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Abstract
Croplands have been the focus of substantial investigation due to their considerable

potential for sequestering carbon. Understanding the potential for soil organic car-

bon (SOC) sequestration and necessary management strategies will be enabled with

accurate process-based models. Accurately representing crop growth and agricultural

practices will be critical for realistic SOC modeling. The MEMS 2 model incorpo-

rates a current understanding of SOC formation and stabilization, measurable SOC

pools, and deep SOC dynamics and is seen as a highly promising tool to inform

management intervention for SOC sequestration. Thus far, MEMS 2 has been devel-

oped to represent grasslands. In this study, we further developed MEMS 2 to model

annual grain crops and common agricultural practices, such as irrigation, fertiliza-

tion, harvesting, and tillage. Using four Ameriflux sites, we demonstrated an accurate

simulation of crop growth and development. Model performance was strong for sim-

ulating aboveground biomass (index of agreement [d] range of 0.89–0.98) and green

leaf area index (d from 0.90 to 0.96) across corn, soybean, and winter wheat. Good

agreement with observations was also achieved for net ecosystem CO2 exchange (d
from 0.90 to 0.96), evapotranspiration (d from 0.91 to 0.94), and soil temperature (d
of 0.96), while discrepancy with the available soil water content data remain (d from

0.14 to 0.81 at four depths to 100 cm). While we will continue model testing and

improvement, MEMS 2 (version 2.14) has now demonstrated its ability to effectively

simulate the growth of common grain crops and practices.

1 INTRODUCTION

Soil organic carbon (SOC) comprises a large portion of—
and therefore exerts a large influence on—the active carbon
(C) in the global C cycle (Janzen, 2004). Arable lands,

Abbreviations: AI, artificial intelligence; ET, evapotranspiration; GLAI,
green leaf area index; MAOC, mineral-associated organic carbon; NEE, net
ecosystem CO2 exchange; NPP, net primary production; POC, particulate
organic carbon; RMD, relative mean difference; RRMSE, relative root mean
square error; SOC, soil organic carbon; ST, soil temperature; SWC, soil
water content.
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which account for ∼12% of the Earth’s ice-free land area
(Ramankutty et al., 2008), have historically acted as a source
for atmospheric C due to the loss of SOC upon conversion
from native vegetation to arable agriculture (Guo & Gifford,
2002; Sanderman et al., 2017). In addition to these historic
SOC losses, ongoing soil C emissions contribute to about 32%
of total global greenhouse gas emissions from food systems
(Crippa et al., 2021). SOC loss threatens food security, given
the role of SOC in supporting crop yields (Amelung et al.,
2020; Oldfield et al., 2019). While arable lands, if managed
appropriately, have the potential to recover some of this SOC
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(Paustian et al., 2016), estimates attempting to quantify this
potential reveal enormous uncertainty, with global estimates
of soil C sequestration potential ranging from 0.06 to 0.61 Pg
C year−1 (Lal et al., 2018). This wide range of estimated SOC
sequestration in arable lands reflects, in part, the complex-
ity of the C cycle and ongoing challenges in constraining the
behavior of soil C in tools used to generate these forecasts.

Ecosystem models are a key tool to forecast the response
of SOC to different agricultural management scenarios (Don-
dini et al., 2009; Launay et al., 2021; Lugato et al., 2014). In
a rapidly increasing agricultural soil C market, model fore-
casts of agricultural SOC can strengthen hybrid approaches
to measurement, reporting, and verification to constrain esti-
mates of SOC gains from improved management (Oldfield
et al., 2022). Models representing up-to-date understandings
of SOC can also serve as tools for scientific inquiry and
hypothesis-testing. Both the robustness of model predictions
and utility for scientific inquiry, however, depend on inform-
ing models with current understandings of the mechanisms
governing SOC and its constituent components. While many
existing process-based ecosystem models simulate arable
lands (e.g., CENTURY [Parton et al., 1987], RothC [Coleman
& Jenkinson, 1996], DayCent [Parton et al., 1998], DNDC [Li
et al., 1992], and SALUS [Basso et al., 2006]), these models
rely on a conceptual framework of SOC as composed of pools
that cannot be measured, hindering model verification and
calibration. Many newer soil C models that incorporate mea-
surable SOC pools have been developed thus far for forests
(Sulman et al., 2017; Wang et al., 2020; Wieder et al., 2014;
Yu et al., 2020), grasslands (F. H. M. Tang et al., 2019; Zhang
et al., 2021), or a combination of natural systems (Abramoff
et al., 2022; Tifafi et al., 2018). While a small number of these
models use a foundation of observations from agricultural
systems (Abramoff et al., 2022; Woolf & Lehmann, 2019),
there is still a need to develop models that represent measur-
able SOC pools in order to represent agricultural management
and crop species, thereby meeting the modeling needs for
croplands outlined above.

Simulating SOC in arable lands with process-based mod-
eling relies on an accurate representation of crop growth,
as unharvested portions of crops provide the plant C inputs
that maintain SOC. Models designed to estimate crop growth,
usually with a focus on yield (Kollas et al., 2015), typically
perform well for this purpose by explicitly representing bio-
physical processes of crop development, such as biomass
production and partitioning, leaf area, nitrogen (N) and water
uptake, anthesis, and harvesting (Abrahamsen & Hansen,
2000; Jones et al., 2003; Keating et al., 2003; Stöckle et al.,
2003). To simulate crop growth, crop models are devel-
oped with in-season measurements to validate crop develop-
ment, including biomass and leaf area; when available, net
ecosystem exchange can aid in constraining soil-vegetation-
atmosphere C fluxes (Friend et al., 2007; Revill et al., 2019).

Core Ideas
∙ The MEMS 2 model was developed to simulate

annual crops and agricultural management.
∙ Validation showed the MEMS 2 can accurately

represent the growth and production of three major
crops at four sites.

∙ The simulated soil carbon pools were within the
range of reported values from field studies.

