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Abstract

Identifying controls on soil organic carbon (SOC) storage, and where SOC is most
vulnerable to loss, are essential to managing soils for both climate change mitigation
and global food security. However, we currently lack a comprehensive understand-
ing of the global drivers of SOC storage, especially with regards to particulate (POC)
and mineral-associated organic carbon (MAOC). To better understand hierarchical
controls on POC and MAQOC, we applied path analyses to SOC fractions, climate
(i.e., mean annual temperature [MAT] and mean annual precipitation minus potential
evapotranspiration [MAP-PET]), carbon (C) input (i.e., net primary production [NPP]),
and soil property data synthesized from 72 published studies, along with data we
generated from the National Ecological Observatory Network soil pits (n=901 total
observations). To assess the utility of investigating POC and MAOC separately in
understanding SOC storage controls, we then compared these results with another
path analysis predicting bulk SOC storage. We found that POC storage is negatively
related to MAT and soil pH, while MAOC storage is positively related to NPP and
MAP-PET, but negatively related to soil % sand. Our path analysis predicting bulk SOC
revealed similar trends but explained less variation in C storage than our POC and
MAOC analyses. Given that temperature and pH impose constraints on microbial de-
composition, this indicates that POC is primarily controlled by SOC loss processes. In
contrast, strong relationships with variables related to plant productivity constraints,
moisture, and mineral surface availability for sorption indicate that MAOC is primarily
controlled by climate-driven variations in C inputs to the soil, as well as C stabilization
mechanisms. Altogether, these results demonstrate that global POC and MAOC stor-
age are controlled by separate environmental variables, further justifying the need to
quantify and model these C fractions separately to assess and forecast the responses

of SOC storage to global change.
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1 | INTRODUCTION

Maintaining and increasing soil organic carbon (SOC) stores is crucial
to mitigating climate change and to enhancing the soil's capacity to
provide essential ecosystem services, including nutrient recycling
and maintenance of plant productivity. As such, it is imperative that
we develop an advanced understanding of the environmental con-
ditions under which SOC is most vulnerable to loss, as well as its
responses to deliberate management practices aimed at increasing
SOC storage. Although we can now identify how drivers of SOC
storage, including climate (Jobbagy & Jackson, 2000), carbon (C) in-
puts, and soil properties (Hassink, 1997; Six et al., 2002) operate on
avariety of spatial scales (Wiesmeier et al., 2019), we lack a quantita-
tive framework of hierarchical controls on SOC storage that incorpo-
rates its conceptualization into separate fractions. Such knowledge
could give us a more specific understanding of how different forms
of SOC can be gained or can be lost across multiple ecosystem types,
allowing us to better target “multi-pool management” practices
(Angst et al., 2023) towards increasing or maintaining SOC storage
in different fractions.

Conceptualizing SOC into particulate (POC) and mineral-
associated organic carbon (MAOC) fractions can be particularly
useful as a first step in building a more comprehensive understand-
ing of global controls on SOC formation and persistence (Cotrufo
& Lavallee, 2022; Lavallee et al., 2020). Particulate organic C is
formed via fragmentation of structural plant inputs and is primar-
ily protected by physical occlusion in aggregates (or in the case of
pyrogenic C, through chemical recalcitrance). Limited protection
from decomposition results in POC having relatively short mean res-
idence times (von Litzow et al., 2007), except in locations where
decomposition is limited by physical or physiological constraints on
microbial activity (Cotrufo & Lavallee, 2022) where POC is found
to accumulate (Herndon et al., 2017). In contrast, MAOC is formed
via sorption of microbial necromass and decomposition products,
as well as soluble plant inputs, to soil mineral surfaces (Haddix
etal., 2016; Kallenbach et al., 2016; Liang et al., 2019). These mineral
bonds make MAOC relatively inaccessible to microbial decomposi-
tion, leading to, on average, longer mean residence times than POC
(von Litzow et al., 2007). Given their distinct mechanisms of forma-
tion and persistence, it is likely that global POC and MAOC storage
are controlled by contrasting environmental variables.

Climate may be the primary driver of both POC and MAOC stor-
age because of its effects on factors that influence the amount of C
that enters (i.e., C inputs) and leaves the soil (i.e., C outputs; Cotrufo
et al., 2021). For instance, both temperature and moisture are im-
portant controls on annual C inputs to soil (i.e., net primary produc-
tion [NPP]; Churkina & Running, 1998), with increased C inputs often
leading to greater SOC storage (Lajtha et al., 2014; Luo et al., 2017).
While we lack an understanding of how C inputs separately affect
POC and MAOC storage, MAOC can be expected to be more reflec-
tive of Cinputs than POC, due to POC's lack of soil matrix protection
from decomposition. Independent of inputs, climate may act as an
additional control on SOC storage through its effects on microbial

