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Abstract—The convergence of edge computing and artificial
intelligence requires that inference is performed on-device to
provide rapid response with low latency and high accuracy without
transferring large amounts of data to the cloud. However, power
and size limitations make it challenging for electrical accelerators
to support both inference and training for large neural network
models. To this end, we propose Trident, a low-power photonic
accelerator that combines the benefits of phase change material
(PCM) and photonics to implement both inference and training
in one unified architecture. Emerging silicon photonics has the
potential to exploit the parallelism of neural network models,
reduce power consumption and provide high bandwidth density
via wavelength division multiplexing, making photonics an ideal
candidate for on-device training and inference. As PCM is recon-
figurable and non-volatile, we utilize it for two distinct purposes:
(i) to maintain resonant wavelength without expensive electrical
or thermal heaters, and (ii) to implement non-linear activation
function, which eliminates the need to move data between memory
and compute units. This multi-purpose use of PCM is shown to
lead to significant reduction in energy consumption and execution
time. Compared to photonic accelerators DEAP-CNN, CrossLight,
and PIXEL, Trident improves energy efficiency by up to 43%
and latency by up to 150% on average. Compared to electronic
edge AI accelerators Google Coral which utilizes the Google Edge
TPU and Bearkey TB96-AI, Trident improves energy efficiency by
11% and 93% respectively. While NVIDIA AGX Xavier is more
energy efficient, the reduced data movement and GST activation
of Trident reduce latency by 107% on average compared to the
NVIDIA accelerator. When compared to the Google Coral and the
Bearkey TB96-AI, Trident reduces latency by 1413% and 595%
on average.

Index Terms—neural networks, photonic accelerators, phase
change material, training, inference

I. INTRODUCTION

The growth of the Internet of Things (IoT) and edge devices

has led to significant progress in a wide range of applications

such as image recognition, mobile augmented reality, and edge

artificial intelligence (Edge AI) [18]. Most Edge AI relies on

cloud computing and requires moving large amounts of data

back and forth between the edge and the cloud, leading to issues

of latency and privacy. Edge AI neural networks (NNs) depend

on the implementation of matrix multiplications to compute

layer outputs as well as nonlinear activation between layers

[18]. Moving both inference and training to edge devices is pri-

marily constrained by the size and power consumption limita-

tions of edge devices [18]. Since edge devices are often battery-

powered, low-power consumption is required. Therefore, as

neural network model size increases to attain more accuracy,

training and inference on edge devices while exploiting model

parallelism and reducing energy consumption simultaneously,

is a major challenge.

Emerging silicon photonics has been proposed for NN

computation as it offers several advantages including higher

performance-per-Watt, reduced energy consumption for data

movement, higher bandwidth density, and overall improvement

in execution time [6], [27], [33]. Photonic matrix multiplication

and linear algebra operations can be performed in a single

step, only inhibited by peripheral control operations such as

modulation of filters or detection of optical signals [38]. As a

result, photonic accelerators have demonstrated the potential

to increase computing speed by 2-3 orders of magnitude

[38]. Several photonic architectures have been proposed for

NN inference operation, many of which are based on the

broadcast-and-weight architecture [2], [9], [32]. The broadcast-

and-weight architecture has been shown to perform multiply

and accumulate (MAC) operations at frequencies up to five

times faster than conventional electronics by using a tunable

bank of microring resonators (MRRs) to encode NN weights

[32]. In these architectures, the MRRs are tuned using the

thermo-optic or the electro-optic effects to shift the resonant

wavelength which consumes significant power in the range of

2 mW, to implement a single weight of the NN [9], [37].

Despite advancements in the use of photonics for inference,

challenges with storing data in photonics have prevented in-

situ training [7]. Many current photonic architectures train the

NN with a digital model before mapping the trained network

parameters to the optical hardware for inference where the

weights will be static [2], [24], [30], [31]. This method is

time-consuming and incurs a significant energy cost, and limits

when weights can be updated. Additionally, digital models used

at the time of training cannot capture all the manufacturing

imperfections and variations of the physical hardware. The

resulting mismatch between trained and implemented weights

leads to sub-optimal accuracy at inference time [9]. These

issues motivate a unified implementation of both training and

inference on the same underlying optical hardware.