These models also represent crop responses to management,
including N fertilizer, irrigation, and tillage. Currently, there
exists a gap between these crop growth models and measur-
able SOC pools, as models so far have not been developed
to provide comprehensive simulation of the crop species and
management choices that moderate measurable SOC pools in
arable lands.

The MEMS 2.0 model (Zhang et al., 2021) is an ecosys-
tem soil C and N model that integrates multiple foundational
advances in our understanding of C and N dynamics between
plants, microbes, soil, and the atmosphere. The MEMS model
simulates and has been validated (Zhang et al., 2021) against
measured SOC pools of particulate organic carbon (POC) and
mineral-associated organic carbon (MAOC), which have been
proposed as distinct SOC pools with contrasting mechanisms
of formation and stabilization resulting in different turnover
times and vulnerability to change (Cotrufo & Lavallee, 2022).
These pools can be isolated through established, labor-
intensive laboratory physical fractionation methods, which
are scalable to higher throughput via FTIR (Ramírez et al.,
2021), and artificial intelligence (AI) approaches (Cotrufo
et al., 2019; Lugato et al., 2021). The MEMS model is
depth-resolved with user-defined soil layers. Therefore, the
model can simulate subsoil C stocks and has the capability
to simulate finely-resolved soil profile increments near the
surface, where responses to management commonly occur,
which in turn are important for soil functioning (Franzlueb-
bers, 2002; VandenBygaart et al., 2011). The MEMS model
also simulates N dynamics, aiding in the representation of soil
microbial and SOC formation and stabilization process. These
representations include explicit microbial pools, microbial
carbon use efficiency controlled by input C:N ratios (Cotrufo
et al., 2013; Soares & Rousk, 2019), distinct input point of
entry in bulk and rhizosphere soils (Sokol et al., 2019), the
two pathways of POC and MAOC formation (Cotrufo et al.,
2015), distinct processes of in vivo and ex vivo pathways of
soil C processing and MAOC formation (Liang et al., 2017),
matrix control on MAOC saturation, as well as MAOC separa-
tion into stable and exchangeable pools (Kleber et al., 2007),
providing a modern model structure that retains the capac-
ity to be adapted to new advances in ecosystem and soil
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2330 ZHANG ET AL.

biogeochemistry. While MEMS 2.0 was initially presented
for grasslands, given their importance for global terrestrial
C stocks and value as model systems (Zhang et al., 2021),
MEMS 2.0 has not previously been developed to represent
croplands.

There are many existing crop models that have accurately
simulated crop growth and yield. We studied and tested sev-
eral of the leading models (e.g., Ritchie & Otter, 1985; Wolf,
2012), selecting and adapting key methods and equations
to develop an annual crop submodel for our purposes. Our
goal was to strike a balance between simplicity in model
structure (one general template for all annual crops with min-
imal parameters) and data requirements, yet still achieve good
accuracy in representing crop processes. This approach to
develop cropland representation aligns with the overarch-
ing philosophy of the MEMS model development, which is
to parsimoniously represent measurable C and N pools and
fluxes to achieve accurate simulations of ecosystem processes.
Here, we show the development of the MEMS model (ver-
sion 2.14) for the simulation of agricultural crops such as
corn (Zea mays), soybean (Glycine max), and wheat (Triticum
aestivum). These three major agricultural crops together are
planted on over 500 million ha globally (FAOSTAT, 2021),
or approximately one-third of arable land (Ramankutty et al.,
2008), making them clear priorities for model development.
We parameterize the model using data from three sites in
eastern Nebraska and a site in northern Oklahoma. Although
simulation of SOC, POC, and MAOC in response to land con-
version to cropland and subsequent implementation of no-till
were not the focus of this study, we also present model perfor-
mance for these SOC pools to evaluate how model simulations
align with general, expected patterns in SOC dynamics.

2 MATERIALS AND METHODS

2.1 Model description

We further developed the MEMS model to represent annual
grain crop growth and agricultural management. The soil
modules of the model described in Zhang et al. (2021)
have not been changed. Here, we describe the new key
developments related to cropland representation.

2.1.1 Daily net primary production and
crop growth

The plant production submodel in our model uses the sim-
ple radiation use efficiency approach (Zhang, Suyker, et al.,
2018).

NPP𝑖 = RUE × PAR𝑖 × CC𝑖 × 𝑇𝑖 × 𝑆𝑖 × CF𝑖 (1)

where NPP𝑖 is the net primary production (g C m−2) on day
i. RUE is the radiation use efficiency, which is kept as con-
stant for the entire growing season for each crop. PAR𝑖 is the
photosynthetic radiation (MJ m−2 day−1) on day i. CC𝑖 is the
canopy cover on day i, ranging from 0 to 1. 𝑇𝑖 is the tem-
perature effect (ranges from 0 to 1).𝑆𝑖 is the stress factor on
day i including environmental stresses such as drought and
nutrient deficiency (ranges from 0 to 1, with 1 indicating no
stress and 0 indicating complete stress).CF𝑖 is the atmospheric
CO2 fertilization effect using a simple method from Soltani
and Sinclair (2012). Plant maintenance respiration, growth
respiration, and respiration from symbiotic N fixation were
calculated using methods from the GECROS model (Yin &
van Laar, 2005).

Daily net primary production (NPP) is allocated to leaf,
stem, seed, coarse root, fine root, and exudate on a daily time
step. The partitioning of NPP is based on user-defined linear
curves as a function of plant phenology (Zhang et al., 2021).

The model currently simulates N as the sole plant nutri-
ent. Nitrogen in the soil is represented in mineral and organic
forms. Plants and soil microbes compete for mineral forms of
N, as described in Zhang et al. (2021). The crop N demand,
allocation, and translocation within the plant were calculated
using the methods from the LINTUL model (Wolf, 2012).
Symbiotic N fixation by legumes was modeled as in the
GECROS model (Yin & van Laar, 2005).

