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Determining the precise rank is an important problem in many large-
scale applications with matrix data exploiting low-rank plus noise models. In
this paper, we suggest a universal approach to rank inference via residual sub-
sampling (RIRS) for testing and estimating rank in a wide family of models,
including many popularly used network models such as the degree corrected
mixed membership model as a special case. Our procedure constructs a test
statistic via subsampling entries of the residual matrix after extracting the
spiked components. The test statistic converges in distribution to the stan-
dard normal under the null hypothesis, and diverges to infinity with asymp-
totic probability one under the alternative hypothesis. The effectiveness of
RIRS procedure is justified theoretically, utilizing the asymptotic expansions
of eigenvectors and eigenvalues for large random matrices recently developed
in (J. Amer. Statist. Assoc. 117 (2022) 996–1009) and (J. R. Stat. Soc. Ser. B.
Stat. Methodol. 84 (2022) 630–653). The advantages of the newly suggested
procedure are demonstrated through several simulation and real data exam-
ples.

1. Introduction. Matrix data have been popularly encountered in various big data ap-
plications. For example, many science and social applications involve individuals with com-
plicated interaction systems. Such systems can often be modeled using a network with nodes
representing the n individuals and edges representing the connectivity among individuals.
The overall connectivity can thus be recorded in an n×n adjacency matrix whose entries are
zeros and nonzeros, representing the corresponding pair of nodes unconnected or connected,
respectively. Examples include the friendship network, the citation network, the predator-prey
interaction network and many others.

There has been a large literature on statistical methods and theory proposed for analyzing
matrix data. In the network setting, the observed adjacency matrix is frequently modeled
as the summation of a latent deterministic low rank mean matrix and a random noise matrix,
where the former stores all useful information in the data and is often the interest. One popular
assumption is that the rank K of the latent mean matrix is known. However, in practice,
such K is generally unknown and needs to be estimated. This paper focuses on estimation
and inference on the low rank K in a general model setting including many popularly used
network models as special cases.

In our model, the data matrix X can be roughly decomposed as a low rank mean matrix
H with K spiked eigenvalues and a noise matrix W whose components are mostly indepen-
dent. Here, K is unknown and allowed to slowly diverge with n. To infer K with quantified
statistical uncertainty, we propose a universal approach for Rank Inference by Residual Sub-
sampling (RIRS). Specifically, we consider the hypothesis test

(1) H0 : K = K0 vs. H1 : K > K0
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with K0 some prespecified positive integer. The spiked mean matrix with rank K0 can be
estimated by eigendecomposition, subtracting which from the observed data matrix yields
the residual matrix. Then by appropriately subsampling the entries of the residual matrix, we
can construct a test statistic. We prove that under the null hypothesis that the test statistic
converges in distribution to the standard normal, and under the alternative hypothesis, some
spiked structure remains in the residual matrix and the constructed test statistic behaves very
differently. Thus, the hypothesis test in (1) can be successfully conducted. Then by sequen-
tially testing the hypothesis (1) for K0 = 1, . . . ,Kmax with Kmax some large enough positive
integer, we can estimate K as the first integer that makes our test fail to reject. We provide the-
oretical justifications on the effectiveness of our procedure. We show that the size of our test
tends to the desired level α as sample size increases, and establish conditions under which the
power approaches one asymptotically. We also show that the sequential procedure correctly
estimates the true rank with probability tending to 1 − α as network size increases.

A key to RIRS’s success is the subsampling step. Although the noise matrix W has mostly
independent components, the residual matrix is only an estimate of W and has correlated
components. Intuitively speaking, if too many entries of the residual matrix are sampled,
the accumulated estimation error and the correlation among sampled entries would be too
large, rendering the asymptotic normality invalid. We provide both theoretical and empirical
guidance on how many entries to subsample. In the special case where the diagonals of the
data matrix X are nonzero independent random variables (which corresponds to self-loops
in network models), a special deterministic sampling scheme can be used and the RIRS test
takes a simpler form.

The structure of low rank mean matrix plus noise matrix is very general and includes many
popularly used network models such as the Stochastic Block Model (SBM, [1, 15, 26]), De-
gree Corrected SBM (DCSBM, [18]), Mixed Membership (MM) Model, and Degree Cor-
rected Mixed Membership (DCMM) Model [3] as special cases. RIRS procedure and the
theory established in this paper are applicable to all these network models and go beyond
them. In network model settings, RIRS can accommodate sparse networks and allows for
extreme degree heterogeneity.

Substantial efforts have been made in the literature on estimating K in some specific net-
work models, where K is referred to as the number of communities. For example, [23] pro-
posed an MCMC algorithm based on the allocation sampler to cluster the nodes in SBM
and simultaneously estimate K . Airoldi et al. [3] developed a general variational inference
algorithm to estimate the parameters in MM model with K chosen according to some BIC
criterion. Jin et al. [16] considered testing (1) with K0 = 1 and proposed a signed polygon
statistic, which can accommodate the degree heterogeneity in the DCMM model. Gao and
Lafferty [13] proposed EZ statistics constructed by “frequencies of three-node subgraphs”
to test (1) with K0 = 1 in the setting of DCSBM. Banerjee and Ma [5] introduced a linear
spectral statistic to test H0 : K = 1 versus H1 : K = 2 under the SBM. Jin et al. [17] pro-
posed a stepwise goodness-of-fit test for estimating K under DCSBM. Zhang and Amini
[28] suggested an adjusted chi-square test to address the goodness-of-fit testing and model
selection problem for DCSBM. Compared to these works, we consider more general model
and general positive integer K0 that can be larger than 1.

There is also a popular line of work using likelihood based methods to estimate K ; for
example, [10, 19, 25] and [27], among others. Chatterjee [8] introduced a universal singular
value thresholding procedure for the matrix estimation, which can be applied to estimate K .
Chen and Lei [9] proposed a network cross-validation method for estimating K and proved
the consistency of the estimator under SBM. The cross-validation idea was also explored in
[22] under the widely used inhomogeneous Erdős–Renyi model with low rank mean matrix
via edge sampling. Le and Levina [20] proposed to estimate K using the spectral properties
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of two graph operators—the nonbacktracking matrix and the Bethe Hessian matrix. Zhao et
al. [29] proposed to sequentially extract one community at a time by optimizing some ex-
traction criterion, based on which they proposed a hypothesis test for testing the number of
communities empirically via permutation method. Bickel and Sarkar [7] proposed a new test
based on the asymptotic distribution of the largest eigenvalue of the appropriately rescaled
adjacency matrix for testing whether a network is Erdős–Renyi or not, and suggested a re-
cursive bipartition algorithm for estimating K . Lei [21] generalized the test in [7] for testing
whether a network is SBM with some specific K0, and proposed a sequential testing idea to
estimate the true number of communities.

Among the existing literature reviewed above, the works by [7] and [21] are most closely
related to ours. The main idea in both papers is that under the null hypothesis of SBM with
K0 communities, the model parameters can be estimated and the residual matrix can be cal-
culated and appropriately rescaled. The rescaled residual matrix is close to a generalized
Wigner matrix whose extreme eigenvalues (after recentering and rescaling) converge in dis-
tribution to the Tracy–Widom distribution. However, under the alternative hypothesis, the
extreme eigenvalues behave very differently. At a high level, this idea is related to ours in the
sense that our proposal is also based on the residual matrix.

RIRS test differs from the literature in the way of using the residual matrix. Instead of
investigating the spectral distribution of the residual matrix, we construct RIRS test by sub-
sampling just a fraction of the entries in residual matrix. The subsampling idea ensures that
the noise accumulation caused by estimating the mean matrix does not dominate the signal,
which guarantees the nice performance of our test. Compared to the existing literature, RIRS
test behaves more similar to a nonparameteric test in the sense that there is no assumption on
specific structure of the low rank mean matrix. Yet, it is also simple and fast to implement.
Our asymptotic theory is also new to the literature. It is built on the recent developments
on random matrix theory in [11] and [12], which establishes the asymptotic expansions of
the eigenvalues and eigenvectors for a very general class of random matrices. This powerful
result allows us to establish the sampling properties of RIRS test in equally general setting.

The remaining of the paper is organized as follows: Section 2 presents the model setting
and motivation for RIRS. We introduce our new approach and establish its asymptotic proper-
ties in Section 3. Simulations under various models are conducted to justify the performance
of RIRS in Section 4. We further apply RIRS to a real data example in Section 5. Additional
simulation examples and all proofs are relegated to the Appendix and the Supplementary
Material [14].

