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Abstract—The convergence of edge computing and artificial
intelligence requires that inference is performed on-device to
provide rapid response with low latency and high accuracy without
transferring large amounts of data to the cloud. However, power
and size limitations make it challenging for electrical accelerators
to support both inference and training for large neural network
models. To this end, we propose Trident, a low-power photonic
accelerator that combines the benefits of phase change material
(PCM) and photonics to implement both inference and training
in one unified architecture. Emerging silicon photonics has the
potential to exploit the parallelism of neural network models,
reduce power consumption and provide high bandwidth density
via wavelength division multiplexing, making photonics an ideal
candidate for on-device training and inference. As PCM is recon-
figurable and non-volatile, we utilize it for two distinct purposes:
(i) to maintain resonant wavelength without expensive electrical
or thermal heaters, and (ii) to implement non-linear activation
function, which eliminates the need to move data between memory
and compute units. This multi-purpose use of PCM is shown to
lead to significant reduction in energy consumption and execution
time. Compared to photonic accelerators DEAP-CNN, CrossLight,
and PIXEL, Trident improves energy efficiency by up to 43%
and latency by up to 150% on average. Compared to electronic
edge AI accelerators Google Coral which utilizes the Google Edge
TPU and Bearkey TB96-Al, Trident improves energy efficiency by
11% and 93% respectively. While NVIDIA AGX Xavier is more
energy efficient, the reduced data movement and GST activation
of Trident reduce latency by 107% on average compared to the
NVIDIA accelerator. When compared to the Google Coral and the
Bearkey TB96-Al, Trident reduces latency by 1413% and 595 %
on average.

Index Terms—neural networks, photonic accelerators, phase
change material, training, inference

I. INTRODUCTION

The growth of the Internet of Things (IoT) and edge devices
has led to significant progress in a wide range of applications
such as image recognition, mobile augmented reality, and edge
artificial intelligence (Edge AI) [18]. Most Edge Al relies on
cloud computing and requires moving large amounts of data
back and forth between the edge and the cloud, leading to issues
of latency and privacy. Edge Al neural networks (NNs) depend
on the implementation of matrix multiplications to compute
layer outputs as well as nonlinear activation between layers
[18]. Moving both inference and training to edge devices is pri-
marily constrained by the size and power consumption limita-
tions of edge devices [18]. Since edge devices are often battery-
powered, low-power consumption is required. Therefore, as

neural network model size increases to attain more accuracy,
training and inference on edge devices while exploiting model
parallelism and reducing energy consumption simultaneously,
is a major challenge.

Emerging silicon photonics has been proposed for NN
computation as it offers several advantages including higher
performance-per-Watt, reduced energy consumption for data
movement, higher bandwidth density, and overall improvement
in execution time [6], [27], [33]. Photonic matrix multiplication
and linear algebra operations can be performed in a single
step, only inhibited by peripheral control operations such as
modulation of filters or detection of optical signals [38]. As a
result, photonic accelerators have demonstrated the potential
to increase computing speed by 2-3 orders of magnitude
[38]. Several photonic architectures have been proposed for
NN inference operation, many of which are based on the
broadcast-and-weight architecture [2], [9], [32]. The broadcast-
and-weight architecture has been shown to perform multiply
and accumulate (MAC) operations at frequencies up to five
times faster than conventional electronics by using a tunable
bank of microring resonators (MRRs) to encode NN weights
[32]. In these architectures, the MRRs are tuned using the
thermo-optic or the electro-optic effects to shift the resonant
wavelength which consumes significant power in the range of
2 mW, to implement a single weight of the NN [9], [37].

Despite advancements in the use of photonics for inference,
challenges with storing data in photonics have prevented in-
situ training [7]. Many current photonic architectures train the
NN with a digital model before mapping the trained network
parameters to the optical hardware for inference where the
weights will be static [2], [24], [30], [31]. This method is
time-consuming and incurs a significant energy cost, and limits
when weights can be updated. Additionally, digital models used
at the time of training cannot capture all the manufacturing
imperfections and variations of the physical hardware. The
resulting mismatch between trained and implemented weights
leads to sub-optimal accuracy at inference time [9]. These
issues motivate a unified implementation of both training and
inference on the same underlying optical hardware.