2.1.2 Leaf and green leaf area index
development

The leaf development uses the method described in Zhang,
Suyker et al. (2018), which relies on the concept of green
leaf weight ratio (a function of phenology). The expansion of
leaves is a result of the allocation of NPP to leaves, which fol-
lows a three-stage curve (Zhang, Suyker, et al., 2018). The
senescence of leaves is determined by the daily maximum
green leaf area index (GLAI) based on the expected green
leaf weight ratio for each day; at any day when the existing
GLAI value exceeds the daily maximum GLAI, the amount of
leaf biomass in excess will be considered in senescence. Daily
GLAI is calculated from leaf biomass using the specific leaf
area (a user input parameter).

2.1.3 Phenology

We adopted the phenology calculations used in Yin and van
Laar (2005). The phenology of development is based on the
daily accumulation of heat units. The method of photope-
riod effect on heat units is derived from Soltani and Sinclair
(2012), and the vernalization effect is derived from the
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ZHANG ET AL. 2331

CERES-wheat model (Ritchie & Otter, 1985). In the MEMS
2.14 model, the phenology stage is represented numerically
between 0 and 2, with 0 for emergence, 1 for anthesis, and 2
for physiological maturity.

2.1.4 Evapotranspiration

The MEMS 2.14 model estimates evapotranspiration (ET)
using a method comparable to the FAO approach (Allen et al.,
1998). This involves first calculating the reference ET for
well-watered turfgrass using daily meteorological data, then
multiplying by crop-specific coefficients. Both the standard-
ized Penman–Monteith method (Allen et al., 1998) and the
Hargreaves method (Hargreaves & Allen, 2003) are available
for the calculation of the reference ET in MEMS 2.14. The
Hargreaves method only requires daily maximum and mini-
mum air temperatures, while the Penman–Monteith method
needs solar radiation, wind speed, and relative humidity as
input. The MEMS 2.14 model uses a dynamic crop coefficient
method based on GLAI to calculate potential ET for specific
crops (Zhang, Suyker, et al., 2018). The partitioning of evap-
oration and transpiration is based on crop canopy cover (Raes
et al., 2009). The soil water submodel (Ross, 2003) calculates
the actual evaporation and transpiration based on soil water
potential and root distribution. The model simulates rooting
depth increase for annual crops from planting to harvest, with
root distribution simulated as described in Robertson et al.
(2019) and Zhang et al. (2021). The effect of surface litter
on evaporation is calculated using a simple method from the
DayCent model (Parton et al., 1998).

2.1.5 Soil water

The MEMS 2.14 model uses a soil–water model from Ross
(2003). In the earlier version of the MEMS model (Zhang
et al., 2021), the soil hydraulic parameters (Brooks & Corey,
1964) were either provided by users or estimated by a pedo-
transfer method from Saxton and Rawls (2006), with field
capacity at −33 kPa and wilting point at −1500 kPa. These
parameters would then be fixed for the entire simulation run.
We improved the model by adding an option to allow the
model to dynamically update these hydraulic parameters after
a tillage event or a significant change of SOC within a soil
layer. We also added a pedo-transfer method from Bagnall
et al. (2022), which was shown to be more sensitive to SOC
change. The bottom boundary condition of the soil can be set
as free drainage, constant head, seepage face, or zero flux.
The soil water submodel can represent the slow drainage of
poorly drained soils. If present, tile drainage can be modeled
by setting the bottom boundary condition to the seepage face
(Rassam et al., 2018).

2.1.6 Management practices

We added agricultural practices to this version of the MEMS
model. These management events can be specified in the
daily schedule input file. The model can simulate either fixed
amounts of irrigation (user-specified) or automatic irrigation
events, which are based on the root zone water availability
(Allen et al., 1998); drip irrigation is currently not supported
as the three-dimensional wetting pattern and root uptake
dynamics cannot be easily captured by one-dimensional mod-
els such as ours. Mineral N fertilization events are represented
by the addition of ammonium and/or nitrate to the soil surface
or at a user-specified depth. A harvest event can remove all or
a fraction of crop grain and residue.

We implemented cultivation and tillage in this model ver-
sion. Depending on the type of cultivation, live and standing
dead crop biomass can be transferred to surface and soil lit-
ter pools. Surface residue can be incorporated into the soil.
We also implemented soil mixing of the soil litter and organic
matter pools, and mineral N for the soil layers within the
tillage depth. A user-defined fraction represents the mix-
ing efficiency (Williams & Izaurralde, 2010) of the pools in
the soil layers, which are evenly mixed, and the pools are
redistributed accordingly.

Similarly, model users can change the soil bulk density for
any soil layer on a specific day. This option allows the users
to account for the soil compression and expansion effects on
the calculated C and N stock changes at certain depths over
time. In the model, soil layer depths are fixed during a simu-
lation. However, a bulk density change results in a movement
of SOM pools from one layer to another (which can be seen
as redefining the depths after a bulk density change; the soil
surface is always a depth of 0 cm as a reference). We plan to
further develop the model to represent a dynamic bulk density
change due to tillage.

Organic amendment added to the soil surface, such as com-
post or manure, is modeled as the addition of C and N to
a set of three surface litter pools (soluble, hydrolyzable, and
unhydrolyzable). These pools are separated from the existing
litter pools of the plant. As a result, the changes of C and N
of the organic amendment can be tracked and compared with
observations. In contrast, the applied organic amendment to
subsurface soil will be immediately mixed with the root litter.
The inorganic N added with the organic amendment can be
simulated as a fertilization event on the same day.

2.2 Experimental sites

Four sites from the AmeriFlux network (Novick et al., 2018)
were chosen for model parametrization and validation. These
sites were characterized by the availability of high-frequency
measurements related to critical agricultural variables,
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2332 ZHANG ET AL.

including crop leaf area index (LAI) and biomass (Zhang,
Suyker, et al., 2018), rendering them well-suited for the rig-
orous assessment of simulated crop growth within the model
framework. Three of the sites were companion sites growing
corn and soybean under varying irrigation regimes. The fourth
site planted continuous winter wheat. Following is a detailed
description of these sites.