activity constraints (Cotrufo & Lavallee, 2022). For instance, POC
may be particularly sensitive to climate-driven variations in decom-
position (Conant et al., 2011). Temperature and moisture are key
controls on microbial activity, with higher temperatures leading to
accelerated decomposition (Schimel, 2018), especially for complex
structural compounds that require higher activation energy to de-
compose (Davidson & Janssens, 2006) and when optimum soil mois-
ture levels increase microbial access to substrates through increased
diffusion (Schimel, 2018). As such, we may expect lower POC stor-
age in warm compared to cold ecosystems, especially when microbial
access to substrates is limited by low diffusion under dry conditions.
Additionally, moisture may serve as a direct control on MAOC stor-
age through its effects on dissolved organic carbon (DOC) leaching.
As plant-derived DOC can make up nearly half of MAOC storage
(Angst et al., 2021), leaching of DOC due to high moisture may con-
tribute to greater MAOC stores (Haddix et al., 2020), especially in
ecosystems where the majority of MAOC is plant-derived. However,
little work has focused on how temperature, moisture, and C inputs
interact with one another to control POC and MAOC storage, espe-
cially at large spatial scales.

In addition to climate, soil physicochemical properties may act as
a further control on POC and MAOC storage. For instance, strong
associations with soil mineral surfaces may mean that the capacity
of the soil to form mineral bonds with organic C molecules is an ad-
ditional control on MAOC storage, with higher silt and clay contents
leading to greater storage of MAOC (Hassink, 1997; Six et al., 2002).
Other physicochemical properties, including exchangeable cal-
cium (Ca) and iron (Fe) and aluminum (Al) hydroxides, may operate
as additional controls on MAOC storage (King et al., 2023; Kirsten
et al., 2021; Rowley et al., 2021), whose importance to C storage
may be mediated by soil moisture and pH (Rasmussen et al., 2018).
pH may also control POC storage through its inhibitory effects on
microbial activity. Like cold temperatures, low pH can slow microbial
decomposition (Rousk et al., 2009) and may contribute to greater
POC storage in acidic soils. However, little work has investigated the
extent to which these soil properties interact with our hypothesized
overarching climatic controls in determining global patterns of POC
and MAOC storage.

To identify hierarchical controls on global C storage, we syn-
thesized POC and MAOC fraction data from 72 existing studies
and databases, along with SOC fraction data we generated from
the National Ecological Observatory Network (NEON) “megapit”
soils (Hinckley et al., 2016). We included studies conducted in a
diversity of climate and land cover types, with the goal of identi-
fying controls on POC and MAOC that are generalizable across a
variety of ecosystems. We aimed to assess the extent to which cli-
mate, NPP, and soil properties directly versus indirectly control C
storage in POC, MAOC, and bulk SOC. Based on the observations
described above, we broadly hypothesized that POC and MAOC
storage would be governed by distinct, climate-mediated environ-
mental controls (Cotrufo et al., 2021), with POC being primarily
controlled by C loss processes related to microbial activity con-
straints, and MAOC being primarily controlled by a combination
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of C input limitations and soil properties related to C stabiliza-
tion. Additionally, we hypothesized that linking environmental
variables to POC and MAOC would exhibit greater utility in un-
derstanding global patterns of C storage than linking the same
variables to bulk SOC alone.

2 | MATERIALS AND METHODS

2.1 | Global synthesis of particulate and MAOC
data

We constructed an observational dataset of POC and MAOC by
conducting a comprehensive search on Google Scholar using vari-

» o«

ous combinations of keywords including “soil carbon,” “soil organic

» o«

matter,” “particulate and mineral-associated,” “light and heavy frac-
tions,” “density fractionation,” and “size fractionation,” then collat-
ing all relevant data from published studies and existing databases
(Figure 1). We chose to use Google Scholar as it may have greater
geographic representation than other search engines (Harzing &
Alakangas, 2016; Martin-Martin et al., 2018). For studies that frac-
tionated soil by size or density only, we defined POC as >53-63um
in size or <1.65—1.85gcm'3 in density, and MAOC as <53-63um or
>1.65-1.85 gcm‘3. For studies that fractionated soil by both size and

density, we considered POC to be <1.65—1.85gcm'3, and MAOC

ST e L

to be >1.65-1.85gcm™ and <53-63 pm. Heavy coarse fraction
(>1.65—1.85gcm'3 and >53-63um; sensu Leuthold et al., 2022) C
and occluded SOC fraction (in the cases in which POC was separated
by density before dispersion) data were retained for calculations of
total SOC (see Section 2.4, below), but excluded from analyses per-
formed on fraction data only. This was done to maintain as much
consistency in SOC fraction definitions as possible, as the fractiona-
tion schemes of the studies included in our synthesis varied with
both study and ecosystem type. While we focused our synthesis
primarily on observational studies, we also included data from con-
trol plots (i.e., not receiving experimental treatments) of relevant
field studies involving experimental N deposition, CO, enrichment,
climate manipulations, etc. However, for experimental studies in
agricultural systems where treatment represented a modified man-
agement practice, we included all reported data to account for the
fact that management practices vary across the landscape, and may
generate different environmental controls (e.g., NPP, pH, etc.) on
POC and MAOC storage.

