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1. INTRODUCTION

Our oceans are changing at an unprecedented 
rate, accelerated by recent anthropogenic activity 
such as deforestation and the burning of fossil fuels. 
Consequently, the world’s oceans have absorbed 
30% of anthropogenic carbon emissions (Doney et al. 
2009). Rising CO2 concentrations drive changes in 
seawater carbonate chemistry and reduce pH (Gat-
tuso & Buddemeier 2000). As carbon dioxide (CO2) 
concentrations in our atmosphere continue to rise, 
the oceans are projected to further acidify by 0.3 to 
0.4 pH units by the year 2100, a process referred to as 
ocean acidification (OA) (Stocker et al. 2013). In polar 

and sub-polar regions such as Alaska, where cooler 
and fresher seawater support increased solubility of 
CO2, alterations to the carbonate system are even 
more pronounced relative to temperate and tropical 
regions (Fabry et al. 2009). In addition to acting as a 
carbon sink, the oceans also absorb heat energy: 
since 1961, they have absorbed >90% of the increase 
in heat content on earth (Johnson et al. 2018). This 
absorption of heat is projected to increase global sea 
surface temperature by 2.0 to 4.5°C by the year 2100 
(Stocker et al. 2013). As a function of thermodynam-
ics, changes in ambient temperature can affect organ-
ismal physiological processes including metabolic 
rate, energy demands, and often, foraging drive and 
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intensity (Schmidt-Nielsen 1997, Sanford 1999, Hof-
mann & Todgham 2010, Somero 2010). These organ-
ismal changes are underscored by changes at the 
molecular level; increasing temperature alters the 
thermal stability of essential proteins, regulates cel-
lular membrane transport properties, and increases 
the rate of cell signaling and synaptic transmission 
(Hofmann & Todgham 2010). When increasing sea 
surface temperatures force organisms outside of their 
known tolerance windows, altering rates of meta-
bolic processes, or changing patterns of development 
or reproduction, there can be indirect effects on spe-
cies interactions that reverberate throughout marine 
communities (Hofmann & Todgham 2010). In order to 
understand how communities and ecosystems might 
respond to a changing ocean, it is foremost necessary 
to characterize individual species’ vulnerabilities to 
future, multiple-stressor conditions and how they 
may further impact biotic interactions. 

Organismal stress has been defined as ‘the expo-
sure of an organism to an abiotic or biotic forcing fac-
tor (a stressor) that results in a shift of one or more 
biological processes from their respective homeosta-
tic set points’ (Sokolova 2021, p. 3). When homeosta-
sis is disrupted due to the exposure of one or more 
stressors, there can be direct implications on the 
energy balance of an organism as it expends energy 
to correct such a disruption (Sokolova 2021). In 
response to stress, there are coordinated sets of 
changes we see at the cellular level, e.g. cortisol 
expression, and organismal level, e.g. metabolic 
rates and/or anti-predator behavior (Lannig et al. 
2010, Lagos et al. 2015, Jellison et al. 2016). These 
responses allow an organism to return to homeosta-
sis, protect it from stress-induced damage, and mini-
mize a decrease in organismal performance and fit-
ness (Sokolova 2021). Stressors such as elevated 
temperature and de creased pH can affect acid–base 
homeostasis and incur additional energy costs for ion 
transport processes (Nattie 1990, Melzner et al. 2020). 
The compensatory increases in ion and acid–base 
transport and concomitant increase in energetic cost 
are one of the proposed mechanisms utilized to main-
tain biomineralization in marine calcifiers under OA 
conditions, making biocalcifiers particularly vulnera-
ble to ocean change (Wood et al. 2010, Stumpp et al. 
2012, Pan et al. 2015, Frieder et al. 2017, Clark 2020). 

Organisms living within the rocky intertidal zone 
can help shed light on how different species might 
cope with future changes to environmental condi-
tions as this ecosystem is subjected to strong daily 
and seasonal variations in tidal cycles, temperature 
and wave activity, and is structured by well-defined 

vertical zonation (Helmuth & Hofmann 2001). Verti-
cal zonation directly reflects the adaptation of marine 
species to varying degrees of environmental stress 
(Stillman & Somero 2000). The dynamic physical and 
biological structure of the rocky intertidal zone is 
therefore an ideal study system to investigate the 
effects of ocean change on marine organisms. While 
many intertidal organisms experience fluctuations in 
temperature and pH well beyond near-future changes 
projected for the ocean, several studies show that 
some intertidal invertebrates are already living near 
their physiological tolerance limits (Stillman & Somero 
2000, Tomanek 2008, Somero 2010), and shifts in 
baseline environmental conditions may produce sub-
optimal or lethal conditions for resident marine fauna. 

One measure of a species’ sensitivity to ocean 
change is the extent to which it is intolerant of emerg-
ing environmental changes that will require plastic 
acclimatization or genetic adaptation to cope with 
future conditions. Studies have shown that some spe-
cies acclimated to warmer habitats exhibit greater 
rather than lesser sensitivity to future warming when 
compared with congeners or other individuals of the 
same species from cooler environments (Somero 2010, 
Kelley et al. 2011). One explanation for this pattern is 
that species from warmer environments operate 
closer to acute, potentially immutable, physiological 
limits, than those originating from cooler environ-
ments (Stillman & Somero 2000, Somero 2010). While 
there have been fewer studies to determine if a simi-
lar trend holds true for pH exposure, a recent meta-
analysis determined that for most surveyed taxa, 
there was indication that the impact of a given ex -
peri mental partial pressure of carbon dioxide 
(pCO2)/pH scenario de pended on the deviation from 
the upper pCO2 level experienced by local popula-
tions (Vargas et al. 2022). In other words, it is neces-
sary to incorporate local environmental variability 
into the understanding of a species’ sensitivity to 
future ocean change. 