2.2.1 The Mead, NE sites

The US-Ne1 (Suyker, 2023a), US-Ne2 (Suyker, 2023b), and
US-Ne3 (Suyker, 2023c) sites are located within 1.6 km
of each other at the University of Nebraska Agricultural
Research and Development Center near Mead, NE. Detailed
information about the sites can be found in Suyker and Verma
(2009). The soils at these sites are deep silty clay loams with
very little slope. The experiments started in 2001, with differ-
ent management applied at the three sites. US-Ne1 is irrigated
by a center pivot system and planted continuous maize. US-
Ne2 is also irrigated but was planted with a maize–soybean
rotation from 2001 to 2008 and changed to continuous maize
in 2009. US-Ne3 is a rainfed field with maize–soybean rota-
tion. At the beginning of the experiment in 2001, all sites
were tilled. After 5 years of no-till, the US-Ne1 site was con-
verted to conservation tillage. Tillage was implemented at the
US-Ne2 site in 2010, while the US-Ne3 site remained under
no-till. Management details are recorded and available at the
AmeriFlux online database.

As part of the AmeriFlux network, eddy covariance towers
(to measure CO2, H2O, and energy fluxes) were installed at
each site (Suyker & Verma, 2009). Soil moisture sensors were
placed at 10-, 25-, 50-, and 100-cm depth, and soil tempera-
ture (ST) data are available at 2- and 4-cm depth. Six 20 m by
20 m intensive measurement zones were established in each
field to measure aboveground biomass and leaf area index
using a destructive method (Grant et al., 2007). Grain yield
data are acquired from the combined harvest of each field.

2.2.2 The US-Pon site

The US-Pon site (Verma, 2016) is located near Ponca City,
OK (Hanan et al., 2002). The site was planted with winter
wheat continuously from 1996 to 2000. The upper 0.6 m of
the soil profile comprises a silty clay loam, while beneath
lies a thick clay horizon. Aboveground biomass and GLAI
were also measured using destructive methods. More detailed
information regarding management is not available on this
site.

2.3 Simulation setup and parameterization

The input files for this simulation were prepared using the
soil characteristics, historical weather information, and agri-
cultural management data of these sites from Zhang, Suyker
et al. (2018). While detailed management information was
available for the Mead, NE, sites, data specific to the Ponca,
OK site was lacking. Thus, management practices commonly
used in the surrounding region were assumed for simulating
the winter wheat grown at the Ponca, OK site (Zhang, Suyker,
et al., 2018).

To initialize the model, a 900-year simulation of native
grassland was conducted to allow SOC to reach equilibrium.
For the Mead, NE sites, corn–soybean rotation under conven-
tional tillage was simulated from 1900 to establish realistic
initial soil C levels at the start of the experiment. No-till
practices were modeled beginning in 1990, reflecting doc-
umentation that the irrigated sites had been under no-till
management for 10 years prior. Since details on irrigation sys-
tem installation were unavailable, 1990 was assumed as the
initiation year. For the Ponca, OK site, monocropped win-
ter wheat with conventional tillage was simulated from 1900
through the experimental period.

Crop parameters were based on measured data and val-
ues from the literature. Most crop parameters were either
directly measured or previously documented when parameter-
izing another ecosystem model (Zhang, Suyker, et al., 2018).
Thus, manual calibration was used to minimize relative root
mean square error (RRMSE) for GLAI and biomass simu-
lations using measured data from 2022 for the Mead, NE
sites and data from 1997 for the Ponca, OK site. The rest
of the data from these sites were used for validation. Thus,
the validation data were not completely independent. The
calibrated crop parameters can be found in Table S1. The
decomposition-related parameters were kept at default values
from the grassland parameterization (Zhang et al., 2021).

2.4 Model validation

Model validation was performed by comparing simulated
outputs to measured data. The GLAI and biomass simula-
tions were evaluated against the observed values that were
excluded from calibration. Additional model evaluations were
conducted using measured crop yield, net ecosystem CO2
exchange (NEE), ET, soil water content (SWC), and ST
data from the Mead, NE sites. Comparisons between simu-
lated and observed SOC were also performed, but were not
considered formal validation since detailed historical manage-
ment information prior to the experiments, which would be
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ZHANG ET AL. 2333

needed to capture SOC dynamics, was unavailable. The fol-
lowing statistical metrics were used to quantify the model’s
performance:

1. Index of agreement (d)

𝑑 = 1 −
∑𝑛

𝑖 = 1
(
𝑃𝑖 − 𝑂𝑖

)2
∑𝑛

𝑖 = 1
(||𝑃𝑖 − 𝑂̄|| + ||𝑂𝑖 − 𝑂̄||)2

(2)

2. Coefficient of determination (R2)

𝑅
2 = 1 −

∑𝑛

𝑖 = 1 (𝑃 𝑖 − 𝑂𝑖) 2∑𝑛

𝑖 = 1
(
𝑂𝑖 − 𝑂̄

)
2

(3)

3. Relative root mean square error (RRMSE)

RRMSE = 1
𝑂̄

√√√√1
𝑛

𝑛∑
𝑖 = 1

(𝑃 𝑖 − 𝑂𝑖) 2 (4)

4. Relative mean difference (RMD)

RMD = 1
𝑂̄

(
𝑃 − 𝑂̄

)
(5)

3 RESULTS AND DISCUSSION

3.1 Crop growth and biomass production

3.1.1 Aboveground biomass and LAI

The Mead, NE sites’ frequent measurements of biomass
and LAI are ideal for rigorous calibration and validation of
crop growth models. Although different varieties of corn and
soybean were planted each year, our objective was not to
parameterize the model for each individual variety. This type
of parameterization would limit the utility of the model to
real-world applications, where information on crop variety is
often not accessible. Therefore, we followed a more practical
approach in establishing a general parameterization of crops
for the region (Zhang et al., 2020).