2.2 | NEON data generation

We supplemented our synthesis with additional SOC fraction data we
generated by fractionating “megapit” mineral soil samples from the
NEON (Hinckley et al., 2016). Soil samples were taken from megapits
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FIGURE 1 Geographic location of all data points included in our synthesis (n=901). Different colors represent the land cover type
assigned to each point based on author-reported plant community composition and management information. For croplands, n=312; for
forests, n=233; for grasslands, n=301; for shrublands, n=35; for tundra, n=7; and for wetlands, n=10. The distribution of our included
data across Koppen-Geiger Climate Classification Zones (Beck et al., 2018) can be found in Figure S1. Map lines delineate study areas and do

not necessarily depict accepted national boundaries.
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or large, temporary soil pits dug to either 2m depth or bedrock at
each of NEON's 47 terrestrial research sites, divided by horizon, then
homogenized and characterized according to standard NEON proto-
cols. A subsample of each of the 2-mm sieved, air-dried megapit soil
samples was shipped to Colorado State University, where they were
de-quarantined for 16 h at 116°C according to APHIS regulation. After
de-quarantining, we fractionated all soil samples by both density
(1.85gcm™) and size (53 um) after mechanical dispersion as described
in Zhang et al., 2021. Briefly, 5.5-6.0g subsamples were first shaken
in deionized (DI) water for 15min, then centrifuged at 3400rpm.
Dissolved organic matter was decanted over a 20 pum nylon filter and
stored at -20°C. Any particulate material on the filter was set aside
as part of the light particulate organic matter fraction (<1.85gcm™).
Twelve glass beads and 1.85gcm™ sodium polytungstate (SPT) were
added to the soil residue and shaken for 18h to disperse aggregates.
Soils were then centrifuged for 30min at 3400rpm, and the remain-
ing light particulate organic matter was aspirated onto a 20pm nylon
filter. The pellet (>1.85gcm'3) was rinsed multiple times to remove
any remaining SPT before wet-sieving to separate it into heavy
coarse organic matter (>53um), and mineral-associated organic mat-
ter (<53 pm). All solid fractions were oven-dried at 60°C, then finely
ground to ensure homogenization before being analyzed for %C on an
elemental analyzer (Costech ECS 4010; Valencia, CA, USA). Samples
that contained carbonates according to the NEON database were
acid-fumigated to remove carbonates (Harris et al., 2001), then re-
analyzed to obtain organic C values. For this study, we used the light
POC and MAOC values from topsoil samples only (see Section 2.4,
below), for a total of 47 observations for each of the fractions, as well
as bulk SOC.

2.3 | Auxiliary data incorporation

In addition to SOC fraction data, we incorporated auxiliary data
including mean annual temperature (MAT; °C), mean annual pre-
cipitation (MAP; mm), potential evapotranspiration (PET; mm),
aboveground NPP (Mg Chayear™) as a proxy for annual soil C in-
puts, soil texture and pH, bulk density, sampling depth, plant com-
munity composition, and any applicable management practices
into our synthesized dataset. In all cases, we used the site data as
reported in publications or contained within the NEON database.
However, if specific site data types such as MAT, MAP, PET, and
NPP were not available, we used reported geographic coordinates
to extract equivalent 20-year average MAT and MAP values from
WorldClim 2.0 (Fick & Hijmans, 2017), and 20-year average PET
and NPP values from MODIS (data products MOD16A3GF.061 and
MOD17A3HGF.006, respectively; Running et al., 2021; Running &
Zhao, 2019). We subtracted PET from MAP to create a metric of ef-
fective moisture (MAP-PET; mm; sensu Kramer & Chadwick, 2018).
Additionally, we assigned one of six broad land cover types to each
soil profile (i.e., cropland, forest, grassland, shrubland, tundra, wet-
land; Figure 1) based on reported plant community composition and
management information.

2.4 | Data processing

After compiling both synthesis and NEON megapit data, we used
reported SOC stocks, soil depth, and bulk density values to convert
all SOC fraction stocks to SOC fraction concentrations (g fraction-C
kg soil™). As mentioned above, we did not include organic C in heavy
coarse organic matter or in occluded SOC fractions in our down-
stream analyses of fraction data. However, we retained and used any
heavy coarse organic matter or occluded SOC fraction data in cal-
culations of g SOC kg soil ™ (i.e., sum of all fraction C values), as well
as calculations of MAOC relative to bulk SOC storage (i.e., fyaoc: 8
MAOC kg soil /g SOC kg soil™). While our original intent was to
test for variations in SOC storage drivers throughout the soil profile,
there was not enough subsoil data available at the global scale to
include subsoils in our downstream statistical analyses. As such, we
chose to focus our analysis specifically on topsoil. We considered the
first sampled depth increment or horizon reported in each study to
be representative of topsoil, and applied data from that layer only in
downstream analyses. Depending on study site and sampling design,
topsoils included both O and A horizons, and spanned different soil
depths (Figure S2). This was done to minimize biases associated with
variation in maximum topsoil sample depth across our synthesized
dataset, as methods of normalizing data to a standardized depth
(e.g., Abdalla et al., 2018; Hou et al., 2020; Ogle et al., 2005) across
all our data points diluted the effects of driving variables known to
change along the soil profile less than, or differently from, SOC (data
not shown). After filtering our data so that it contained only topsoil,
we averaged all data collected at the plot level such that we had one
data point per site. At the end of all data processing, our final dataset
included 901 total data points (i.e., n=901 for each SOC fraction as
well as bulk SOC) from 72 studies (Figure 1; Figure S1; Table S1; see

Data Sources, below).