Phase change materials (PCMs) are an emerging technology

that can be utilized as an alternative tuning method for MRRs.

Ge2Sb2Te5 (GST) is a PCM commonly used in optical storage
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and processing-in-memory because it exhibits distinct refractive

indices and resistances as it switches between amorphous and

crystalline states [25], [36]. The phase transition of GST is re-

programmable and non-volatile, making it an energy-efficient

tuning method when compared to electrical or thermal heaters.

Due to the storage capabilities of GST, it can also implement

a nonlinear activation function, another critical component of

NN computations. The major contributions of this paper are:

• Trident: A low-power photonic accelerator that uses PCM

to effectively combine both training and inference for edge

AI devices. By using the same hardware accelerator, we

eliminate the mismatch between trained and implemented

weights in prior designs.

• Photonic Non-Linear Activation: GST activation cell

that allows the activation function to be stored within

the processing element (PE), reducing electro-optic (E/O)

and optoelectric (O/E) conversions as well as excessive

memory accesses. The GST activation cell also eliminates

the need for analog-to-digital converters (ADCs). This

is a critical improvement because ADCs are a serious

bottleneck that severely limits inference throughput per

Watt in previous photonic accelerators [23]. Moreover, we

also use PCM to maintain the resonant wavelength without

expensive electrical or thermal heaters, thereby improving

energy efficiency.

• Performance Evaluations: We evaluate the energy and la-

tency performance of Trident on convolutional neural net-

work (CNN) models GoogleNet, VGG-16, MobileNetV2,

and ResNet-50 and compare the results with previous

photonic accelerators. Trident improves energy efficiency

by up to 43.5% on average and improves latency by up

to 150.2% on average over previous photonic accelerators

DEAP-CNN [2], CrossLight [31], and PIXEL [30]. Com-

pared to electronic edge AI accelerators Google Coral [12]

which utilizes the Google Edge TPU and Bearkey TB96-

AI [22], Trident improves TOPS per Watt by 11.5% and

93.3% respectively. Despite the higher energy efficiency of

the NVIDIA AGX Xavier, the reduced data movement and

GST activation of Trident reduce latency by 107.7% on

average compared to the NVIDIA AGX Xavier. Compared

to the Google Coral and the Bearkey TB96-AI, Trident

reduces latency by 1413.1% and 594.7% on average.

II. BACKGROUND AND MOTIVATION

A. NN Basics for Inference and Training

Backpropagation (BP) is the most widely used algorithm to

train neural networks. Training a neural network of N layers

alternates between forward passes and backward passes where

each layer receives some blame for how much it affected

the resulting loss. Forward passes perform inference, which

includes multiple layers of input vectors x multiplied with

weight matrices Wk and non-linear activation. The result of

a forward pass is compared with the input’s label to compute

an error signal. Backward passes send the error signal back

to update the weights, essentially a continuous application of

the chain rule to compute the gradient of the loss with respect

TABLE I: Tuning Method Comparison

Tuning Method Tuning Power Speed

Thermal 1.02 nJ [9] 0.6 µs [9]

Electric 0.18 pm/V [15] 500 ns [15]

GST 660 pJ [37] 300 ns [13]

to different weights and then use this value to do a gradient

descent update.

In a network where weights Wk connect layer k−1 to layer

k and input x is considered layer 0, a logit is hk = Wkyk−1,

and the activation is yk = f(hk) the backpropagation update

rule is as follows:

Wk = Wk − β ∗ δWk (1)

where β is the learning rate,

δWk = δhk ∗ yT
k−1 (2)

and

δhk = (WT

k+1 ∗ δhk+1)� f ′(hk) (3)

B. Conventional Photonic Accelerator Devices

The majority of energy consumption and execution time

incurred in existing photonic accelerators is rooted in the tuning

of MRRs. Therefore, reducing the energy consumption for

MRR tuning has the potential to improve the performance

of photonic accelerators. There are several ways to actively

tune the resonant wavelength of a ring resonator, compared

in Table I. Electronic tuning is not widely used because the

electro-optic effect has a limited range. Electronic tuning at

0.2 pm/V or 24.0 Hz/V requires applying DC voltage in the

range of -100.0V to 100.0V to a 60.0 µm radius ring [15].

