attacks
and kernel vulnerability exploits and mitigations are out of the
scope of this paper.

3 SYSTEM DESIGN AND IMPLEMENTATION

DyYNACUT aims to dynamically customize code features of a pro-
cess without interrupting its execution. To achieve this, DynaCuT
leverages a process rewriting technique to remove unwanted code
blocks and transform the process’s memory. Process rewriting can
also re-customize the code features for the target process when the
application scenario changes. For example, it can restore the re-
moved code blocks and re-customize the code for a new application
scenario.

At its heart, DYNACUT is a dynamic code customization mech-
anism independent of the techniques determining what code to
disable or enable. DYNACUT can use existing binary analysis and
debloating tools [23, 44] to find feature-related code paths. For ex-
ample, control-flow trimming [23] analyzes execution traces and
identifies the program Control-Flow Graph (CFG) edges that can
be trimmed. Razor [44] similarly determines the desired code paths
using execution trace logs. However, existing tools do not identify
initialization code or do not support multi-threading applications.

Middleware *23, December 11-15, 2023, Bologna, Italy

Therefore, we extend tracing-based code coverage techniques in
DyNACuT.

Figure 3 illustrates DYyNACUT. DYNACUT has two major com-
ponents: an undesired code block identifier and a process rewriter.
The first component collects basic blocks from different execution
traces and generates code coverage graphs. DYNACUT uses trace
log merging and code coverage graph comparison (i.e., diff) to de-
termine wanted/undesired code blocks. The feature customization
is based on the fact that most server programs handle different
requests (features) using a big switch-case statement. DyNnACUT
simply needs to locate the code dispatcher and cut the control flow
edge to undesired features. DYNACUT can also identify undesired
initialization code that would not be executed post-initialization by
analyzing execution logs.

Once the list of undesired code blocks is determined, it is input to
the process rewriter. The process rewriter dynamically customizes
the process based on the given code block list and a customiza-
tion policy. For example, we can block the undesired features by
replacing their corresponding code blocks (or only the first byte of
each basic block) with the int3 instruction?. We can also unmap
corresponding code pages if the undesired feature consists of a
large memory footprint. Subsequently, when undesired code blocks
are executed, an exception will be raised. The process rewriter can
further customize the program behavior when the exception is
raised. For example, it can inject signal handlers into the target
process’s address space and update the process’s default signal han-
dlers. Users can also specify policies, such as terminating program
execution or safely skipping undesired requests. DYNACUT also
allows users to restore the removed features by replacing the int3
instructions with the original instruction bytes. All changes to the
process are applied during the process’s runtime. Therefore, even
if the application scenario changes, end users can instantly update
available features without restarting the process.

3.1 Undesired Code Block Identification

This component mainly uses execution traces to identify feature
dispatchers and temporally undesired code.

Identify Feature-Related Code Blocks for Dynamic Cus-
tomization: Similar to existing feature-oriented binary debloating
techniques [23, 44], DYNACUT also requires end users to specify
the wanted and undesired features with sample inputs and record
the corresponding execution traces to distinguish the undesired
code blocks. The trace collector can either use a single trace file
containing all the desired requests or merge multiple trace files
of different requests. The undesired code identifier only needs ex-
ecution traces of the basic block addresses and sizes (i.e., tuples
of <BB addr, BB size>) to differentiate the executions. The exe-
cution traces of undesired features are used to construct a code
coverage graph CovGpgesired- Similarly, the wanted inputs can be
used to construct a corresponding graph CovG,,qpteq- Since each
graph contains a set of basic blocks, we can infer that the undesired
code block blk satisfies the property: blk € CovG,pdesireq and blk
¢ CovG,,qnted- DYNACUT narrows down the undesired code blocks

2The int3 instruction is a one-byte breakpoint instruction in x86 CPUs. Upon executing
int3, a breakpoint exception (#BP) is raised [31]. Other architectures have similar
instructions for this purpose [53].



Middleware *23, December 11-15, 2023, Bologna, Italy

Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

;Existing binary 1
i debloating tools: —»
(optional)

Feature-
related BBs

Temporally
unused BBs

\

1
T 1
1 }
1 PR NP A S 1
1 ! Code coverage ! 1
1 i __ profiling | 1
1 1
1 1
1 1
\ 7

User Input (Section 3.1)

Vanilla Proc _____l_ _____ Customized Proc
| Customization |
! Policy ! Lo
\
Feature Validation
(optional)
’
w e

Process Rewriting (Section 3.2)

Figure 3: Overview of DYNACuUT. DYNACUT consists of 1) feature-related code discovery (Section 3.1) and 2) runtime code feature

customization with process writing (Section 3.2).

by filtering out basic blocks that appear in program libraries. Fig-
ure 4 shows an example of a feature-related basic block discovered
from this process.

+ +-- 29 lines: module[ 5]: 0x0000000[k+ +-- 29 lines: module[ 5]: 0x0000000
module[ 5]: 0x00000000000fcafd, 20]f module[ 5]: 0x00000000000fcafo, 20
module[ 5]: 0x00000000000fcb04, 18]} module[ 5]: 0x00000000000fcbo4, 18
module[ 5]: 0x0000000000062480, 9]} module[ 5]: 0x0P00000000062480, 9
module[ 5]: 0x0000000000046728, 56]] module[ 5]: 0x0000000000046728, 56
module[ 5]: 0x000000000006b06c, 20]f module[ 5]: 0x0POO00OA0006bO6C, 20
module[ 5]: 0x00000000000651ff, 67]] module[ 5]: 0x00000000000651ff, 67
module[ 5]: 0x00000000000) module[ 5]: 0x00000000000f
module[ 5]: 0x00000000000) module[ 5]: 0x00000000000f

module[ 5]: 0x0000000000065972, 4

. 4

./tracediff.py -u unwanted_feature.log -b wanted_feature.log
The feature log file: unwanted_feature.log
The base log file: wanted_feature.log
__libc.so
] modulef[ 15]: 6x0000000000166a66, 14
] module[ 15]: ©x0000000000166a74, 48
] modulef[ 15]: ©x00000000001673b0, 16
3% modulel : 0x00000000001673c0, 16 Eeatyre-related code block
]
]

modul, 1 0x000 4841, ions in Redis-server
: 0x000000000004fa03, [“17
: 0x000000000004f8c3 20

modul
modul

Figure 4: Diff-based feature-related basic block discovery:

our tracediff.py tool automatically calculates undesired basic

blocks using different execution traces.

mmml:

The method of using basic block diff s from execution trace logs
has a similar effect to that of using control-flow edges to identify
unnecessary code blocks [23, 30, 44]. Both methods can find and
remove undesired features (see Section 4). However, the code cover-
age diff -based approach is much easier to implement, as there is no
need to reconstruct the CFG, especially for binaries without source
code. We argue that our dynamic, code coverage-based approach is
orthogonal to existing static program analysis approaches [23, 44].
They can be used together for accurate feature discovery.

Identify Temporally Undesired Basic Blocks: To identify
the basic blocks of the temporally undesired code, we could at-
tach timestamps for each executed basic block and assume that
the blocks that completed before a particular timestamp as the ini-
tialization code. However, such an approach requires knowledge
of code behaviors and manual analysis. For example, it’s difficult
to determine when the initialization code completes simply using
the timestamps. Also, a basic block may execute during the ini-
tialization phase, and may also execute later. A similar problem is
reported by Ghavamnia et al. [24]. In that work, the authors define

a transition point between an application’s initialization phase and
its subsequent phase. For web server applications, they manually
analyzed the source code to determine the transition points, such as
Nginx’s ngx_worker_process_cycle() function and Lighttpd’s
server_main_loop() function. For other applications, user anno-
tations are expected for identifying transition points.

In DYNACUT, we use a simple yet efficient approach to semi-
automatically profile basic blocks only executed during the initial-
ization phase. During code profiling, we ask end-users to notify
the code coverage profiling tool that the target server program has
initialized. The end of a program’s initialization phase can be easily
observed by reading the printed log or using experience knowledge
to wait a while after launching the program. Upon receiving that
signal, the tool dumps the execution trace collected so far, which is
the code coverage of the initialization phase (CovGijpnir). The tool
also clears the code cache and continues recording code execution.
When the program finishes execution, the tool generates a second
code coverage file containing the trace executed during the post-
initialization phase (CouGserving). From this, we infer the “not used”
initialization code block blk that satisfies: blk € CovGipj; and blk ¢
CovGserving- We also use the tracediff. py tool shown in Figure 4
to obtain an accurate list of the initialization basic blocks. Once the
(temporal) undesired basic block list has been retrieved, we input it
to the DYNACUT runtime for dynamic code customization, together
with the customization policy.

