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A B S T R A C T   

Accurate and efficient estimation of crop biophysical traits, such as leaf chlorophyll concentrations (LCC) and 
average leaf angle (ALA), is an important bridge between intelligent crop breeding and precision agriculture. 
While Unmanned Aerial Vehicle (UAV)-based hyperspectral sensors and advanced machine learning models offer 
high-throughput solutions, collecting sufficient ground truth data for machine learning training can be chal
lenging, leading to models that lack generalizability for practical uses. This study proposes a transfer learning 
based dual stream neural network (DSNN) called PROSAIL-Net, which leverages the knowledge gained from 
PROSAIL simulation and improves the estimation of corn LCC and ALA from UAV-borne hyperspectral images. In 
addition to hyperspectral data, the DSNN also includes solar-sensor geometry data, which was automatically 
extracted from a cross-grid UAV flight. The hyperspectral branch in the DSNN was also tested with multi-layer 
perceptron (MLP), long short-term memory (LSTM), gated recurrent unit (GRU), and 1D convolutional neural 
network (CNN) architectures. The results suggest that the 1D CNN architecture exhibits superior performance 
compared to MLP, LSTM, and GRU networks when used in the spectral branch of DSNN. PROSAIL-Net out
performs all other modeling scenarios in predicting LCC (R2 0.66, NRMSE 8.81%) and ALA (R2 0.57, NRMSE 
24.32%) and the use of multi-angular UAV observations significantly improves the prediction accuracy of both 
LCC (R2 improved from 0.52 to 0.66) and ALA (R2 improved from 0.35 to 0.57). This study highlights the 
importance of utilizing large amounts of PROSAIL-simulated data in conjunction with transfer learning and 
multi-angular UAV observations in precision agriculture.   

1. Background 

Predicting leaf biophysical properties is crucial for sustainable agri
culture as it allows for more efficient crop management. Leaf biophysical 
properties, such as chlorophyll content and leaf inclination angle, pro
vide valuable information about the health and growth of crops, which 
can revolutionize the precision farming and crop breeding operations 
(Haboudane et al., 2002, Boggs et al., 2003, Mantilla-Perez and Fer
nandez, 2017). Chlorophyll is the pigment that allows plants to absorb 
light and convert it into energy through photosynthesis (Li, Sun, et al. 
2019). Therefore, accurate measurement of leaf chlorophyll content 

(LCC) can reveal the health and vigor of a crop, as well as its ability to 
photosynthesize efficiently (Brewer et al., 2022, Vollmann et al., 2011). 
The leaf angle, also known as the leaf inclination angle or average leaf 
angle (ALA) in terms of the canopy, is the average angle at which most of 
the leaves in a canopy is held relative to the direction of light (Falster 
and Westoby, 2003). ALA can affect the amount of light that leaves 
receive and therefore has a direct impact on the photosynthesis and 
plant productivity as well as the planting densities (Falster and Westoby, 
2003, Mantilla-Perez and Fernandez, 2017). Therefore, understanding 
the variability of LCC and ALA can help farmers in making more 
informed decisions about crop management, while the breeders can use 
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the high-throughput data to create more efficient, resilient, and pro
ductive crop varieties. 

Remote sensing technology, specifically the use of unmanned aerial 
vehicles (UAVs) has been revolutionizing crop biophysical trait esti
mation by providing a more efficient, cost-effective, and accurate way to 
collect data about crops (Xie and Yang, 2020, Burud et al., 2017). UAVs 
can be equipped with sensors that are enriched in higher spatial-spectral 
resolution and can cover large areas of land efficiently (Xiang and Tian, 
2011, Colomina and Molina, 2014). Hyperspectral camera is one type of 
sensor that can accurately measure the reflectance or radiance of an 
object across a wide range of wavelengths (Barreto et al., 2019), ranging 
from visible (400–700 nm) to near-infrared (800–2500 nm). The UAV- 
borne hyperspectral camera can image the reflected light from the 
crops, which can be used to model different biophysical attributes. For 
example, chlorophyll in leaves absorbs sunlight in the blue and red re
gions for photosynthesis but reflects sunlight in the green and near- 
infrared region of the spectrum (Gitelson,Gritz,and Merzlyak, 2003). 
Alternatively, the amount of reflected light is lower when the leaves are 
perpendicular and rises with increasing ALA (Alton,North,and Los, 
2007). However, the relationship between ALA and reflected spectra is 
complex and often relies on the leaf texture, wetness, and pigmentation 
(Blackburn, 1999, Grant,Daughtry,and Vanderbilt, 1993, Meng et al., 
2014). With the ability to measure these biophysical traits non- 
destructively, UAV-borne hyperspectral cameras have greatly 
improved the precision of crop management and breeding (Zhang, Zhao, 
et al. 2019, Shu et al., 2021, Fan et al., 2022, Wang et al., 2023). 