OA and ocean warming (OW) have been known to 
affect common behaviors in marine organisms such 
as settlement, recruitment, habitat selection, feeding, 
reproduction, and anti-predator behavior (Wang & 
Wang 2020; see Clark et al. 2020 and Clements et al. 
2022 for criticism of some of this work in vertebrates). 
In a recent review analyzing the ways in which mar-
ine organismal behavior is affected by OA, 53% of 
the relevant anti-predator behaviors of marine organ-
isms showed negative responses to OA (Wang & Wang 
2020). However, the underlying mechanisms by which 
behavior is altered are poorly understood. Recently, 
scientists have largely given their attention to neuro-

32



Bacus & Kelley: Multiple-stressors affect an intertidal grazer

logical pathways in order to understand OA-related 
changes in behavior, particularly γ-aminobutyric acid 
type A (GABAA) receptor theory. GABAA receptor 
theory suggests that a decrease in pH causes an im-
balance in plasma chloride and bicarbonate ion con-
centrations as a result of acid–base regulation, which 
then causes the reversal of ionic fluxes through 
GABAA receptors in marine organisms, leading to al-
tered neuronal function (Tresguerres & Hamilton 
2017). OA-related changes in behavior can have 
widespread detrimental effects not only for individu-
als, but for ecosystems via direct and indirect effects 
(Jellison et al. 2016, Manríquez et al. 2021). 

Few studies have measured changes in both behav-
ior and physiological responses of marine fauna in re-
sponse to multiple stressors. Common metrics for 
physiological responses are thermal tolerance and 
metabolic rate (Hofmann & Todgham 2010, Todgham 
& Stillman 2013, Peck et al. 2014). Both heart rate and 
metabolic rate can increase as temperature increases, 
subsequently increasing the energetic demand 
needed to maintain metabolism in ectotherms or to 
maintain thermoregulation in endotherms (Braby & 
Somero 2006, Peck et al. 2014). Furthermore, there 
can be an interactive effect of elevated temperature 
and decreased pH on metabolism, as shown in oysters 
(Lannig et al. 2010). With increased energetic demand, 
essential behavioral responses may be affected. Some 
studies relate altered behavioral responses to changes 
in metabolic pathways (Lannig et al. 2010), or to a dis-
ruption in neural pathways (e.g. GABAA receptors) 
(Hamilton et al. 2014). Therefore, designing experi-
ments that investigate both biotic interactions medi-
ated by behavioral changes and physiological re-
sponses to stressors is key to understanding how 
ocean change will not only affect individuals but com-
munities in the future. 

In Alaska’s nearshore habitat, predation by the 
mottled star Evasterias troschelii on the Pacific 
plate limpet Lottia scutum represents an important 
predator−prey dynamic in the rocky intertidal zone 
(Branch et al. 1985). The Pacific plate limpet, found 
from the intertidal and shallow subtidal zone, is an 
important grazer along the Alaskan coastline. In re -
sponse to predation pressure, the plate limpet has 
developed a series of anti-predator responses when 
they detect waterborne or tactile cues from their 
predators (Branch et al. 1985). Plate limpets are often 
preyed upon by seabirds and sea stars such as the 
mottled star E. troschelii (Branch et al. 1985). The 
mottled star has a geographical range that extends 
from the Aleutian Islands, Alaska, to Monterey Bay, 
California, USA (Rogers & Elliott 2013). They are 

often found within protected shorelines on rocks, 
cobbles, docks or pilings, from the low intertidal to 
subtidal zone. L. scutum and E. troschelii overlap in 
both geographical and vertical ranges, providing a 
well understood predator−prey relationship (Mar-
golin 1964, Rogers & Elliott 2013) that can serve as a 
model for characterizing the impacts of future ocean 
change on the behavioral ecology of rocky intertidal 
species. The predator−prey dynamic demonstrated by 
these 2 species represents an appropriate model for 
characterizing the impacts of future ocean change on 
the behavioral ecology of species that inhabit the rocky 
intertidal zone. We examine both the individual and 
interactive effects of an acidifying and warming ocean 
on the behavior and physiology of L. scutum. 

2.  MATERIALS AND METHODS 

2.1.  Experimental overview 

Adult individuals of both Lottia scutum and Evaste-
rias troschelii were collected from the rocky intertidal 
habitat in Kasitsna Bay, Alaska, USA, located adja-
cent to the joint University of Alaska Fairbanks (UAF) 
and NOAA Kasitsna Bay Laboratory (59.4677° N, 
151.5510° W), in July 2020. Following collection, 
speci mens were immediately placed into large flow-
through seawater aquaria (1 per species) at Kasitsna 
Bay Laboratory and were left to acclimate to the labo-
ratory environment for 7 d. The holding tanks were 
supplied with seawater pumped directly from Kasit-
sna Bay, and individuals were fed Ulva fenestrata ad 
libitum throughout the acclimation period. Feeding 
was halted at the end of the acclimation period prior 
to individuals being placed in their respective experi-
mental treatments. The total length of the ex peri -
ment, beginning after the 7 d laboratory acclimation, 
was 14 d. During the experimental period, L. scutum 
underwent a thermal tolerance assay, closed-system 
respirometry, 2 behavioral assays, and cortisol meas-
urements. 