3.2 Dynamic Code Customization

DyNACuUT dynamically customizes a process without interrupting
its execution. To achieve this, DYNACUT relies on an online process
rewriter. The process rewriter takes as input a process snapshot
(i.e., a process image), rewrites the snapshot by removing unwanted
code, and then restores the process. End users can specify how
undesired code should be removed. DYNACUT allows users to sim-
ply block features or to fully delete them (e.g., wipe code memory,
unmap code pages). End users can also inject a customized excep-
tion handler for handling (unintended) undesired code access. For
example, the handler can directly exit the program execution or
return a customized error code but keep the program alive.

3.2.1  Process Rewriting. The process rewriter rewrites a static pro-
cess image. To achieve this, DYNACuUT leverages CRIU [15], which is
a userspace mechanism for checkpointing and restoring a running
process for live process (or container) migration. DYNACUT uses



DYNACuT: A Framework for Dynamic and Adaptive Program Customization

CRIU to checkpoint a running process into a static process image.
By rewriting a static process image, we avoid the complications of
dealing with potential race conditions such as in a dynamic process
transformation system [7, 39, 64].

The process rewriter supports updating memory contents, increas-
ing or unmapping the virtual memory areas (VMAs), and inserting (or
unloading) position-independent shared libraries into (from) the vir-
tual memory space. Updating the memory content allows replacing
arbitrary instructions with one-byte int3 instructions, thus remov-
ing small code features of a couple of bytes. We can also replace
the first byte of an undesired basic block with an int3 instruction,
which blocks the code execution of an unwanted feature in a code
dispatcher. Although this is sufficient to block that basic block from
being executed®, a powerful attacker may redirect the control flow
to the middle of a basic block, launching an ROP attack [49]. To
address this issue, the rewriter also allows an end user to wipe out
a block of code memory or even unmap an entire memory page.
This prevents access to any instructions of undesired code blocks.
DynACuUT also supports updating a process’s exception handler and
loading/unloading a shared library dynamically. The transformed
process image can be safely restored using CRIU.

In summary, the DYNACUT process rewriter can safely trans-
form a live program to enhance the security of specific execution
phases dynamically. The DyNACUT process rewriting differs from
dynamic binary instrumentation (DBI) [11, 38]. DBI tools such as
DynamoRIO [11] and PIN [38] generate the code on-the-fly and use
a code cache to store the translated code at runtime. In contrast,
DYNACUT statically updates the target code within a small time
window. This prevents potential race conditions between the target
process and the process rewriter. Moreover, once the process is
restored, static process rewriting has almost zero runtime overhead,
which is impossible using DBI tools. To support multi-process ap-
plications, DYNACUT iterates through each process’s memory space
and updates the corresponding code.

3.2.2  Block Undesired Features. Once a list of basic blocks has been
identified as an undesired code feature during the analysis phase,
DYNACUT blocks the feature by placing an int3 instruction in the
first byte of the first basic block executed in this list. As mentioned
earlier, basic blocks in the undesired feature list are unique code for
that feature. Therefore, blocking the first instruction (byte) from
being executed is enough to disable that feature. Alternatively,
end-users can specify a more aggressive policy to entirely remove
unwanted code by replacing basic blocks on that code path with
int3 instructions. The second policy increases security as it does
not allow code reuse attacks on unwanted code. However, it adds
performance overhead if the end-user wants to restore that feature.

DyNACUT also allows an end-user to define how the program
behaves when inadvertently accessing the blocked feature. Most
existing binary debloating works terminate the program if users
accidentally execute the blocked code feature [23, 44, 50], which
brings usability issues. DYNACUT addresses this problem by allow-
ing end-users to program applications’ behavior when accidentally
accessing blocked features. Specifically, DyNaCuT allows insert-
ing a signal handler to capture the unexpected int3 execution

3A basic block is a straight-line code sequence with no branches in except to the entry
and no branches out except at the exit.

Middleware *23, December 11-15, 2023, Bologna, Italy

(SIGTRAP exception). There are multiple strategies for the signal
handler to deal with SIGTRAP. For example, users can call exit() to
terminate execution, like most existing works do. For applications
with default error handling code, users can program the behavior of
accidental access to the blocked code.

When the blocked code is touched, the DyNACuUT-inserted signal
handler can capture the exception and obtain the execution context.
It then updates the instruction pointer by adding an offset value to
the exception address so that upon signal return, the instruction
pointer points to a new location where the application handles
the wrong request. For example, when we disable PUT and DELETE
methods (L5 and L8 in Listing 1) in a web server, we can program the
fault handler to jump to the code that responds a 403 Forbidden
(L12 in Listing 1). Therefore, even if end-users inadvertently access
a disabled method, they only receive a 403 Forbidden response
instead of terminating the web server.

static ngx_int_t
ngx_http_dav_handler(ngx_http_request_t *r)
{

switch (r->method) {

case NGX_HTTP_PUT:

return NGX_DONE;

case NGX_HTTP_DELETE:
return ngx_http_dav_delete_handler(r);

return NGX_DECLINED;

Listing 1: Code snippet of Nginx’s request handler.

Figure 5 illustrates DYNACUT’s runtime code feature blocking
capability using process rewriting. The updated memory is shown
on the right of Figure 5. DYNACuUT allows multiple code features
to be blocked by replacing the first byte with an int3 instruction
(machine code @xCC). When the unwanted code is inadvertently
accessed, a SIGTRAP will be raised (steps (D and (2)). The execu-
tion redirects to the fault handler, where we update the instruction
pointer so that upon signal restoration, the application jumps to the
code that responds with a 403 forbidden message to the HTTP
client (step ). Thus, the web server’s available features are dynam-
ically blocked without interrupting the service. Similarly, end-users
can restore the original instructions for those disabled features if
the use scenario changes. By such a “bidirectional” process trans-
formation, end-users can dynamically maintain a minimal available
code feature set to reduce the attack surface.

Currently, we support programming the unintended behavior
only if the target program has an error handler. We also require
that the entries of the default error handler and unwanted code
features reside within the same function. This is common for server
applications as they often have a large switch-case statement to
dispatch different client requests to their respective handlers. Thus,
updating the instruction pointer with an offset does not mess up
the function call stack. In the future, we expect to use program
analysis and stack rewriting techniques to update the execution
context if the entrances of the code handlers are in different func-
tions. We terminate program execution for applications that do not
have default error handlers, similar to most software debloating
works [23, 44, 50].




Middleware *23, December 11-15, 2023, Bologna, Italy

Vanilla Process Modified Process Layout

Signal Handler

initialization code (Shared Library) initialization code

7| Fault handler N
+ ‘
- 403 forbidden
] <03 forviacen
Process Rewriter
(Modified CRiU) oxcc @

features code 4 unwanted feature 1

Feature 3 oxcc

Restore |

®

unwanted feature 2

Figure 5: Illustration of DYNACuUT’s code feature blocking
and control flow redirection capabilities.

3.2.3 Validate Functionality for Removed Code. Similar to many
existing binary debloating works [23, 30], DyNACUT may also suffer
from over elimination during the unused code identification phase.
This is because the sample input for trace gathering may not be
sufficient to cover all desired code paths, leading to some potential
code paths being wrongly classified as unused. To validate the
correctness of a customized process image, DYNACUT allows end-
users to inject a verifier library to check if any desired basic blocks
have been falsely classified and removed as unintended code. This
is similarly accomplished through the SIGTRAP handler. Instead of
terminating program execution upon executing an unintended trap
instruction, the verifier library restores the original instructions and
logs the false addresses. This allows end-users to validate whether
the functionality remains correct after code customization.

3.24 Other Code Customization Policies (Use Cases). Although
DyYNACUT focuses on the mechanism for dynamic program cus-
tomization, its flexible process transformation capabilities allow
different customization policies. For example, the DYNACUT users
(or administrators) can dynamically expose the minimal function-
alities of server programs according to the required workloads.
Specifically, an administrator can disable any data write capabilities
of web and database servers to prevent attackers from maliciously
modifying data on an online system. Meanwhile, only re-enable
the write capability when the administrator needs to update the
content. This minimizes the time window for an attack.