1.1. Notation. We introduce some notation that will be used throughout the paper. We
use a ≪ b to represent a/b → 0 and write a ! b if there exists a positive constant c such
that 0 ≤ a ≤ cb. For a matrix A, we use λj (A) to denote the j th largest eigenvalue, and
∥A∥F , ∥A∥ and ∥A∥∞ to denote the Frobenius norm, the spectral norm and the maximum
elementwise infinity norm, respectively. In addition, denote by A(k) the kth row of the matrix
A. For a unit vector x = (x1, . . . , xn)

T , let dx = ∥x∥∞ = max |xi | represent the vector infinity
norm.

2. Model setting and motivation.

2.1. Model setting. Consider an n×n symmetric random matrix X̃ admitting the follow-
ing decomposition:

(2) X̃ = H + W,

where H = E(X̃) is the mean matrix with unknown rank K ≪ n and W is the noise matrix
with bounded and independent entries on and above the diagonals. In network applications,
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the observed matrix X is the adjacency matrix and can be either X̃ or X̃ − diag(X̃), with
the former corresponding to network with self-loops and the latter corresponding to network
without self-loops, respectively. An important and interesting question is inferring the un-
known rank K , which corresponds to the number of communities in network models. We
address the problem by testing the hypotheses (1) under the universal model (2).

We note that with some transformation, model (2) can accommodate nonsymmetric matri-
ces. In fact, for any matrix X̃ that can be written as the summation of a rank K mean matrix
and a noise matrix of independent components, we can define a new matrix as

(
0 X̃

X̃T 0

)

.

It is seen that this new matrix has the same structure as in (2) with rank 2K , and our new
method and theory both apply. For simplicity of presentation, hereafter we assume the sym-
metric matrix structure for X̃ and X.

Write the eigendecomposition of H as VDVT , where D = diag(d1, . . . , dK) collects the
nonzero eigenvalues of H in decreasing magnitude and V = (v1, . . . ,vK) is the matrix col-
lecting the corresponding eigenvectors. Denote by d̂1, . . . , d̂n the eigenvalues of X in decreas-
ing magnitude and v̂1, . . . , v̂n the corresponding eigenvectors. We next discuss the motivation
of RIRS.

2.2. Motivation. To gain insights, consider the simple case when the observed data ma-
trix X = X̃ and follows model (2). It is seen that EW = 0. Intuitively, as n → ∞, the nor-

malized statistic
∑n

i=1 wii/
√∑n

i=1 Ew2
ii converges in distribution to standard normal. Mean-

while, we expect
∑n

i=1 Ew2
ii/

∑n
i=1 w2

ii to converge to 1 in probability as n → ∞. These two
results entail that

(3)
∑n

i=1 wii√∑n
i=1 w2

ii

is asymptotically normal as the matrix size n → ∞.
In the ideal case where the eigenvalues d1, . . . , dK and eigenvectors v1, . . . ,vK are known,

a test of the form (3) can be constructed by replacing wii with w̃ii where W̃ = (w̃ij ) =
X − ∑K0

k=1 dkvkvT
k . Under the null hypothesis, W̃ = W and the corresponding test statistic

(constructed in the same way as (3)) is asymptotically normal. However, under the alterna-
tive hypothesis, W̃ still contains some information from the K −K0 smallest spiked eigenval-
ues and the corresponding eigenvectors and the test statistic is expected to exhibit different
asymptotic behavior. Thus, the hypotheses in (1) can be successfully tested by using this
statistic.

In practice, the eigenvalues and eigenvectors of H are unavailable and need to be estimated.
A natural estimate of W̃ takes the form

(4) Ŵ = (ŵij ) = X −
K0∑

k=1

d̂k v̂k v̂T
k .

Under H0, the residual matrix Ŵ is expected to be close to W, which motivates us to consider
test of the form

(5) T̃n =
∑n

i=1 ŵii√∑n
i=1 ŵ2

ii

.
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Intuitively, the asymptotic behavior of the above statistic should be close to the one in (3).
Thus, by examining the asymptotic behavior of T̃n we can test the desired hypotheses. We
will formalize this intuition in a later section.

The statistic in (3) is constructed using only the diagonals of W. In theory, the asymp-
totic normality remains true if we aggregate any randomly sampled entries of the matrix W
(instead of just the diagonals) and normalize properly, as long as the sampling size is large
enough, thanks to the independence of the entries on and above the diagonals of W. How-
ever, this does not translate into the asymptotic normality of the test based on Ŵ for at least
two reasons: First, in applications absence of self-loops, the observed data matrix X takes
the form X̃ − diag(X̃), and thus Ŵ estimates W − diag(X̃), which has nonrandom diagonals.
Consequently, the test constructed using diagonals of Ŵ becomes invalid. Second, the en-
tries of Ŵ are all correlated and have errors caused by estimating the corresponding entries
of W. Aggregating too many entries of Ŵ will cause too much noise accumulation. This
together with the correlations among ŵij makes the asymptotic normality of the correspond-
ing test statistic invalid. This heuristic argument is formalized in a later Section 3.6. Thus,
to overcome these difficulties, we need to carefully choose which and how many entries to
aggregate. These issues are formally addressed in the next section.

3. Rank inference via residual subsampling.

3.1. A universal RIRS test. A key ingredient of RIRS is subsampling the entries of Ŵ.
Specifically, define i.i.d. Bernoulli random variables Yij with P(Yij = 1) = 1

m for 1 ≤ i < j ≤
n, where m is some positive integer diverging with n at a rate that will be specified later. In
addition, set Yji = Yij for i < j . A universal RIRS test that works under the broad model (2)
takes the following form:

(6) Tn =
√

m
∑

i≠j ŵijYij√
2

∑
i≠j ŵ2

ij

.

The effect of m is to control on average how many entries of the residual matrix to aggregate
for calculating the test statistic. It will be made clear in a moment that n2/m needs to grow to
infinity in order for the central limit theorem to take effect. However, the growth rate cannot
be too fast because otherwise the noise accumulation and the correlation in ŵij would make
the asymptotic normality invalid.

The following conditions will be used in our theoretical analysis.

CONDITION 1. W is a symmetric matrix with independent and bounded upper triangu-
lar entries (including the diagonals) and Ewij = 0 for i ≠ j .

CONDITION 2. For 1 ≤ i < j ≤ K , if |di | ≠ |dj |, there exists a positive constant c0 such
that |di |

|dj | ≥ 1 + c0.

CONDITION 3. There exists a positive sequence θn, which may converge to 0 as n → ∞,
such that σ 2

ij = var(wij ) ≤ θn and max1≤i≤n |hii |! θn. In addition, max{nθn, logn}! α2
n :=

maxi
∑n

j=1 σ 2
ij , |dK |" α2

n

(log logn)ϵ
′ and |dK |

αn
" (logn)1+ϵ for some positive constants ϵ, ϵ′.

CONDITION 4. ∥V∥∞ ! 1√
n

.
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CONDITION 5. It holds that
∑

i≠j σ 2
ij ≫ m. In addition, for some small positive constant

ϵ1 < ϵ with ϵ the constant in Condition 3,

∑

i≠j

σ 2
ij " (logn)ϵ1

(
n

∑K
k=1(1

T vk)
2

m
+ α2

n(logn)2 + n

m
+ n2α2

n(logn)6

md2
K

)
.

CONDITION 6. The true rank satisfies that K ≤ O(log logn).

With the above conditions, Theorem 3.1 below provides the asymptotic null distribution
of RIRS test and Theorem 3.2 establishes the asymptotic alternative distribution.

THEOREM 3.1. Assume Conditions 1–6. Under null hypothesis in (1), we have

(7) Tn
d→ N(0,1) as n → ∞.

THEOREM 3.2. Assume Conditions 1–6 and the alternative hypothesis in (1). If

∑

i≠j

(
K∑

k=K0+1

dkvk(i)vk(j)

)2

≪
∑

i≠j

σ 2
ij ,

then as n → ∞,

(8) Tn −
√

m
∑

i≠j

∑K
k=K0+1 dkvk(i)vk(j)Yij

√
2

∑
i≠j ŵ2

ij

d→ N(0,1).

In addition, if

(9)

∣∣∣∣∣

K∑

k=K0+1

dk

∑

i≠j

vk(i)vk(j)

∣∣∣∣∣ ≫ √
m

(√∑

i≠j

σ 2
ij +

√
K − K0

K∑

k=K0+1

|dk|
)

,

we have

(10) P
(|Tn| > C

) → 1 as n → ∞
for arbitrarily large positive constant C.

The result in (8) guarantees that if
∑K

k=K0+1 dk
∑

i≠j vk(i)vk(j)Yij is nonnegligible com-

pared with
√

2m−1 ∑
i≠j ŵ2

ij , then our test has nonvanishing power. If in addition, the asymp-
totic mean is large enough such that (9) is satisfied, then the asymptotic power can reach one.
The results on asymptotic size and power of RIRS test are formally summarized in the fol-
lowing corollary.