2.2.  Seawater treatments 

Following the 7 d laboratory acclimation period, L. 
scutum and E. troschelii were randomly divided 
among 4 treatments. Each treatment consisted of 5 
(19 l) L. scutum culture vessels, and 1 (19 l) E. 
troschelii culture vessel (Fig. S1 in the Supplement 
at  www.int-res.com/articles/suppl/m711p031_supp.
pdf). L. scutum culture vessels each contained 30 
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indi viduals, and E. troschelii culture vessels each 
contained 1 individual. Treatments consisted of an 
ambient temperature/ambient pH treatment, (11°C 
and pH 8.0, present-day conditions), an ambient 
temperature/decreased pH treatment (11°C and pH 
7.6, OA conditions), an elevated temperature/ambi-
ent pH treatment (15°C and pH 8.0, OW conditions), 
and an elevated temperature/decreased pH treat-
ment (15°C and pH 7.6, future predicted conditions). 
Ambient pH and temperature (pH 8.0 and 11°C) 
were determined based on incoming seawater meas-
urements at Kasitsna Bay Laboratory. Decreased pH 
and elevated temperature (pH 7.6 and 15°C) were 
calculated based on the IPCC, RPC 8.5 projections 
for the year 2100, which predicts a decrease in pH by 
0.4 units and an increase in sea surface temperature 
by 4°C (Stocker et al. 2013, RPC 8.5). Culture vessels 
were sealed with a lid to allow all individuals to 
be  completely submerged within their treatments 
throughout the experiment, and to prevent gas ex -
change between the culture vessels and atmosphere. 

The manipulation of carbonate chemistry (the 
addition of lab-grade CO2 to a flow-through sea -
water culture vessel) to achieve the desired pH of 
each treatment was maintained via the flow-through 
Ocean Change Experimental System (OCES) follow-
ing the ‘Guide to best practices for ocean CO2 meas-
urements’ (Dickson et al. 2007). In brief, OCES first 
scrubs air of all CO2 using a CO2 adsorber unit. The 
air is then continually mixed with a discrete continu-
ous flow of pure CO2 gas into 1 reservoir head-tank 
per treatment using a Venturi injector and mass flow 
controllers (MFC) until the desired pH is achieved 
(Fangue et al. 2010, Yu et al. 2013). Treatment water 
is then pumped from the head-tanks into each of the 
culture vessels using a positive flow dripper so that 
the seawater from other culture vessels (i.e. predator 
vessel) never mix with each other (Fig. S1). The flow 
rate for each vessel was maintained at 7.57 l h−1. The 
temperature of each treatment was maintained by 
placing all culture vessels in a flow-through water 

bath, set at the desired temperature for that treat-
ment (Fig. S1). 

2.3.  Water chemistry 

Incoming seawater (100 ml) was sampled to meas-
ure total alkalinity (AT) once weekly (Table 1). AT 
samples were preserved using 10 μl of super-satu-
rated mercuric chloride (HgCl2) to reduce any back-
ground respiration that could possibly alter the car-
bonate chemistry before analysis. AT was measured 
using open-cell titration with a Metrohm Titrino 848 
according to SOP 3b at the end of the experiment 
(Dickson et al. 2007). A 2-point calibration was used 
to determine acid calibration using methodology 
outlined in standard operating procedure SOP 3a, 
Chapter 4, in Dickson et al. (2007). Certified Refer-
ence Materials (CRMs) of seawater were used to de -
ter mine the AT accuracy. Seawater pH was meas-
ured at 25°C every other day using a Shimadzu 1800 
spectrophotometer (SOP 6b in Dickson et al. 2007); 
using meta-cresol purple from Acros (batch # 
30AXM-QN). A dye im purity correction factor was 
calculated for batch # 30AXM-QN (Douglas & Byrne 
2017) and applied to the final calculation of pHT (total 
hydrogen scale). On the days that we did not 
measure seawater pH using the spectrophotometer, 
we used an OrionTM ROSSTM Sure-FlowTM pH Elec-
trode to make sure the pH of each culture vessel was 
at the target pH. Seawater pH reported in Table 1 
were measurements taken from the Shimadzu 1800 
spectrophotometer. In situ pH of each culture vessel 
was calculated using AT, pH25°C, temperature, and 
salinity, using CO2Calc with CO2 constants from 
Mehr bach et al. (1973) refit by Dickson & Millero 
(1987) (Table 1). A YSI 3100 conductivity meter was 
used to measure the salinity of incoming lab seawater 
every other day (Table 1). The temperature of each 
seawater culture vessel was recorded every other day 
(Table 1). 
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Treatment                                 pHT in situ             pCO2 (μatm)             Temperature (°C)       AT (μmol kg−1)     Salinity (ppt) 
 
Ambient                                    7.95 ± 0.07            486.72 ± 88.63                11.34 ± 0.31                       –                          – 
Decreased pH                          7.58 ± 0.06          1276.40 ± 218.32              11.33 ± 0.30                       –                          – 
Increased temperature            7.90 ± 0.10            584.60 ± 155.68              15.73 ± 1.78                       –                          – 
Increased temperature/           7.58 ± 0.07          1287.22 ± 252.96              15.82 ± 1.79                       –                           –   decreased pH                                   
Incoming                                           –                               –                                    –                     2105.01 ± 8.97      31.16 ± 0.12 