Our model validation compared the modeled and mea-
sured aboveground biomass of corn and soybean crops at the
three AmeriFlux sites in Mead, NE, over 10 growing seasons
(Figure 1). Despite using only one parameter set for each crop
across varieties, our model accurately captured the rates of
biomass accumulation for both crops, as evidenced by the high
d (>0.96) and R2 values (>0.88) and relatively low RRMSE
and RMD values (Table 1). At US-Ne3, where the crops were
not irrigated and experienced water stress during certain peri-
ods of the growing season, the modeled results showed similar
reductions in biomass as the measurements, indicating the
model accurately simulated the effect of water stress on crops.

However, in 2009, our model significantly underestimated the
final crop biomass for US-Ne1 and US-Ne2 by 26% and 25%,
respectively. Our analysis revealed that this underestimation
was not due to water or nutrient stress. We suspect that the
specific hybrid of corn used in 2009 was not represented by
the parameter set (US-Ne1 and US-Ne2 used the same hybrid
in 2009, but it was different from the one at US-Ne3 in 2009
or any other years at the sites).

To predict biomass accurately, it is necessary to first pre-
dict GLAI, as GLAI determines the amount of solar radiation
intercepted by green leaves that can subsequently be used in
photosynthesis. The MEMS 2.14 model successfully simu-
lated changes in GLAI over the growing season for both corn
and soybean (Table 1; Figure 2), with d values of 0.93 and
0.96 for corn and 0.90 for soybean for irrigated sites (US-
Ne1 and US-Ne2), and 0.92 for corn and 0.91 for soybean
for the rainfed site (US-Ne3). While these d statistics indi-
cate overall strong model performance, the RRMSE and RMD
values revealed that the model captured GLAI slightly bet-
ter at the irrigated compared to rainfed sites (Table 1). This
can be attributed to the overestimation of GLAI at the rain-
fed site, especially in 2003, 2008, 2010, and 2011. For the
irrigated sites, the measurements of corn showed a general
pattern where, after GLAI was reached, there was a slight
decline before the late-season senescence. In contrast, the sim-
ple algorithm used in MEMS predicts GLAI to plateau during
the summer months after the peak for corn. Nevertheless, the
accuracy of the MEMS 2.14 model in predicting biomass and
GLAI is similar to or better than reported values for other pop-
ular crop models and ecosystem models (Amiri et al., 2022;
Archontoulis et al., 2014; Babel et al., 2019; Marek et al.,
2017; Zhang, Hansen, et al., 2018).

The calibrated model also demonstrated good performance
for winter wheat (Figure 3). However, the model fit for green
aboveground biomass was not as strong as the total above-
ground biomass (green and dead) for corn and soybean at the
Mead, NE sites, with a d of 0.89, an R2 of 0.66, an RRMSE of
0.85, and RMD of 0.24. The GLAI statistics were more favor-
able, with a d of 0.95, an R2 of 0.91, an RRMSE of 0.43, and
RMD of 0.24, though the model tended to slightly overpre-
dict GLAI in 1999 and 2000. Winter wheat is planted in the
fall and requires a vernalization period during cooler months
in order to flower, which increases the difficulty of predict-
ing its phenology and biomass production accurately (Fowler
et al., 2014).

3.1.2 Grain yield

While grain yield prediction is not a primary focus of most
ecosystem models, accurate yield predictions are still cru-
cial to represent cropping systems because grain harvest
constitutes an export of C and nutrients from the field or
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2334 ZHANG ET AL.

F IGURE 1 Comparison of simulated (lines) and measured (dots) aboveground biomass of the validation dataset at Mead, NE. Corn and
soybean were denoted as C and S, respectively. US-Ne1, US-Ne2, and US-Ne3 are three sites from the AmeriFlux network.

TABLE 1 The statistics for model validation.

Corn Soybean
Aboveground
biomass GLAI NEE ET

Aboveground
biomass GLAI NEE ET

US-Ne1 d 0.98 0.93 0.95 0.94

R2 0.94 0.77 0.84 0.79

RRMSE 0.22 0.32 −2.18 0.49

RMD −0.02 0.04 0.79 −0.11

US-Ne2 d 0.98 0.96 0.96 0.94 0.98 0.90 0.91 0.92

R2 0.95 0.86 0.86 0.80 0.93 0.69 0.73 0.77

RRMSE 0.21 0.27 −1.50 0.49 0.27 0.57 7.19 0.56

RMD −0.05 0.09 0.41 −0.08 0.04 0.17 −1.50 −0.22

US-Ne3 d 0.97 0.92 0.95 0.93 0.96 0.91 0.90 0.91

R2 0.91 0.81 0.84 0.78 0.88 0.73 0.74 0.75

RRMSE 0.27 0.42 −1.50 0.53 0.39 0.53 −138.76 0.58

RMD 0.06 0.26 0.31 −0.17 0.12 0.20 3.46 −0.28

Note: The variables are daily values of aboveground biomass, green leaf area index (GLAI), net ecosystem exchange (NEE), and evapotranspiration (ET). US-Ne1 and
US-Ne2 are irrigated, while US-Ne3 is rainfed.
Abbreviations: RMD, relative mean difference; RRMSE, relative root mean square error.

modeled system. Trustworthy model representations of grain
yield also provide another avenue for model validation
because grain yield data is often collected in cropping sys-
tems, whereas many other measurements related to crop
growth (GLAI and NPP) may not be available. Grain yield can
be used to estimate crop biomass production and NPP (Prince

et al., 2001), which can then be used to calibrate or validate
ecosystem models (Zhang et al., 2020).

In this study, the modeled grain yield for corn and soybean
generally agreed well with measurements (Figure 4), with a d
of 0.66, an R2 of 0.14, an RRMSE of 0.16, and an RMD of
0.02 for corn, except for 2009, which had an underprediction
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ZHANG ET AL. 2335

F IGURE 2 Comparison of simulated (lines) and measured (dots) green leaf area index of the validation dataset at Mead, NE. Corn and
soybean were denoted as C and S, respectively. US-Ne1 and US-Ne2 are irrigated, while US-Ne3 is rainfed. DOY, day of year.