These wide voltage ranges and large rings complicate designs

and quickly contribute to power and area consumption as the

number of MRRs increases and becomes impractical for edge

devices. Therefore, electronic tuning is not considered in this

work. Thermal tuning requires individual heaters for each MRR

which can shift an MRR’s resonant wavelength within φ± 0.2
to modulate the amplitude of the input signal [2], [4]. This

approach of shifting the resonant wavelength is limited to avoid

crosstalk from the adjacent channels in a multi-channel WDM

system [2]. Crosstalk in thermally tuned MRRs results in a

bit resolution of only 6 bits [10], meaning that training is not

possible [34]. While effective, thermal and electrical methods

of tuning are volatile and require the constant application of

power. In addition to reducing energy consumption due to non-

volatile tuning, PCM tuned MRRs have the added benefit of

8-bit resolution computation, enough for NN training.

III. TRIDENT ARCHITECTURE DESIGN

A. Architectural Overview

The Trident architecture is shown in Figure 1. The archi-

tecture is used for both inference and training by encoding

different values on the same hardware with an external control

unit handling encoding. The proposed Trident architecture uti-

lizes existing photonic devices to perform the MAC operations
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Fig. 1: The Trident Architecture Design includes a wavelength division multiplexed (WDM) waveguide (Figure 2a) that distributes

the input laser sources to a chain of Processing Elements (PEs). The PE consists of a microring resonator (MRR) weight bank

made up of MRRs with phase change material (PCM) cells (Figure 2b) that weight the inputs encoded onto the incoming

laser signals before the data is accumulated by balanced photo-detectors (BPDs). The weights are pre-programmed using optical

signals on the same WDM waveguide. The electronic portion (Figure 2c) consists of transimpedance amplifiers (TIAs), linear

derivative storage units (LDSUs) (Figure 2d), and E/O lasers, all of which are included to enable training. After conversion back

to the optical domain via the E/O lasers, the output signals of each layer are sent to Ge2Sb2Te5 (GST) activation cells. The

blue devices and connections indicate electronic devices and connections while all other colors represent photonic devices and

connections.

necessary for NNs. After completing a MAC operation and non-

linear activation on the first PE, the output of layer 1 forwarded

directly to the input of the second PE where the weight bank has

been pre-programmed and the second layer’s MAC and non-

linear activation can be performed. The output of each layer

is forwarded to the next until the last layer is completed and

the outputs can then be converted back to the digital domain

and saved in memory. By assigning one PE to each layer of a

NN, the weights can be pre-programmed for all the layers and

stored inside the PCM of each MRR in the weight bank. Then,

inference can be completed at the speed of light and forwarded

between layers without any delay for fetching weights from

memory or tuning the MRRs.

First, the input laser sources are combined and distributed

to an array of PEs using a wavelength division multiplexed

(WDM) waveguide such as the one shown in Figure 2a. This is

accomplished by using MRRs (Figure 2b) to construct a weight

bank with J rows and N columns. This structure allows for an

input vector of size Nx1 to be multiplied with J rows of a

weight matrix in parallel. Each input is assigned a wavelength

and its value is encoded onto the amplitude of the laser. Each

laser source has a wavelength corresponding to the different

colors of MRRs with matching resonant wavelengths. The red

λ0, orange λ1, and green λN rings in Figure 1 represent MRRs

with different resonant wavelengths λ0, λ1, ..., λN spaced at

least 1.6 nm apart, to correspond with the input laser sources

being used to encode inputs x0, x1, ..., xN [32]. With the

resonant wavelength appropriately spaced, the intensity of λ1,

λ2, ..., λN are ignored by the red λ0 MRR on the left and

passed through the WDM waveguide, until they are filtered

by their corresponding MRR. The add-drop configuration is

used for the MRRs so that both positive and negative weights

w ∈ [−1, 1] can be encoded [2]. Each row of the PE’s MRR

weight bank also includes a balanced photodetector (BPD), a

transimpedence amplifier, an LDSU, an E/O laser, and finally

a GST activation cell. The output of every row is encoded onto

a different wavelength before being forwarded on to the next

PE.