Table 1. Mean (±SD) pHT (total hydrogen scale), pCO2, and temperature for each treatment over the experimental period. 
Mean (±SD) total alkalinity (AT) and salinity recorded from a separate incoming seawater line over the course of the experiment
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2.4.  Thermal tolerance 

On Days 7 and 8, L. scutum individuals from each 
treatment (n = 2 from each culture vessel, N = 10 
total) were randomly selected to undergo a thermal 
tolerance assay. A thermal tolerance assay was con-
ducted on the ambient pH/ambient temperature (pH 
8.0, 11°C) and decreased pH/ambient temperature 
(pH 7.6, 11°C) treatments on Day 7, while on Day 8 a 
thermal tolerance assay was conducted on the 
decreased pH/elevated temperature (pH 7.6, 15°C) 
and ambient pH/elevated temperature (pH 8.0, 
15°C) treatments. Assays were not conducted on the 
same day due to the length of each assay and the 
equipment available at the field station, but were 
done sequentially 2 days in a row. Each individual 
was placed in a separate plastic vessel filled with 
water originating from their respective culture ves-
sel, which was then subsequently placed within a 
temperature-controlled water bath. Each vessel 
was aerated using an air stone throughout the assay. 
Temperature was increased at a rate of roughly 
2°C h−1 (Miller & Kelley 2021), and mortality temper-
ature was recorded for each individual. Mortality 
was confirmed by applying pressure to each individ-
ual’s muscular foot and observing if its withdrawal 
reflex was still intact. The critical thermal maxima 
(CTmax) of each individual was established and the 
mean CTmax for each culture vessel was calculated 
(see Kelley et al. 2011). 

2.5.  Respirometry 

On the day of specimen collection, 5 L. scutum 
were gathered from the rocky intertidal habitat 
directly adjacent to Kasitsna Bay Laboratory and 
underwent closed-system respirometry to measure 
the metabolic rate (MO2) in their natural environ-
ment. After laboratory acclimation and before the 
experimental period (time zero of the experiment), 
we measured MO2 on 5 individuals randomly sam-
pled from the large acclimation tank in which all 
experimental L. scutum were being kept. Finally, on 
Days 7 and 14, one individual from each culture ves-
sel (n = 5 per treatment) was sampled and underwent 
2 final closed-system respirometry measurements. 
Individuals were placed in separate respirometry 
chambers, each fitted with a Presens fiber-optic spot. 
Fiber-optic spots were factory calibrated, which we 
verified with 100% air-saturated seawater (Jones et 
al. 2021). Chambers were filled with fully oxygen -
ated water originating from each individual’s specific 

treatment conditions. The respirometry chambers 
were then placed in a temperature-controlled water 
bath throughout the assay (11 or 15°C, depending on 
treatment). The size of the respirometry chamber 
(300 ml) was chosen such that the estimated body 
volume of each organism did not exceed ~10% of the 
chamber volume. Due to the size of the respirometry 
chambers, we did not use magnetic stirrers to recir-
culate chamber seawater; however, the chambers 
were picked up every 30 min to take measurements 
and were gently mixed during this period. Organ-
isms were not fed during the experimental period; 
therefore, we were able to avoid postprandial effects 
while calculating metabolic rate, i.e. these metabo-
lism measurements represent the lower bound of car-
bon consumption, as metabolic rates typically in -
crease following feeding (Chapelle et al. 1994). 
During each assay, 3 control chambers were filled 
with fully oxygenated seawater originating from the 
respective treatment condition, but did not include 
an L. scutum individual. These control chambers 
were measured to account for possible background 
respiration from bacteria and other organisms sus-
pended in the water column. Oxygen concentration 
in each chamber was measured every 30 min over a 
3 h period to allow for handling-stress recovery, and 
for the capture of an oxygen consumption rate with-
out surpassing an 80% O2 saturation stress threshold. 
Oxygen concentration was measured using a Fibox4. 
At the completion of the assay, all individuals were 
wrapped in tinfoil, then kept at −18°C until the end of 
the experiment. Frozen individuals were transported 
to the University of Alaska Fairbanks, where the wet 
mass of each thawed individual was recorded, fol-
lowed by the desiccation of each individual over 72 h 
at 150°C. After desiccation, the samples were re -
moved from the drying oven and the dry masses 
were recorded. The samples were then ignited at 
650°C for 6 h, and the ash-free dry mass of each indi-
vidual was recorded by calculating the difference in 
pre- and post-ignition masses. 

Oxygen consumption rate (MO2, μmol O2 l−1 min−1) 
for each individual was then calculated from the lin-
ear regression of oxygen concentration over time 
(Table S1). The average MO2 of the 3 control cham-
bers from each assay was subtracted from the meas-
ured organismal rates to account for background res-
piration or production. Rates were converted to μmol 
O2 h−1 based on the net volume of water contained in 
the incubation chamber (net volume = volume of 
respirometry chamber − volume of organism). These 
rates were then converted to mass specific MO2 
(μmol O2 g −1 h −1) by dividing by the ash-free dry 
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mass of each individual. Lastly, we calculated the 
 linear regression of ash-free dry mass versus wet 
mass to determine if the 2 metrics have a 1:1 linear 
relationship. 