COROLLARY 1. Under the conditions of Theorem 3.1, we have

lim
n→∞P

(|Tn| ≥ &−1(1 − α/2)|H0
) = α,

where &−1(t) is the inverse of the standard normal distribution function, and α is the pre-
specified significance level. Alternatively, under the same conditions for ensuring (10), we
have

lim
n→∞ P

(|Tn| ≥ &−1(1 − α/2)|H1
) = 1.
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3.2. Remarks on the conditions. Random matrix satisfying Condition 1 is often termed
as generalized Wigner matrix in the literature. Condition 2 allows for eigenvalue multiplicity
and requires that there is enough gap between distinct eigenvalues. The constant c0 can be
replaced with some slowly vanishing term such as (logn)−1 and our main results will still
hold with relevant conditions updated accordingly.

Condition 3 restricts that the nonzero eigenvalues of the low rank mean matrix should have
enough spikiness. The two constraints |dK | " α2

n(log logn)−ϵ′
and |dK | " αn(logn)1+ϵ in

Condition 3 are imposed for controlling the noise accumulation in our test caused by estimat-
ing wij . The second constraint is a signal strength condition commonly imposed in random
matrix theory literature; see [4, 6] and [24], among others. The logarithmic factor, (logn)1+ϵ ,
measures the gap between the signal (spiked) eigenvalue and the noise eigenvalue, and is
hard to be removed completely because otherwise the sample eigenvector would depend on
the noise matrix W in a complicated way that is not useful for statistical inference. The first
constraint can be satisfied by many network models with low rank structure. To see this,
note that if Xij , j ≥ i ≥ 1 follows Bernoulli distribution and hij ∼ θn with maxi,j hij < 1,
then α2

n ∼ nθn. Since hij ’s and σ 2
ij ’s are the means and variances of Bernoulli random vari-

ables, respectively, we have hij ∼ σ 2
ij ∼ θn and ∥H∥F = {∑i,j h2

ij }1/2 ∼ nθn. Note also that
∥H∥F = {∑K

i=1 d2
i }1/2. Assuming that K is finite and d1 ∼ dK , these results together with

α2
n ∼ nθn derived earlier ensure that |dK |" α2

n(log logn)−ϵ′
is satisfied.

Condition 5 characterizes what kind of m can make RIRS succeed. More detailed discus-
sion on the choice of m will be given in Section 3.3. Condition 6 allows the rank K to grow
with network size n.

Condition 4 is a technical condition needed for proving key Lemmas 2–3 in the Supple-
mentary Material. We remark that it can hold under extreme degree heterogeneity in network
models. The following example is used to illustrate this point.

EXAMPLE 1. Consider DCSBM with K = 2 where mean matrix takes the form

(11) H = !"B"T !.

Here, B is a 2 × 2 nonsingular matrix with diagonals 1 and off diagonals taking a constant
value in [0,1), ! is a diagonal matrix with the first n/2 diagonal entries taking the same value
ϑ1 > 0 and the remaining diagonal entries taking the same value ϑ2 > 0, and " ∈ Rn×2 has
the first n/2 rows equal to (1,0) and the remaining ones equal to (0,1). Here, for simplicity,
we assume n is an even number. It is seen that the first n/2 nodes belong to community 1 and
share the common degree parameter ϑ1, and the remaining belong to community 2 and share
the common degree parameter ϑ2. Since the population eigenvector vk , k = 1,2 satisfies

!"B"T !vk = λkvk,

we see that vk takes the form (a11T
n/2, a21T

n/2)
T with 1n/2 ∈ Rn/2 a vectors of 1’s and a1 and

a2 two constants. Since ∥vk∥2 = 1, it follows that max{|a1|, |a2|}! 1√
n

, and thus Condition 4
holds regardless of the values of ϑ1 and ϑ2.

3.3. Choice of m. It is seen from the previous two theorems that the tuning parameter
m plays a crucial role for RIRS to achieve the desired size with power tending to one. Con-
dition 5 provides general conditions on the choice of m for ensuring the null and alternative
distributions in (7) and (8). For (10) to hold, we also need the additional assumption (9). In
some special cases, these conditions boil down to simpler forms, which can provide us more
specific guidelines on the choice of m.
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As an example, we consider the special case

(logn)δ min
i≠j

σ 2
ij " max

i≠j
σ 2

ij

for K0 < K,
∑

i≠j

σ 2
ij !

∣∣∣∣∣

K∑

k=K0+1

dk

∑

i≠j

vk(i)vk(j)

∣∣∣∣∣ and |d1|! nθn,
(12)

where δ < ϵ is some small positive constant with ϵ the same as in Condition 3. The first
condition above is for guaranteeing both the asymptotic size and power results, while the
remaining two conditions will be only used for verifying (9), which is only needed in es-
tablishing the power results. In network models, the (logn)δ factor in the first condition
of (12) is related to degree heterogeneity. For very extreme degree heterogeneity, we may
have maxi≠j σ 2

ij /mini≠j σ 2
ij diverge at some polynomial rate of sample size. We remark that

similar results can be derived using identical proof idea for Theorem 3.3 with some technical
conditions appropriately modified.

We next discuss some more specific network models, which can give us more insights on
the three conditions in (12). Consider the same DCSBM in (11) except that ! = diag{ϑ1,

. . . ,ϑn} with ϑj > 0, j = 1, . . . , n the degree parameters. Assume maxi,j {ϑjϑj bCiCj } is
bounded away from 1 by some constant, where Ci ∈ {1,2} is the membership for node i,
and bkl ∈ (0,1] is the (k, l) entry of matrix B taking constant values. Then we have
σ 2

ij ∼ hij = ϑiϑj bCiCj because the entries of X have Bernoulli distributions. It is seen that
the ratio maxi≠j σ 2

ij /mini≠j σ 2
ij ∼ maxi≠j (ϑiϑj )/mini≠j (ϑiϑj ). Thus, the first condition

in (12) is satisfied if maxj ϑj /minj ϑj !
√

(logn)δ . It is also straightforward to see that
θn = maxi,j {ϑiϑj bCiCj } and |d1| ∼ ∥H∥F ! nmaxi,j {ϑiϑj bCiCj }. Thus, the last condition
|d1| ! nθn in (12) holds. The second condition reduces to

∑
i≠j σ 2

ij ! |d2
∑

i≠j v2(i)v2(j)|
in this model setting. Since

∑
i≠j σ 2

ij ≤ n2 maxi≠j {ϑiϑj bCiCj }, the second condition is satis-
fied if n2 maxi≠j ϑiϑj bCiCj ! |d2

∑
i≠j v2(i)v2(j)|.

The next theorem specifies what kind of m satisfies the two inequalities in Condition 5
and (9).

THEOREM 3.3. Set θn = maxi≠j σ 2
ij . Assume (12) and Condition 3, and let ϵ1 ∈ (δ, ϵ)

be some small constant. Then m satisfying the condition

(13) θ−1
n (logn)δ+ϵ1K + n−1θ−2

n (logn)6+2δ+ϵ1(log logn)2ϵ′ ≪ m ≪ (n/K)2θn(logn)−2δ

makes Condition 5 and inequality (9) hold. Consequently, (7) and (10) hold under Conditions
1–4 and 6. Moreover, a sufficient condition for (13) is n(logn)−2ϵ+ϵ1+2(log logn)−2ϵ′

K ≪
m ≪ nK−2(logn)2ϵ−δ+2(log logn)2ϵ′

under Conditions 1–4.

It is seen that Theorem 3.3 allows for a wide range of values for m. In theory, any m

satisfying (13) guarantees the asymptotic size and power of our test. In implementation, we
found smaller m in this range yields better empirical size. It is also seen from (13) that RIRS
works with sparse networks. In fact, the only sparsity condition imposed by (13) is that θn ≫
n−1K3/2(logn)2+δ+ϵ1/2. Our sparsity condition is weaker than many existing ones in related
work in the literature. In particular, both [7] and [21] considered dense SBM with θn bounded
below by some constant.

We remark that sparse models have been considered in the network literature, though
mostly in estimation instead of inference problems. For example, [27] proposed a model se-
lection criterion for estimating K under the sparse setting of SBM with nθn/ logn → ∞. Le
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and Levina [20] established the consistency of their method for estimating K under the set-
ting nθn = O(1). We consider the statistical inference problem of hypothesis testing, which
involves more delicate analyses for establishing the asymptotic distributions of the test statis-
tic.