Phase change materials (PCMs) are an emerging technology
that can be utilized as an alternative tuning method for MRRs.
GesSbyTes (GST) is a PCM commonly used in optical storage
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and processing-in-memory because it exhibits distinct refractive
indices and resistances as it switches between amorphous and
crystalline states [25], [36]. The phase transition of GST is re-
programmable and non-volatile, making it an energy-efficient
tuning method when compared to electrical or thermal heaters.
Due to the storage capabilities of GST, it can also implement
a nonlinear activation function, another critical component of
NN computations. The major contributions of this paper are:

o Trident: A low-power photonic accelerator that uses PCM
to effectively combine both training and inference for edge
Al devices. By using the same hardware accelerator, we
eliminate the mismatch between trained and implemented
weights in prior designs.

o Photonic Non-Linear Activation: GST activation cell
that allows the activation function to be stored within
the processing element (PE), reducing electro-optic (E/O)
and optoelectric (O/E) conversions as well as excessive
memory accesses. The GST activation cell also eliminates
the need for analog-to-digital converters (ADCs). This
is a critical improvement because ADCs are a serious
bottleneck that severely limits inference throughput per
Watt in previous photonic accelerators [23]. Moreover, we
also use PCM to maintain the resonant wavelength without
expensive electrical or thermal heaters, thereby improving
energy efficiency.

o Performance Evaluations: We evaluate the energy and la-
tency performance of Trident on convolutional neural net-
work (CNN) models GoogleNet, VGG-16, MobileNetV2,
and ResNet-50 and compare the results with previous
photonic accelerators. Trident improves energy efficiency
by up to 43.5% on average and improves latency by up
to 150.2% on average over previous photonic accelerators
DEAP-CNN [2], CrossLight [31], and PIXEL [30]. Com-
pared to electronic edge Al accelerators Google Coral [12]
which utilizes the Google Edge TPU and Bearkey TB96-
Al [22], Trident improves TOPS per Watt by 11.5% and
93.3% respectively. Despite the higher energy efficiency of
the NVIDIA AGX Xavier, the reduced data movement and
GST activation of Trident reduce latency by 107.7% on
average compared to the NVIDIA AGX Xavier. Compared
to the Google Coral and the Bearkey TB96-Al, Trident
reduces latency by 1413.1% and 594.7% on average.

II. BACKGROUND AND MOTIVATION
A. NN Basics for Inference and Training

Backpropagation (BP) is the most widely used algorithm to
train neural networks. Training a neural network of N layers
alternates between forward passes and backward passes where
each layer receives some blame for how much it affected
the resulting loss. Forward passes perform inference, which
includes multiple layers of input vectors z multiplied with
weight matrices W, and non-linear activation. The result of
a forward pass is compared with the input’s label to compute
an error signal. Backward passes send the error signal back
to update the weights, essentially a continuous application of
the chain rule to compute the gradient of the loss with respect

TABLE I: Tuning Method Comparison

[ Tuning Method | Tuning Power | Speed |

Thermal 1.02 nJ [9] 0.6 us [9]
Electric 0.18 pm/V [15] | 500 ns [15]
GST 660 pJ [37] 300 ns [13]

to different weights and then use this value to do a gradient
descent update.

In a network where weights 17/, connect layer k — 1 to layer
k and input x is considered layer 0, a logit is hy = Wiyr—_1,
and the activation is y; = f(hy) the backpropagation update
rule is as follows:

Wi = Wi — B x Wy 1
where [ is the learning rate,
Wy, = Shy xyi_, (2)
and
Shi, = (Wiy * 6hr1) © f'(he) (©)