The UAV-based non-destructive measurement of crop biophysical 
attributes can be broadly divided into three different segments: 1) data- 
driven approach, 2) physics-based approach, and 3) hybrid approach. 
The data-driven approach or supervised machine learning uses statisti
cal models trained on labeled data to predict different crop biophysical 
attributes from processed remote sensing data collected by the UAVs. 
Due to the simplicity and efficiency of many advanced machine learning 
models, data-driven approach is quite popular within the crop breeding 
and precision agriculture community. Numerous studies have explored 
partial least squares (Capolupo et al., 2015, Kanning et al., 2018), 
random forests (Lopez-Calderon et al., 2020, Peng et al., 2021), support 
vector regression (Yang et al., 2022, Wang et al. 2022, Singhal et al., 
2019) and artificial neural networks (Borges et al., 2022, Maimaitijiang 
et al., 2020, Poblete et al., 2017) to estimate LCC or other traits from 
UAV-borne remote sensing products. Recent advancement in computer 
vision techniques, specifically convolutional neural networks (CNN) 
have enabled even more efficient data-driven learning as CNN can 
handle direct imagery as its inputs (Dericquebourg, Hafiane,and Canals, 
2022, Bellis et al., 2022, Du et al., 2021, Zhang, Han, et al. 2019). 
However, the data-driven approaches often suffer from the challenges of 
requiring large ground truth datasets and reproducibility or robustness. 
Machine learning models have been often found to be more accurate and 
robust when large number of ground truth dataset is used in the training 
and validation (Kamilaris and Prenafeta-Boldu, 2018, Ruß and Brenning, 
2010). This is especially evident in deep learning models, where a 
wealth of training data enables the model to expand its understanding 
and effectively make predictions for new, unseen data (Kamilaris and 
Prenafeta-Boldú, 2018, Moazzam et al., 2019). The collection of a sub
stantial training dataset, which comprises both ground truths and aerial 
observations in an agricultural setting, can be a time-intensive, 
destructive, and costly process. (Bhat and Huang, 2021, Koh,Spangen
berg,and Kant, 2021). Additionally, a machine learning model trained 
using datasets from one location, might not perform accurately for a 
different location where the interaction between genotypes, environ
ment and management could be different (Paudel et al., 2021). There
fore, data-driven approaches are not entirely reliable for production- 
level decision making and require human-in-the-loop maintenance 
(Wu et al., 2022, Mosqueira-Rey et al., 2022). 

Physics-based approach on the other hand, utilizes the inversion of 
radiative transfer model (RTM)-based simulation to estimate different 

crop biophysical attributes. RTMs are developed by the principles of 
radiative transfer, which is the study of how sunlight interacts with 
gases, particles, vegetation canopies and other objects in the environ
ment (Hedley, Roelfsema, and Phinn, 2009). Since RTMs understand the 
spectral response relative to different object characteristics, scientists 
have explored the inversion of RTMs with remote sensing methods to 
reverse-engineer a certain trait (Yang et al., 2011, Pragnere et al., 1999). 
For crop biophysical trait estimation, PROSAIL is one of the most pop
ular RTMs as it combines Leaf Optical Properties Database Model 
(PROSPECT-D) and Semi-Analytical Model of Inversion of Leaf reflec
tance (SAIL) together. PROSPECT-D describes the reflection and trans
mission of light by the leaves, while SAIL describes the radiative transfer 
in a vegetation canopy. Therefore, PROSAIL can take several leaf and 
canopy level attributes as inputs (such as, LCC, carotenoid, anthocyanin, 
leaf area index, leaf inclination angle, etc.) and outputs a reflectance 
spectra ranging from 400 nm to 2400 nm. Numerous studies have uti
lized the simulated spectra produced by randomly initializing PROSAIL 
variables and hyperspectral reflectance spectra from remote sensing 
techniques to explore the inverse relationship for estimating crop bio
physical traits (Liang et al., 2015, Duan et al., 2014, Botha et al., 2007, 
Kayad et al., 2022, Casa and Jones, 2004, Liang et al., 2016). Most of 
these studies used look-up table or iterative optimization models (Baret 
and Buis, 2008) to estimate LCC and leaf area index parameters from 
crops. The major advantage of PROSAIL inversion over data-driven 
approach is the reproducibility or robustness of the models, as the 
PROSAIL simulation considers the biophysical characteristics of a crop 
given certain environmental conditions (Sun et al., 2022). However, the 
challenge of PROSAIL inversion is its ‘ill-posed’ problem, where 
different combinations of model parameters may contribute to similar 
canopy reflectance resulting in higher uncertainty (Combal, Baret, and 
Weiss, 2002, Li and Wang, 2011, Combal et al., 2003). Additionally, the 
inversion model can become too expensive to train as there can be 
millions of parameter combinations during the simulation (Liang et al., 
2016). 