Similarly, the administrator can use DYNACUT to minimize po-
tential vulnerabilities of new versions of software components.
New software versions often likely contain zero-day bugs since
they are less tested and deployed [63]. Also, many new features in
new software versions may not be used by other legacy software
components. With DYNACUT, the administrator can disable unused
new features and re-enable them only when these features are re-
quired. The feature customization is instant and will not interrupt
the service. This reduces the attack window since the longer new
features are used and tested, the fewer bugs they are likely to have.

3.3 Implementation

We implemented a prototype of DYNACUT. Our implementation
leverages CRIU [15] to checkpoint a running process and save

Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

its memory pages, register states, opened files, and network con-
nections into several process images. After being transformed by
DyNACuUT, the saved data will be used to restore the process ex-
actly as it was during the checkpoint. CRIU is especially useful
for transforming stateful programs with live connections, such as
most web servers and key-value stores, as it supports TCP_REPAIR,
which allows re-establishing saved TCP connections.

Modifications to CRIU:. To implement DYNACUT, we made
several changes to CRIU. CRIU only dumps the anonymous pages
of a process to a file. This saves network bandwidth for transmitting
process image files during process migration. Code pages do not
have to be saved because file-backed memory can be reconstructed
by the page fault handler when a restored process attempts to access
the virtual memory again. In DyNACUT’s implementation, we added
an option in criu/mem. ¢ to dump the private and executable pages
(i.e., PROT_EXEC and FILE_PRIVATE).

We also extended the CRIU image tool to support process rewrit-
ing. CRIU has an image checking tool called CRIT [16] that is used
to examine process images in the protocol buffer format (proto-
buf) [26], decode them to human-readable JSON files (decode), and
encode them back to the protobuf format (encode). For example,
users can use CRIT to print all memory regions of the application
(ie,crit x <dir> mems) or check the register values of a process
snapshot (i.e, crit show core.img). We made extensive changes
to CRIT to provide easy-to-use APIs for process transformation.
We added support to update memory contents, enlarge or unmap
the VMASs, and insert position-independent shared libraries to the
virtual memory space. Our CRIT extension also supports removing
a single basic block/function given a base address, the size of the
basic block/function, and its file offset.

DyYNACUT can dynamically load a customized exception handler.
To accomplish this, DYNACUT modifies the CRIU images and inserts
the library into the process address space. In particular, DyNACUT
rewrites the following images:

The core image file. This file contains process information in-
cluding binary name and location, signal handlers and masks, and
register values, among others. DYNACUT modifies this file to add
the signal handler address, restorer address, and signal mask into the
SIGTRAP sigaction field of the file. For the signal restorer, instead of
using the default one present in the application, we add the restorer
code from the code pages of the signal handler library itself. It is a
9-byte code that issues a rt_sigreturn syscall. The signal handler
address is calculated by adding the file offset of the signal handling
function with the VMA base address of the user’s choice.

pages, pagemap and mm image files. The raw page contents are
stored in the pages. img file, while the pagemap. img file contains
information about which virtual memory regions are populated
with data. To load a shared library into the target address space, we
need to create new virtual memory regions and insert new memory
pages that contain the library’s code and data. DYNACUT’s process
rewriter parses the shared library and calculates the size of each
ELF section. This is very similar to a traditional ELF loader, but
DyNACuUT loads the shared binary and dynamically injects it into
running processes. DYNACUT allows the end-user to specify where
the shared library must be loaded. By default, DYNACUT loads the
shared library into a randomized but unused location. DyNACuUT



DYNACuT: A Framework for Dynamic and Adaptive Program Customization

further encodes the new pagemap information into the protobuf im-
age. The mm file contains information about the application’s VMA
regions: their start addresses, end addresses, file offsets, shared
memory IDs, permission flags, and status flags. The mm. img file
differs from the pagemap . img file in that the pagemap . img file only
contains details about pages that are populated, whereas the mm. img
file is a collection of all the VMA regions of the application. DyNa-
Cur also modifies the mm. img file to update the VMA information,
such as adding the start address, the end address, the file offset, and
the corresponding permissions for the added shared library.

We leverage the pyelftools [6] to parse ELF libraries. Pyelftools
reads raw data from the shared library ELF; we then add this data
to the CRIU pages. img file by creating new pages and ordering
them according to the pagemap . img file. End-users can specify any
64-bit userspace address that is not used by the process as the base
address of the signal handler. DYNACUT also performs global data
relocations and procedure linkage table (PLT) relocations [36] with
respect to the user-specified address. Global data relocations are
performed by adding the VMA base address of the library to the
st_value field of the symbol. For PLT relocations, we first find the
external 1ibc function symbol offset from the 1ibc binary. Next, we
add the runtime VMA base address of libc to these symbol offsets
and write the new addresses to the global offset table (GOT) [36] of
the signal handler library.

Trace Collection: DYNACUT leverages a user specification to
profile the application to generate different execution traces. Dy-
NACUT also requires the end user to generate as many use cases
as possible for both wanted and unwanted features. In this regard,
fuzzing techniques can partially help to achieve higher code cov-
erage [66]. To collect code coverage logs, we run the target binary
under DynamoRIO’s drcov tool [19]. DYyNACUT provides a script
to directly print feature-related code blocks from traces of wanted
and unwanted features (Figure 4’s tracediff.py). We extended
DynamoRIO to enable dumping of the initialization phase’s code
coverage. We used DynamoRIO’s communication mechanism called
nudges [20], to dump the code coverage of the initialization phase.
Our extended DynamoRIO tool dumps the rest of the code coverage
when the program finishes.

A Prototype of DYyNACuUT: We added 630 lines of C code and
2,696 lines of Python code to CRIU/CRIT for process rewriting. For
implementing profiling of the initialization basic blocks, we added
108 lines of C code to DynamoRIO. We also developed scripts to
automatically rewrite processes for given tasks, such as finding
feature-related basic blocks and dynamically disabling code blocks.
These scripts run externally to the target program. To reduce the
time for storing a process image on the hard disk, we checkpoint
the process images into an in-memory filesystem, i.e., tmpfs [47].

4 EVALUATION

In evaluating DYNACUT, our primary goals include understanding
its runtime overhead and security benefits. We also aim to use
DyNACUT to reduce the attack surface of a real-world application
by dynamic code customization. We demonstrate this using the
Nginx web server.

Middleware *23, December 11-15, 2023, Bologna, Italy

Experimental setup. Our experiments were performed on a
laptop with an Intel i5-10210U CPU (1.60GHz, 16GB RAM, Ubuntu
20.04 LTS with kernel version 5.8.0). To evaluate DYNACUT’s differ-
ent functionality and features, we chose a diverse set of applications.
We used the SPEC INT2017 benchmark suite as representative of
CPU- and memory-intensive workloads. Since web servers are often
security-, performance-, and reliability-critical (e.g., low tolerance
to service interruption), they pose high requirements for a dynamic
code customization tool. We used two web servers, Nginx (v1.18.0)
and Lighttpd (v1.4.59), as representative server applications. Ng-
inx uses multiple processes, organized in a master-worker style.
Lighttpd has an event-driven single-process architecture. Similar to
web servers, in-memory key-value stores also have high security,
performance, and reliability requirements. In addition, they have a
well-defined feature set, which makes them suitable for evaluating
DyNACuUT’s feature removal functionality. We chose Redis (v6.2.3)
as a representative key-value store.

4.1 Performance Overhead

We evaluate DYNACUT’s overhead by measuring how long it takes
to rewrite a running program and the duration of the service in-
terruption. DYNACUT supports two types of code removal: feature
removal and initialization code removal. Since the process rewriting
policies are slightly different, we report the time costs separately.
For both types of overhead measurement, we created a tmpf's for
storing the intermediate process state. We measured the time cost
using Linux’s date command in nanosecond precision.

Feature removal overhead. For feature removal, DynaCuT
modifies CRIU images to disable feature-related code paths and
loads a fault handler for handling unintended feature requests.
Therefore, the overhead includes process dumping and restoring,
instruction replacement, and loading the dynamic shared library
code. We configured both web servers to use the web distributed
authoring and versioning (WebDAV) extension [62]. We selected a
few request types as potential unintended features. For example,
we chose the PUT and DELETE requests in Nginx and Lighttpd as
unintended requests, and chose the SET command as the unintended
request in the Redis key-value server. We used these features as
unintended features simply because they can potentially be used
to alter read-only data in the servers.