B. Conventional Photonic Accelerator Devices

The majority of energy consumption and execution time
incurred in existing photonic accelerators is rooted in the tuning
of MRRs. Therefore, reducing the energy consumption for
MRR tuning has the potential to improve the performance
of photonic accelerators. There are several ways to actively
tune the resonant wavelength of a ring resonator, compared
in Table I. Electronic tuning is not widely used because the
electro-optic effect has a limited range. Electronic tuning at
0.2 pm/V or 24.0 Hz/V requires applying DC voltage in the
range of -100.0V to 100.0V to a 60.0 pm radius ring [15].
These wide voltage ranges and large rings complicate designs
and quickly contribute to power and area consumption as the
number of MRRs increases and becomes impractical for edge
devices. Therefore, electronic tuning is not considered in this
work. Thermal tuning requires individual heaters for each MRR
which can shift an MRR’s resonant wavelength within ¢ 0.2
to modulate the amplitude of the input signal [2], [4]. This
approach of shifting the resonant wavelength is limited to avoid
crosstalk from the adjacent channels in a multi-channel WDM
system [2]. Crosstalk in thermally tuned MRRs results in a
bit resolution of only 6 bits [10], meaning that training is not
possible [34]. While effective, thermal and electrical methods
of tuning are volatile and require the constant application of
power. In addition to reducing energy consumption due to non-
volatile tuning, PCM tuned MRRs have the added benefit of
8-bit resolution computation, enough for NN training.

III. TRIDENT ARCHITECTURE DESIGN
A. Architectural Overview

The Trident architecture is shown in Figure 1. The archi-
tecture is used for both inference and training by encoding
different values on the same hardware with an external control
unit handling encoding. The proposed Trident architecture uti-
lizes existing photonic devices to perform the MAC operations
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Fig. 1: The Trident Architecture Design includes a wavelength division multiplexed (WDM) waveguide (Figure 2a) that distributes
the input laser sources to a chain of Processing Elements (PEs). The PE consists of a microring resonator (MRR) weight bank
made up of MRRs with phase change material (PCM) cells (Figure 2b) that weight the inputs encoded onto the incoming
laser signals before the data is accumulated by balanced photo-detectors (BPDs). The weights are pre-programmed using optical
signals on the same WDM waveguide. The electronic portion (Figure 2c) consists of transimpedance amplifiers (TIAs), linear
derivative storage units (LDSUs) (Figure 2d), and E/O lasers, all of which are included to enable training. After conversion back
to the optical domain via the E/O lasers, the output signals of each layer are sent to GeaSbyTes (GST) activation cells. The
blue devices and connections indicate electronic devices and connections while all other colors represent photonic devices and

connections.

necessary for NNs. After completing a MAC operation and non-
linear activation on the first PE, the output of layer 1 forwarded
directly to the input of the second PE where the weight bank has
been pre-programmed and the second layer’s MAC and non-
linear activation can be performed. The output of each layer
is forwarded to the next until the last layer is completed and
the outputs can then be converted back to the digital domain
and saved in memory. By assigning one PE to each layer of a
NN, the weights can be pre-programmed for all the layers and
stored inside the PCM of each MRR in the weight bank. Then,
inference can be completed at the speed of light and forwarded
between layers without any delay for fetching weights from
memory or tuning the MRRs.

First, the input laser sources are combined and distributed
to an array of PEs using a wavelength division multiplexed
(WDM) waveguide such as the one shown in Figure 2a. This is
accomplished by using MRRs (Figure 2b) to construct a weight
bank with J rows and N columns. This structure allows for an
input vector of size Nz1 to be multiplied with J rows of a
weight matrix in parallel. Each input is assigned a wavelength
and its value is encoded onto the amplitude of the laser. Each
laser source has a wavelength corresponding to the different
colors of MRRs with matching resonant wavelengths. The red
Ao, orange A1, and green Ay rings in Figure 1 represent MRRs
with different resonant wavelengths \g, A1, ..., Ay spaced at
least 1.6 nm apart, to correspond with the input laser sources
being used to encode inputs zg, x1, ..., zn [32]. With the

602

resonant wavelength appropriately spaced, the intensity of Ay,
A2, ..., Ay are ignored by the red Ay MRR on the left and
passed through the WDM waveguide, until they are filtered
by their corresponding MRR. The add-drop configuration is
used for the MRRs so that both positive and negative weights
w € [—1,1] can be encoded [2]. Each row of the PE’s MRR
weight bank also includes a balanced photodetector (BPD), a
transimpedence amplifier, an LDSU, an E/O laser, and finally
a GST activation cell. The output of every row is encoded onto
a different wavelength before being forwarded on to the next
PE.