2.5 | Statistical analyses

We first assessed broad relationships and patterns among our data
using simple linear regressions. Specifically, we used linear regres-
sions to test for relationships of MAT and MAP-PET with NPP, as
well as relationships of MAT, MAP-PET, NPP, soil pH, and % sand
with POC, MAOC, bulk SOC, and fy;,oc- We did not include multi-
ple factors or any interactive effects in these simple regressions, such
that we tested for the effects of only one explanatory variable per
regression. We then used results from these analyses and literature-
supported hypotheses to conduct path analyses investigating direct
and indirect controls on C storage in POC, MAOC, and SOC using the
R package ‘lavaan’ (Rosseel, 2012). Given that many known drivers of
soil C storage interact with one another, we chose to use path analy-
ses because of their ability to test for mediation, as well as direct and
indirect effects of variables on outcomes of interest (Shipley, 2016).
We created two separate path analyses, one which predicted POC
and MAOC storage and one which predicted storage in bulk SOC.
The fit of different iterations of these path analyses was assessed
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using Chi square, the comparative fit index (CFI>.9), the root mean
square error of approximation (RMSEA<.08), and the standardized
root mean square residual (SRMR <.08; Hooper et al., 2008). Our final
path analysis structures that exhibited the best fits allowed for direct
effects of MAT, MAP-PET, NPP, pH, and % sand, as well as indirect
effects of MAT and MAP-PET via NPP, on POC and MAOC storage,
or bulk SOC storage. We originally included topsoil sampling depth as
a covariate in our analyses to account for differences in it within and
across studies but removed it due to poor fit. We assessed effects
of our environmental variables (i.e., MAT, MAP-PET, NPP, pH, and %
sand) by assigning coefficients to individual pathways, then multiply-
ing coefficients to calculate indirect effects (e.g., for indirect effects
of MAP-PET, we multiplied the effect of MAP-PET on NPP by the
effect of NPP on MAOC). We summed direct and indirect path coef-
ficients to estimate total effects of each variable on POC, MAOC and
bulk SOC storage. In addition to determining controls on SOC storage,
we compared our POC and MAOC fraction path analysis with our bulk
SOC analysis to assess the utility of separating SOC into POC and
MAOQOC in understanding global patterns of SOC formation and persis-
tence. We also assessed differences in fy,,o among land cover types
using Welch's one-way analysis of variance to account for uneven
sample size among land cover types, and further investigated our sig-
nificant test result using Games-Howell post-hoc pairwise compari-
sons using the R package ‘rstatix’ (Kassambra, 2023). All analyses were
carried out in R version 4.1.1 (R Core Team, 2021).

3 | RESULTS

3.1 | Broad relationships between climate, NPP,
soil properties, and POC, MAOC, and bulk SOC
storage

We first explored global patterns of SOC formation and persistence
by conducting linear regressions between environmental variables
and POC, MAOC, and SOC storage, as well as relationships between
climate and NPP. We found significant, positive relationships be-
tween NPP and both MAT and MAP-PET (Figure S3a,b; Table S2),
reflecting expected associations between climate and NPP. We also
found significant relationships between POC and MAT, MAP-PET,
NPP, and pH. MAP-PET and NPP were positively associated with
POC, while MAT and pH were negatively associated with POC stor-
age (Figure S3c-g; Table S2). Environmental controls on MAOC in-
cluded MAP-PET, NPP, and % sand, with MAP-PET and NPP being
positively related, and % sand being negatively related to global
MAOC storage (Figure S3h-I; Table S2). All studied environmental
variables were associated with bulk SOC. Specifically, MAP-PET and
NPP were positively associated with SOC, while MAT, pH, and % sand
were negatively associated with bulk SOC storage (Figure S3m-q;
Table S2). We note that the significance of the above relationships
may be driven in part by high sample size, as many relationships had

relatively small r? values (i.e.,.0111-.221).
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3.2 | Direct and indirect controls on global POC,
MAOC, and bulk SOC storage

To assess direct and indirect effects of the above environmental
variables on soil C, we constructed separate path analyses to pre-
dict C storage in POC and MAOC and bulk SOC (Figures 2 and 3).
Our fraction path analysis fit the data well (132’n=649): 1.239,p=.538;
CFl=1.0; RMSEA=.068; SRMR=.007; Hooper et al., 2008), and ex-
plained 35.8% of the variation in NPP, 12.3% of the variation in POC,
and 20.5% of the variation in MAOC (Figure 2; Table S3). Consistent
with our linear regression analyses, NPP was positively predicted
by both MAT and MAP-PET. Global POC storage was directly pre-
dicted by MAT and pH, both of which had a negative effect on POC.
Contrary to our linear regressions, however, neither MAP-PET nor
NPP emerged as a significant predictor of POC, potentially because
path analysis calculates partial regression coefficients that account
for correlations and covariance between multiple factors, which
likely reduced the already weak relevance (i.e., low r?) of our linear
regression coefficients. Global MAOC storage had direct, positive
relationships with MAP-PET and NPP (and as such, indirect relation-
ships with MAT and MAP-PET), as well as a direct, negative relation-
ship with % sand (Figure 2; Table S3).