0.9
[X3 insert sighandler
0.8 1 disable code w/ int3
B34 checkpoint
0.7 restore
__0.61
C)
§ 0.5
=
v 0.4
£°
=
0.3
BEESESESA XX XX X X]
0.2
0. T T T
Lighttpd (2.7MB) Nginx (2.7MB+2.2MB) Redis (4.1MB)

Figure 6: DYNACuT’s overhead for dynamically customizing
code features.



Middleware *23, December 11-15, 2023, Bologna, Italy

As shown in Figure 6, DYNACUT takes about 0.274 seconds and
0.56 seconds to customize the Lighttpd and Nginx instances, respec-
tively, for feature customization. For Redis, the time taken is about
0.29 seconds. These are average numbers of repeating 10 times,
with a standard deviation of 17 ms. The time taken for customizing
the features of the applications are similar, but the checkpointing
times are slightly different. For example, it takes 0.3 seconds to
checkpoint Nginx, as Nginx has two processes to snapshot (2.7MB
and 2.2MB are the sizes of each Nginx process image, as shown in
Figure 6). For feature customization, DYNACUT only needs to find
the unintended code block by its address, replace the first byte of
the feature-related basic block, and insert the fault handler. Thus,
the time cost is almost constant.

Initialization code removal. As described before, initialization
code removal replaces the code blocks that are used only during
the initialization phase. Unlike feature removal, the overhead of
initialization code removal is mainly due to replacing all unused
basic block instructions. Figure 7 shows DYNACUT’s time taken for
removing initialization functions. The sizes of the . text section
and the CRIU process image for each application are shown in the
table included in the figure. For Nginx and Lighttpd, the overhead
incurred for modifying the images is about 3.5 seconds and 0.93 sec-
onds, respectively. Most of this time is used to analyze the process
images and remove the initialization code (e.g., replace instructions
with int3 or unmap certain pages).

201 | Checkpoint/Restore
=21 Code Update

G 15
°
Q
(%)
35104
[
£
=

5<

@ XA
0 —EFEL =S T T T : . 7
> & > & N > @
& & RS & o~ _{}b \e,q>
S <~ RNy & & 3
N QQ} © 09@ +,§z> & >
Q" S 3
& &
[codesize | 335kB] 853KB| 1.96MB] 18.36KB| 1.56MB| 4.6MB]| 570KB| 189KB |

[imagesize] 23mB| 4omB| 184amB| 28vB| 214MB| 191mMB[ 156MB| 9.7MB |

Figure 7: DyNACuUT’s overhead for customizing initialization
code in process images.

DyNACuT’s evaluation for the SPEC benchmarks is slightly differ-
ent from that of the servers. The SPEC benchmarks are CPU/mem-
ory intensive, and unlike servers, they do not have a clear boundary
between the initialization and serving phases. We chose the ini-
tialization point that we observed when the application was fully
started. We used SPEC’s INTSpeed suite and evaluated seven C/C++
benchmarks of the suite.* 605.mcf_s is the smallest benchmark
in the suite, and when compared to the other benchmarks, the
overhead of modifying it, 0.22 seconds, was negligible (Figure 7).

4We got an out-of-memory error when applying DynamoRIO’s code coverage tool on
602.gcc_s and 657.gx_s benchmarks. We believe that DYNACUT can customize the
code using other code coverage tools.

Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

In contrast, 600.perlbench is the most expensive case for initial-
ization code removal, taking about 18 seconds.

The time for modifying the process images of the different
benchmark programs depends on various factors, such as the ini-
tialization/serving transition point, the size of the CRIU images,
and the number of initialization code blocks. Figure 7’s graphs
for 600.perlbench_s and 623.xalancbmk_s illustrate this. Even
though 623.xalancbmk_s has a larger . text section size and both
programs have a comparable size for their image dumps (184MB
vs. 191MB), the time taken to modify 600.perlbench_s’s image is
about 4 seconds more than 623 . xalancbmk_s’s. This is because, we
chose an initialization point that is much deeper for perlbench_s
than for xalancbmk_s, causing the extra overhead. The number
of initialization basic blocks identified for removal also varies. For
perlbench_s, we identified about 10,808 basic blocks that can be
removed. However, we only identified 6,497 of the same kind for
xalancbmk_s. The overhead incurred is almost proportional to the
length of this list of basic blocks. This is also evident in the graph:
since perlbench_s has about 60% more basic blocks to remove
than xalancbmk_s, perlbench_s takes about 50% more time than
xalancbmk_s to remove initialization basic blocks.

Note that the time taken to remove the initialization code is
a one-time cost; it does not add any overhead to actual software
deployment. Instead, end-users can directly restore the “customized”
process image, which can be even faster than launching the program
from the start.>

160
— —— w/ DynaCut
Y 1401 w/o DynaCut
o
a‘—J 120
o /\
= ANV
= 100 \/J H\J r/\/\/\/\//\/"
-
2 80
<
2 60
o
£ a0 N A
[ Disable SET command Re-enable SET command
20 +— T T T T T T T
0 10 20 30 40 50 60 70

Timeline (s)

Figure 8: Redis server’s throughput under DyNnaCuT for mod-
ifying process images.

Service interruption time for dynamically customizing the
Redis server. We measured the service interruption time when
applying DYNACuUT during an application’s execution. In this ex-
periment, we set up a Redis server on our test machine and started
a Redis benchmark instance (redis-benchmark) on the same ma-
chine, sending GET requests in an infinite loop. During the test, we
dynamically applied DYNACUT to the Redis server and rewrote the
process to remove the code for handling the SET command, and
later re-enabled it. We measured the throughput and latency and
baselined them against an unmodified Redis server instance.

As shown in Figure 8, DYNACUT does not terminate the Redis
server. Instead, it only degrades the server’s throughput within a

SRestoring a process image often takes a few hundred ms and is faster than running
through the whole initialization process.



DYNACuT: A Framework for Dynamic and Adaptive Program Customization

small time window of about one second. After the process rewriting,
the customized process performs similar to the vanilla Redis server.
We applied DYNACUT again at the 48th second to re-enable the
SET command. Both feature removal and re-enabling have similar
performance costs. In this test, we did not trigger the SET request as
it will fall through to the error-handling code, which will terminate
the server’s execution.

4.2 Security Evaluation

We evaluated DYNACUT’s security benefits by measuring the re-
moved code block numbers and analyzing the attack surface reduc-
tion.

Number and size of code blocks removed. Unlike existing
binary-based code customization approaches [23, 44, 50], DynaCuT
dynamically removes code blocks not used for current scenarios. For
feature removal, the number of unused code blocks that DyNnaCuT
can disable heavily depends on the (undesired) feature selection.
Recall that DYNACUT’s main contribution is not to find the undesired
features but to remove them dynamically. Furthermore, existing
binary debloating solutions are orthogonal to DYNACUT in terms
of feature removal. Therefore, we do not directly compare the code
size reduction rate for feature removal with existing works. Instead,
we report the number of initialization-related basic blocks removed
(Figure 9) and show how many basic blocks live in the memory for
each execution phase under DYNACUT and compare them against
previous works [30, 44] (Figure 10).

XA Basic block executed
¥ 250001 Basic block removed
3
@ 20000 A
o
2
m 15000 4
-

o
s
glOOOO-
£
Z 5000 % @
oL Bl KT DO B R R BB
~ & & & > ®
& & & &P & S
SR & & & oF RS
& £ ° & X Qv & &
oS o ° .
S o & &
total BB # 17.8k | 354k |  139k]  1180] 115k|  310k| 22.2k]| 5026] 10.6k
Code size 335KB | 853KB | 1.96MB | 18.36KB | 1.56MB| 4.6MB| 570KB| 81KB| 189KB
init code rm | 31.6KB | 100KB | 178KB| 2.46KB| 102KB| 92KB| 22.9KB| 7.14KB 4KB

Figure 9: Number of executed basic blocks, number of basic
blocks removed by DYNACUT, and the size of initialization
code removed.