Weighted sum MACs have already been demonstrated on

previous photonic accelerators [2], [9], [32]. The proposed

design is novel because of the low-power, non-volatile GST

tuning method for the MRR weight bank, and because of the

photonic non-linear activation which allows an optical pulse to

be fed into the next layer without the added delay of storing the

output to an external memory unit using ADCs. Additionally,

the GST tuning method allows for a higher bit resolution

computations which, along with the photonic activation, makes

training possible in a photonic accelerator.

1) Inference: To perform inference the weights are first

pre-loaded into the MRR weight bank using optical weight

programming signals that are sent in parallel to tune the weight

bank MRRs. Similarly, the activation function is pre-loaded

into the GST activation cell. Then, when the input signals are

sent into the PE, the PCM of each MRR acts as a multiplier.
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TABLE II: PE Hardware Devices Mapping

Device Inference Training
Gradient
Vector

Training
Outer

Product

Input Laser Sources xk δhk+1 δhk

MRR Weight Bank wk WT

k+1
yT
k−1

BPD Output yk = δhk = δWk =
wkxk (WT

k+1
∗ δhk+1) δhk · yT

k−1

TIA, E/O Laser Sources y f ′(hk) δWk

The balanced photodetector (BPD) collects the amplitude from

the output of each PE on its row, effectively accumulating

partial products. Therefore, the output of each BPD is a vector

dot product. After passing through the BPD, the signal is

amplified by the trans-impedance amplifier (TIA) and guided

to the GST activation cell. The output of the activation cell is

then forwarded to the next PE, where the weights have already

been pre-loaded, to act as the input signals for a PE. Once a

forward pass of inference has been completed, a backward pass

for training can be performed.

2) Training: Training via backpropagation consists of the

gradient vector computation and the weight update matrix

computation. During the computation of the gradient vector

δhk = (WT

k+1
∗ δhk+1) � f ′(hk), the MRR weight bank

is encoded with WT

k+1
, the input signals are equivalent to

δhk+1, and the TIAs after the BPD are tuned to f ′(hk) to

implement the necessary Hadamard product. Then, an outer

product computation is performed to calculate the weight

update matrix δWk = δhk · y
T

k−1
. To implement this, the MRR

weight bank is encoded with yT
k−1

from N inputs, to utilize the

entire weight bank and perform N outer products, and the input

signals are equivalent to δhk. For computation of the weight

update matrix δWk, no Hadamard product is needed, so the

TIAs are used more generally to amplify the analog signal.

The hardware device being used to represent each element of

the equations used for inference and training is listed in Table

II.

B. PCM-MRR Weight Bank

Instead of using conventional MRRs with thermo-optic or

electro-optic tuning, Trident employs the emerging PCM tuning

method, using GST as the PCM. GST has been applied widely

in different fields including optical switching and routing [13],

[21]. Crosstalk is not an issue for the GST tuning method since

the resonant wavelength of each MRR is not being shifted.

Instead, the GST acts as an attenuator on the optical signal,

and bit resolution is dependent on the number of GST states.

Current technology is capable of 255 levels for 8-bit resolution

[5]. To program an integrated GST cell, optical pulses are

used to switch between the crystalline and amorphous states

or an intermediate state [8]. Optically tuning MRRs eliminates

the area requirement for thermal heaters, as well as thermal

crosstalk issues.