Hybrid approach aims to combine the machine learning model and 
PROSAIL simulation model together in conjunction with hyperspectral 
observation. Such integration has the capabilities of reducing the model 
training time by leveraging the optimization efficiency of machine 
learning algorithms (de Sá et al., 2021). Many studies have integrated 
gaussian process (Camps-Valls et al., 2018, Svendsen et al., 2018), 
random forest (Campos-Taberner et al., 2018), support vector machine 
(Tuia et al., 2011) and artificial neural networks (Annala et al., 2020) 
with PROSAIL simulation and found considerable accuracy in prediction 
performance. However, the literature has not yet extensively explored 
the hybrid approach for crop biophysical attribute estimation with most 
studies focusing on satellite-based inversion, which doesn’t provide the 
level of detail needed by crop breeders and precision agriculture prac
titioners. Therefore, there exists a knowledge gap in understanding the 
hybridization of PROSAIL and machine learning models to estimate 
different crop biophysical properties at plot-level from UAV-borne 
hyperspectral data. 

Several studies have demonstrated the efficacy of hybrid models in 
predicting crop biophysical properties from UAV data. Many of them 
relied on multispectral sensors mounted in UAV, which typically in
volves blue, green, red, near-infrared and often red-edge region of the 
spectrum. Most of these studies utilized different types of inversion 
techniques in retrieving crop parameters from PROSAIL. For example, 
Wan et al. (2021) and Su et al. (2019) performed the inversion of CHL 
and LAI using the root mean squared error as the loss function between 
the simulated and observed response variables. Similarly, Antonucci 
et al. (2023) retrieved LCC, canopy chlorophyll, and LAI using the 
inversion of gaussian process regression. On the other hand, Sun et al. 
(2021) utilized the NDVI derived from the UAV multispectral camera as 
a correction parameter for the inverting the LAI from PROSAIL simu
lation and achieved improved result. However, the use of only 4 or 5 
wavelengths during the PROSAIL inversion incurs the challenge of ill- 
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posed problem and might not be ideal to develop a generalized model for 
future use. Alternatively, few studies have explored the capabilities of 
hyperspectral data in PROSAIL simulation, where most of them 
employed the lookup table method to estimate either LAI or CHL for 
maize (Duan et al., 2014, Kayad et al., 2022), Gingko (Yin et al., 2022), 
rice (Wang et al., 2021), potato and sunflower (Duan et al., 2014). A 
lookup table is a well-organized collection of relationships, which is 
often limited by the size of the database and can be computationally 
intensive to use. Among these studies, Yin et al. (2022) determined the 
distributions of pigment content in Gingko plantations by leveraging 
both LiDAR (Light Detection and Ranging) and hyperspectral sensor 
along with PROSAIL inversion. Although they highlighted the superi
ority of coupling LiDAR and hyperspectral data with PROSAIL simula
tion, it is not always feasible to employ a co-aligned dual-sensor system 
for data collection and the postprocessing steps can be computationally 
expensive. Alternatively, Roosjen et al. (2018) employed a cost function 
optimization algorithm to estimate LAI and CHL of potato crop. Their 
approach introduced the concept of multi-angular spectral data in the 
process, which significantly improved the estimation accuracy. 
Recently, Zhang et al. (2021) used the concept of transfer learning in 
their deep neural network developed from PROSAIL-simulation to esti
mate CHL of winter wheat. Transfer learning enabled the reproducibility 
of knowledge learned by PROSAIL simulation to observed hyperspectral 
data collected by UAV. However, the study did not delve into the 
evaluation of various neural network structures and did not incorporate 
multi-angular observations into the analysis. 