Figure 9 shows the result of removing initialization code. The
first bar of each application shows the total number of basic blocks
executed and the second bar shows the number of initialization
basic blocks removed. The total number of basic blocks executed
is a deduplicated number calculated from the drcov trace. We also
report the number of total basic blocks, the code size, and the size
of initialization code removed in each binary. The number of to-
tal basic blocks of each binary is obtained using Angr [51]. As
seen in Figure 9, DYNACUT can remove up to 56% of the executed

Middleware *23, December 11-15, 2023, Bologna, Italy

basic blocks in Nginx with an overhead of about 3.5 seconds (Fig-
ure 7). Similarly, DYNACUT removes about 46% of the executed
basic blocks in a Lighttpd process. Many executed code blocks
can be removed mainly because web server applications spend an
extensive amount of cycles loading their configuration files and
initializing worker threads. Once the server applications are fully
initialized, they usually execute an event loop to dispatch differ-
ent client requests. Therefore, the “hot” code block numbers are
relatively smaller than that of other applications. For SPEC bench-
marks, DYNACUT removes 8.4% to 41.4% of executed code blocks
with an average of 22.3%. The highest percentage case in SPEC
INTSpeed is 600. perlbench_s with about 41.4% of the executed
basic blocks identified as initialization code blocks and removed.
Interestingly, this is a Perl application that processes email text and
also executes in a loop. We also show the removed code size in
Figure 9. For server applications, DYNACUT removes about 10% of
the unused initialization code in size.

Next, we use Lighttpd as an example to show the minimal amount
of live code DYNACUT can maintain over time. Here, “live” means
code blocks that an attacker can reach. We mimic a scenario of using
a web server to serve web pages most of the time and dynamically
opening a time window for the system administration (e.g., upload-
ing files to the server). Figure 10 shows the result. The dashed lines
indicate the percentage numbers of live basic blocks in different
code customization techniques (i.e., RAzZor [44] and CHISEL [30])
and are normalized against the vanilla Lighttpd binary. The line of
DyNACuUT shows the number of live basic blocks in each execution
phase. After Lighttpd finishes initialization, the administrator sends
DyNACUT a command to remove the initialization code. When he
needs uploading files, he can enable the HTTP PUT method. This
allows him to manipulate files on the server (time slot 8-9 in Figure
10). Since DYNACuUT allows dynamically updating code liveness (in
the aforementioned sense), it maintains a smaller amount of code
for each phase. As a result, DYNACUT keeps less than 17% of code
blocks visible in memory during the lifetime of Lighttpd, better
than the state-of-the-art binary debloating techniques [30, 44].

80%
70% - —— DynaCut
R RAZOR
% 60% 1 ——- CHISEL
X
8 50% A
o
© 40% A
g ________________________________
0 30% -
o | [Finish initialization Enable HTTP PUT/DELETE
5 20% 1 / :
10% A L IR
0% Terminate Program
o —— T T T T T T
0 2 4 6 8 10 12

Time
Figure 10: Number of live basic blocks over time.

We should note that the live basic blocks in each stage can be com-
pletely different, although the numbers are slightly different in each
execution phase. Specifically, live basic blocks before timestamp 2
(i.e, initialization-related) mostly differ from live basic blocks after



Middleware *23, December 11-15, 2023, Bologna, Italy

timestamp 2 (i.e., initialization code removed). Feature-related code
can also be dynamically enabled when the workload changes. In
contrast, existing binary-oriented debloating techniques cannot
minimize code footprint [30, 44]. According to Qian et al. [44], Ra-
zoR and CHISEL remove an average of 53.1% and 66% basic blocks,
respectively. Due to their static design, the amount of live code
blocks is significantly larger than what DYNACUT achieves (i.e., a
maximum of 17% code blocks visible in memory). In this experiment,
we manually run scripts to rewrite the process for each execution
phase. In future work, we plan to fully automate this.

Attack surface reduction. DYNACUT can remove undesired
code features on the fly; thus, those features cannot be maliciously
executed whenever they are not in use. DYNACUT can also be used
in an alternative way to maintain a minimal set of needed features:
developers can first disable new features in an upgraded software.
When a new feature is required, DYNACUT can dynamically enable
that feature. This can be especially helpful in keeping the whole
system secure when integrating new software versions into existing
systems. New code features often contain zero-day bugs. For exam-
ple, newer Redis versions support complex algorithms for string
operations (e.g., the STRALGO command). Such new commands may
not be needed for legacy code developed using older Redis versions.
Using DYNACUT, software system maintainers can simply disable
such not-in-use new commands until they are required. This al-
lows legacy code to be protected from vulnerabilities introduced by
new features (if these features are not in use). CVE-2021-32625 and
CVE-2021-29477 are two such vulnerabilities found in recent Redis
versions. We also examined Redis’s other CVEs and confirmed that
DYNACUT could disable the vulnerable code paths (Table 1).

List of Redis CVEs [14] mitigatable using DYNACUT ‘

CVE #
CVE-2021-32625

Description

STRALGO LCS command in Redis versions
6.0+ (integer overflow).

STRALGO LCS command in Redis versions
6.0+ (integer overflow).

SETRANGE command (stack-buffer over-
flow).

SETRANGE command (heap-buffer over-
flow).

CONFIG SET command in Redis 3.2.x prior
to 3.2.4 (buffer overflow).

Table 1: Redis CVEs that could be mitigated using DynaCuT’s
feature blocking capability.

CVE-2021-29477

CVE-2019-10193

CVE-2019-10192

CVE-2016-8339

We conducted another case study on DYNACUT’s security ben-
efit obtained by removing the initialization code. Return-to-PLT
(ret2plt) attack [48] is a variant of code reuse attack that invokes
sensitive library code (e.g., execve()) through exposed PLT entries.
The procedure linkage table (PLT) is a small piece of trampoline
code used to call external functions whose addresses are unknown
at link-time. The PLT and the global offset table (GOT) provide ap-
plication code with access to dynamically linked libraries. DynaCuT
wipes out initialization code, including the PLT entries used after
initialization. In our evaluation, we found that DyNACuUT removes

Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

43 out of 56 executed PLT entries in Nginx after the initialization
phase is completed. After Nginx finishes the initialization, basic
blocks that performed the fork were disabled because the worker
process had already been created.® More importantly, the PLT en-
try for the libc fork() function was also disabled, preventing any
ret2plt attacks that use the fork() function.

Blind ROP (BROP) [9] is a variation of ROP attacks that remotely
locates ROP gadgets. It requires the server application to re-spawn
crashed worker processes so that an attacker can brute-force the
stack canary value. It also gathers and sends process information to
the remote attacker through PLT entries like write(). DynaCuT
reduces the viability of attacks like BROP in two ways. First, Dy-
NACuUT disables many executed but not-in-use PLT entries. Thus,
finding a PLT entry for mounting the attack would be difficult.
Second, DYNACUT disables about 56% of the executed basic blocks,
reducing the amount of available code for launching the attack.
Even if the attacker can circumvent the disabled PLT entries and
find enough gadgets, it would still be difficult to mount a BROP
attack on the customized Nginx server. This is because, DyNACUT
also removes any code that can invoke fork() after initialization. If
an attacker mounts a BROP attack on DYNACUT-customized Nginx
server, the first attempt to brute-force the stack canary will crash the
worker process. We did a similar security evaluation for Lighttpd.
Out of 57 total executed PLT entries, DYNACUT was able to remove
33 of them. Some PLT entries that we disabled include strcmp(),
dlopen(), and socket (). DYNACUT’s PLT entry removal sets it
apart from existing debloating techniques. Existing techniques can
remove unused code and, by extension, unused PLT entries, but
DYNACUT can remove executed PLT entries used only in particular
execution phases.

5 DISCUSSION AND FUTURE WORK

The paper’s main contribution is exploring the pros and cons of
dynamic software feature customization by designing and imple-
menting the DYNACUT prototype. We acknowledge that DyNnaCuT
may suffer similar problems and challenges of using limited test
inputs to precisely distinguish wanted and unwanted features, as
many existing binary debloating systems have [23, 30, 44]. A com-
plete and sound solution may require source-code level feature-code
relationship analysis [22]. For example, we may improve DyNaCUT
by automatically analyzing the source code to find each feature
and the corresponding code blocks. We can then separate each
feature-related code block into separate memory pages. As such,
we can dynamically unload these code pages with DYNaCuT, faster
than replacing code with int3 instructions.

Combining program behavior with code debloating is another
interesting future direction. For example, coarse-grained section-
level binary information can be used to infer code intent [4]. Code
usage under particular workloads can be machine-learned [37].
Moreover, we can monitor specific system calls to determine the
end of the initialization phase, making DyNACuUT fully automatic.
We leave these optimizations as our future works.

Currently, DYNACUT only targets dynamically customizing fea-
tures in application binaries. However, our approach can be ex-
tended to customize library code. There is a significant amount of

®Here, we configured Nginx to use only one worker process.