Our SOC path analysis revealed similar trends in global C stor-
age. Like our fraction analysis, our SOC path analysis fit our data
well ()((22’n=649):1.239, p=.538; CFI=1.0; RMSEA=.0; SRMR=.007;
Hooper et al., 2008) and explained 35.8% of the variation in NPP,
with both MAT and MAP-PET once again having direct, positive ef-
fects on NPP (Figure 3; Table S4). However, this path analysis ex-
plained only 12.3% of the variation in global SOC storage, which
was predicted by all included exogenous variables. MAT, pH, and %
sand had direct, negative effects on SOC storage, while MAP-PET
and NPP had direct, positive effects on SOC. In addition, MAT and
MAP-PET had positive, indirect effects on SOC via NPP (Figure 3;
Table S4).

3.3 | Relationships between f,,,oc, €nvironmental
variables, and land cover type

We next aimed to understand the extent to which the above en-
vironmental controls are reflected in the fraction of C stored in
MAOC relative to total bulk SOC (i.e., f,5oc), as well as across land
cover types that are representative of those controls. MAT, NPP,
and soil pH were positively related to fy,,oc While soil % sand was
negatively related (Table S5; Figure S4), though these relationships
were relatively weak (i.e., in all cases, r?<.1). We did not find any
relationships between MAP-PET and f, o (Table S5; Figure S4).
Additionally, land cover was a significant predictor of fy,,qoc
(F5 37901 =58.024; p < 2e-16; Figure 4), with croplands having higher
fuaoc than all other land cover types (Table Sé). In addition, both
shrublands and grasslands had higher f,,,o than forests, wetlands,

and tundra (Table Sé6). Notably, most land cover types spanned
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FIGURE 2 Results from path analysis showing direct and indirect effects of mean annual temperature (MAT; °C), mean annual
precipitation minus potential evapotranspiration (MAP-PET; mm), net primary production (NPP; Mg Chatyear™), soil pH, and % sand on
global particulate (POC; g C kg soil™*) and mineral-associated organic carbon (MAOC; g C kg soil™?) storage (a). Green and red arrows indicate
significant positive and negative effects, respectively, of the variables described above on POC and MAOC storage. Grey, dashed arrows
indicate non-significant paths. The widths of the arrows correspond to standardized path coefficients, shown in numbers above each arrow.
Standardized total (i.e., direct plus indirect) effects of the variables described above on POC and MAOC storage are shown in (b) and (c). In
all cases, n.s. indicates non-significant, ***p <.001. Full results and output are provided in Table S3.
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FIGURE 3 Results from our path analysis showing direct and indirect effects of mean annual temperature (MAT; °C), mean annual
precipitation minus potential evapotranspiration (MAP-PET: mm), net primary production (NPP; tons C ha™*year™®), soil pH, and % sand on
global bulk soil organic carbon (SOC; g C kg soil }) storage (a). Green and red arrows indicate significant positive and negative effects of the
variables described above on bulk SOC storage. The widths of the arrows correspond to standardized path coefficients, shown in numbers
above each arrow. Standardized total (i.e., direct plus indirect) effects of the variables described above on bulk SOC storage are shown in (b).
In all cases, n.s. indicates non-significant, *p <.05, **p <.01, and ***p <.001. Full results and output are provided in Table S4.
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FIGURE 4 Comparison of the fraction of C stored in mineral-
associated organic carbon (MAOC) relative to bulk soil organic
carbon (SOC), represented as fy,,oc (%; (g MAOC kg soil™'/g SOC
kgsoil™)x 100), across land cover types (cropland n=2312; forest
n=233; grassland n=301; shrubland n=235; tundra n=7; wetland
n=10). Solid black dots inside each box indicate group means, and
letters above bars indicate significant differences between groups.
Full post-hoc testing outputs are provided in Table Sé. Additional
information on the distribution of our mean annual temperature,
mean annual precipitation minus potential evapotranspiration, net
primary production, soil pH, and % sand data across land cover
types is provided in Figure S5 and Table S7.

large ranges of fyyaoc, Which declined from >75% in croplands to
<50% in tundra (Figure 4).