With the GST in the amorphous state, the photonic waveg-

uide is highly transmissive, representing a large weight. In the

crystalline state, most of the light is absorbed, leading to a

small weight [37]. During a write cycle a high-power write

(a) WDM Waveguide

(b) MRR with PCM Weighting

(c) Electronic Elements

(d) LDSU

(e) GST Activation Cell

Fig. 2: Components of Trident architecture: (a) a wavelength

division multiplexed (WDM) waveguide and (b) a microring

resonator (MRR) with phase change material (PCM) cell made

of Ge2Sb2Te5 (GST). (c) Exploded view of a Linear Derivative

Storage Unit (LDSU) which is comprised of an analog voltage

comparator and a D-flip-flop. The LDSU stores the derivative

of the GST Activation Function to enable training. (d) GST

Activation Cell when the GST is in a fully amorphous state or

a fully crystalline state.

pulse, greater than or equal to 660 pJ [37] and at the resonant

wavelength of the MRR that is being written to, is injected from

the MRR’s input port. This high-power write pulse reduces the

crystalline property of GST, and affects the transmittance of

the drop and through ports of the MRR. During a read cycle,

a short low-power optical pulse, about 20 pJ [8] and at the

resonant wavelength of the MRR that is being read, is injected

from the MRR’s input port. The power consumption for tuning

GST is 2.0 mW, slightly higher than the 1.7 mW of power

needed to thermally tune an MRR. However, once the GST

cell has been tuned, its state is non-volatile and is maintained
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Fig. 3: The Output Function of the GST Activation Cell

until reset. Tuning a GST cell optically also only takes 0.3

µs, two times faster than thermally tuning an MRR. GST is

reconfigurable, non-volatile for up to 10 years, can be written

to and read from using optical pulses, and is capable of 8 bits

of resolution, making it ideal for tuning MRRs to implement

weights for both inference and training.

C. PCM Photonic Activation

During NN inference, a neuron applies a linear transforma-

tion to the input vector through a weight matrix, then a non-

linear transformation is applied to the product through a non-

linear activation function. The GST activation cell’s response

is similar to the commonly used rectified linear unit (ReLU)

non-linear activation function. The GST activation cell, pictured

in Figure 2e consists of a larger ring resonator (radius 60

µm) with an embedded GST cell at the intersection of the

ring and the crossing waveguide. The GST at the intersection

of the waveguide and the MRR has a non-linear response,

shown in Figure 3. When the GST activation cell is in the

crystalline state, the weighted sum pulse sent out of the output

lasers couples strongly into the ring resonator, resulting in no

observed output pulse. However, if the combined power of

the weighted sum pulses is high enough to switch the GST

activation cell to its amorphous state, the weighted sum pulse

is no longer in resonance with the ring and will be transmitted

beyond the ring, thus generating an output activation. As the

switching of the GST activation cell only occurs above a certain

threshold power, the neuron only generates an output pulse if

the weighted sum exceeds this threshold. Thus, the system nat-

urally executes non-linear activation over the optical power [8].

We note that all GST activation cells need to be recrystallized

after each non-linear activation event. Therefore, the number

of operation cycles is eventually limited by the endurance of

the PCM cells. However, endurance is not a concern because

individual PCM devices in endurance experiments have already

shown the ability to perform a trillion switching cycles when

fabricated to meet industry standards [17].

To perform training, the derivative of the activation function,

f ′(hk), is stored during inference. This is accomplished using

the linear derivative storage unit (LDSU) pictured in Figure

2d. For each fixed wavelength, the contrast and maximum

transmission level of the output function can be adjusted. In [8]

the GST activation cell was measured at a fixed wavelength,

resulting in a nonlinear activation function. Figure 3 shows the

TABLE III: Trident Device Power Breakdown

Component Power Percentage

LDSU 0.09mW [3], [16] 0.01%

E/O Laser 0.032mW [28] 0.00%

GST MRR Tuning 563.2mW [37] 83.34%

GST MRR Read 17.1mW [8] 2.52%

GST Activation Function Reset 53.3mW [8] 7.89%

BPD and TIA 12.1mW [19] 1.78%

Cache 30mW [30] 4.44%

Total 0.67W 100 %

activation at 1,553.4 nm. Because of the shape of the GST

activation function, we can consider it as having two possible

derivatives. If hk is greater than the threshold, then f ′(hk) is

0.34. If hk is less than the threshold, then f ′(hk) is 0. Since

the result of a weighted sum MAC is electronic, a standard

voltage comparator can be used to determine if each element

of hk is greater than or less than the activation threshold,

430.0 pJ. The result of the comparator is stored as a single

bit in a D-flip-flop so that when it is time for the backward

pass, the TIA can be programmed to f ′(hk). Thus, a voltage

comparator and D-flip-flop make up Trident’s LDSU and enable

training to be performed on the same architecture as inference.