Weighted sum MACs have already been demonstrated on
previous photonic accelerators [2], [9], [32]. The proposed
design is novel because of the low-power, non-volatile GST
tuning method for the MRR weight bank, and because of the
photonic non-linear activation which allows an optical pulse to
be fed into the next layer without the added delay of storing the
output to an external memory unit using ADCs. Additionally,
the GST tuning method allows for a higher bit resolution
computations which, along with the photonic activation, makes
training possible in a photonic accelerator.

1) Inference: To perform inference the weights are first
pre-loaded into the MRR weight bank using optical weight
programming signals that are sent in parallel to tune the weight
bank MRRs. Similarly, the activation function is pre-loaded
into the GST activation cell. Then, when the input signals are
sent into the PE, the PCM of each MRR acts as a multiplier.
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TABLE II: PE Hardware Devices Mapping

Device Inference | Training Training
Gradient Outer
Vector Product
Input Laser Sources Tp Ohj 41 Ohy,
MRR Weight Bank wy, WL, vy
BPD Output Y = ohy, = oWy, =
WET (W];T+1 *5h;€+1) 5hk ‘yz_l
TIA, E/O Laser Sources | y f'(hy) oWy,

The balanced photodetector (BPD) collects the amplitude from
the output of each PE on its row, effectively accumulating
partial products. Therefore, the output of each BPD is a vector
dot product. After passing through the BPD, the signal is
amplified by the trans-impedance amplifier (TIA) and guided
to the GST activation cell. The output of the activation cell is
then forwarded to the next PE, where the weights have already
been pre-loaded, to act as the input signals for a PE. Once a
forward pass of inference has been completed, a backward pass
for training can be performed.

2) Training: Training via backpropagation consists of the
gradient vector computation and the weight update matrix
computation. During the computation of the gradient vector
She = (W, % 6hgg1) © f'(hg), the MRR weight bank
is encoded with WkT 11> the input signals are equivalent to
Ohj+1, and the TIAs after the BPD are tuned to f’(hy) to
implement the necessary Hadamard product. Then, an outer
product computation is performed to calculate the weight
update matrix W}, = &hy - y}_,. To implement this, the MRR
weight bank is encoded with ykT_1 from NN inputs, to utilize the
entire weight bank and perform N outer products, and the input
signals are equivalent to dhj. For computation of the weight
update matrix §Wj, no Hadamard product is needed, so the
TIAs are used more generally to amplify the analog signal.
The hardware device being used to represent each element of
the equations used for inference and training is listed in Table
II.

B. PCM-MRR Weight Bank

Instead of using conventional MRRs with thermo-optic or
electro-optic tuning, Trident employs the emerging PCM tuning
method, using GST as the PCM. GST has been applied widely
in different fields including optical switching and routing [13],
[21]. Crosstalk is not an issue for the GST tuning method since
the resonant wavelength of each MRR is not being shifted.
Instead, the GST acts as an attenuator on the optical signal,
and bit resolution is dependent on the number of GST states.
Current technology is capable of 255 levels for 8-bit resolution
[5]. To program an integrated GST cell, optical pulses are
used to switch between the crystalline and amorphous states
or an intermediate state [8]. Optically tuning MRRs eliminates
the area requirement for thermal heaters, as well as thermal
crosstalk issues.