4 | DISCUSSION

In this study, we sought to identify hierarchical controls on global
POC, MAOC, and bulk SOC storage by applying path analyses to a
large dataset synthesized from published papers and data we gen-
erated from NEON megapit soils. We also evaluated the utility of
C fractionation in understanding global SOC storage patterns by
comparing our POC and MAOC fraction path analysis to our bulk
SOC analysis. Overall, climate and soil properties (i.e., pH and tex-
ture) emerged as the primary controls on SOC, with climate exerting
both direct as well as indirect controls on SOC through controlling
plant productivity. Separating SOC into POC and MAOC improved
our ability to identify a hierarchy of controls on SOC storage, as
demonstrated by identification of distinct environmental drivers of
POC and MAOC storage, along with greater % variation explained in
our SOC fraction path analysis compared to our bulk SOC analysis.
We found that MAT and soil pH were dominant controls on POC
storage, while MAP-PET, NPP, and % sand were dominant controls
on MAOC storage. These results are echoed in our bulk SOC path
analysis, which revealed a similar structure of controls. These results
were also echoed in our analysis of f,,oc across land cover types,
with land cover types that tend to experience weaker constraints on
SOC decomposition (i.e., croplands) having a greater fraction of SOC
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stored in MAOC than types that experience stronger constraints
(i.e., wetlands and tundra). Altogether, these results demonstrate
that POC and MAOC are controlled by separate environmental vari-
ables, with POC storage being primarily controlled by decomposi-
tion (i.e., C output) limitations, and MAOC being primarily controlled
by climate-driven plant productivity (i.e., C input) limitations, as well
as SOC stabilization.

Consistent with our original hypotheses, we found that global POC
storage is controlled primarily by factors that impose limitations on C
loss processes (Figure 3; Table S3). The two variables most closely
related to POC storage, temperature and pH, are strong controls on
microbial activity, with both lower pH (Rousk et al., 2009) and lower
temperatures (Schimel, 2018) contributing to slower decomposition.
These findings are supported by studies conducted at smaller spatial
scales, with low pH contributing to greater POC storage across the
United States (Yu et al., 2022) and Europe (Lugato et al., 2021), as well
asincreased temperatures leading to greater POC compared to MAOC
losses in lab incubations (Benbi et al., 2014). Lower POC storage under
conditions that promote microbial decomposition is consistent with
this SOC fraction's turnover time (von Liitzow et al., 2007) and sen-
sitivity to disturbance (e.g., Lobe et al., 2011; Poeplau et al., 2017
Song et al., 2014; Thaysen et al., 2017; Wu et al., 2023), whereby lit-
tle to no protection from microbial attack makes POC reflective of
microbial physical and physiological access constraints (Cotrufo &
Lavallee, 2022). This shows that POC may be most vulnerable to C
losses from the soil, despite being formed primarily from structural
plant inputs, and therefore represents the SOC fraction that requires
protection from climate change and management disturbance, such
as tillage or draining of wetlands (Ashagrie et al., 2007; Bouajila &
Tahar, 2010; Lavallee et al., 2019).

We found that global MAOC storage is controlled by a differ-
ent set of environmental controls from POC, including % sand,
NPP, and MAP-PET (Figure 3; Table S3). This indicates that MAOC
is primarily controlled by climate-driven limitations on C inputs,
moisture, and stabilization potential. Soil % sand was the largest
control on MAOC. This relationship is broadly supported by the
literature, with lower sand (and therefore greater silt and clay)
contents contributing to greater MAOC storage (Hassink, 1997;
Six et al., 2002). Our additional observed relationship between
MAOQOC storage and MAP-PET is also consistent with previous find-
ings, whereby MAP-PET was found to control the abundance of
C retained by reactive minerals (Kramer & Chadwick, 2018). This
association with effective moisture may be reflective of the direct
sorption pathway of MAOC formation, with increased moisture
leading to greater leaching of soluble plant inputs that are capable
of sorbing directly to soil mineral surfaces (Haddix et al., 2020).
Though large portions of the MAOC pool can be formed from
microbial decomposition products and necromass (Huang
et al., 2019; Kallenbach et al., 2016; Liang et al., 2019), this direct
pathway of MAOC formation from plant compounds is increas-
ingly recognized as a significant pathway of MAOC formation, es-
pecially in wet environments (Angst et al., 2021; Yu et al., 2022).
Limitation on C inputs (i.e., NPP) represented another constraint
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on global MAOC storage. We interpret this relationship between
MAOC and plant C inputs as the result of MAOC's protection from
microbial access, making it less vulnerable to types of disturbance
that accelerate decomposition and therefore more representa-
tive of C inputs to the soil than POC. Additionally, there could be
interactions between the soil matrix and plant productivity not
explored in this study that contribute to greater MAOC storage.
For instance, recent work indicates that increased soil mineral
capacity index (MCI) leads to both greater plant productivity and
MAOC storage (King et al., 2023). As Fe and Ca, key components
of this MCI, are essential plant nutrients and important for min-
eral stabilization, factors that promote plant productivity may also
promote MAQOC stabilization and storage (King et al., 2023; but
see Fuhrmann & Zuberer, 2021; Ramos et al., 2018). Similarly, in-
teractions between increased silt and clay content, soil moisture,
and plant productivity resulted in higher MAOC storage in dryland
soils (Mao et al., in review).