If the activation function is not needed for any layer, the GST

activation cell can be set to a fully amorphous state, effectively

eliminating the activation cell.

Previous photonic accelerators [2], [20] only compute MAC

operations using photonic hardware and use ADCs to store the

result of a layer in digital memory. Then, the activation function

is implemented digitally, and its result is encoded onto the

photonic hardware which will carry out the MAC of the next

layer. Trident’s LDSU eliminates the need for ADCs between

layers. The LDSU along with the GST activation cell reduce

the latency of activation while avoiding the need to fetch f ′(hk)
from memory during training since it is already stored at the

PE where the gradient vector is computed.

IV. EVALUATION

We evaluate the performance of the proposed Trident archi-

tecture using current technology. The device parameters used

for these estimates are shown in Table III. In the lifetime of an

accelerator, inference will be performed much more often once

a model has been successfully trained. Therefore, this analysis

focuses on energy efficiency and latency during inference when

comparing with existing photonic accelerators and electronic

edge AI accelerators that can only perform inference.

We evaluate the performance of Trident on CNN models

GoogleNet, MobileNet, VGG-16, AlexNet, and ResNet-50, all

of which use the ReLU activation function. We perform a

per-layer analysis using Maestro to yield latency and energy

metrics for inference on these CNN models. The image input

to each of these CNN models is assumed to have dimensions

of 224 × 224 × 3 and a weight stationary dataflow is used.

We compare Trident with three recent photonic NN accel-

erators: DEAP-CNN [2], CrossLight [31], and PIXEL [30].

DEAP-CNN is a broadcast-and-weight-based accelerator that

utilizes thermally tuned MRRs and digital activation function.
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Fig. 4: Photonic Accelerators Total Energy Comparison

Fig. 5: Trident Chip Area Breakdown by Component

CrossLight also performs vector dot products using MRRs

and summation using photodetectors but performs MRR tuning

using a hybrid of thermo-optic and electro-optic tuning to

reduce crosstalk. PIXEL is a mixed-signal photonic accelerator

built using MRRs for bitwise logical operations and MZMs

for analog accumulation. We compare against the 8-bit OO

optical MAC unit from PIXEL. We apply the same device

parameters in Table III to DEAP-CNN, CrossLight, PIXEL,

and Trident and scale all four architectures to meet a 30 W

power consumption threshold.

The threshold of 30 W was chosen to compare directly with

state-of-the-art electronic edge AI accelerators NVIDIA AGX

Xavier [1], Bearkey TB96-AI [22], and Google Coral Dev

Board [12] which have a power draw of 30 W, 20 W, and

2 W respectively. These three electronic designs were chosen

to represent the range of edge AI accelerators currently on

the market. NVIDIA Jetson family was initially introduced by

NVIDIA with TK1 in 2014 [26]. The family consists of 4

single board computers (SBCs) designed to deliver different

price, performance, and power draw ratios at the edge of the

network. All SBCs feature ARM CPU and NVIDIA GPU with

CUDA support. Jetson AGX Xavier [1] is capable of training

and is top of the Jetson line. TB96-AI is a SBC that features 2

possible RAM configurations - 3 GB (CPU 2GB + 1GB NPU)

or 8GB (CPU 4GB + 4GB NPU) and allows running Android

or Fedora OSs. Google Coral Dev Board is based on the

Edge Tensor Processing Unit (Edge TPU) co-processor. This

specialized ASIC, designed by Google, allows for inference of

selected TF Lite models and to transfer-learn some pre-trained

computer vision models [29]. However, it is not possible to train

models from scratch. Edge TPU allows for up to 2 TOPS (int8)

of AI performance per watt at a power draw of 2W (4 TOPS

peak performance). Edge TPU is also sold as an accelerator

module. However, the Google Coral Dev Board consumes up

to 15 W, resulting in a maximum of 0.26 TOPS per Watt.