PROSAIL includes a set of solar-sensor angular information during 
the simulation, which is used to better understand the anisotropic 
relationship between the canopy spectral reflectance and its biophysical 
traits (Breunig et al., 2015). The angle of incoming solar radiation and 
reflectance can strongly interact with vegetation at both leaf (Jacque
moud and Baret, 1990) and canopy (Verhoef, 1984) level, which offer 
valuable information about the object. Therefore, several studies have 
achieved significant improvement in crop biophysical attribute estima
tion when multiple solar-sensor angles were considered during the 
hyperspectral data collection (Dorigo, 2012, Hilker et al., 2011, Song 
et al., 2016, Yang et al., 2011). However, collecting spectral data from 
multiple angles is often limited to handheld spectraradiometer (Thorp 
et al., 2015), goniometer (Sandmeier et al., 1998, Sandmeier, 2000), or 
satellite-borne hyperspectral imagers (Barnsley et al., 2004), which are 
challenging in a high-throughput phenotyping environment. For 
example, handheld spectraradiometer and goniometers (i.e., an instru
ment that can precisely measure the sensor geometry angles during data 
collection) can be accurate and precise but increases the logistical 
complexity. Satellite-based hyperspectral imagers on the other hand, 
cannot provide information at finer-scale, which is often required for 
crop breeding and precision agriculture practices. Therefore, UAVs 
mounted with hyperspectral sensors can offer better ground sampling 
distance to retrieve plant parameters and can be programmed to collect 
multi-angular observation. Although few studies have explored the use 
of multi-angular observation from UAV-borne hyperspectral sensors, 
they either explored only the anisotropic characteristics of plants (Bur
kart et al., 2015, Roosjen et al., 2017, Roosjen et al., 2016) or did not 
explore the use of efficient modeling techniques to perform PROSAIL 
inversion (Roosjen et al., 2018). 

Deep neural networks (DNN) have improved the crop biophysical 
trait estimation accuracy from hyperspectral data by leveraging the 
complex non-linear relationship between traits and reflectance. Studies 
have utilized artificial neural network (ANN) or multi-layer perceptron 
(MLP) to estimate different crop traits and received comparable per
formance (Moghimi, Yang, and Anderson, 2020, Rehman et al., 2020, 
Feng et al., 2022, Fei et al., 2022). However, few studies have also 
explored into recurrent neural networks (RNN) and convolutional neu
ral networks (CNN) for 1D spectral data and found better model per
formance. RNN was initially designed for handling sequence data as its 
input, specifically for natural language processing and timeseries 

forecasting (Michel, 2003). However, several studies have utilized the 
two most common types of RNN units, i.e., long short-term memory 
(LSTM) and gated recurrent unit (GRU), to understand the sequential 
pattern of hyperspectral data and received improved accuracy (Mou, 
Ghamisi, and Zhu, 2017, Paoletti et al., 2020, Hang et al., 2019). 
Alternatively, CNN has revolutionized the computer vision domain by 
extracting meaningful information from 2D images. However, CNN can 
be also extended to understand the 1D pattern from a signal data by 
considering a single dimensional kernel in the process. Many studies 
have reported the superior performance of 1D CNN architectures in 
extracting meaningful information from hyperspectral reflectance data 
(Huang, He, et al. 2022, Li et al., 2021, Mansuri et al., 2022, Riese and 
Keller, 2019, Liu and Xiao, 2020). However, none of these DNN archi
tectures (other than the MLP) have not been well explored in terms of 
PROSAIL-inversion technique. 