3.4. A special case: Networks with self-loops. We formalize the heuristic arguments in
Section 2.2 about the ratio statistic T̃n in (5) when the network admits self-loops. In such a
case, the general test (6) still works. However, the simpler one T̃n can enjoy similar asymp-
totic properties without the trouble of choosing m.

THEOREM 3.4. Suppose that Conditions 1–4 and 6 hold, the network contains self-loops

and
√∑n

i=1 σ 2
ii ≫ (logn)2+ϵ2 for some positive constant ϵ2.

(i) Under null hypothesis, we have

(14) T̃n
d→ N(0,1) as n → ∞.

(ii) Under alternative hypothesis, if further
∑n

i=1(
∑K

k=K0+1 dkv
2
k (i))

2 ≪ ∑n
i=1 σ 2

ii , we
have

(15) T̃n −
∑K

k=K0+1 dk
√∑n

i=1 ŵ2
ii

d→ N(0,1) as n → ∞.

In addition, if |∑K
k=K0+1 dk|2 ≫ ∑n

i=1 σ 2
ii + ∑n

i=1(
∑K

k=K0+1 dkv
2
k (i))

2, then

(16) P
(|T̃n| > C

) → 1,

for arbitrarily large positive constant C.

It is seen that with the same critical value &−1(1 − α/2), T̃n enjoys the same asymptotic
properties on size and power as Tn. In addition, since the construction of T̃n does not depend
on any tuning parameter, the implementation is much easier.

3.5. Estimation of K . RIRS naturally suggests a simple method for estimating the rank
K . The idea is similar to the one in [21]. That is, we sequentially test the following hypothe-
ses:

H0 : K = K0 vs. H1 : K > K0,

for K0 = 1,2, . . . ,Kmax at a given significance level α ∈ (0,1) using RIRS. Here, Kmax is
some prespecified positive integer that should be larger than the true rank. In the application,
we may select Kmax = ⌊C log logn⌋ with some positive constant C. Once RIRS fails to reject
a value of K0, we stop and use it as the estimate of the rank. Denote by K̂ our resulting
estimate.

COROLLARY 2. Suppose there exists some positive constant δ1 such that

(17)

∣∣∣∣∣

K∑

k=K0+1

dk

∑

i≠j

vk(i)vk(j)

∣∣∣∣∣ ≫
√

m logδ1 n

(√∑

i≠j

σ 2
ij +

√
K − K0

K∑

k=K0+1

|dk|
)

,

holds for all K0 < K . Under the conditions of Theorem 3.2, we have

P(K̂ = K) → 1 − α.
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REMARK 1. The additional condition (17) ensures that the estimation procedure rejects
all K0 < K with asymptotic probability 1 even when K diverges.

REMARK 2. Our numerical studies suggest that the RIRS based sequential testing ap-
proach may underestimate K when the network is very sparse or the signal strength is very
low; see simulation results in the Supplementary Material. To improve the estimation accu-
racy, we propose to add a penalty on underestimation to |Tn| as follows:

(18) |Ťn| = |Tn| +
|maxi

∑
j Xij |1/2

|d̂K0 | − |d̂K0+1|
.

Then we implement our estimation procedure identically with |Tn| replaced with |Ťn|. It is
easy to show that Corollary 2 still holds. The intuition is that the penalty term in (18) tends
to zero with asymptotic probability one when K0 = K , and provides a positive penalty when
K0 < K . This modified test is useful for increasing the estimation accuracy, especially when
K is large, as demonstrated in Table S.3 in the Supplementary Material.

3.6. Networks without self-loops: Why subsampling? In this section, we formalize the
heuristic arguments given in Section 2.2 on why subsampling is necessary. We theoretically
show that Tn is no longer asymptotically normal under H0 without the ingredient of sub-
sampling. For technical simplicity, we constraint ourselves to the setting of finite K and no
eigenvalue multiplicity in this subsection.

We start with introducing some additional notation that will be used in this subsection. For
any matrices M1 and M2 of appropriate dimensions, let

(19) R(M1,M2, t) = −
L∑

l=0,l≠1

MT
1 EWlM2

t l+1 ,

where L = ⌊logn⌋. By Lemma 6 and Theorem 1 of [11], for each k = 1, . . . ,K , there exists a
unique deterministic tk such that tk

dk
→ 1 as n → ∞ and d̂k − tk = vT

k Wvk +Op( αn
|dk |). Define

bT
ei ,k,t = eT

i − R(ei ,V−k, t)
(
(D−k)

−1 + R(V−k,V−k, t)
)−1VT

−k,

sk,i = bei ,k,tk − eT
i vkvk, sk =

n∑

i=1

sk,i, sk(i) = eT
i sk, and

rk = V−k
(
tkD−1

−k − I
)−1VT

−kEW2vk,

where V−k is the submatrix of V by removing the kth column, and we slightly abuse the
notation and use D−k to denote the submatrix of D by removing the kth diagonal entry.

Further, define ak = ∑n
i=1 vk(i), k = 1, . . . ,K and

R(K) = 2
K∑

k=1

1T EW2vkak

tk
− 2

K∑

k=1

a2
kvT

k EW2vk

dk

(20)

+
K∑

k=1

vT
k diag(W)vka

2
k + 2

K∑

k=1

aksT
k diag(W)vk + 2

K∑

k=1

ak
1T rk

tk
.

We have the following theorems.
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THEOREM 3.5. Suppose that Conditions 1–4 hold with no eigenvalue multiplicity, and

∑

i<j

σ 2
ij

(

1 −
K0∑

k=1

a2
kvk(i)vk(j) −

K0∑

k=1

ak
(
vk(j)sk(i) + vk(i)sk(j)

)
)2

(21)

≥ (logn)6+ϵ1

(
n + n2α2

n

d2
K0

)
,

for some positive constant ϵ1. Under null hypothesis, as n → ∞, we have
∑

i≠j ŵij + R(K0)

2
√∑

i<j σ 2
ij (1 − ∑K0

k=1 a2
kvk(i)vk(j) − ∑K0

k=1 ak(vk(j)sk(i) + vk(i)sk(j)))2

d→ N(0,1).

THEOREM 3.6. Suppose that Conditions 1–4 hold with no eigenvalue multiplicity. In
addition, assume (21) holds with K0 and dK0 replaced with K and dK , respectively. Under
alternative hypothesis, as n → ∞, we have

∑
i≠j ŵij + R(K) − ∑K

k=K0+1 dka
2
k

2
√∑

i<j σ 2
ij (1 − ∑K

k=1 a2
kvk(i)vk(j) − ∑K

k=1 ak(vk(j)sk(i) + vk(i)sk(j)))2

d→ N(0,1).

It is seen from Theorems 3.5 and 3.6 that aggregating all entries of the residual matrix
leads to a statistic with bias and variance taking very complicated forms under both null
and alternative hypotheses. The complicated forms of bias and variance limit the practical
usage of the above results. In addition, and more importantly, these asymptotic normality
results may even fail to hold in some cases. To understand this, note that the variance of∑

i≠j ŵij + R(K0) in Theorem 3.5 is approximately equal to

4
∑

i<j

σ 2
ij

(

1 −
K0∑

k=1

a2
kvk(i)vk(j) −

K0∑

k=1

ak
(
vk(j)sk(i) + vk(i)sk(j)

)
)2

.

Condition (21) is imposed to put a lower bound on the variance. Without this condition, the
asymptotic normality in Theorem 3.5 will no longer hold. We next give an example where
inequality (21) and the asymptotic normality both fail to hold. This justifies the necessity of
the subsampling step.

EXAMPLE 2. Consider networks with eigenvector taking the form v1 = 1√
n

1. Then a1 =√
n. Since vk , k ≥ 2 are orthogonal to v1 and we have ak = 0, k ≥ 2. By Condition 4 and

Theorem S.1 in the Supplementary Material, we have maxi |s1(i)| ! α2
n√

nd2
1

. Combining this

with Condition 3 and using the fact v1 = 1√
n

1, we have

∑

i<j

σ 2
ij

(

1 −
K0∑

k=1

a2
kvk(i)vk(j) −

K0∑

k=1

ak
(
vk(j)sk(i) + vk(i)sk(j)

)
)2

=
∑

i<j

σ 2
ij

(
1 − nv1(i)v1(j) − √

n
(
v1(j)s1(i) + v1(i)s1(j)

))2

=
∑

i<j

σ 2
ij

(
s1(i) + s1(j)

)2

! α4
n

nd4
1

∑

i<j

σ 2
ij ≤ α6

n

d4
1
! n2α2

n

d4
1

!
(

1 + n2α2
n

d2
K0

)
,
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where in the last line we have used
∑

i<j σ 2
ij ≤ nα2

n and α2
n ! n. This contradicts (21). Further,

by checking the proof of Theorem 3.5, we see that the intrinsic problem is when aggregating
too many terms from the residual matrix, the noise accumulation is no longer negligible,
canceling the first-order term

∑
i≠j σ 2

ij and, consequentially, makes the central limit theorem
fail. Similar phenomenon happens under the alternative hypothesis as well.