F IGURE 3 Comparison of simulated (lines) and measured (dots) green aboveground biomass and green leaf area index of winter wheat at the
AmeriFlux US-Pon site in Oklahoma. The data from the year 1997 were used for calibration. DOY, day of year.

of 39% (the same year of substantial underestimation of
biomass as discussed above). The statistics for soybean are
better, with a d of 0.89, an R2 of 0.74, an RRMSE of 0.11, and
an RMD of 0.06. The measured yield of corn and soybean at
the rainfed site US-Ne3 was lower than at the irrigated sites
due to water stress, and the model accurately captured this
effect of water stress for most years, leading to lower yield
values at US-Ne3.

3.2 Evapotranspiration, soil water content,
and soil temperature

3.2.1 Evapotranspiration and soil water
content

During nongrowing periods, ET occurs only through the
evaporation of water from surface residue and soil. Surface
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2336 ZHANG ET AL.

F IGURE 4 Comparison of simulated and measured grain yield of corn and soybean from the three AmeriFlux sites at Mead, NE. RMD,
relative mean difference; RRMSE, relative root mean square error.

residue has a dual role in moderating ET, as it covers the
bare soil surface and prevents soil water from evaporating
but also intercepts a small amount of rain and provides a
source of evaporation, especially between crop maturity and
harvest. During growing periods, ET has been found to be
closely related to crop canopy cover (Steduto et al., 2009),
which can be calculated using GLAI (Zhang, Suyker, et al.,
2018). As the model accurately predicted GLAI (Table 1;
Figure 2), the modeled ET was also in good agreement
with measurements from the eddy covariance towers at the
Mead, NE sites (Table 1; Figures S1–S3). However, the
simulated ET tended to be lower than the measured ET,
as indicated by the negative RMD values (Table 1), with
the largest bias observed for the rainfed site US-Ne3. The
underestimation was mainly observed in the spring period
(Figures S1–S3) where soil evaporation was the main source
of ET. Soil evaporation is reduced by the crop residue on
the soil surface, but this effect might not be accurately
represented in the model. Another possibility for the under-
estimation is that the measurements themselves in the spring
periods were biased. The model calculates water mass bal-
ance on a daily basis, and simulated SWC was found to
be highly consistent with measurements (Figures S4–S15),
especially for the top 10 cm of soil, as shown in Figures
S4–S6. If the model were to increase soil evaporation to
match the measured values, simulated SWC would decrease
to maintain water balance, resulting in an underestimation of
SWC.

Although the d and R2 values of the simulated SWC were
not as high as those of other variables (Table 2), the RRMSE
and RMD were relatively small. The soil water retention
parameters were estimated using the Saxton method (Sax-
ton & Rawls, 2006), which is known for biased predictions

in some soil types. Some clear bias of SWC field capacity
can be observed compared with the measured values, espe-
cially for deeper soil layers (e.g., underestimation in Figures
S13 and S14). What challenges the calibration of the model,
however, is that the accuracy of the SWC measurements them-
selves may not be perfect, as sensor data appear unrealistic in
certain cases. For example, in 2006 at US-Ne1, the SWC at 10
and 25 cm was substantially shifted to a lower range of values
compared to other years or the same year at other sites (as seen
in Figures S4 and S7). Nevertheless, overall, the model per-
formed well in predicting both ET and soil water. As soil water
is critical for soil biological processes, the accuracy of SWC
and ET predictions largely affects the accuracy of the predic-
tions of other variables. The accuracy of SWC predictions in
this study is comparable to that of our previous MEMS grass-
land study (Zhang et al., 2021), which is another indication of
the model’s reliability.

3.2.2 Soil temperature

Soil temperature (ST), together with moisture, is an important
driver of soil biological processes, including decomposition.
In our grassland study (Zhang et al., 2021), we demonstrated
the high quality of the ST predictions. In the present study,
the MEMS 2.14 model also accurately predicts the ST at 4-
cm depth for the three sites except during winter, when ST
is below 0˚C (d = 0.96 and R2 = 0.93 for all sites; Table
2; Figures S16–S18). As SOM decomposition in soil slows
down to a minimum rate when ST is at or below 0˚C (Sierra
et al., 2015), there is currently no need to improve the model
for the below 0˚C temperature predictions effect on SOM
decomposition.
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ZHANG ET AL. 2337

TABLE 2 The statistics for model validation.

ST at 4 cm SWC at 10 cm SWC at 25 cm SWC at 50 cm SWC at 100 cm
US-Ne1 d 0.96 0.59 0.60 0.57 0.41

R2 0.93 0.25 0.20 0.23 0.02

RRMSE 0.35 0.19 0.15 0.15 0.17

RMD −0.18 0.13 0.06 0.10 −0.14

US-Ne2 d 0.96 0.74 0.70 0.47 0.14

R2 0.93 0.41 0.46 0.04 0.20

RRMSE 0.38 0.10 0.12 0.19 0.24

RMD −0.20 −0.02 −0.07 −0.13 −0.24

US-Ne3 d 0.96 0.71 0.81 0.75 0.70

R2 0.93 0.36 0.47 0.45 0.49

RRMSE 0.35 0.19 0.11 0.14 0.13

RMD −0.20 0.09 −0.04 −0.08 −0.10

Note: The variables are daily values of soil temperature (ST) and soil water content (SWC). US-Ne1 and US-Ne2 are irrigated, while US-Ne3 is rainfed.
Abbreviations: RMD, relative mean difference; RRMSE, relative root mean square error.

F IGURE 5 Comparison of simulated (lines) and measured (dots) net ecosystem exchange (NEE) at the AmeriFlux US-Ne2 site. DOY, day of
year.