With the GST in the amorphous state, the photonic waveg-
uide is highly transmissive, representing a large weight. In the
crystalline state, most of the light is absorbed, leading to a
small weight [37]. During a write cycle a high-power write
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Fig. 2: Components of Trident architecture: (a) a wavelength
division multiplexed (WDM) waveguide and (b) a microring
resonator (MRR) with phase change material (PCM) cell made
of GeaSbaTes (GST). (¢) Exploded view of a Linear Derivative
Storage Unit (LDSU) which is comprised of an analog voltage
comparator and a D-flip-flop. The LDSU stores the derivative
of the GST Activation Function to enable training. (d) GST
Activation Cell when the GST is in a fully amorphous state or
a fully crystalline state.

pulse, greater than or equal to 660 pJ [37] and at the resonant
wavelength of the MRR that is being written to, is injected from
the MRR’s input port. This high-power write pulse reduces the
crystalline property of GST, and affects the transmittance of
the drop and through ports of the MRR. During a read cycle,
a short low-power optical pulse, about 20 pJ [8] and at the
resonant wavelength of the MRR that is being read, is injected
from the MRR’s input port. The power consumption for tuning
GST is 2.0 mW, slightly higher than the 1.7 mW of power
needed to thermally tune an MRR. However, once the GST
cell has been tuned, its state is non-volatile and is maintained
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until reset. Tuning a GST cell optically also only takes 0.3
us, two times faster than thermally tuning an MRR. GST is
reconfigurable, non-volatile for up to 10 years, can be written
to and read from using optical pulses, and is capable of 8 bits
of resolution, making it ideal for tuning MRRs to implement
weights for both inference and training.

C. PCM Photonic Activation

During NN inference, a neuron applies a linear transforma-
tion to the input vector through a weight matrix, then a non-
linear transformation is applied to the product through a non-
linear activation function. The GST activation cell’s response
is similar to the commonly used rectified linear unit (ReLU)
non-linear activation function. The GST activation cell, pictured
in Figure 2e consists of a larger ring resonator (radius 60
pm) with an embedded GST cell at the intersection of the
ring and the crossing waveguide. The GST at the intersection
of the waveguide and the MRR has a non-linear response,
shown in Figure 3. When the GST activation cell is in the
crystalline state, the weighted sum pulse sent out of the output
lasers couples strongly into the ring resonator, resulting in no
observed output pulse. However, if the combined power of
the weighted sum pulses is high enough to switch the GST
activation cell to its amorphous state, the weighted sum pulse
is no longer in resonance with the ring and will be transmitted
beyond the ring, thus generating an output activation. As the
switching of the GST activation cell only occurs above a certain
threshold power, the neuron only generates an output pulse if
the weighted sum exceeds this threshold. Thus, the system nat-
urally executes non-linear activation over the optical power [8].
We note that all GST activation cells need to be recrystallized
after each non-linear activation event. Therefore, the number
of operation cycles is eventually limited by the endurance of
the PCM cells. However, endurance is not a concern because
individual PCM devices in endurance experiments have already
shown the ability to perform a trillion switching cycles when
fabricated to meet industry standards [17].

To perform training, the derivative of the activation function,
f'(hy), is stored during inference. This is accomplished using
the linear derivative storage unit (LDSU) pictured in Figure
2d. For each fixed wavelength, the contrast and maximum
transmission level of the output function can be adjusted. In [8]
the GST activation cell was measured at a fixed wavelength,
resulting in a nonlinear activation function. Figure 3 shows the

TABLE III: Trident Device Power Breakdown

[ Component [ Power [ Percentage |
LDSU 0.09mW [31, [16] | 0.01%
E/O Laser 0.032mW [28] 0.00%
GST MRR Tuning 563.2mW [37] 83.34%
GST MRR Read 17.1mW [8] 2.52%
GST Activation Function Reset | 53.3mW [8] 7.89%
BPD and TIA 12.1mW [19] 1.78%
Cache 30mW [30] 4.44%
Total 0.67W 100 %

activation at 1,553.4 nm. Because of the shape of the GST
activation function, we can consider it as having two possible
derivatives. If hy, is greater than the threshold, then f’(hy) is
0.34. If hy, is less than the threshold, then f’(hy) is 0. Since
the result of a weighted sum MAC is electronic, a standard
voltage comparator can be used to determine if each element
of hj is greater than or less than the activation threshold,
430.0 pJ. The result of the comparator is stored as a single
bit in a D-flip-flop so that when it is time for the backward
pass, the TIA can be programmed to f’(hs). Thus, a voltage
comparator and D-flip-flop make up Trident’s LDSU and enable
training to be performed on the same architecture as inference.
If the activation function is not needed for any layer, the GST
activation cell can be set to a fully amorphous state, effectively
eliminating the activation cell.