4. Simulation studies. In this section, we use simulations to justify the performance of
RIRS in testing and estimating K . Section 4.1 considers the network model and Section 4.2
considers more general low rank plus noise matrices. The nominal level is fixed to be α =
0.05 in all settings.

4.1. Network models. Consider the DCMM model (11). We simulate two types of nodes:
pure node with π i chosen from the set of unit vectors

PN(K) = {e1, . . . , eK},
and the mixed membership node with π i chosen from

MM(K,x) =
{
(x,1 − x,0, . . . ,0︸ ︷︷ ︸

K−2

), (1 − x, x,0, . . . ,0︸ ︷︷ ︸
K−2

),

( 1
K

, . . . ,
1
K︸ ︷︷ ︸

K

)}
,

where x ∈ (0,1). Sections 4.1.1 and 4.1.2 concern the testing performance and Section 4.1.3
focuses on the estimation performance with RIRS.

4.1.1. SBM. When all rows of " are chosen from the pure node set PN(K) and the de-
gree heterogeneity matrix ! = ρIn, the DCMM (11) reduces to the SBM with the following
mean matrix structure:

(22) H = ρ"B"T , ρ ∈ (0,1),π i ∈ PN(K), i = 1, . . . , n.

We generate 200 independent adjacency matrices each with n = 1000 nodes and K equal-
sized communities from the above SBM (22). We set B = (Bij )K×K with Bij = s|i−j |, i ≠ j
and Bii = (K + 1 − i)/K . The value of ρ ranges from 0.04 to 0.9, with smaller ρ corre-
sponding to sparser network model. For all values of K , we choose m = √

n in calculating
the RIRS test statistics Tn and T̃n for networks without and with self-loops, respectively.

The performance of RIRS is compared with the methods in [21], where two versions of
the test—one with and one without bootstrap correction—were proposed when the network
is absent of self-loops. The empirical sizes and powers of both methods when s = 0.1 are
reported in Tables 1 and 2 for K = 2 and 3, respectively. The corresponding computation
times are reported in Table 3. We also test the performance of both methods with different
values of s, and the corresponding results are summarized in Table S.1 in the Supplementary
Material.

From Tables 1 and 2, we observe that when K = 2 the performance of RIRS is relatively
robust to the sparsity level ρ, with size close to the nominal level and power close to 1
in almost all settings. On the contrary, the method in [21] without bootstrap correction has
much worse performance. It suffers from size distortion for smaller ρ (sparser setting). This
phenomenon becomes even more severe when K = 3, where the sizes are close or even equal
to one at all sparsity levels. With such distorted size, it is no longer meaningful to compare
the power. Therefore, we omit its power in Table 2. With bootstrap correction, the method
in [21] performs much better and is comparable to RIRS when K = 2 except for the setting
of ρ = 0.04, where the size is severely distorted. When K = 3, both methods suffer from
some size distortion when ρ ≤ 0.1, where the problem is more severe for the method in [21].
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TABLE 1
Empirical size and power under SBM with K = 2 and s = 0.1

No self-loop Self-loops

RIRS (Tn) Lei (no bootstrap) Lei (bootstrap) RIRS (T̃n)

Power Power Power Power
ρ Size (K0 = 1) Size (K0 = 1) Size (K0 = 1) Size (K0 = 1)

0.04 0.055 0.86 1 1 0.575 1 0.140 0.310
0.07 0.060 0.99 1 1 0.055 1 0.060 0.605
0.09 0.055 1 0.995 1 0.040 1 0.085 0.750
0.1 0.025 1 0.995 1 0.035 1 0.085 0.815
0.3 0.025 1 0.24 1 0.02 1 0.06 1
0.5 0.045 1 0.07 1 0.025 1 0.065 1
0.7 0.065 1 0.1 1 0.055 1 0.05 1
0.9 0.04 1 0.045 1 0.065 1 0.075 1

Comparing Table 1 with Table 2, we see that the increased number of communities K makes
the performance of both methods worse. This is reasonable because the network size is fixed
at n = 1000. So, larger K results in a smaller size of each community. From Table 3, we see
that the computational cost of the bootstrap method in [21] is much higher than that of RIRS.
We also experimented with larger value of K = 5 and the results are summarized in Table S.2
of the Supplementary Material to save space.

Finally, we present in Figure 1 the histogram plots as well as the fitted density curves of
our test statistics from 1000 repetitions when K = 2, s = 0.1 and ρ = 0.7 under the null
hypothesis. The standard normal density curves are also plotted as a reference. It visually
confirms that the asymptotic null distribution is standard normal.

4.1.2. DCMM. Next, consider the general DCMM model (11). The number of repetitions
is still 200. We simulate the node degree parameters ϑj ’s independently from the uniform
distribution over [0.5,1]. The vectors π i are chosen from PN(K) ∪ MM(K,0.2), with n0
pure nodes from each community and (n − Kn0)/3 nodes from each mixed membership
probability mass vector in MM(K,0.2). We select n0 = 0.35n when K = 2 and n0 = 0.25n

TABLE 2
Empirical size and power under SBM with K = 3 and s = 0.1

No self-loop Self-loops

Lei Lei
RIRS (Tn) (no bootstrap) (bootstrap) RIRS (T̃n)

Power Power Power Power Power Power
ρ Size (K0 = 1) (K0 = 2) Size Size (K0 = 1) (K0 = 2) Size (K0 = 1) (K0 = 2)

0.04 0.225 0.985 0.235 1 1 1 1 0.35 0.71 0.075
0.07 0.27 1 0.26 1 1 1 1 0.365 0.925 0.09
0.09 0.225 1 0.335 1 0.985 1 1 0.21 1 0.12
0.1 0.065 1 0.36 1 0.895 1 1 0.1 0.98 0.19
0.3 0.075 1 0.795 1 0.06 1 1 0.065 1 0.625
0.5 0.045 1 0.98 0.99 0.02 1 1 0.075 1 0.94
0.7 0.045 1 0.985 0.925 0.04 1 1 0.065 1 1
0.9 0.05 1 1 0.69 0.015 1 1 0.05 1 1
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TABLE 3
Average computation time (in seconds) for test statistics in Table 1 and Table 5 in one replication under SBM

with no self-loop, K = 2 and ρ = 0.5

RIRS (Tn) Lei (no bootstrap) Lei (bootstrap)

Size Estimation Size Estimation Size Estimation

Time 0.504 0.906 0.432 2.88 14.410 147.142

when K = 3. The matrix B is chosen to be the same as in the SBM with s = 0.1. The network
size n ranges from 800 to 2000. The empirical sizes and powers are summarized in Table 4.

Since [21] only considers SBM, the tests therein are no longer applicable in this setting.
RIRS performs well and similar to the SBM setting. Figure 2 presents the histogram plots
as well as the fitted density curves of RIRS under the null hypothesis from 1000 repetitions
when K = 3 and n = 1500. These results well justify our theoretical findings.

4.1.3. Estimating the number of communities. We use the method discussed in Sec-
tion 3.5 to estimate the number of communities K . Since the approaches in [21] are not
applicable to the DCMM model, we only compare the performance of RIRS with [21] in
SBM setting in the absence of self-loops. The proportions of correctly estimated K are cal-
culated over 200 replications and tabulated in Table 5 for SBM and in Table 6 for DCMM
model.

Table 5 shows that RIRS is generally comparable to or is only slightly worse than Lei’s
method under the SBM when ρ is large, and is significantly better than the latter for very
small ρ. While for DCMM model (Table 6), RIRS can also estimate the number of commu-
nities with high accuracy. In particular, the estimation accuracy gets closer and closer to the
expected value of 95% as n increases, which is consistent with our theory.

4.2. Low rank data matrix. RIRS can be applied to other low rank data matrices beyond
the network model. In this section, we generate n × n data matrix X from the following
model:

X = H + W = VDVT + W,

where the residual matrix W is symmetric with upper triangle entries (including the diagonal
ones) i.i.d. from uniform distribution over (−1,1). Let V = 1√

2

(V1
V2

)
, where V1 and V2 are

n1 × K and (n − n1) × K matrices, respectively. We randomly generate an n1 × n1 Wigner

FIG. 1. Histogram plots and the estimated densities (red curves) of RIRS test statistic when K = 2 and ρ = 0.7.
Left: Tn when no self-loop; Right: T̃n when self-loops exist.