Transfer learning is a machine learning technique where a model 
trained on one task is fine-tuned for another similar task with limited 
training data (Pan and Yang, 2010). This approach has the potential to 
address one of the main challenges in using DNNs for crop biophysical 
trait estimation, which typically suffers from the unavailability of large 
datasets. By training a base model on a vast database of spectral data and 
corresponding crop traits generated from PROSAIL simulations, the 
PROSAIL-trained model can then be applied to UAV-borne hyperspectral 
data. The incorporation of varying solar-sensor geometry in the analysis 
can further increase the robustness of the model. Considering these facts, 
we propose a dual stream neural network (DSNN) approach that com
bines both solar-sensor geometry data and spectral data. This strategy is 
also aimed at leveraging transfer learning from PROSAIL to improve the 
prediction accuracy of LCC and ALA of maize crops. Therefore, we ask 
the following research questions in this study: 1) What type of DNN 
architecture (i.e., MLP, LSTM, GRU, or CNN) in the spectral stream of 
PROSAIL-Net is suitable for accurately estimating LCC and ALA? 2) How 
well the PROSAIL-Net perform compared to statistical machine learning 
algorithms in terms of prediction accuracy? 3) Does the inclusion of 
multi-angular UAV observations in the PROSAIL-Net provide better 
performance over single observations? 

2. Experimental setup 

2.1. Study area 

Our study area is located in the heart of the USA Midwest, which 
produces over 33 % of the world’s corn (Wang et al., 2020). Two loca
tions were chosen for our experiment, i.e., two fields in Missouri and 
another one in Illinois. The Missouri (MO) sites were located at the 
Planthaven Farms, O’Fallon, where two experimental fields named D3 
and D16 were prepared in 2021 and 2022, respectively. Another field 
named U1 was located at the University of Illinois in Urbana Champaign, 
Illinois (IL) in 2022. Both sites were planted with corn as part of the 
experimental design. The sites in O’Fallon, MO has an average yearly 
temperature of 14 ◦C with the hottest temperature in July (average 
27 ◦C). It receives around 4 cm of precipitation on average each year 
with 65 % humidity. On the other hand, the IL site usually shows 11 ◦C 
yearly temperature on average, whereas the mean precipitation is 
around 3.7 cm over the year with 73 % humidity. The fields at these 
experimental sites were established as part of the research efforts be
tween Saint Louis University, University of Illinois and Donald Danforth 
Plant Science Center. 

2.2. Field design 

The D3 field (Fig. 1a) was planted with 55 genotypes of corn on May 
25, 2021. The lines were selected based on previous unpublished leaf 
angle and tassel branch number data. Additionally, classical mutants 
with distinct leaf angle phenotypes were also selected. The field was 
roughly 110 m in length and 30 m in width. The field was planted with 

S. Bhadra et al.                                                                                                                                                                                                                                 



ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1–24

4

around 270 plots that contains two rows of corn. The plot dimension was 
roughly 5 m by 2 m and 2 replicates per genotype was considered. On 
the other hand, the D16 field (Fig. 1b) was planted on June 13, 2022, 
with 84 genotypes of corn. The field dimensions were also similar to D3 
(i.e., 85 m in length and 30 m in width) that roughly contained 169 2- 
row plots of corn. For both D3 and D16, there were 2 replicates per 
genotype. However, not all the plots were considered part of the 
experiment (yellow boxes in Fig. 1 shows the plot boundary considered 
for phenotyping). Finally, the U1 field was larger than both D3 and D16. 
It was 90 m long but 80 m wide with around 385 (dimensions were 3 m 
by 3 m) 4-row plots of corn. Total 500 genotypes were planted on May 
31, 2022, based on the same selection criteria we considered for D3 and 
D16. 

3. Methods 

3.1. Data collection 

Two types of datasets were collected in this experiment, i.e., UAV- 

borne hyperspectral imagery and ground truth data from selected sam
ples. The overall process and data collection scenario is illustrated in 
Fig. 2. 

3.1.1. UAV data collection 
We used a DJI Matrice 600 Pro UAV platform (DJI, Shenzhen, China) 

equipped with a Headwall NanoHyperspec VNIR camera (Headwall 
Photonics, Massachusetts, USA). The M600 Pro is a popular UAV 
hexacopter, which has a maximum payload capacity of 6 kg. The 
NanoHyperspec hyperspectral camera was aligned with APX-15 Global 
Navigation System Satellite/Inertial Measurement (GNSS/IMU) unit 
(Applanix, Ontario, Canada) and the whole system was mounted with 
the UAV using a Ronin-MX gimbal (DJI, Shenzhen, China). The use of 
gimbal and high-resolution GNSS/IMU unit ensures good quality data 
collection specifically for a push-broom hyperspectral sensor. We also 
used a reflectance tarp (Fig. 2d) on the ground to perform radiometric 
calibration of the hyperspectral cubes after the data collection. The 
NanoHyperspec camera is a line scanner hyperspectral camera that has 
12 mm focal length and can capture 640 spatial pixels perpendicular to 