Previous photonic accelerators [2], [20] only compute MAC
operations using photonic hardware and use ADCs to store the
result of a layer in digital memory. Then, the activation function
is implemented digitally, and its result is encoded onto the
photonic hardware which will carry out the MAC of the next
layer. Trident’s LDSU eliminates the need for ADCs between
layers. The LDSU along with the GST activation cell reduce
the latency of activation while avoiding the need to fetch f/(hy)
from memory during training since it is already stored at the
PE where the gradient vector is computed.

IV. EVALUATION

We evaluate the performance of the proposed Trident archi-
tecture using current technology. The device parameters used
for these estimates are shown in Table III. In the lifetime of an
accelerator, inference will be performed much more often once
a model has been successfully trained. Therefore, this analysis
focuses on energy efficiency and latency during inference when
comparing with existing photonic accelerators and electronic
edge Al accelerators that can only perform inference.

We evaluate the performance of Trident on CNN models
GoogleNet, MobileNet, VGG-16, AlexNet, and ResNet-50, all
of which use the ReLU activation function. We perform a
per-layer analysis using Maestro to yield latency and energy
metrics for inference on these CNN models. The image input
to each of these CNN models is assumed to have dimensions
of 224 x 224 x 3 and a weight stationary dataflow is used.
We compare Trident with three recent photonic NN accel-
erators: DEAP-CNN [2], CrossLight [31], and PIXEL [30].
DEAP-CNN is a broadcast-and-weight-based accelerator that
utilizes thermally tuned MRRs and digital activation function.
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CrossLight also performs vector dot products using MRRs
and summation using photodetectors but performs MRR tuning
using a hybrid of thermo-optic and electro-optic tuning to
reduce crosstalk. PIXEL is a mixed-signal photonic accelerator
built using MRRs for bitwise logical operations and MZMs
for analog accumulation. We compare against the 8-bit OO
optical MAC unit from PIXEL. We apply the same device
parameters in Table III to DEAP-CNN, CrossLight, PIXEL,
and Trident and scale all four architectures to meet a 30 W
power consumption threshold.

The threshold of 30 W was chosen to compare directly with
state-of-the-art electronic edge Al accelerators NVIDIA AGX
Xavier [1], Bearkey TB96-Al [22], and Google Coral Dev
Board [12] which have a power draw of 30 W, 20 W, and
2 W respectively. These three electronic designs were chosen
to represent the range of edge Al accelerators currently on
the market. NVIDIA Jetson family was initially introduced by
NVIDIA with TKI1 in 2014 [26]. The family consists of 4
single board computers (SBCs) designed to deliver different
price, performance, and power draw ratios at the edge of the
network. All SBCs feature ARM CPU and NVIDIA GPU with
CUDA support. Jetson AGX Xavier [1] is capable of training
and is top of the Jetson line. TB96-Al is a SBC that features 2
possible RAM configurations - 3 GB (CPU 2GB + 1GB NPU)
or 8GB (CPU 4GB + 4GB NPU) and allows running Android
or Fedora OSs. Google Coral Dev Board is based on the
Edge Tensor Processing Unit (Edge TPU) co-processor. This
specialized ASIC, designed by Google, allows for inference of
selected TF Lite models and to transfer-learn some pre-trained
computer vision models [29]. However, it is not possible to train
models from scratch. Edge TPU allows for up to 2 TOPS (int8)
of Al performance per watt at a power draw of 2W (4 TOPS

peak performance). Edge TPU is also sold as an accelerator
module. However, the Google Coral Dev Board consumes up
to 15 W, resulting in a maximum of 0.26 TOPS per Watt.