RANK INFERENCE 1123

TABLE 4
Empirical size and power of RIRS under DCMM model

K = 2 K = 3

No self-loop (Tn) Self-loop (T̃n) No self-loop (Tn) Self-loop (T̃n)

Power Power Power Power Power Power
n Size (K0 = 1) Size (K0 = 1) Size (K0 = 1) (K0 = 2) Size (K0 = 1) (K0 = 2)

800 0.045 1 0.08 1 0.05 1 0.58 0.08 1 0.845
1000 0.04 1 0.05 1 0.025 1 0.68 0.06 1 0.92
1200 0.065 1 0.05 1 0.045 1 0.77 0.07 1 0.92
1500 0.045 1 0.03 1 0.075 1 0.9 0.055 1 0.98
1800 0.075 1 0.055 1 0.045 1 0.98 0.065 1 0.995
2000 0.075 1 0.065 1 0.05 1 0.965 0.045 1 1

matrix and collect its K eigenvectors corresponding to the largest K eigenvalues to form
V1. We set V2 =

√
K√

n−n1
" with " = (π1, . . . ,πn−n1)

T , where π i ∈ PN(K) and the number
of rows taking each distinct value from PN(K) is the same. The diagonal matrix D = n ×
diag(K,K − 1, . . . ,1). We set n1 = n/2 and range the value of n from 100 to 500. When
K = 2, the empirical sizes and powers as well as the proportions of correctly estimated K

over 500 repetitions are recorded in Table 7. It is seen that both Tn and T̃n perform well, with
T̃n having slightly higher power. This higher power further translates into better estimation
accuracy (closer to 95%) of estimated K .

5. Real data analysis. We consider a popularly studied network of political blogs as-
sembled by [2]. The nodes are blogs over the period of 2 months before the 2004 U.S. Pres-
idential Election. The edges are the web links between the blogs. These blogs have known
political divisions and were labeled into two communities (K = 2) by [2]—the liberal and
conservative communities. This blog data has been frequently used in the literature; see [18,
30] and [21] among others. It is widely believed to follow a degree corrected block model.
Following the literature, we ignore the directions and study only the largest connected com-
ponent, which has n = 1222 nodes. Consider the following two hypothesis tests:

(HT1) : H0 : K = 1 vs. H1 : K > 1.

(HT2) : H0 : K = 2 vs. H1 : K > 2.

FIG. 2. DCMM. Histogram plots and the estimated densities (red curves) of RIRS when K = 3 and n = 1500.
Left: Tn when no self-loop; Right: T̃n when self-loops exist.
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TABLE 5
Proportion of correctly estimated K under SBM

K = 2 K = 3

No self-loop Self-loop No self-loop Self-loop

RIRS Lei Lei RIRS RIRS Lei Lei RIRS
ρ Tn (no bootstrap) (bootstrap) T̃n Tn (no bootstrap) (bootstrap) T̃n

0.04 0.85 0 0.32 0.345 0.12 0 0 0.015
0.07 0.945 0 0.98 0.59 0.2 0 0 0.04
0.09 0.945 0 0.96 0.775 0.23 0 0.02 0.125
0.1 0.93 0 0.97 0.815 0.285 0 0.165 0.105
0.3 0.94 0.795 0.955 0.96 0.745 0 0.935 0.645
0.5 0.945 0.925 0.925 0.95 0.9 0.005 0.98 0.895
0.7 0.97 0.915 0.945 0.96 0.955 0.065 0.995 0.955
0.9 0.94 0.94 0.935 0.955 0.93 0.275 0.975 0.945

TABLE 6
Proportion of correctly estimated K under DCMM

K = 2 K = 3

n 800 1000 1200 1500 1800 2000 800 1000 1200 1500 1800 2000

No self-loop (Tn)

RIRS 0.935 0.935 0.93 0.965 0.935 0.95 0.505 0.625 0.805 0.865 0.915 0.935

Self-loop (T̃n)

RIRS 0.935 0.94 0.955 0.955 0.955 0.945 0.79 0.85 0.93 0.895 0.935 0.965

TABLE 7
Empirical size and power, and the proportion (Prop.) of correctly estimated K over 500 replications

No self-loop (Tn) Self-loop (T̃n)

n 100 200 300 400 500 100 200 300 400 500

Size 0.048 0.042 0.05 0.054 0.052 0.05 0.05 0.032 0.062 0.052
Power 0.612 0.914 0.994 1 1 1 1 1 1 1
Prop 0.588 0.856 0.944 0.95 0.954 0.95 0.95 0.968 0.938 0.948

TABLE 8
Hypothesis testing and estimation results for the political blog data

Method 1 Method 2

Test statistic P-value Test statistic P-value Decision

(HT1) 3.3527 0.0008 2.7131 0.0067 Reject H0 in (HT1)
(HT2) −1.2424 0.2141 −0.8936 0.3716 Accept H0 in (HT2)

Estimate 2 2 K = 2
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Lei [21] considered (HT2) and obtained test statistic values 1172.3 and 491.5, correspond-
ing to the test without bootstrap and with bootstrap, respectively. Both are much larger than
the critical value (about 1.454) from the Tracy–Widom distribution, and thus the null hypoth-
esis in (HT2) was strongly rejected. This is not surprising because the testing procedure in
[21] is based on the SBM. It is possible that the model is misspecified when applying the tests
therein.

RIRS does not depend on any specific network model structure and is expected to be more
robust to model misspecification. Since most of the diagonal entries of X are zero, we use the
test statistic Tn. Noticing that the observed data matrix X is nonsymmetric, we consider two
simple transformations:

(23) Method 1 : X̃1 = X + XT ; Method 2 : X̃2 =
(

0 X
XT 0

)

2n×2n

.

The transformation in Method 2 is general and can be applied to even nonsquare data ma-
trix X. After the transformations, rank(E(X̃1)) = K and rank(E(X̃2)) = 2K . The results of
applying Tn to the two hypothesis test problems (HT1) and (HT2), together with the esti-
mated number of communities by the sequential testing procedure are reported in Table 8.
We can see that for both transformations, RIRS consistently estimated the number of com-
munities to be 2, which is consistent with the common belief in the literature.

APPENDIX: PROOF OF THE MAIN RESULTS.

We introduce a definition that will be used frequently in the proof.

DEFINITION 1. Let ζn(i) and ξn(i) be random (or deterministic) variables depend on i,
i = 1, . . . , n. We say ξn = Opu(ζn) if for any positive constants D and ϵ, there exists some
positive integer n0(D, ϵ) depending only on D and ϵ such that for all n ≥ n0(D, ϵ) we have

P
[∃1 ≤ i ≤ n, s.t.

∣∣ξn(i)
∣∣ > (logn)ϵ

∣∣ζn(i)
∣∣] ≤ (log logn)−D.

In addition, to facilitate our proof presentation, we introduce some additional notation.
Let K̃ be the number of distinct nonzero eigenvalues of H = (hij ). Denote by d̃1, . . . , d̃K̃ the
distinct values in {d1, . . . , dK}, sorting in decreasing magnitudes. In addition, denote by Kj

the multiplicity of d̃j . That is, for each j = 1, . . . , K̃, the cardinality of {1 ≤ l ≤ K : dl = d̃j }
is Kj with

∑K̃
j=1 Kj = K .

A.1. Outline of the proof. Our Condition 2 and main results Theorems 3.1–3.4 allow
for multiplicity in eigenvalues. When proving these main results, we consider the case with
and without multiplicity separately. The proof of our main results highly depends on the
asymptotic expansions of the eigenvectors v̂k and eigenvalues d̂k . Briefly speaking, Lemma 1
in Section 7.1 of the Supplementary Material establishes the relationship between ŵij and
(v̂k(i), d̂k). This together with the asymptotic expansions of eigenvalues and eigenvectors
give us the asymptotic expansion of ŵij . Substituting this asymptotic expansion into the
proposed test statistics, we are able to prove our main theorems by additional analysis and
calculations. In the case without eigenvalue multiplicity, the asymptotic expansions of eigen-
values and eigenvectors are established in Lemmas 2 and 3 in the Supplementary Material.
The corresponding results in the existence of multiplicity are established in Lemmas 4 and 5
in the Supplementary Material. In the main paper, we only provide the proof of Theorem 3.1.
All other proofs are relegated to the Supplementary Material.
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A.2. Proof of Theorem 3.1. The result in Theorem 3.1 can be obtained by combing the
following two results:

CLT:

√
m

∑
i≠j ŵijYij√

2
∑

i≠j Ew2
ij

d→ N(0,1),(24)

Consistency:

∑
i≠j ŵ2

ij
∑

i≠j Ew2
ij

= 1 + op(1).(25)

We next proceed with proving (24) and (25).
We first verify the central limit theorem (24). By (S.44) and Corollary S.1, we have

∑

i≠j

ŵijYij =
∑

i≠j

wijYij −
K0∑

k=1

∑

i≠j

(
vk(i)vk(j)Yij

)
vT
k Wvk

−
K0∑

k=1

∑

i≠j

Yij

eT
i W2vkvk(j) + eT

j W2vkvk(i)

tk

−
K0∑

k=1

∑

i≠j

Yij
rk(i)vk(j) + rk(j)vk(i)

tk
+ 2

K0∑

k=1

vT
k EW2vk

dk

∑

i≠j

(
vk(i)vk(j)Yij

)
(26)

− 2
K0∑

k=1

dk

tk

∑

i≠j

Yij vk(i)sT
k,j Wvk −

K0∑

k=1

∑

i≠j

dkeT
i WvkeT

j WvkYij

t2
k

+
∑

i≠j

(
YijOpu

(
αn(logn)3

n|dK0 |
+ 1

n3/2

))
.