Fig. 1. Location of the study area. The D3 (a) and D16 (b) fields were located in O’Fallon, MO, whereas the U1 field (c) was in Champaign, IL. The sampling locations 
(i.e., plot boundaries) are marked with yellow polygons. Underneath each plot boundary, a false color composite (near infrared, red, and green bands) of the 
hyperspectral orthomosaic is shown. The false color composite shows slight difference of color intensity among plots. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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its flight path. Therefore, we had to define a geographic polygon 
boundary during the data collection window, and the system automat
ically started capturing data whenever the UAV system was inside that 
boundary. The camera provided 269 spectral bands ranging from 400 
nm to 1000 nm in very near-infrared (VNIR) region with around 2.3 nm 
spectral resolution. The flight missions were planned in a cross-grid 
pattern using the UGCS Mission Planning software (v4.14, SPH Engi
neering, Riga, Latvia). The flights had 50 m altitude, 3 m/s speed, which 
roughly gave us around 3 cm ground sampling distance (GSD) per pixel. 

Total four UAV flights were conducted in the experimental sites. 
Table 1 shows the list of days for data collection. For each day, we chose 
to fly around noon or a little before noon to avoid unpredictable cloud 
conditions. The dates were chosen based on clear sky condition and 
maturity stages of the corn. We chose the early reproductive stages of 
corn as the data collection dates. 

3.1.2. Ground truth data collection 
The number of samples collected for LCC and ALA are provided in 

Table 1. We used a Dualex Scientific 4 (Force-A, Orsay, Ile-de-France, 
France) instrument to measure the LCC for each sample plot. Three 

well-lit healthy leaves from close to the top of the canopies were selected 
randomly for each plot. We used the average value of the three leaves as 
one representative LCC value. Ground truthing of leaf angle was per
formed using a simple printed protractor tool (Fig. 2f), measured as 
degrees from horizontal. The leaf directly above the highest ear was 
chosen, or if no ear was present, the fifth leaf from the top of the plant. 
Plants that didn’t have an ear and had not yet tasseled were not 
measured. The stem of the plant was aligned to the protractor, and the 
angle of the leaf was measured to the closest 5◦. Three replicates from 
each plot were measured, with 2 replicate plots. However, the PROSAIL 
simulation only considers the leaf inclination angle, which refers to the 
angle at which a leaf is tilted relative to the direction perpendicular to 
the ground. Since the stalk of corn plant is commonly perpendicular to 
the ground, we subtracted the leaf angle measured using the protractor 
tool from 90◦ to get the leaf inclination angle for PROSAIL. The average 
value of all three replicates within a plot was considered as the ALA for 
this study. 

3.2. PROSAIL-Net schematics 

3.2.1. PROSAIL simulation 
PROSAIL is a radiative transfer model (RTM) that combines 

PROSPECT-D and SAIL together (Fig. 3a). PROSPECT-D is a leaf model 
which understands different leaf biophysical properties (Table 2) and 
simulates leaf reflectance and transmittance. The SAIL model on the 
other hand takes the leaf reflectance and transmittance from the 
PROSPECT-D model along with several canopy, soil and viewing ge
ometry parameters to simulate canopy reflectance. The canopy reflec
tance ranges from 400 nm to 2500 nm with 1 nm interval (Fig. 3c). 

For the simulation part, we first identified typical ranges of different 

Fig. 2. Data collection scenarios. The UAV system (a) consisted of a gimbal that holds the hyperspectral sensor and GNSS/IMU (b). The UAV was flown in a cross-grid 
fashion (c) using the UGCS software. The radiometric calibration was done using a reflectance tarp (d) laid down on the ground during data collection. The ground 
truth data collection was performed on the same days of the UAV flights by manual measurement(e). We calculated the ALA using a handmade protractor tool (f), 
which can calculate the angle between the stem and leaf, and LCC using a Dualex Scientific 4 instrument (g). 