To our knowledge, this analysis is one of the first to assess global,
hierarchical controls acting on both POC and MAOC storage (though
recent work has investigated the roles of climate and soil minerology
in determining MAOC storage and saturation; Georgiou et al., 2022).
However, the structure of controls we identified, particularly with
regards to climate as an overarching driver of POC and MAOC stor-
age, is generally consistent with studies conducted at smaller spatial
scales. For instance, climate and C inputs exerted the greatest influ-
ence on total bulk SOC and POC:MAOC ratio, as well as change in
bulk SOC storage, in Australian croplands (Luo et al., 2017). Increased
moisture has also been associated with greater MAOC persistence
at continental (Heckman et al., 2023) and global scales (Heckman
et al., 2022), though in contrast to recent work on global patterns of
MAOC saturation, we do not find that MAT is a significant control
on global MAOC storage (Georgiou et al., 2022), potentially due to
differences in data analysis or in distribution of data points among
climate zones (Figure S1) between our studies. Our work moves
beyond the above studies by expanding our understanding of SOC
storage controls through explicit incorporation of both POC and
MAOQOC, the former of which is relatively understudied in comparison
to the latter, as well as by including a global distribution of climate,
soil, and vegetation types.

In addition to identifying global controls on POC and MAOC
storage, we compared our SOC fraction to our bulk SOC path anal-
ysis. While we were able to identify similar effects of climate, C in-
puts, and soil physicochemical properties on SOC storage when we
considered SOC as a single pool, the effects of these variables on
SOC were stronger in our fraction path analysis than in our bulk SOC
analysis. Additionally, our bulk SOC path analysis explained less vari-
ation in SOC storage than our fraction path analysis (12.3% for bulk
SOC vs. 20.5% for MAOC; Figures 3 and 4; Tables S3 and S4). This
demonstrates the utility of separating SOC into distinct fractions to
better understand controls on its formation and storage (Lavallee
et al., 2020). In this study, separating SOC into POC and MAOC not
only conferred greater explanatory power, but also revealed that
these separate fractions are controlled by distinct environmental

variables—a finding that could not be realized when considering SOC
as a single pool. Building upon the findings of previous syntheses
that demonstrate that SOC is not created equal, and that its compo-
nent fractions respond differently to global change and management
(Heckman et al., 2022; Prairie et al., 2023; Rocci et al., 2021), this
study indicates that separating SOC into POC and MAOC improves
our ability to understand and quantify environmental controls on
SOC storage at the global scale. As such, we continue to advocate
that SOC is not studied as a unique pool. In particular, as the field has
gained robust knowledge of SOC dynamics from its separation into
POC and MAOC, we advocate for further separation of SOC into, for
example, free versus occluded POC and exchangeable versus stable
MAOQC, as well as further analyses on how fractionation scheme may
influence predictions of SOC fraction formation and persistence
(e.g., Leuthold et al., in review; Poeplau et al., 2018). Doing so could
advance our understanding of how processes like aggregate inclu-
sion as well as sorption and desorption of DOC to mineral surfaces
impact soil C storage, thus improving our ability to predict responses
of SOC to global change.

Like our bulk SOC path analysis, our comparisons of SOC storage
in MAOC relative to total bulk SOC (i.e., fyysoc) across our included
environmental variables and across land cover types dovetail our
proposed understanding of POC as controlled by C loss processes.
We found that land cover types thought to experience weaker con-
straints on microbial decomposition, such as croplands (e.g., due to
the effects of tillage, Balesdent et al., 2000; Lupwayi et al., 2004 and
optimal nutrient status, Parihar et al., 2019) had a greater propor-
tion of their total SOC pool stored in MAOC than types that tend
to experience stronger decomposition constraints, such as wetlands
or tundra (i.e., due to anaerobic conditions (Huang et al., 2020) or
cold temperatures (Frgseth & Bleken, 2015; Figure 4; Table S5). This
is mirrored in our linear regressions between MAT, pH, and fyysqc»
whereby lower temperatures and lower pH confer greater propor-
tions of SOC stored as POC (Figure S3; Table S5). These findings
build upon Sokol et al., 2022 through more explicit incorporation of
land cover types including wetlands and tundra, who also found that
croplands and polar regions tend to have higher and lower fy qc,
respectively, than both grasslands and forests. Given the large vari-
ance in fyaoc Within land cover types, especially in types that span
a wide range of climatic conditions (e.g., grasslands and forests), this
trend suggests that constraints on C inputs and losses from the soil
may be a larger control on SOC fraction storage than C input quality.
However, the large overlap in fy,,oc between forests and grasslands
may also be explained by large differences in input quality within
land cover types, especially for forests (Krishna & Mohan, 2017;
Pérez-Harguindeguy et al., 2000). While more work is needed to
confirm the effects of plant input quality on f,,oc, these findings
generally support the hypothesis that climate, and its effects on C
inputs and decomposition-related SOC losses, represent overarch-
ing controls on SOC formation and persistence at the global scale
(Cotrufo et al., 2021).