Maintaining the 30 W power limit for edge devices, a

maximum of 44 PEs can be utilized, each with 256 MRRs

for weight matrix-vector multiplication. All 44 PEs consume

an area of 604.6mm2, less than 1 square inch, resulting in

a compact and area efficient design suitable for many edge

devices. Most of that area is consumed by the TIAs as shown

in the area breakdown in Figure 5 and most of the power draw

is consumed by tuning the weight bank MRRs as shown in

Table II. That is why the non-volatile property of GST is so

important. Once the weights are tuned in a PE, the power draw

is reduced by 83.34% from 0.67 W to 0.11 W for the next

MAC that uses the same weights. Each PE has a cache with

16 kB of storage and a footprint of 0.092 × 0.085 mm2 and

shared L2 cache size 32 MB to handle storing data. We also

assume a 1.37GHz maximum clock rate.

V. RESULTS

A. Inference

Trident outperforms all three photonic accelerators in terms

of energy efficiency during inference. As shown in Figure 4,

Trident improves energy efficiency by and average of 16.4%

compared to DEAP-CNN, 43.5% compared to CrossLight,

and 43.4% compared to PIXEL. The energy advantages of

Trident are greater when compared to CrossLight and PIXEL

since CrossLight uses an additional VCSEL and MRR for

summation and PIXEL uses power-hungry MZMs. Despite the

added power of the LDSU and photonic activation reset, Trident

is more energy efficient overall because tuning the weight

bank MRRs monopolizes power consumption. In addition, the

photonic non-linear activation and LDSU remove the need for

ADCs between PEs, further reducing power consumption for

Trident.

To compare Trident’s energy efficiency against current edge

AI accelerators we calculate TOPS per Watt. The most time

consuming operation of performing a MAC operation is the

tuning time of GST cells inside weight matrix MRRs, which

takes 300 ns. However, all of the MRRs can be tuned in

parallel so that weights are pre-loaded, after which inference

can be performed on many inputs without re-tuning. Because

photonics propagation time is equal to the speed of light and

all the MRRs can be tuned in parallel MAC operations can

be computed at a rate of 7.8 TOPS resulting in 0.29 TOPS per

Watt. State-of-the-art edge AI accelerators such as the NVIDIA

AGX Xavier [1], Bearkey TB96-AI [22], and Google Coral

Dev Board [12] are capable of 1.1, 0.15, and 0.26 TOPS per

Watt respectively. Trident outperforms the Bearkey TB96-AI

[22] in terms of TOPS per Watt by 93.3%, and Google Coral

by 11.5%. The NVIDIA AGX Xavier is more energy efficient

than Trident at 1.1 TOPS per Watt [11]. However, Trident is

capable of both inference and training, including activation, in

the photonic domain.

The Bearkey TB96-AI and the Google Coral both are only

capable of inference using pre-trained models and cannot be
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TABLE IV: Performance of Trident vs. Electronic Accelerators

Accelerator TOPS Watts TOPS per W Training

NVIDIA AGX Xavier 32 30 1.1 Yes

Bearkey TB96-AI 3 20 0.15 No

Google Coral 4 15 0.26 No

Trident 7.8 30 0.29 Yes

Fig. 6: Edge Accelerators Inferences per Second Comparison

used for training. Unlike NVIDIA AGX Xavier and the rest

of the NVIDIA Jetson series, Trident stores and performs the

activation function within the accelerator processing elements,

reducing data movement between memory and compute units

as well as performing the activation function at the speed of

light. Because of this, Trident can perform more inferences

per second across various NN models as shown in Figure 6.

Trident reduces latency by an average of 107.7% compared to

the NVIDIA AGX Xavier, 1413.1% compared to the Google

Coral Dev Board, and 594.7% compared to the Bearkey TB96-

AI. When compared to photonic accelerators DEAP-CNN,

CrossLight, and PIXEL, Trident improves inferences per sec-

ond by 27.9%, 150.2%, and 143.6% on average respectively.

The reduced latency of Trident is mostly due to the GST tuning

method. Compared to the thermal heaters used to tune DEAP-

CNN and PIXEL, the GST tuning used in Trident is 2× faster.