DYNACuT: A Framework for Dynamic and Adaptive Program Customization

initialization code in the standard C library (e.g., glibc) and other
helper libraries (e.g., 1d. so). Some features in server applications
are also loaded using shared libraries. We anticipate that unused
shared library code can be dynamically unloaded through the pro-
cess rewriting approach. Removing them from the process address
space can further reduce the attack surface.

Lastly, we believe that process rewriting can be a general tech-
nique to solve other security and system problems, such as dy-
namically enabling/disabling seccomp filtering [24], live code re-
randomization [64], dynamic software update [40, 42], and cross-
architecture process migration and execution randomization [55,
60], among others. Process rewriting allows dynamically trans-
forming the process state and memory layout from outside of the
target process, preventing the transformation logic from being hi-
jacked [64].

6 RELATED WORK

The first category of related work includes efforts on binary de-
bloating, analysis, and rewriting. Binary debloating, which is closest
to DYNACUT, aims to reduce the binary size to reduce the attack
surface. A number of debloating works focus on analyzing and
removing unnecessary features [23, 30, 33, 44-46]. A major chal-
lenge is to accurately find control-flow transfer edges to unwanted
code as over-identifying such edges can cause wanted features
to be removed. Many recent works address this challenge from
different perspectives [23, 30, 44]. For example, RAZOR [44] uses
user-specified input cases and control-flow heuristics to ensure
that all user-expected code blocks are removed. CHISEL [30] ap-
plies reinforcement learning to build a statistical model that cap-
tures semantic dependencies between program elements and guides
the search towards a desirable minimal program. Ghaffarinia and
Hamlen [23] similarly apply a machine learning approach to exe-
cution traces generated from test suites to learn a subgraph of the
developer-intended control flows. We argue that these approaches
are orthogonal to DYNACUT’s central contribution, i.e., a process
rewriting mechanism to disable/enable code blocks from a process’s
memory layout at run-time. These prior works can therefore be
used in DYNACUT to infer a more accurate feature-related code
path for dynamic customization.

After obtaining the feature-related control-flow transfer edges,
many existing approaches use binary rewriting techniques to re-
move bloated code paths or simply block the related control-flow
transfer edges [3, 12, 23, 44, 65]. For example, Uroboros [58] re-
assembles the disassembled code for program instrumentation. The
reassembler recovers the semantic information from program as-
sembly code and rearranges code and data on reassembling [57, 58].
However, program reassembling is a hard problem as compilers
often discard linkage information. Even state-of-the-art reassem-
blers cannot achieve a 100% successful reassembly rate [57, 58].
BinRec [3] lifts a binary to an intermediate representation format,
dynamically removes code features by allowing end-users to de-
termine the required features based on a dependency graph, and
then regenerates the target binary. However, binary recompilation
cannot be directly used when feature requirements change during
the lifetime of a program. DYNACUT recognizes this, and enables dy-
namic code customization based on changing requirements. Other

Middleware *23, December 11-15, 2023, Bologna, Italy

approaches use program analysis to find reachable code. BINTRIM-
MER [46] uses value-flow domains to find and eliminate dead code.
Quach et al. use a piece-wise compiler to embed the program depen-
dency graph in a special section of the binary so that a piece-wise
loader can directly load the needed code [45]. In contrast, DYNA-
Cut dynamically finds reachable code. Furthermore, DYNACUT also
allows a minimal amount of code features executable; the allow-list
of features can then be gradually enlarged on demand.

The second category of related work includes efforts on dynami-
cally reducing the attack surface [1, 24, 28, 35]. For example, Ghavam-
nia et al. [24] use static analysis to determine the syscall require-
ments for server applications after the initialization phase. Based on
the analysis results, a customized seccomp filter is used to block un-
necessary yet sensitive syscalls (e.g., execve (), fork()) in the post-
initialization phase. However, this approach still retains unused
code in memory, creating potential attack opportunities through
code reuse (e.g., ROP). SHARD [1] is a context-aware kernel spe-
cialization system that dynamically switches the execution context
between a security-hardened kernel and a vanilla kernel. FACE-
CHANGE [28] similarly profiles syscalls used by each application
and changes the kernel view according to different application
contexts. Compared to DYNACUT, the dynamic kernel switching
approaches are more heavy-weight. They require using a modified
virtual machine monitor and also must recompile the target kernels.

Dynamic software patching (software repair) is another way to
fix vulnerable code without stopping the process [27, 40, 42, 43]. Gin-
seng [40] uses a source-to-source compiler to generate update-able
code and redirects function calls at runtime to make the updated
code live. Kpatch [43] allows patching the Linux kernel without
restarting or rebooting any processes using the ftrace mechanism.
In contrast, DYNACUT focuses on vulnerable code removal, but we
believe similar dynamic software patching or software repairing
systems can be built using DYNACUT.

DyNACUT also shares the ideas of the principle of least privilege
and software fault isolation [8, 10, 17, 56, 67]. The principle of least
privilege ensures that any entity of a computing system (e.g., a
process or a user) has access to only the necessary information for
the intended functions [8]. Least privilege is often implemented
using the concept of privilege separation, i.e., splitting a system
into different components with different levels of trust [10]. In
practice, untrusted components are isolated into fault domains, pre-
venting untrusted code from compromising the trusted computing
base (TCB) [56]. Several efforts split complex software systems
into multiple reduced-privilege compartments [10, 17, 67], and iso-
late different components of the application code [10, 41, 54, 56],
untrusted third-party libraries [61, 67], or even different OS com-
ponents [17, 59]. DYNACUT dynamically updates the visibility of
different code features and maintains the minimal code required
for running software in a given scenario.

7 CONCLUSIONS

We presented DYNACUT, a dynamic software customization system.
DyNACuT’s key innovation is a novel process rewriting mechanism
to update a process’s state and memory layout at run-time. We
built a prototype of DYNACUT and used it to dynamically remove



Middleware *23, December 11-15, 2023, Bologna, Italy

unused code features and temporally unused code from nine appli-
cations. Our evaluation shows that DYNACUT dynamically removes
up to 56% of executed but unused code blocks with ~400 ms service
interruption time. Compared to existing static binary debloating
approaches, DYNACUT minimizes the number of live code blocks
in memory, further reducing the attack surface.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments.
This work is supported in part by the US Office of Naval Research
(ONR) under grants N00014-19-1-2493 and N00014-22-1-2672 and
the US National Science Foundation (NSF) under grant CNS 2127491.
Any opinions, findings, and conclusions expressed in this material
are those of the authors and do not necessarily reflect the views of
these agencies.

REFERENCES

[1] Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu. 2021.

[2

3

[

=

[11]

[12

[13

]

[14]

(15

SHARD: Fine-Grained Kernel Specialization with Context-Aware Hardening. In
30th USENIX Security Symposium (USENIX Security 21).

Toannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-
gios Portokalidis. 2019. Nibbler: debloating binary shared libraries. In Proceed-
ings of the 35th Annual Computer Security Applications Conference, ACSAC 2019,
San Juan, PR, USA, December 09-13, 2019, David Balenson (Ed.). ACM, 70-83.
https://doi.org/10.1145/3359789.3359823

Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou,
Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida,
Herbert Bos, and Michael Franz. 2020. BinRec: Dynamic Binary Lifting and
Recompilation. In Proceedings of the Fifteenth European Conference on Computer
Systems (Heraklion, Greece) (EuroSys °20). Association for Computing Machinery,
New York, NY, USA, Article 36, 16 pages. https://doi.org/10.1145/3342195.3387550
Julian Bangert, Sergey Bratus, Rebecca Shapiro, Michael E Locasto, Jason Reeves,
Sean W Smith, and Anna Shubina. 2013. ELFbac: using the loader format for
intent-level semantics and fine-grained protection. Dartmouth College Computer
Science Technical Report (2013).

Ned Batchelder. 2021. Coverage.py. https://coverage.readthedocs.io/en/coverage-
5.5.

Eli Bendersky. 2022. pyelftools. https://github.com/eliben/pyelftools.

David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 268-279.

Andrea Bittau. 2009. Toward least-privilege isolation for software. Ph.D. Disserta-
tion. University College London, UK. http://discovery.ucl.ac.uk/18902/

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh.
2014. Hacking Blind. In Security and Privacy (SP), 2014 IEEE Symposium on. IEEE,
227-242.