Moreover, within the context of ongoing calls to focus re-
search efforts on building new, stable SOC to meet climate change
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mitigation goals (Bradford et al., 2019; Rumpel et al., 2018; Vermeulen
et al., 2019), our findings highlight the importance of not just accruing
new SOC, but also preventing losses of existing SOC, particularly C
that is stored in POC. Our analyses support the notion that POC is
highly sensitive to loss (Lobe et al., 2011; Poeplau et al., 2017; Song
et al., 2014; Thaysen et al., 2017; Wu et al., 2023), and demonstrate
that ecosystems that are especially vulnerable to disturbances associ-
ated with global change (e.g., wetlands, tundra) harbor SOC stores that
are mostly comprised of POC (e.g., Herndon et al., 2017; Mirabito &
Chambers, 2023; Sousa et al., 2015; Xu et al., 2009). Given that C loss
processes exert a much greater control over POC than C inputs, and
that the soils with the highest C contents (e.g., wetlands and tundra)
have high POC stores, large amounts of SOC may be very difficult to
rebuild if lost, particularly under a warming climate. As such, a focus
on building new SOC, especially in the form of MAOC, is not enough
(sensu Angst et al., 2023)—we claim that developing incentives that
maintain current SOC stores in natural lands is equally essential to pre-
venting the negative effects of climate change.

Despite our above findings, we note that our path analyses ex-
plained only 12.3%, 20.5%, and 12.3% of the variation in POC,
MAOQC, and bulk SOC storage, respectively (Figure 3; Table S3),
indicating that the climate, C input, and soil property variables we
included in our analyses were not sufficient to describe global pat-
terns of SOC storage. Several recent studies demonstrate that ad-
ditional soil physicochemical properties not included in this study,
especially exchangeable Ca and Fe- and Al-hydroxides, are better
predictors of MAOC storage than % sand alone (King et al., 2023;
Kirsten et al., 2021; Rowley et al., 2021). Microbial traits includ-
ing mycorrhizal type (Craig et al., 2018; Horsch et al., 2023; Keller
et al.,, 2021) and transformation efficiency may be additional
modulators of both SOC fraction storage and fy,,oc, though the
majority of studies on microbial transformations have focused
primarily on their effects on microbial-derived MAOC (e.g., Craig
et al., 2022; Ernakovich et al., 2021; Kallenbach et al., 2016;
Liang et al., 2019). While satellite-based NPP data is often used
as a proxy for C inputs to the soil (e.g., Chen et al., 2021; Eclesia
et al., 2016; He et al., 2023), it may not be as applicable to agricul-
tural systems, where depending on management strategy, plant
residues are often removed from the soil. Additionally, though land
cover type may be an indirect indicator of C input quality, specific
litter quality traits have demonstrated effects on C storage in POC
and MAOC (e.g., Cordova et al., 2018; Craig et al., 2022; Haddix
et al., 2016), and may represent a secondary control on SOC frac-
tions, after climate-driven controls. Despite their relevance to
this study, there was not enough exchangeable Ca, Fe- and Al-
hydroxide, microbial, or litter quality data available in conjunc-
tion with C fraction data at the global scale to include them in
our synthesis, prohibiting us from testing their effects on global C
storage. Furthermore, there was relatively low representation of
land cover types including tundra, wetlands, and shrublands in our
dataset. In addition to potentially contributing to the relatively low
explanatory power of our path analyses, this limited our ability to
run more comprehensive analyses of land cover-specific controls
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on C storage. In combination with an additional lack of standard-
ized data reporting, particularly with regards to SOC and N frac-
tion data, all of the above prevented us from more robustly testing
several of the hypotheses presented in the In-N-Out framework
(Cotrufo et al., 2021), as was our original intent. Given the diffi-
culties of compiling large datasets for synthesis and meta-analysis
projects, we echo recent calls in advocating for more standard-
ized collection and reporting of fraction and ancillary data in SOC
studies (Todd-Brown et al.,, 2022). Successful harmonization of
SOC fraction data is an important next step in enabling more com-
prehensive testing of hypotheses related to SOC storage and N
recycling, including the broad, global controls we aimed to test in
this work, as well as ecosystem-specific controls that aid in devel-
opment of site-specific strategies to prevent C loss. Both types of
knowledge are critical to realizing the potential of soils to mitigate
climate change and alleviate food insecurity.

In conclusion, our analyses revealed that global POC and MAOC
storage are driven by separate environmental variables. Specifically,
global POC storage is controlled primarily by C loss processes, while
global MAOC storage is primarily controlled by constraints on C in-
puts and C stabilization mechanisms. These resulted in land cover
types that tend to experience more rapid decomposition having a
greater portion of their total soil C pool stored in MAOC. Despite
these findings and demonstrating the effectiveness of fraction-
ation in understanding global patterns of SOC storage, we were
only able to explain 12.3% and 20.5% of the variation in POC and
MAOC storage. As such, our work highlights the need for increased
measurement of variables, including exchangeable Ca, Fe-, and Al-
hydroxides, various types of microbial data, as well as fraction N,
when conducting studies. Additionally, we invite the soils commu-
nity to begin separating SOC into fractions beyond POC and MAOC,
with the goal of improving our understanding of the likely contrast-
ing behavior of free versus occluded POC and exchangeable versus
stable MAOC. We hope that this improved measurement, combined
with advancing soils data quality and reporting standards, will aid
in effective data harmonization that can enable the field to build
upon our findings. Doing so will allow us to develop the robust un-
derstanding of controls on soil C and N cycling needed to mitigate
climate change and ensure the soil can continue to provide essential

ecosystem services well into the future.
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