Table 1 
Data collection dates and number of ground truth samples.  

Date Field Name Number of Ground Truth Samples 
LCC ALA 

July 20, 2021 D3 50 50 
August 4, 2021 D3 50 50 
August 11, 2022 D16 100 116 
August 17, 2022 U1 0 385 
Total Samples 200 601  
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PROSPECT-D and SAIL variables available for corn in the literature 
(Bsaibes et al., 2009, Koetz et al., 2005, Kong et al., 2016, Berger et al., 
2018). The ranges considered for our study is listed in Table 2. We used 
the PROSAIL bindings in Python developed by Domenzain, Gómez-Dans, 

and Lewis (2019). We simulated 100,000 simulated spectra using 
randomly assigned variables within the ranges of Table 2. However, we 
added some constraints during the simulation, which excluded the 
generation of unusual spectral data. For instance, some combination of 
angular variables may result in null spectral data, which were discarded 
automatically from the simulation. In addition, if the reflectance values 
were more than 1.0 or negative, such samples were dropped as well. The 
soil reflectance spectra were collected from 10 well sunlit spots 
randomly distributed within the experimental fields. We used the 
Spectral Evolution PSR-3500 handheld spectraradiometer to capture the 
reflectance spectra (400 – 2500 nm) from the soil for each day. The soil 
reflectance from 10 samples were then averaged together as the input 
for PROSAIL model. The solar zenith (θs), sensor (or viewing) zenith 
(θv), and relative azimuth angle between the sun and sensor (ϕsv) were 
also considered since we hypothesized the influence of multi-angular 
viewpoint would have better performance accuracy in the inversion 
model. 

3.2.2. Transfer learning 
Transfer learning is a machine learning technique in which a model 

trained on one task (i.e., source domain) is re-purposed for a different 
task (i.e., target domain) to achieve robust performance (Pan and Yang, 
2010). The goal of transfer learning is to leverage the knowledge learned 
from the source domain to improve the performance of the model on the 
target domain, especially when the amount of labeled data in the target 
domain is limited. There are different types of transfer learning, 
including inductive, transductive, and unsupervised transfer learning 
(Zhuang et al., 2021). In inductive transfer learning, the pre-trained 
model is used as a feature extractor for a new model that is trained on 
the target domain. In transductive transfer learning, the pre-trained 

Fig. 3. The schematics of PROSAIL-Net. The PROSAIL simulation (a) is consisted of PROSPECT-D, a leaf model, and SAIL, a canopy model. The random initialization 
of PROSAIL variables results in a large number of simulated spectra (c). The multi-angular cross-grid UAV flight (b) enables us to get variable θs, θv, and ϕsv, along 
with hyperspectral spectra (d). The PROSAIL-Net consists of a neural network trained by the simulated dataset and later trasnfering that knowledge to the observed 
data from UAV hyperspectral system. 

Table 2 
Overview of the PROSAIL input variables of corn based on literature review.  

Model Variable Name Symbol Unit Typical 
Range 

PROSPECT-D 
(Leaf model) 

Leaf structure index N Unitless 1.2 – 1.8 
Chlorophyll a + b content Cab/LCC μg/cm2 0.1 – 80 
Total carotenoid content Ccx μg/cm2 1.0 – 24.0 
Total anthocyanin content Can μg/cm2 1.2 – 1.8 
Brown pigments Cbp Unitless 0.01 – 1.0 
Dry matter content Cm g/cm2 0.004 – 

0.0075 
Leaf water depth Cw cm 0.01 – 

0.03 
SAIL (Canopy 

model) 
Leaf area index LAI m2/m2 0.1 – 7.0 
Average leaf inclination 
angle 

ALA (◦) 10.0 – 
80.0 

Hot spot parameter Hot m/m 0.01 – 
0.20 

Soil reflectance ρsoil (%) – 
Soil brightness factor αsoil Unitless 1 
Fraction of diffuse 
illumination 