2.6.  Behavioral assay 

A behavioral assay was conducted on Day 14. Five 
L. scutum individuals from each culture vessel (n = 25 
from each treatment) were randomly selected and re-
located to 8 l behavioral arenas (n = 5 per 8 l arena). 
Each individual was placed at the center of their cor-
responding behavioral arena, which was filled with 
2 l of seawater collected from their source culture 
vessel. Individuals were acclimated to the behavioral 
arenas for 10 min before the start of the experiment to 
decrease the possibility of handling stress effects. 
 After the 10 min acclimation period, 1 l of predator-
conditioned water was added to each arena and re-
sponses were video recorded over a 30 min period. 
Predator-conditioned water was achieved by ceasing 
water flow in the sea star culture vessels (19 l) for 2 h 
before the start of the experiment, allowing predator 
cues to accumulate. Behavioral response was then 
measured by analyzing the video recording for each 
arena over the 30 min period. All video recordings 
were additionally deposited in an open-access online 
data repository (www.datadryad.org). As L. scutum are 
known to rotate around their visceral mass and actively 
flee from their predators when they encounter water-
borne or tactile predator cues, we discretely ob served 
whether our individuals exhibited an initial rotation 
around their visceral mass when introduced to preda-
tor-conditioned water, and whether they actively fled 
throughout the behavioral assay (Espoz & Castilla 
2000, Escobar & Navarrete 2011, Aguilera et al. 2019). 

To test GABAA receptor theory, we treated L. scu-
tum with gabazine on Day 21 and conducted a sec-
ond behavioral assay using the same methodology 
described above. Gabazine (SR 95531) is a GABAA 
neurotransmitter receptor antagonist known to in -
hibit GABA binding to GABAA receptors in verte-
brates (Heaulme et al. 1986), and has also been found 
to inhibit GABA-induced ion currents or GABA bind-
ing to receptors in some invertebrates (Watson et al. 
2014). Gabazine has been shown to restore normal 
anti-predator behavior in the marine mollusk Gib-
berulus gibbosus, which displayed OA-induced 
behavioral disruptions (Watson et al. 2014). Follow-
ing the same methodology as Watson et al. (2014), we 
placed L. scutum in 100 ml of seawater (originating 
from each respective culture vessel) containing 4 mg 

l−1 of gabazine for 30 min before the start of the sec-
ond behavioral assay. 

2.7.  Cortisol extraction 

Five L. scutum individuals were collected from the 
rocky intertidal habitat adjacent to the lab before the 
start of the experiment. They were placed in cryovials 
and flash frozen with liquid nitrogen. These individu-
als were used to establish the baseline cortisol levels 
of L. scutum in situ. Additionally, 5 individuals were 
collected after lab acclimation, and 1 individual was 
collected from each culture vessel (n = 5 from each 
treatment) on Days 7 and 14. On Day 14, one addi-
tional individual from each culture vessel (n = 5 from 
each treatment) was sampled and flash frozen with 
liquid nitrogen after being exposed to predator-condi-
tioned seawater and undergoing a behavioral assay. 
This allowed us to characterize cortisol levels in L. 
scutum both before and after exposure to their preda-
tor. All sampled individuals were placed in separate 
cryovials and kept in liquid nitrogen until the end of 
the experimental period, where samples were then 
transported to the University of Alaska Fairbanks and 
immediately stored at −80°C. We then used a com-
mercial enzyme-linked immunosorbent assay (ELISA) 
kit (EA65; Oxford Biomedical Research) to measure 
cortisol levels in our samples, per manufacturer’s rec-
ommendations (Lagos et al. 2015). In brief, 0.05 g 
of muscular foot tissue from each sample was homo -
genized in 1× extraction buffer and centrifuged for 
15 min at 5000 × g. The supernatant of each sample 
was collected and immediately stored at −80°C. Once 
the supernatant of each sample was collected, a 96-
well microplate (coated with a rabbit anti-cortisol an-
tibody) was loaded with 50 μl of known cortisol stan-
dard solutions and 50 μl of sample supernatants. The 
microplate was then left to incubate at room tempera-
ture for 1 h, after which it was washed 3 times with 
300 μl of wash buffer per well. We then added 150 μl 
of tetramethylbenzidine (TMB Substrate, Thermo -
Fisher) to each well for color development and left the 
microplate to incubate at room temperature for 30 min. 
Lastly, the microplate was read at 650 nm using a 
standard UV-vis 96-well plate reader for spectropho-
tometric measurements. Cortisol concentration was 
then determined for each sample by comparing the 
results to the standard curve (n = 8, R2 = 0.99), which 
was calculated using the absorbance values of the 
known cortisol standard solutions: 

                                y = 9.43e–12.1x                             (1) 
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2.8.  Statistical analysis 

The data from this experiment were analyzed using 
R Software (version 3.5.1; R Core Team 2016) with the 
RStudio Workbench. A 2-way ANOVA was used to 
determine if pH and/or temperature had a significant 
effect on the CTmax of L. scutum. Separate 3-way 
ANOVAs were then used to determine if MO2 or 
 cortisol concentration in L. scutum varied with pH, 
temperature, and/or time during the experiment. All 
assumptions for ANOVA were verified and met in R 
Software. There were no extreme outliers in our 
dataset (R function: ‘identify_outliers()’). We used a 
Shapiro-Wilk test of normality to confirm a normal 
distribution of our data. Finally, we applied a Levene’s 
test to confirm the homogeneity of variances among 
the different treatments. Statistically significant re-
sults (α = 0.05) from each ANOVA were then followed 
by a Tukey’s post-hoc test to determine which treat-
ment groups differed from one another. Lastly, we ap-
plied chi-squared tests to determine whether pH and/or 
temperature had a significant effect (α = 0.05) on the 
anti-predator behavior of L. scutum. 