Recall that EYij = 1
m , ak = ∑n

i=1 vk(i) and |ak| ≤ √
n. Our aim is to bound all terms on the

right-hand side of equation (26) except for the first term
∑

i≠j wijYij . We begin with splitting
the term

∑

i≠j

(
vk(i)vk(j)Yij

)
vT
k Wvk

into two parts:

1
m

∑

i≠j

(
vk(i)vk(j)

)
vT
k Wvk and

∑

i≠j

(
Yij − 1

m

)(
vk(i)vk(j)

)
vT
k Wvk.

For the first part, first note that since |wij | is bounded, we have |vT
k EWvk| ! 1. Then by

Corollary S.1 in the Supplementary Material and Condition 1, we have

1
m

∑

i≠j

(
vk(i)vk(j)

)
vT
k Wvk = 1

m

(
a2
k − 1

)
vT
k Wvk

= 1
m

(
a2
k − 1

)(
vT
k (W − EW)vk + vT

k EWvk
)

(27)

= (
a2
k + 1

)(
Opu

(
αn

m
√

n

)
+ O

( 1
m

))
.
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For the second part, first note that E(vT
k Wvk)

2 = var(vT
k Wvk) + E2(vT

k Wvk) ! α2
n/n + 1.

Since Yij , i ≤ j are i.i.d. with EYij = 1
m , Corollary S.1 and Condition 1 ensure that

var
(∑

i≠j

(
Yij − 1

m

)(
vk(i)vk(j)

)
vT
k Wvk

)

= E
[
var

(∑

i≠j

(
Yij − 1

m

)(
vk(i)vk(j)

)
vT
k Wvk|W

)]

! 1
m

∑

i≠j

(
vk(i)vk(j)

)2E
(
vT
k Wvk

)2 ! α2
n

mn
+ 1

m
,

then

(28)
∑

i≠j

(
Yij − 1

m

)(
vk(i)vk(j)

)
vT
k Wvk = Op

(
αn√
mn

+ 1√
m

)
.

Therefore,
∑

i≠j

(
vk(i)vk(j)Yij

)
vT
k Wvk = (

a2
k + 1

)
Opu

(
αn

m
√

n

)

(29)

+ O

(
a2
k + 1
m

)
+ Op

(
αn√
mn

)
+ Op

( 1√
m

)
.

Similar to (29), we get

vT
k EW2vk

dk

∑

i≠j

(
vk(i)vk(j)Yij

) = Opu

(
a2
k

m
+ 1√

m

)
,

and

(30)
∑

i≠j

Yij

eT
i W2vkvk(j) + eT

j W2vkvk(i)

tk
= Opu

( |ak|
√

n

m
+ 1√

m

)
.

Next, we split the term
∑

i≠j Yij
dksTk,j Wvkvk(i)

tk
into the following two parts:

1
m

∑

i≠j

dksT
k,j Wvkvk(i)

tk
and

∑

i≠j

(
Yij − 1

m

)dksT
k,j Wvkvk(i)

tk
.

By (S.85), we have
∥∥R(1,V−k, tk)

(
(D−k)

−1 + R(V−k,V−k, tk)
)−1VT

−k

∥∥

=
∥∥∥∥
∑

i

R(ei ,V−k, tk)
(
(D−k)

−1 + R(V−k,V−k, tk)
)−1VT

−k

∥∥∥∥ = Opu(
√

n).

In light of (S.46), (S.85), Corollary S.1 in the Supplementary Material and Condition 4, the
following three results hold:

dk(sk − 1)T Wvkak

tk
= −dkakR(1,V−k, tk)((D−k)

−1 + R(V−k,V−k, tk))
−1VT

−kWvk

tk

− dka
2
kvT

k Wvk

tk
= Opu

(
αn + |ak|

√
n
) + Opu

(|ak|αn
)
,



1128 X. HAN, Q. YANG AND Y. FAN

1
m

∑

i≠j

dksT
k,j Wvkvk(i)

tk
= 1

m
ak

dk1T (W − EW)vk

tk
+ Opu

(
(|ak| + 1)αn

m

)

= Opu

(
(|ak| + 1)αn

m

)

and

∑

i≠j

(
Yij − 1

m

)dksT
k,j Wvkvk(i)

tk
= Op

(
αn√
m

)
,

where the calculation of the variance of the second part
∑

i≠j (Yij − 1
m)

dksTk,j Wvkvk(i)

tk
is similar

to that of (28). Therefore,

(31)
∑

i≠j

Yij

dksT
k,j Wvkvk(i)

tk
= Opu

(
(|ak| + 1)αn + |ak|

√
n

m

)
+ Op

(
αn√
m

)
.

For the term
∑

i≠j Yij
rk(i)vk(j)+rk(j)vk(i)

tk
, we write

∑

i≠j

Yij
rk(i)vk(j) + rk(j)vk(i)

tk
= 1

m

∑

i≠j

rk(i)vk(j) + rk(j)vk(i)

tk
(32)

+
∑

i≠j

(
Yij − 1

m

)rk(i)vk(j) + rk(j)vk(i)

tk
.

It follows from Conditions 2–4 and 6, tk
dk

→ 1 in Section 3.6 and Corollary S.1 that

∣∣1T rk

∣∣ = ∣∣1T V−k
(
tkD−1

−k − I
)−1VT

−kEW2vk

∣∣ = Opu

(√
nα2

n

)
,

∣∣rk(i)
∣∣ = ∣∣eT

i V−k
(
tkD−1

−k − I
)−1VT

−kEW2vk

∣∣ = Opu

(
α2

n√
n

)
,

and thus

1
m

∑

i≠j

rk(i)vk(j) + rk(j)vk(i)

tk
= 2ak1T rk

tkm
− 2

m

n∑

i=1

rk(i)vk(i)

tk
= Opu

( |ak|
√

n + 1
m

)
.

As for (28), calculating the variance of the second term on the right-hand side of (32) yields

∑

i≠j

(
Yij − 1

m

)rk(i)vk(j) + rk(j)vk(i)

tk
= Opu

( 1√
m

)
.

Therefore,

(33)
∑

i≠j

Yij
rk(i)vk(j) + rk(j)vk(i)

tk
= Opu

( |ak|
√

n

m

)
+ Opu

( 1√
m

)
.

Now for the term
∑

i≠j

dkeT
i WvkeT

j WvkYij

t2
k

, similarly we write

∑

i≠j

dkeT
i WvkeT

j WvkYij

t2
k

=
∑

i≠j

dkeT
i WvkeT

j Wvk

mt2
k

+
∑

i≠j

dkeT
i WvkeT

j Wvk(Yij − 1
m)

t2
k

.
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It follows from Corollary S.1 and Theorem S.1 that the first part has order

∑

i≠j

dkeT
i WvkeT

j Wvk

mt2
k

= dk1T Wvk1T Wvk

mt2
k

−
n∑

i=1

dk(eT
i Wvk)

2

mt2
k

= Opu

(
α2

n(logn)2

m|dk|
)

= Opu

(
(logn)2

m

)
.

Moreover, calculating the variance, we have

var
(∑

i≠j

dkeT
i WvkeT

j Wvk(Yij − 1
m)

t2
k

)

= E
([

var
(∑

i≠j

dkeT
i WvkeT

j Wvk(Yij − 1
m)

t2
k

)∣∣∣W
])

!
∑

i≠j E(eT
i WvkeT

j Wvk)
2

md2
k

≤
∑

i≠j

√
E(eT

i Wvk)4E(eT
j Wvk)4

md2
k

!
∑

i≠j

([
E

(
eT
i Wvk − EeT

i Wvk
)4 + (

EeT
i Wvk

)4][
E

(
eT
j Wvk − EeT

j Wvk
)4

+ (
EeT

j Wvk
)4])1/2

/
(
md2

k

)

! α4
n

md2
k

= Opu

( 1
m

)
.