3.3 Net ecosystem exchange

The model captured the seasonal change of NEE for both
corn and soybean under both irrigated and rainfed conditions
(Figure 5 for US-Ne2 and Figure 6 for US-Ne3; data from US-
Ne1 is in Figure S19). Overall, the simulated values are close
to the measured with d ≥ 0.90 and R2 ≥ 0.73 (Table 1). Dur-
ing the summer, both photosynthesis and decomposition of
organic matter proceed at high rates, consistent with previous

cropland measurements (Lei & Yang, 2010; Soegaard et al.,
2003), and in this study, simulated data matched measured
data in showing large, negative summer NEE fluxes. During
the nongrowing season, while temperatures are warm enough,
surface litter and organic matter decomposition contribute to
positive NEE fluxes (Baldocchi, 2008; J. Tang et al., 2003).
The model tended to underestimate the positive NEE fluxes at
the three sites during these periods. This was likely because
the model used the temperature at the soil surface (under the
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2338 ZHANG ET AL.

F IGURE 6 Comparison of simulated (lines) and measured (dots) net ecosystem exchange (NEE) at the AmeriFlux US-Ne3 site. DOY, day of
year.

litter layer) for litter decomposition rate calculation, rather
than air temperature. The temperature at the soil surface does
not rapidly warm in response to rising air temperature (due
to the insulating effect of surface litter), so the decomposi-
tion rate of some of the surface litter on warm days was likely
underestimated. Another possibility was that the model does
not account for photodegradation, which has been found to
significantly accelerate litter decomposition (J. Y. King et al.,
2012).

While both the d and R2 statistics suggest strong agree-
ment between the simulated and measured NEE of soybean
at US-Ne3, the RRMSE and RMD were very large. This dis-
crepancy arises primarily due to the low average value of the
observations, which acts as the denominator in the calcula-
tion of RRMSE and RMD. The observed NEE values range
from −9.3 to 6.6, with an average close to zero (−0.0096),
attributed to the cancellation effect of positive and nega-
tive values. This discrepancy demonstrates the importance
of using multiple statistical measures to assess model per-
formance, as reliance on a single index can be misleading.
Using NEE to compare against the other indicators of plant
productivity can help to evaluate the consistency of model
performance between years. For instance, the model’s under-
estimation of crop production in 2009, as shown by NEE
values (Figure 5), mirrors the model’s underestimation of crop
production shown by aboveground biomass (Figure 1) in the
same year at the US-Ne2 site. This consistency suggests there
was an aspect of the specific corn hybrid used at US-Ne2 in

2009 (different from other years) that was not captured by
the model’s calibration, but that the model’s representation of
biomass accumulation and NEE was still internally consistent.

3.4 Soil organic carbon

The available SOC measurements were values of bulk SOC
stock at the 0- to 15-cm and 15- to 30-cm depths at two
time points (at site establishment in 2001 and in 2005). The
measured SOC in 2001 was quite different between the sites
(US-Ne1 has a higher SOC than the other two sites; Figure 7).
There was a slight trend for decreasing SOC over the 5-year
period between samplings at 0- to 15-cm depth, but the raw
data were not available to test if this trend was statistically
significant.

The MEMS model predicts SOC stocks for all user-defined
soil layers, but here we show only soil layers for which
measured data are available (Figure 7). As described in the
Methods section, we estimated SOC by first simulating native
vegetation and then modeling the land use change to crop-
land. At these sites, the only available information about the
cropland management was that the irrigated sites were under
no-till corn–soybean rotation for 10 years before the establish-
ment of the experiments. Regionally appropriate assumptions
were made to complete the specific management history
for the sites. Using this approach, simulated total SOC val-
ues for US-Ne2 were close to the measurements in 2001.
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ZHANG ET AL. 2339

F IGURE 7 Comparison of daily simulated (lines) and measured
(dots) soil organic carbon (SOC). The sudden decrease of SOC in the
first soil layer and increase of the second soil layer were caused by
tillage events (indicated by arrows; different equipment was used). The
soil samples corresponding to the first measured data points were taken
1 day after field tillage in April 2001.

Since we used the exact same management history for both
US-Ne2 and US-Ne1 sites (they have the same soil type),
our SOC estimates were lower than observations for US-
Ne1. US-Ne3 used no irrigation, but its SOC values are
not much different from the irrigated US-Ne2 for both mea-
sured and simulated data. While irrigation increases crop C
input to the soil, it also promotes SOC decomposition with
higher SWC.

Although the sites used in this study were not designed to
test the effect of tillage versus no-till across replicated plots,
we can nevertheless observe simulated changes in SOC over
time with the introduction of tillage. Tillage events mixed
SOC throughout the 0–15 cm and 15–30 cm soil layers
(Figure 7), as has been widely documented in field studies
(Hernanz et al., 2002; Shi et al., 2011; Zhao et al., 2015).
For US-Ne1, the repeated tillage events kept the SOC of the
two soil layers very close through the years. In contrast, the
absence of tillage at US-Ne3 enabled the predicted SOC of the
two layers to differentiate from each other. The observed SOC

values of the two soil layers at US-Ne3 were much closer than
the simulated values, which we expect may be due to tillage
events in the period prior to the experiment. As historical
management is not available for this site, we cannot confirm
the reasons for this observation. In addition, the discrepancy
between simulated and measured SOC may be attributable to
the model’s lack of representation of soil aggregation effects,
which have been shown to protect SOC from decomposition,
discussed in more detail below (Section 3.6).

It is worth noting that only the crop parameters were cal-
ibrated in this study. The decomposition-related parameters
were the same as those from our grassland simulation (Zhang
et al., 2021). Although here we only show the SOC of one spe-
cific region, the model performance indicates that the model
and its current parameterization have the potential to represent
SOC processes under land use change.