3.  RESULTS 

3.1.  Thermal tolerance 

Acclimation treatment temperature had a signifi-
cant effect on the CTmax of Lottia scutum (p = 0.03). 
Interestingly, acclimation to a higher temperature 
(15°C) decreased the overall CTmax in L. scutum 
(Fig. 1). The mean (±SD) upper CTmax for the ambi-

ent temperature treatments was 32.68 ± 2.25°C (OA 
conditions) and 31.88 ± 1.99°C (present-day condi-
tions), whereas the mean upper CTmax for the high 
temperature treatments were 30.63 ± 0.69°C (future 
predicted conditions) and 31.44 ± 1.45°C (OW condi-
tions) (Fig. 1). Additionally, individuals that were 
acclimated to predicted future ocean conditions (pH 
7.6, temperature 15°C) exhibited the lowest thermal 
tolerance across all the treatments with a mean 
upper CTmax of 30.63 ± 0.69°C (Fig. 1). pH did not 
have a significant effect on the CTmax of L. scutum 
nor were there interactive effects of pH and temper-
ature (p = 0.956 and 0.156, respectively) (Fig. 1). 

3.2.  Metabolism 

After lab acclimation, all individuals expressed a 
significant increase (p < 0.001) in MO2 after they 
were placed into their specified treatment condi-
tions (lab acclimation to Day 7) (Fig. 2). The MO2 of 
individuals that were acclimated to pH 7.6 (pH for 
the year 2100) significantly increased (p < 0.001) over 
the course of the experiment (lab acclimation to 
Day 14) (Fig. 2). The mean (±SD) MO2 of individu-
als during lab acclimation was 6.47 ± 6.67 μmol O2 
g−1 h−1, whereas the mean MO2 of individuals in the 
low pH treatments on Day 7 increased to 9.88 ± 
3.56 μmol O2 g−1 h−1 (future predicted conditions) 
and 12.69 ± 4.60 μmol O2 g−1 h−1 (OA conditions). 
On Day 14, the mean MO2 of individuals in low pH 
treatments increased to 22.78 ± 2.34 and 20.16 ± 
4.89 μmol O2 g−1 h−1, respectively. However, after an 
initial in crease in MO2 from lab acclimation to Day 
7 of the experiment, MO2 in individuals that were 
acclimated to pH 8.0 did not increase from Day 7 to 
Day 14 (Fig. 2). Additionally, MO2 was the highest 
in the future predicted oceanographic conditions 
treatment (pH 7.6, temperature 15°C) by Day 14 
(Fig. 2). When compared to the MO2 of ‘field-
caught’ in dividuals, the MO2 of L. scutum was sig-
nificantly lower (p < 0.001) after being acclimated to 
the laboratory environment for 7 d (Fig. 2). The 
mean MO2 of field-caught individuals was 13.62 ± 
5.52 μmol O2 g−1 h−1, while the mean MO2 of lab-
acclimated individuals was 6.47 ± 6.79 μmol O2 g−1 
h−1. MO2 of experimental L. scutum on Day 7 
increased and were then comparable to MO2 of 
field-caught individuals (Fig. 2). However, by Day 
14, individuals that were acclimated to a lower pH 
exhibited a significantly higher (p = 0.004) MO2 
compared to the field-caught L. scutum (Fig. 2). We 
found that there was no significant effect (p = 0.727) 
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of acclimation temperature on MO2 of L. scutum. 
Lastly, the wet mass versus ash-free dry mass linear 
regression of L. scutum individuals showed a mod-
erately high level of correlation, with R2 = 0.7655 
and p < 0.001 (Fig. 3). 

3.3.  Behavior 

In our control treatment, representing present-day 
conditions (pH 8.0, temperature 11°C), 44% of indi-
viduals actively fled from cues of their predator, and 
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52% of individuals initially rotated around their vis-
ceral mass (Fig. 4). However, in our future predicted 
oceanographic conditions treatment (pH 7.6, temper-
ature 15°C), we found that only 28% of individuals 
 actively fled from predator cues, and 36% of individu-
als rotated around their visceral mass (Fig. 4). A chi-
squared test determined that neither pH nor tempera-
ture significantly affected (p = 0.124, p = 0.288) the 
antipredator behavior of L. scutum. Additionally, L. 
scutum showed no significant change (p = 0.745, p = 
0.1701) in behavior after being dosed with gabazine 
on Day 21. In our control treatment, 20% of individu-
als actively fled from cues of their predator, and 24% 
of individuals initially rotated around their visceral 
mass. Comparatively, in our future predicted oceano-
graphic conditions treatment, we found that only 12% 
of individuals actively fled from predator cues, and 
56% of individuals rotated around their visceral mass. 

3.4.  Cortisol 

Our results demonstrated a significant increase 
(p < 0.001) in cortisol concentration in L. scutum 

through time, with the highest cortisol concentration 
originating from the high temperature treatments 
(temperature 15°C) (Fig. 5). On Day 7, the cortisol 
concentration among treatments were not signifi-
cantly different (p = 0.631), and the mean cortisol 
concentration averaged across all treatments was 
62.12 pg g−1. However, on Day 14, cortisol concentra-
tions in the high temperature treatments increased to 
376.76 pg g−1 (future predicted conditions) and 
389.76 pg g−1 (OW conditions). There was no signifi-
cant difference (p = 0.457) in cortisol concentration 
between field-caught L. scutum and lab-acclimated 
L. scutum (Fig. 5). We saw no significant effect (p = 
0.328) of pH on cortisol levels throughout the experi-
ment. Additionally, we found no significant differ-
ence (p = 0.469) in cortisol concentration before or 
after the individuals were exposed to predator cues 
(Fig. 6). 