Additionally, the more energy efficient tuning method allows

Trident to scale to more PEs than other photonic accelerators

while remaining within the 30 W power requirement.

B. Training Latency

We evaluate training latency on the two accelerators ca-

pable of training, Trident and the NVIDIA AGX Xavier, by

calculating the amount of time it would take to train various

NN models on 50,000 training images. We use the throughput

during inference of these models to estimate throughput during

training instead of relying on pure TOPS to account for data

movement and resource sharing latency. The training time for

each NN model varies based on the number of parameters, from

4 million for GoogleNet to 138 million for VGG-16. However,

Trident maintains a higher average throughput and therefore

improves training latency by 8.5% for MobileNetV2, 15.9% for

ResNet-50, and 38.5% for VGG-16. There is a 10.6% increase

in training time when using Trident for GoogleNet; however,

it only amounts to a 6 second difference.

VI. RELATED WORK

Silicon photonic accelerators capable of in-situ training are

part of a new research effort to design the next generation of

scalable and energy-efficient processors for NNs. In [14], an

TABLE V: Edge Accelerators Time to Train 50,000 Images

NN Model NVIDIA AGX Xavier Trident Percent Change

MobileNetV2 32.5 s 29.7 s -8.5%

GoogleNet 57.1 s 63.2 s 10.6%

ResNet-50 365.7 s 307.2 s -15.9%

VGG-16 1293.8 s 796.1 s -38.5%

MZM mesh is used to perform inference and in-situ training.

However, this is not as area-efficient as Trident because it uses

large MZMs which take up a lot of area on the chip and

are slow, while Trident uses MRRs. Additionally, [14] does

not implement a non-linear activation function optically. In

[9], a broadcast-and-weight-based architecture is used along

with Direct Feedback alignment (DFA) to perform training in

photonics. The architecture is evaluated on the MNIST dataset

using a two-layer fully connected network implemented on a

1x4 MRR array. However, DFA is not effective for training

convolutional layers [35]. The reliance on thermally tuned

MRRs also limits the number of MRRs in a weight bank

and constrains the bit resolution to a maximum of 6. Since

Trident uses PCM to tune MRRs, it can achieve 8-bit resolution

for more accurate training and can scale to larger numbers

of MRRs to support larger NN models. In [8], an all-optical

spiking network is introduced that uses PCM-tuned MRRs and

a PCM activation function. However, the approach is limited

to positive weights, which means it would not be able to

implement asymmetric backpropagation which relies heavily

on sign concordance. The ability to implement asymmetric

backpropagation is an added advantage of Trident since a main

benefit of optics is parallelism. The architectures described

above were evaluated on small-scale NN models consisting of

just a few layers, whereas Trident has been evaluated with much

larger NN models that are used in practice.

VII. CONCLUSION

This paper proposes a unified photonic accelerator archi-

tecture for both training and inference in NNs. The Trident

PE utilizes phase change material GST to tune MRRs in the

broadcast-and-weight style MRR weight bank to achieve a2×
speedup compared to thermally tuned MRR weight banks. We

show how both training and inference can be executed on the

same PE. We also proposed an LDSU and a GST activation

cell for each row of the MRR weight bank. These components

facilitate a photonic activation function and its derivative to be

stored within the PE, reducing data movement, and eliminating

the use of ADCs between PEs while enabling in-situ training.

Trident provides up to 43% energy savings and up to 150%

reduction in latency on average when compared to the pho-

tonic accelerators DEAP-CNN, CrossLight, and PIXEL. When

compared to electronic edge AI accelerators Google Coral and

Bearkey TB96-AI, Trident saves 11% and 93% energy on

average respectively and reduces latency by 1413% and 595%

on average respectively. Despite the higher energy efficiency of

the NVIDIA AGX Xavier, the reduced data movement and GST

activation of Trident improves inference latency by 107% and

606

Authorized licensed use limited to: The George Washington University. Downloaded on October 09,2024 at 20:51:29 UTC from IEEE Xplore.  Restrictions apply. 



training latency by 13% on average compared to the NVIDIA

AGX Xavier.
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