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-Privilege Compartments. In 5th USENIX
Symposium on Networked Systems Design & Implementation, NSDI 2008, April
16-18, 2008, San Francisco, CA, USA, Proceedings, Jon Crowcroft and Michael
Dahlin (Eds.). USENIX Association, 309-322. http://www.usenix.org/events/
nsdi08/tech/full_papers/bittau/bittau.pdf

Derek Bruening. 2004. Efficient, Transparent, and Comprehensive Runtime Code
Manipulation. Ph.D. Dissertation. Massachusetts Institute of Technology.
Yurong Chen, Tian Lan, and Guru Venkataramani. 2017. DamGate: Dynamic
Adaptive Multi-feature Gating in Program Binaries. In Proceedings of the 2017
Workshop on Forming an Ecosystem Around Software Transformation, FEAST@CCS
2017, Dallas, TX, USA, November 3, 2017, Taesoo Kim, Cliff Wang, and Dinghao
Wu (Eds.). ACM, 23-29. https://doi.org/10.1145/3141235.3141243

Mike Cohn. 2015. Are 64% of Features Really Rarely or Never
Used? https://www.mountaingoatsoftware.com/blog/are- 64-of-features-really-
rarely-or-never-used.

MITRE Corporation. 2022.  Redislabs Security Vulnerabilities.
//www.cvedetails.com/vulnerability-list/vendor_id-18560/product_id-
47087/Redislabs-Redis.html.

CRIU. 2021. Checkpoint Restore in Userspace. https://criu.org/Main_Page.

https:

[16] CRIU. 2021. CRIT: CRiu Image Tool. https://criu.org/CRIT.

(17]

[18

[22

[23

™
=)

oS
R

)
&

[33

(34]

(35]

[38

Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran

Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and
Vikram Adve. 2015. Nested kernel: An operating system architecture for intra-
kernel privilege separation. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
ACM, 191-206.

Sheng Di, Derrick Kondo, and Franck Cappello. 2013. Characterizing Cloud
Applications on a Google Data Center. In 42nd International Conference on Parallel
Processing, ICPP 2013, Lyon, France, October 1-4, 2013. IEEE Computer Society,
468-473. https://doi.org/10.1109/ICPP.2013.56

DynamoRIO. 2021. DynamoRIO: Code Coverage Tool. https://dynamorio.org/
page_drcov.html.

DynamoRIO. 2021. Tool Event Model and API https://dynamorio.org/using.html.
Sebastian Eder, Maximilian Junker, Elmar Jiirgens, Benedikt Hauptmann, Rudolf
Vaas, and Karl-Heinz Prommer. 2012. How much does unused code matter for
maintenance?. In 34th International Conference on Software Engineering, ICSE 2012,
June 2-9, 2012, Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro
Pezzé (Eds.). IEEE Computer Society, 1102-1111. https://doi.org/10.1109/ICSE.
2012.6227109

Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. 2003. Locating Features
in Source Code. IEEE Trans. Software Eng. 29, 3 (2003), 210-224. https://doi.org/
10.1109/TSE.2003.1183929

Masoud Ghaffarinia and Kevin W. Hamlen. 2019. Binary Control-Flow Trimming.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2019, London, UK, November 11-15, 2019, Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM, 1009-1022.
https://doi.org/10.1145/3319535.3345665

Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychronakis.
2020. Temporal System Call Specialization for Attack Surface Reduction. In
29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020,
Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 1749-1766.
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
GNU. 2021. Using the GNU Compiler Collection (GCC): Geov. https://gcc.gnu.
org/onlinedocs/gcc/Geov.html.

Google. 2021. Protocol Buffers. https://developers.google.com/protocol-buffers.
Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
Program Repair. Commun. ACM 62, 12 (nov 2019), 56-65. https://doi.org/10.
1145/3318162

Zhongshu Gu, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2014.
FACE-CHANGE: Application-Driven Dynamic Kernel View Switching in a Vir-
tual Machine. In 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014. IEEE Com-
puter Society, 491-502. https://doi.org/10.1109/DSN.2014.52

Alexander Halavais. 2017. Search engine society. John Wiley & Sons.

Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang (Eds.). ACM, 380-394. https://doi.org/10.1145/3243734.
3243838

Intel 2018. Intel 64 and IA-32 Architectures Software Developers Manual. Intel.
Marko Ivankovic, Goran Petrovic, René Just, and Gordon Fraser. 2019. Code
coverage at Google. In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas,
Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM, 955-963. https:
//doi.org/10.1145/3338906.3340459

Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu. 2016. Feature-Based Software
Customization: Preliminary Analysis, Formalization, and Methods. In 17th IEEE
International Symposium on High Assurance Systems Engineering, HASE 2016,
Orlando, FL, USA, January 7-9, 2016, Radu F. Babiceanu, Héléne Waeselynck,
Raymond A. Paul, Bojan Cukic, and Jie Xu (Eds.). IEEE Computer Society, 122—
131. https://doi.org/10.1109/HASE.2016.27

Jens Knoop, Oliver Riithing, and Bernhard Steffen. 1994. Partial dead code
elimination. ACM Sigplan Notices 29, 6 (1994), 147-158.

Anil Kurmus, Alessandro Sorniotti, and Ridiger Kapitza. 2011. Attack surface
reduction for commodity OS kernels: trimmed garden plants may attract less bugs.
In Proceedings of the Fourth European Workshop on System Security, EUROSEC’11,
April 10, 2011, Salzburg, Austria, Engin Kirda and Steven Hand (Eds.). ACM, 6.
https://doi.org/10.1145/1972551.1972557

John R. Levine. 1999. Linkers and Loaders. Morgan Kaufmann, San Francisco,
CA.

Yi Li, Shaohua Wang, and Tien Nguyen. 2021. Fault Localization with Code Cov-
erage Representation Learning. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 661-673. https://doi.org/10.1109/ICSE43902.2021.
00067

Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Ge-
offrey Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M. Hazelwood. 2005.
Pin: building customized program analysis tools with dynamic instrumentation.


https://doi.org/10.1145/3359789.3359823
https://doi.org/10.1145/3342195.3387550
https://coverage.readthedocs.io/en/coverage-5.5
https://coverage.readthedocs.io/en/coverage-5.5
https://github.com/eliben/pyelftools
http://discovery.ucl.ac.uk/18902/
http://www.usenix.org/events/nsdi08/tech/full_papers/bittau/bittau.pdf
http://www.usenix.org/events/nsdi08/tech/full_papers/bittau/bittau.pdf
https://doi.org/10.1145/3141235.3141243
https://www.mountaingoatsoftware.com/blog/are-64-of-features-really-rarely-or-never-used
https://www.mountaingoatsoftware.com/blog/are-64-of-features-really-rarely-or-never-used
https://www.cvedetails.com/vulnerability-list/vendor_id-18560/product_id-47087/Redislabs-Redis.html
https://www.cvedetails.com/vulnerability-list/vendor_id-18560/product_id-47087/Redislabs-Redis.html
https://www.cvedetails.com/vulnerability-list/vendor_id-18560/product_id-47087/Redislabs-Redis.html
https://criu.org/Main_Page
https://criu.org/CRIT
https://doi.org/10.1109/ICPP.2013.56
https://dynamorio.org/page_drcov.html
https://dynamorio.org/page_drcov.html
https://dynamorio.org/using.html
https://doi.org/10.1109/ICSE.2012.6227109
https://doi.org/10.1109/ICSE.2012.6227109
https://doi.org/10.1109/TSE.2003.1183929
https://doi.org/10.1109/TSE.2003.1183929
https://doi.org/10.1145/3319535.3345665
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://developers.google.com/protocol-buffers
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1109/DSN.2014.52
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3338906.3340459
https://doi.org/10.1145/3338906.3340459
https://doi.org/10.1109/HASE.2016.27
https://doi.org/10.1145/1972551.1972557
https://doi.org/10.1109/ICSE43902.2021.00067
https://doi.org/10.1109/ICSE43902.2021.00067

DYNACuT: A Framework for Dynamic and Adaptive Program Customization

In Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, June 12-15, 2005, Vivek Sarkar and
Mary W. Hall (Eds.). ACM, 190-200. https://doi.org/10.1145/1065010.1065034
Robert Lyerly, Xiaoguang Wang, and Binoy Ravindran. 2020. Dynamic and Secure
Memory Transformation in Userspace. In Computer Security - ESORICS 2020 - 25th
European Symposium on Research in Computer Security, ESORICS 2020, Guildford,
UK, September 14-18, 2020, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 12308), Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider (Eds.).
Springer, 237-256. https://doi.org/10.1007/978-3-030-58951-6_12
[40] Iulian Neamtiu, Michael W. Hicks, Gareth Paul Stoyle, and Manuel Oriol. 2006.
Practical dynamic software updating for C. In Proceedings of the ACM SIGPLAN
2006 Conference on Programming Language Design and Implementation, Ottawa,
Ontario, Canada, June 11-14, 2006, Michael 1. Schwartzbach and Thomas Ball
(Eds.). ACM, 72-83. https://doi.org/10.1145/1133981.1133991

[39

[41] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel {MPK}).
In 2019 { USENIX} Annual Technical Conference ({ USENIX} { ATC} 19). 241-254.