4.  DISCUSSION 

Our results suggest that both temperature and pH, 
separately and differentially affected the physiology 
of Lottia scutum. Temperature is often thought of as 
one of the most important factors influencing the 
physiology and ecology of ectotherms (Castañeda et 
al. 2004, Mora & Maya 2006, Peck et al. 2014). Addi-
tionally, temperature plays a significant role in deter-
mining the biogeographical distributions of ecto-
therms in thermally heterogeneous environments 
(Somero 2002). In our thermal tolerance study, we 
found that acclimation to a higher temperature 
decreased the overall CTmax of L. scutum, suggesting 
that an increase in acclimation temperature (as pro-
jected for the year 2100) is enough to induce a high 
physiological toll on this species (Fig. 1). This is 
somewhat surprising in that many marine species 
that have been acclimated to higher temperatures in 
the laboratory environment generally exhibit an 
overall increase in CTmax (Podrabsky & Somero 2006, 
Bilyk & DeVries 2011, Kelley 2014). However, a few 
studies report similar results to our thermal tolerance 
study in other marine invertebrates (especially those 
originating from high latitude environments) (Peck et 
al. 2009, 2010, 2014). 

One way to compare the response of different spe-
cies and populations to thermal acclimation in the 
laboratory is to calculate the acclimation response 
ratio (ARR) (Claussen 1977, Kelley 2014). A higher 
ARR value indicates that an organism is able to pro-
vide a greater increase in their thermal tolerance 
threshold after acclimation to a higher temperature 
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than an organism whose upper thermal tolerance 
threshold increases only marginally after acclimation 
(Kelley 2014). A recent meta-analysis found that 
every invasive species surveyed demonstrated a pos-

itive ARR value (Kelley 2014). However, 6 out of 19 
native species exhibited a negative ARR value, 
where acclimation to a higher temperature de -
creased the overall upper thermal tolerance value in 
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subpolar terrestrial arthropods and several fresh-
water mussel species, with ARR values of −0.1 and 
−1.1, respectively (Slabber et al. 2007, Pandolfo et al. 
2010, Kelley 2014). When comparing the CTmax of L. 
scutum from the present-day and future predicted 
conditions treatment, we calculated an ARR value of 
−0.31. 

Understanding how ocean change will affect mar-
ine organisms requires a detailed knowledge of how 
closely individual species are currently living to their 
natural thermal tolerance limits, and what capacity 
they have to adapt to future oceanographic condi-
tions (Orr et al. 2020). Similar to  previous studies, our 
findings suggest that L. scutum are already living 
near the edge of their thermal tolerance window, and 
could be at risk in a warming ocean (Stillman & 
Somero 2000, Peck et al. 2014). While our results do 
not demonstrate any statistically significant interac-
tive effects of both OW and OA on the upper thermal 
tolerance of L. scutum, other studies report a narrow-
ing of the thermal tolerance window of marine ecto-
therms due to the synergistic effects of elevated tem-
perature and decreased pH (Pörtner & Farrell 2008). 
Nonetheless, the lowest recorded CTmax value, 30.63 
± 0.69°C, was reported in the future treatment condi-
tion, 15°C, pH 7.6 for L. scutum, suggesting the effects 
of OA and OW were interactive in nature (Fig. 1). 

Individual and interactive stressors can strongly 
affect the energy metabolism of marine ectotherms 
and modify the energy fluxes within an organism 
and ecosystem (Kelley & Lunden 2017, Sokolova 
2021). In general, 3 metabolic responses that aim to 
return an organism to homeostasis can be captured 
using respirometry techniques: an increase in metab-
olism, a decrease in metabolism, or no change in 
metabolism (Kelley & Lunden 2017). An increase in 
metabolism usually indicates the need for processes 
that require more cellular energy to attempt to return 
to or maintain homeostasis (Randall et al. 2002, 
Alberts et al. 2008). In contrast, metabolic suppres-
sion is generally considered a short-term response 
for dealing with stress, and involves down-regulating 
metabolic processes which can result in a decrease in 
protein synthesis, somatic tissue growth or mainte-
nance (Comeau et al. 2010, Thomsen & Melzner 
2010, Kültz 2020). Our results show that the metabo-
lism of L. scutum increased throughout the experi-
mental period, and that individuals that were accli-
mated to OA conditions expressed the greatest 
significant increase in metabolism. Additionally, we 
found that compared to the metabolism of field-
caught L. scutum, experimental L. scutum demon-
strated an initial short-term decrease in metabolism 

before increasing throughout the experimental period. 
However, it is important to note that our MO2 meas-
urements of field-caught L. scutum captured this 
species in situ metabolism, meaning that it is impos-
sible to determine the feeding status of those individ-
uals before we conducted closed-system respirome-
try. As the consumption of food can increase the MO2 
of individuals, it is possible that the differences in 
metabolism we measured between field-caught and 
lab-acclimated L. scutum were influenced by post-
prandial effects. 