Maintaining the 30 W power limit for edge devices, a
maximum of 44 PEs can be utilized, each with 256 MRRs
for weight matrix-vector multiplication. All 44 PEs consume
an area of 604.6mm?, less than 1 square inch, resulting in
a compact and area efficient design suitable for many edge
devices. Most of that area is consumed by the TIAs as shown
in the area breakdown in Figure 5 and most of the power draw
is consumed by tuning the weight bank MRRs as shown in
Table II. That is why the non-volatile property of GST is so
important. Once the weights are tuned in a PE, the power draw
is reduced by 83.34% from 0.67 W to 0.11 W for the next
MAC that uses the same weights. Each PE has a cache with
16 kB of storage and a footprint of 0.092 x 0.085 mm? and
shared L2 cache size 32 MB to handle storing data. We also
assume a 1.37GHz maximum clock rate.

V. RESULTS
A. Inference

Trident outperforms all three photonic accelerators in terms
of energy efficiency during inference. As shown in Figure 4,
Trident improves energy efficiency by and average of 16.4%
compared to DEAP-CNN, 43.5% compared to CrossLight,
and 43.4% compared to PIXEL. The energy advantages of
Trident are greater when compared to CrossLight and PIXEL
since CrossLight uses an additional VCSEL and MRR for
summation and PIXEL uses power-hungry MZMs. Despite the
added power of the LDSU and photonic activation reset, Trident
is more energy efficient overall because tuning the weight
bank MRRs monopolizes power consumption. In addition, the
photonic non-linear activation and LDSU remove the need for
ADCs between PEs, further reducing power consumption for
Trident.

To compare Trident’s energy efficiency against current edge
Al accelerators we calculate TOPS per Watt. The most time
consuming operation of performing a MAC operation is the
tuning time of GST cells inside weight matrix MRRs, which
takes 300 ns. However, all of the MRRs can be tuned in
parallel so that weights are pre-loaded, after which inference
can be performed on many inputs without re-tuning. Because
photonics propagation time is equal to the speed of light and
all the MRRs can be tuned in parallel MAC operations can
be computed at a rate of 7.8 TOPS resulting in 0.29 TOPS per
Watt. State-of-the-art edge Al accelerators such as the NVIDIA
AGX Xavier [1], Bearkey TB96-Al [22], and Google Coral
Dev Board [12] are capable of 1.1, 0.15, and 0.26 TOPS per
Watt respectively. Trident outperforms the Bearkey TB96-Al
[22] in terms of TOPS per Watt by 93.3%, and Google Coral
by 11.5%. The NVIDIA AGX Xavier is more energy efficient
than Trident at 1.1 TOPS per Watt [11]. However, Trident is
capable of both inference and training, including activation, in
the photonic domain.

The Bearkey TB96-Al and the Google Coral both are only
capable of inference using pre-trained models and cannot be
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TABLE IV: Performance of Trident vs. Electronic Accelerators

TABLE V: Edge Accelerators Time to Train 50,000 Images

| Accelerator [ TOPS | Watts | TOPS per W [ Training | [ NN Model [ NVIDIA AGX Xavier | Trident | Percent Changd
NVIDIA AGX Xavier 32 30 1.1 Yes MobileNetV?2 325 29.7 s -8.5%
Bearkey TB96-Al 3 20 0.15 No GoogleNet 57.1s 63.2s 10.6%
Google Coral 4 15 0.26 No ResNet-50 365.7 s 307.2 s -15.9%
Trident 7.8 30 0.29 Yes VGG-16 1293.8 s 796.1 s -38.5%
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Fig. 6: Edge Accelerators Inferences per Second Comparison

used for training. Unlike NVIDIA AGX Xavier and the rest
of the NVIDIA Jetson series, Trident stores and performs the
activation function within the accelerator processing elements,
reducing data movement between memory and compute units
as well as performing the activation function at the speed of
light. Because of this, Trident can perform more inferences
per second across various NN models as shown in Figure 6.
Trident reduces latency by an average of 107.7% compared to
the NVIDIA AGX Xavier, 1413.1% compared to the Google
Coral Dev Board, and 594.7% compared to the Bearkey TB96-
Al. When compared to photonic accelerators DEAP-CNN,
CrossLight, and PIXEL, Trident improves inferences per sec-
ond by 27.9%, 150.2%, and 143.6% on average respectively.
The reduced latency of Trident is mostly due to the GST tuning
method. Compared to the thermal heaters used to tune DEAP-
CNN and PIXEL, the GST tuning used in Trident is 2x faster.
Additionally, the more energy efficient tuning method allows
Trident to scale to more PEs than other photonic accelerators
while remaining within the 30 W power requirement.