[42] Luis Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar. 2019. MVED-

SUA: Higher Availability Dynamic Software Updates via Multi-Version Execution.
In Proceedings of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS 2019, Providence,
RI, USA, April 13-17, 2019, Iris Bahar, Maurice Herlihy, Emmett Witchel, and
Alvin R. Lebeck (Eds.). ACM, 573-585. https://doi.org/10.1145/3297858.3304063

[43] Josh Poimboeuf. 2014. Introducing kpatch: Dynamic Kernel Patching. https:
//www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching

[44] Chenxiong Qian, Hong Hu, Mansour Alharthi, Simon Pak Ho Chung, Taesoo
Kim, and Wenke Lee. 2019. RAZOR: A Framework for Post-deployment Soft-
ware Debloating. In 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor
(Eds.). USENIX Association, 1733-1750. https://www.usenix.org/conference/
usenixsecurity19/presentation/qian

[45] Anh Quach, Aravind Prakash, and Lok-Kwong Yan. 2018. Debloating Soft-
ware through Piece-Wise Compilation and Loading. In 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018,
William Enck and Adrienne Porter Felt (Eds.). USENIX Association, 869-886.
https://www.usenix.org/conference/usenixsecurity18/presentation/quach

[46] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna,

and Christopher Kruegel. 2019. BinTrimmer: Towards Static Binary Debloating

Through Abstract Interpretation. In Detection of Intrusions and Malware, and

Vulnerability Assessment - 16th International Conference, DIMVA 2019, Gothen-

burg, Sweden, June 19-20, 2019, Proceedings (Lecture Notes in Computer Science,

Vol. 11543), Roberto Perdisci, Clémentine Maurice, Giorgio Giacinto, and Magnus

Almgren (Eds.). Springer, 482-501. https://doi.org/10.1007/978-3-030-22038-9_23

Christoph Rohland. 2020. Tmpfs.  https://www.kernel.org/doc/html/latest/

filesystems/tmpfs.html

[48] Will Ryan. 2021. Buffer Overflows: ret2libc, ret2plt and rop. https://medium.com/

cyber-unbound/buffer-overflows- ret2libc-ret2plt-and-rop-e2695c¢103c4c.

Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-

Into-Libc without Function Calls (on the x86). In Proceedings of the 14th ACM

Conference on Computer and Communications Security (Alexandria, VA, USA).

[50] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.

TRIMMER: application specialization for code debloating. In Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineering,

ASE 2018, Montpellier, France, September 3-7, 2018, Marianne Huchard, Christian

Kastner, and Gordon Fraser (Eds.). ACM, 329-339. https://doi.org/10.1145/

3238147.3238160

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,

Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. In IEEE Symposium on Security and Privacy.

[52] Tom Taulli. 2019. Are Most Of Your Product’s Features...Useless?
https://www.forbes.com/sites/tomtaulli/2019/02/24/are-most-of- your-
products-features-useless.

[53] Scott Tsai. 2021. Debug Break: Break into the debugger programmatically. https:

//github.com/scottt/debugbreak/blob/master/debugbreak.h.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,

Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isola-

tion with Protection Keys (MPK). In 28th USENIX Security Symposium, USENIX

Security 2019, Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and

Patrick Traynor (Eds.). USENIX Association, 1221-1238. https://www.usenix.

org/conference/usenixsecurity19/presentation/vahldiek- oberwagner

Ashish Venkat, Sriskanda Shamasunder, Hovav Shacham, and Dean M Tullsen.

2016. Hipstr: Heterogeneous-isa program state relocation. In ACM SIGARCH

Computer Architecture News, Vol. 44. ACM, 727-741.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.

Efficient Software-Based Fault Isolation. In Proceedings of the Fourteenth ACM

Symposium on Operating System Principles, SOSP 1993, The Grove Park Inn and

Country Club, Asheville, North Carolina, USA, December 5-8, 1993, Andrew P. Black

[47

[49

(51

[54

[55

[56

[57

[58

o
20,

[60

(61

[63

(64

[65

Middleware *23, December 11-15, 2023, Bologna, Italy

and Barbara Liskov (Eds.). ACM, 203-216. https://doi.org/10.1145/168619.168635
Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John
Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. 2017. Ramblr:
Making Reassembly Great Again. In 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March
1, 2017. The Internet Society. https://www.ndss-symposium.org/ndss2017/ndss-
2017-programme/ramblr-making-reassembly-great-again/

Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Disassembling.
In 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Associa-
tion, 627-642. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/wang-shuai

Xiaoguang Wang, Yong Qi, Zhi Wang, Yue Chen, and Yajin Zhou. 2019. Design
and Implementation of SecPod, A Framework for Virtualization-Based Security
Systems. IEEE Trans. Dependable Secur. Comput. 16, 1 (2019), 44-57. https:
//doi.org/10.1109/TDSC.2017.2675991

Xiaoguang Wang, SengMing Yeoh, Robert Lyerly, Pierre Olivier, Sang-Hoon Kim,
and Binoy Ravindran. 2020. A Framework for Software Diversification with
{ISA} Heterogeneity. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020). 427-442.

Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran. 2020.
Secure and efficient in-process monitor (and library) protection with Intel MPK. In
Proceedings of the 13th European Workshop on Systems Security, EuroSec@EuroSys
2020, Heraklion, Greece, April 27, 2020, Lorenzo Cavallaro and Andrea Lanzi (Eds.).
ACM, 7-12. https://doi.org/10.1145/3380786.3391398

Jim Whitehead. 2021. WebDAV Resources: Web-based Distributed Authoring
and Versioning . http://www.webdav.org/.

Wikipedia. Accessed: 2023-01-31. Zero-day (computing). https://en.wikipedia.
org/wiki/Zero-day_(computing).

David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code Re-
Randomization.. In OSDI. 367-382.

David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-
terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis. 2020.
Egalito: Layout-Agnostic Binary Recompilation. In 25th International Confer-
ence on Architecture Support for Programming Languages and Operating Systems
(ASPLOS °20).

Michat Zalewski. 2021. american fuzzy lop (2.52b). https://lcamtuf.coredump.cx/
afl/.

Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. ARMlock:
Hardware-based Fault Isolation for ARM. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14).


https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1007/978-3-030-58951-6_12
https://doi.org/10.1145/1133981.1133991
https://doi.org/10.1145/3297858.3304063
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://doi.org/10.1007/978-3-030-22038-9_23
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html
https://medium.com/cyber-unbound/buffer-overflows-ret2libc-ret2plt-and-rop-e2695c103c4c
https://medium.com/cyber-unbound/buffer-overflows-ret2libc-ret2plt-and-rop-e2695c103c4c
https://doi.org/10.1145/3238147.3238160
https://doi.org/10.1145/3238147.3238160
https://www.forbes.com/sites/tomtaulli/2019/02/24/are-most-of-your-products-features-useless
https://www.forbes.com/sites/tomtaulli/2019/02/24/are-most-of-your-products-features-useless
https://github.com/scottt/debugbreak/blob/master/debugbreak.h
https://github.com/scottt/debugbreak/blob/master/debugbreak.h
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://doi.org/10.1145/168619.168635
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/ramblr-making-reassembly-great-again/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/ramblr-making-reassembly-great-again/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
https://doi.org/10.1109/TDSC.2017.2675991
https://doi.org/10.1109/TDSC.2017.2675991
https://doi.org/10.1145/3380786.3391398
http://www.webdav.org/
https://en.wikipedia.org/wiki/Zero-day_(computing)
https://en.wikipedia.org/wiki/Zero-day_(computing)
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 System Design and Implementation
	3.1 Undesired Code Block Identification
	3.2 Dynamic Code Customization
	3.3 Implementation

	4 Evaluation
	4.1 Performance Overhead
	4.2 Security Evaluation

	5 Discussion and Future Work
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