Therefore,

(34)
∑

i≠j

dkeT
i WvkeT

j WvkYij

t2
k

= Opu

(
(logn)2

m

)
+ Opu

( 1√
m

)
.

Finally, consider the residual term

∑

i≠j

(
YijOpu

(
αn(logn)3

n|dK0 |
+ 1

n3/2

))

=
∑

i≠j

Opu

(
αn(logn)3

n|dK0 |
+ 1

n3/2

)(
Yij − 1

m

)
+ 1

m

∑

i≠j

Opu

(
αn(logn)3

n|dK0 |
+ 1

n3/2

)
.

Note that the variable Yij is independent of the term Opu(
αn(logn)3

n|dK0 | + 1
n3/2 ). Calculating the

variance of
∑

i≠j Opu(
αn(logn)3

n|dK0 | + 1
n3/2 )(Yij − 1

m) gives us

∑

i≠j

Opu

(
αn(logn)3

n|dK0 |
+ 1

n3/2

)(
Yij − 1

m

)
= Op

( 1√
m

)
× Opu

(
αn(logn)3

|dK0 |
+ 1

n1/2

)
.

The “mean” of the residual term should be

1
m

∑

i≠j

Opu

(
αn(logn)3

n|dK0 |
+ 1

n3/2

)
= Opu

(
nαn(logn)3

m|dK0 |
+

√
n

m

)
.
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Therefore, we have

∑

i≠j

(
YijOpu

(
αn(logn)3

n|dK0 |
+ 1

n3/2

))

(35)

= Opu

(
nαn(logn)3

m|dK0 |
+

√
n

m

)
+ Op

( 1√
m

)
× Opu

(
αn(logn)3

|dK0 |
+ 1√

n

)
.

So far, we have found the orders of all other terms on the right-hand side of equation (26)
except for

∑
i≠j wijYij . Note that

(36) var
(∑

i≠j

wijYij

)
= 2

m

∑

i≠j

Ew2
ij .

According to the orders (29), (30), (31), (33), (34) and (35), we can conclude that as long as

2
m

∑

i≠j

Ew2
ij ≥ (logn)ϵ1

(∑K0
k=1 a2

kn

m2 + (αn logn)2

m
+ n

m2 + n2α2
n(logn)6

m2d2
K0

)
,

the term
∑

i≠j wijYij dominates all other terms on the right-hand side of (26). Moreover, by
the condition

∑
i≠j Ew2

ij ≫ m, the fact EY 4
ij ! 1/m and the independence between Yij and

wij we have

m2

(
∑

i≠j Ew2
ij )

2

∑

i≠j

Ew4
ij Y

4
ij !

m
∑

i≠j Ew4
ij

(
∑

i≠j Ew2
ij )

2
! m

(
∑

i≠j Ew2
ij )

→ 0.

Therefore, the central limit theorem (24) holds by Lyapunov CLT.
We now show the consistency of

∑
i≠j ŵ2

ij in (25). By (S.31), we have

ŵ2
ij = w2

ij + 2wijOpu

(
(αn logn)2

n|dK0 |
+ 1

n

)
− 2

K0∑

k=1

wij

dk(eT
i Wvkvk(j) + eT

j Wvkvk(i))

tk

+ Opu

(
(αn logn)4

n2|dK0 |2
+ 1

n2

)
+

( K0∑

k=1

dk(eT
i Wvkvk(j) + eT

j Wvkvk(i))

tk

)2

− 2Opu

(
(αn logn)2

n|dK0 |
+ 1

n

) K0∑

k=1

dk(eT
i Wvkvk(j) + eT

j Wvkvk(i))

tk

and
∑

i≠j

ŵ2
ij =

∑

i≠j

w2
ij + 2

∑

i≠j

(
wijOpu

(
(αn logn)2

n|dK0 |
+ 1

n

))

− 2
K0∑

k=1

∑

i≠j

(
wij

dk(eT
i Wvkvk(j) + eT

j Wvkvk(i))

tk

)

(37)

+ Opu

(
α2

n(logn)4

|dK0 |
+ 1

)
+

∑

i≠j

( K0∑

k=1

dk(eT
i Wvkvk(j) + eT

j Wvkvk(i))

tk

)2

− 2
∑

i≠j

Opu

(
(αn logn)2

n|dK0 |
+ 1

n

) K0∑

k=1

dk(eT
i Wvkvk(j) + eT

j Wvkvk(i))

tk
.
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Combing the fact var(
∑

i≠j w2
ij ) ≤ ∑

i≠j Ew4
ij !

∑
i≠j Ew2

ij with Conditions 3 and 5,

(38)
∑

i≠j

Ew2
ij ≫ (logn)2+ϵ1,

we have

(39)

∑n
i≠j w2

ij
∑n

i≠j Ew2
ij

= 1 + Opu

( 1
(logn)ϵ1/2

)
.

Then to prove (25), it suffices to show

(40)

∑
i≠j ŵ2

ij
∑

i≠j w2
ij

= 1 + Opu

( 1
(logn)ϵ1/2

)
.

We now check the other terms on the right-hand side of (37) to verify (40). First of all,
∣∣∣∣
∑

i≠j

wijOpu

(
(αn logn)2

n|dK0 |
+ 1

n

)∣∣∣∣ ≤
∣∣∣∣Opu

(
(αn logn)2

|dK0 |
+ 1

)
×

√∑

i≠j

w2
ij

∣∣∣∣

= Opu

(
αn(logn)

√∑

i≠j

Ew2
ij

)
.

Condition 5 further implies that

(41)
∣∣∣∣
∑

i≠j

wijOpu

(
(αn logn)2

n|dK0 |
+ 1

n

)∣∣∣∣ =
(∑

i≠j

Ew2
ij

)
× Opu

( 1
(logn)ϵ1/2

)
.

Now consider the term
∑

i≠j wij
dk(eT

i Wvkvk(j)+eT
j Wvkvk(i))

tk
. We will only provide detail for

proving
∑

i≠j wij
dkeT

i Wvkvk(j)

tk
because the other part can be proved similarly. Write

∑

i≠j

wij
dkeT

i Wvkvk(j)

tk
=

∑

i≠j

dkw
2
ij v2

k(j)

tk
+

∑

i≠j,l≠j

dkwijwilvk(j)vk(l)

tk
.

Direct calculations yield

E
∣∣∣∣
∑

i≠j

dkw
2
ij v2

k(j)

tk

∣∣∣∣ !
1
n

∑

i≠j

Ew2
ij ,

∑

i≠j,l≠j

Edkwijwilvk(j)vk(l)

tk
= 0, and

var
( ∑

i≠j,l≠j

dkwijwilvk(j)vk(l)

tk

)
!

∑

i≠j,l≠j

Ew2
ijw

2
ilv

2
k(j)v2

k(l) !
α2

n

n2

∑

i≠j

Ew2
ij .

Thus,
∑

i≠j wij
dkeT

i Wvkvk(j)

tk
= Opu(

1√
n
) × ∑

i≠j Ew2
ij . And, consequently,

(42)
∑

i≠j

wij

dk(eT
i Wvkvk(j) + eT

j Wvkvk(i))

tk
= Opu

( 1√
n

)
×

∑

i≠j

Ew2
ij .

Next, by Theorem S.1 and Condition 5, we have

∑

i≠j

Opu

(
(αn logn)2

n|dK0 |
+ 1

n

) K0∑

k=1

dk(eT
i Wvkvk(j) + eT

j Wvkvk(i))

tk
(43)

= Opu

(
(αn logn)3

|dK0 |
+ αn logn

)
= Opu

(
α2

n log2 n
) = Opu

( 1
(logn)ϵ1/2

∑

i≠j

Ew2
ij

)
.
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Finally, similar to (43), it holds by Condition 5 that

∑

i≠j

( K0∑

k=1

dk(eT
i Wvkvk(j) + eT

j Wvkvk(i))

tk

)2

!
K0∑

k=1

∑

i≠j

d2
k (eT

i Wvkvk(j) + eT
j Wvkvk(i))

2

t2
k

(44)

= Opu

(
α2

n log2 n
) = Opu

( 1
(logn)ϵ1/2

∑

i≠j

Ew2
ij

)
.

Substituting the arguments (39), (41), (42), (43) and (44) into equation (37), we complete the
proof of (40). Thus, (25) is proved and the results in the theorem follow automatically.
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