3.5 Soil organic carbon fractions

The SOC fractions (i.e., POC and MAOC) were not measured
at the sites used in this study, so we presented the simu-
lated POC and MAOC as an example of model performance
relative to expected patterns. Expected patterns in POC and
MAOC in the system under study include a decrease of both
pools after conversion from native vegetation to agriculture
and changes in the percent of MAOC as a component of total
SOC (fMAOC). At the US-Ne3 site, under native grassland,
the model predicted an fMAOC of 71.0% in the 0–15 cm layer
and 92.8% in the 15–30 cm layer (Figure 8). Although fMAOC
can vary widely across management systems and soils, these
fMAOC percentages are similar to those of the KONZ site (the
Konza Prairie) in the same region (less than 300 km in dis-
tance) used in our previous study from the National Ecological
Observatory Network (Zhang et al., 2021). The fMAOC values
measured from a study of global grasslands for the top 10 cm
of soil ranged from around 25% to around 90% with an average
of 62% (Rocci et al., 2022). Our predicted value of fMAOC for
the 0–15 cm layer was thus close to the average of observed
values. The simulated POC was more responsive to variability
in climate than the simulated MAOC, which was more sta-
ble over time. While finely resolved temporal measurements
of POC and MAOC are uncommon, the greater vulnerability
of POC to climate aligns with findings from previous work
(Lugato et al., 2021).

After land use change in 1900 from native grassland to
annual grain cropping system with tillage, both MAOC and
POC of the 0–15 soil layer dropped due to lower C input and
the higher-C surface soil layer mixing with the lower-C 15­-
30 cm layer, consistent with longer-term studies (Jagadamma
& Lal, 2010; Reeder et al., 1998). Over the 50 years from
conversion to cropland, the model predicted a gradual loss
of MAOC in the 0- to 15-cm depth such that in 1950, the
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2340 ZHANG ET AL.

F IGURE 8 The simulated soil carbon in the mineral-associated organic carbon (MAOC) and particulate organic carbon (POC) from 1850 at
the AmeriFlux US-Ne3 site. The pre-1900 period was modeled as native grassland. Annual crops and tillage were introduced in 1900. No-till was
started in 1990 but the field was tilled in 2001 for experimental preparation.

MAOC pool had lost 31% of its C (from 30.2 to 20.8 Mg
ha−1). The model predicted a different dynamic for the POC
with a more rapid and bigger (76%) loss of C by 1950 (from
12.4 to 3.0 Mg ha−1) compared with 1900 for the 0–15 soil
layer (Figure 8). Very contrasting responses were predicted
for the subsoil. There was almost no change in MAOC in the
15–30 cm soil layer (20.6 Mg ha−1 in 1900 compared to 18.9
Mg ha−1 in 1950); while POC increased by 29% due to the
movement of SOC from the soil layer above through tillage
mixing. After 1950, fertilizer was added and there was a slight
increase in both SOC pools, especially for POC in the 0–15 cm
layer. Overall, the model captured an increase in fMAOC in
the surface soil (88% in 1950 in the 0–15) expected under
cropland, falling within reported ranges (Beniston et al., 2014;
Cambardella & Elliott, 1992; Hansen et al., 2024; A. E. King
et al., 2024).

No-till management was introduced in 1990. As a result,
the model predicted a big increase of POC in the 0–15 cm (by
5.5 Mg ha−1; from 4.4 to 9.9 Mg ha−1) and a decrease in the
15–30 cm (by 1.7 Mg ha−1; from 2.6 to 0.8 Mg ha−1), which
lead to a net increase of 3.8 Mg ha−1 POC in the top 30 cm
soil in the year 2000. Regarding MAOC, the implementation
of no-till resulted in an increase of 1.9 Mg ha−1 in the 0–15 cm
layer and a decrease of 0.3 Mg ha−1 in the 15–30 cm layer (net
increase of 1.6 Mg ha−1). Overall, the SOC stock increased by
11% (5.4 Mg C ha−1) across the top 30 cm, after conversion
to no-till. This increase of SOC is supported by the general
consensus that no-till increases SOC in the topsoil (Luo et al.,
2010; Nunes et al., 2020).

3.6 Limitations, data needs, and future
work

Agroecosystem models take a variety of approaches to sim-
ulating tillage as a management event and its effects on
SOC pools. Almost all models simulate the incorporation
of residues and mixing of soil throughout the tillage layer
(Maharjan et al., 2018), which MEMS 2.14 also simulates,
with default mixing efficiencies defined by the category of
tillage operation. Tillage is also often assumed to acceler-
ate decomposition rates, which some models represent by
temporarily increasing decomposition constants following a
tillage event (Gurung et al., 2020; Porter et al., 2010). The
underlying mechanism justifying this approach has been that
tillage destroys soil aggregates, which normally protect SOC,
as evidenced by several studies (Elliott & Coleman, 1988;
A. E. King et al., 2019; Six et al., 2004; Six & Paustian,
2014). However, very few models have taken approaches to
explicitly represent aggregation and its effect on decomposi-
tion (Laub et al., 2023; Maharjan et al., 2018; Segoli et al.,
2013), possibly due to conceptual challenges or constraints
on available data. We are working on a new conceptualization
of soil aggregation formation and its effect on decomposi-
tion and will incorporate it in the next version of the MEMS
model.

In this study, we demonstrated the updated MEMS 2.14
model’s ability to simulate key ecosystem properties for crop-
lands. However, the available datasets for our study sites lack
sufficient data for comprehensive model validation, especially
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ZHANG ET AL. 2341

for SOC and pool distribution. The absence of long-term SOC
measurements prevented validating the accuracy of simulated
SOC change rates after no-till adoption. While MEMS also
simulates deep soil and POC and MAOC fractions through-
out the soil profile, we could not evaluate these model aspects
without these measurements at the study sites. The scope
of this study focuses on the representation of crop growth
and agricultural management. The MEMS model is under
continual development and we plan to present further model
validation in future studies.

4 CONCLUSION

The expanded capabilities of MEMS 2.14 now enable simula-
tions of annual grain crops and agricultural practices, greatly
increasing its potential applications and providing a platform
for model development to predict soil C sequestration. This
updated model provides a new tool for forecasting cropland
systems and for exploring related scientific questions. Our
study demonstrates the model’s reliability for crop growth
representation through comparisons of simulated and mea-
sured aboveground biomass, GLAI, NEE, ET, SWC, and ST
for major US grain crops. While further validation is still
needed, especially for SOC, we anticipate the MEMS model
will aid land management decisions and carbon sequestration
estimates.
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