A similar study, which investigated the impact of 
OA on the metabolism of the oyster Crassostrea 
gigas found that with the addition of OW, standard 
metabolic rate (SMR) rose significantly in individuals 
acclimated to both ambient and decreased pH envi-
ronments (Lannig et al. 2010). Moreover, there was a 
stronger increase in SMR of those individuals accli-
mated to decreased pH conditions compared to those 
acclimated to ambient pH conditions (Lannig et al. 
2010). With an increase in metabolism, there is also  
a subsequent increase in the energetic demand 
needed to maintain this new metabolic rate. Several 
studies have demonstrated that the additional energy 
needed to maintain an increase in metabolism is at 
times reallocated away from other important pro-
cesses such as growth, calcification, and reproduc-
tion (Kelley & Lunden 2017). Talmage & Gobler 
(2010) found that the shell size, diameter, and hinge 
thickness of the hard clam Mercenaria mercenaria 
decreased in individuals raised under OA conditions. 
For other species, it has been shown that individuals 
can maintain calcification but at the expense of 
growth and body size (Kroeker et al. 2014). Given 
these previous findings, it is possible that we might 
observe changes in calcification, growth, and/or 
body size in L. scutum individuals under future pre-
dicted oceanographic conditions. These trade-offs in 
animal life histories highlight the importance of con-
sidering bioenergetics in understanding organismal 
performance, plasticity, and adaptation to the chal-
lenges posed by future ocean change. 

OA and OW have been shown to affect the behav-
ior of a variety of marine species (Wang & Wang 
2020); however, the mechanisms behind these 
changes in behavior have been far less studied. Sen-
sory impairments, such as the disruption in chemore-
ception or the chemical alteration of cues under 
decreased pH conditions have been observed in var-
ious invertebrates (Briffa et al. 2012, Clements & 
Hunt 2014, Ashur et al. 2017, but see Clark et al. 2020 
and Clements et al. 2022 for criticism of some of this 
work in vertebrates). It has also been hypothesized 
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that physiological effects of environmental stress can 
alter behavior via bioenergetics (Romero et al. 2009). 
While our a priori hypothesis was that OA and OW 
would affect the anti-predator behavior of L. scutum 
and that treating L. scutum with gabazine would 
restore their ability to detect their sea star predator, 
we concluded that pH and temperature had no sig-
nificant effect on the behavior of L. scutum when 
exposed to Evasterias troschelii, and therefore treat-
ing L. scutum with gabazine was inconsequential. By 
designing experiments that integrate behavior, phys-
iology, and molecular methodological approaches, 
we can begin to tease apart the various ways in 
which multiple stressors might affect marine organ-
isms both directly and indirectly. 

Cortisol is a corticosteroid frequently used as a 
stress biomarker in vertebrates (Hellhammer et al. 
2009, Yeh et al. 2013, Gong et al. 2015). However, 
cortisol concentrations in marine invertebrates have 
been far less studied, and only 1 study, to date, has 
measured cortisol concentrations in a marine mollusk 
(Lagos et al. 2015). Our study found that there was a 
significant increase in cortisol over time, and that 
individuals acclimated to OW conditions expressed 
the highest levels of cortisol by the end of the exper-
imental period (Fig. 5). It is important to note that 
organisms can release cortisol during conditions of 
starvation (Park et al. 2012, Dar et al. 2019). While it 
is unlikely for the duration of this experiment that L. 
scutum entered into a mode of starvation, we cannot 
rule out the possibility. We did not find any signifi-
cant difference in cortisol concentrations before or 
after acutely exposing L. scutum to cues of their sea 
star predator. While this study is one of the first of 
its kind to characterize cortisol concentrations in a 
marine mollusk when exposed to multiple environ-
mental stressors, caution is needed when attempting 
to compare our results to future studies. Exposure 
time, environmental stressors, and the type of tissue 
collected from individuals can lead to vastly differ-
ent results (Binder et al. 2019). Future studies meas-
uring cortisol concentrations in marine invertebrates 
should take these considerations into account for 
better comparisons between studies. 

5.  CONCLUSIONS 

The oceans are both warming and acidifying con-
currently. As the interactive effects of OA and OW 
can often vary from the individual effects of each 
stressor (Folt et al. 1999, Piggott et al. 2015), multi-
ple-stressor research is a rapidly expanding field of 

science that aims to understand and ultimately pre-
dict the interactions between stressors. By character-
izing these interactions, researchers can provide 
more ecologically relevant results for both the scien-
tific community and environmental stakeholders. 
Additionally, multiple-stressor research needs to 
largely shift its focus towards higher levels of biolog-
ical organization, as ecosystem managers and stake-
holders are often more interested in the effect of 
stressors on communities and ecosystems, rather 
than individuals (De Laender 2018, Thompson et al. 
2018). This study spanned multiple biological levels 
of organization from the molecular level to the level 
of interacting species. While we examined the rela-
tionship between an important intertidal grazer and 
its predator, future studies should begin to integrate 
additional trophic levels, such as primary producers, 
into their experimental designs (Gaylord et al. 2015, 
Jellison & Gaylord 2019). This is especially important 
as environmental stressors can often alter the trophic 
relationships between species (Arnold et al. 2012, 
Bruder et al. 2017). Lastly, future studies should take 
a multidisciplinary approach in designing experi-
ments, in order to holistically understand the effects 
of multiple stressors on marine organisms. This is 
vital for the sustainable management of resources, 
for the conservation of biodiversity, and for the main-
tenance of ecosystem services. 
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