B. Training Latency

We evaluate training latency on the two accelerators ca-
pable of training, Trident and the NVIDIA AGX Xavier, by
calculating the amount of time it would take to train various
NN models on 50,000 training images. We use the throughput
during inference of these models to estimate throughput during
training instead of relying on pure TOPS to account for data
movement and resource sharing latency. The training time for
each NN model varies based on the number of parameters, from
4 million for GoogleNet to 138 million for VGG-16. However,
Trident maintains a higher average throughput and therefore
improves training latency by 8.5% for MobileNetV2, 15.9% for
ResNet-50, and 38.5% for VGG-16. There is a 10.6% increase
in training time when using Trident for GoogleNet; however,
it only amounts to a 6 second difference.

VI. RELATED WORK

Silicon photonic accelerators capable of in-situ training are
part of a new research effort to design the next generation of
scalable and energy-efficient processors for NNs. In [14], an

MZM mesh is used to perform inference and in-situ training.
However, this is not as area-efficient as Trident because it uses
large MZMs which take up a lot of area on the chip and
are slow, while Trident uses MRRs. Additionally, [14] does
not implement a non-linear activation function optically. In
[9], a broadcast-and-weight-based architecture is used along
with Direct Feedback alignment (DFA) to perform training in
photonics. The architecture is evaluated on the MNIST dataset
using a two-layer fully connected network implemented on a
1x4 MRR array. However, DFA is not effective for training
convolutional layers [35]. The reliance on thermally tuned
MRRs also limits the number of MRRs in a weight bank
and constrains the bit resolution to a maximum of 6. Since
Trident uses PCM to tune MRRs, it can achieve 8-bit resolution
for more accurate training and can scale to larger numbers
of MRRs to support larger NN models. In [8], an all-optical
spiking network is introduced that uses PCM-tuned MRRs and
a PCM activation function. However, the approach is limited
to positive weights, which means it would not be able to
implement asymmetric backpropagation which relies heavily
on sign concordance. The ability to implement asymmetric
backpropagation is an added advantage of Trident since a main
benefit of optics is parallelism. The architectures described
above were evaluated on small-scale NN models consisting of
just a few layers, whereas Trident has been evaluated with much
larger NN models that are used in practice.

VII. CONCLUSION

This paper proposes a unified photonic accelerator archi-
tecture for both training and inference in NNs. The Trident
PE utilizes phase change material GST to tune MRRSs in the
broadcast-and-weight style MRR weight bank to achieve 2 x
speedup compared to thermally tuned MRR weight banks. We
show how both training and inference can be executed on the
same PE. We also proposed an LDSU and a GST activation
cell for each row of the MRR weight bank. These components
facilitate a photonic activation function and its derivative to be
stored within the PE, reducing data movement, and eliminating
the use of ADCs between PEs while enabling in-situ training.
Trident provides up to 43% energy savings and up to 150%
reduction in latency on average when compared to the pho-
tonic accelerators DEAP-CNN, CrossLight, and PIXEL. When
compared to electronic edge Al accelerators Google Coral and
Bearkey TB96-Al, Trident saves 11% and 93% energy on
average respectively and reduces latency by 1413% and 595%
on average respectively. Despite the higher energy efficiency of
the NVIDIA AGX Xavier, the reduced data movement and GST
activation of Trident improves inference latency by 107% and

Authorized licensed use limited to: The George Washington University. Downloaded on October 09,2024 at 20:51:29 UTC from IEEE Xplore. Restrictions apply.



training latency by 13% on average compared to the NVIDIA
AGX Xavier.
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