skyl (%) 23 

Solar zenith angle θs (◦) 10.0 – 
90.0 

Sensor (viewing) zenith 
angle 

θv (◦) 10.0 – 
90.0 

Relative azimuth angle 
between sun and sensor 

ϕsv (◦) 10.0 – 
360.0  
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model is fine-tuned on the target domain using a limited set of labeled 
data, and in unsupervised transfer learning, the pre-trained model is 
used as a starting point for training a new model on the target domain 
without using labeled data. Based on the scenario of our problem, it falls 
under the transductive transfer learning. However, our source domain is 
the PROSAIL simulation model (Fig. 3c) and multi-angular UAV data 
(Fig. 3b), where the features are the spectral data and solar-sensor ge
ometry data. The target domain for our case is also the spectral data 
from UAV-borne hyperspectral sensor and the solar-sensor geometry 
data extracted from the GNSS/IMU of the UAV. Therefore, the transfer 
learning scenario is straightforward, and the features of source domain 
and target domain are the same. This is also known as “fine-tuning” 
transfer learning (Vrbančič and Podgorelec, 2020) as the task is to 
leverage the large training dataset of the source domain into the small 
amount of labeled data in the target domain. 

The basis of our PROSAIL-Net was simply three-fold, i.e., first, 
simulate a large amount of spectral data from PROSAIL using many 
combinations of the crop biophysical variables specified in Table 2; 
second, train two base neural networks from the simulation data where 
the inputs are spectral and solar-sensor geometry data, and the output is 

either LCC or ALA; and finally, use the pretrained base model that 
performed the best to estimate LCC or ALA from observed UAV data. 

Our initial analysis of PROSAIL-simulated and UAV-extracted spec
tral data revealed that the UAV spectra includes some noise within its 
value. The noise can originate from various factors, such as, atmospheric 
environment, UAV flying platform, imaging optical devices, etc. (Ked
zierski et al., 2019, Sekrecka, Wierzbicki, and Kedzierski, 2020, Arroyo- 
Mora et al., 2021). Consequently, we applied the Savitzky-Golay trans
form (Press and Teukolsky, 1990), a frequently utilized smoothing 
method for spectral data, to process the UAV spectra with the objective 
of eliminating noise. The method involves fitting a polynomial function 
to a window of adjacent data points and then using the polynomial to 
estimate the smooth values of the data points within the window. The 
transformation can be expressed by Equation (1): 

ŷi =
∑j=m

j=−m
cj*yi+j (1)  

where, ŷi is the estimated smoot value of the data point at position i, yi+j 

are the data points within the window centered at i, m is the half-width 

Fig. 4. Data processing steps. The hyperspectral cubes were first converted from digital number to radiance to reflectance to orthorectified rasters (a). The solar- 
sensor geometry was calculated for each hyperspectral cube using the methods described in Bhadra et al. (2022). Figure (b) was updated with permissions from 
the authors of Bhadra et al. (2022). Finally, the plot-level data extraction (c) was done using a custom-made Python tool that clips the data based on plot boundary, 
applies k-nearest neighbor to get soil mask, and extracts the soil removed average hyperspectral spectra per plot. 
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of the window, and cj are the coefficients of the polynomial function, 
which are calculated using a least-squares method. We use a 1st order 
polynomial and a window length of 13 for the Savitzky-Golay transform, 
which gave us an optimum spectrum from UAV that closely matches the 
PROSAIL spectra. The details of PROSAIL-Net neural network structure 
are explained in Section 3.4. 

3.3. Data preprocessing 

The data preprocessing steps can be broadly categorized into: a) 
hyperspectral cube processing, b) solar-sensor geometry calculation, 
and c) plot-level data extraction. Fig. 4 illustrates the major steps 
involved in each category. 

3.3.1. Hyperspectral cube processing 
The hyperspectral images were collected as 3D cubes across the flight 

path, where the x and y axis represent the spatial dimension, and the z 
axis holds the spectral information. The initial data cube only stored the 
amount of light passing through the sensor as Digital Numbers (DN). We 
used Headwall’s proprietary software, ‘Spectral Viewer’, to convert the 
DN values into radiance (Wm−2sr−1), which is the amount of light en
ergy reflected by an object. The conversion is done using the empirical 
line method which is a linear regression model that is trained for each 
sensor to convert raw DN into radiance values. Each unique sensor 
comes with its own proprietary model within the software for this 
conversion. To account for the variability of solar irradiance or solar 
intensity during the data collection, we converted the radiance into 
reflectance values by using a reflectance tarp placed on the ground 
during data collection (Fig. 2d). The reflectance tarp has three different 
levels, i.e., 56 %, 33 % and 11 %, among which we chose the 56 % for 
reflectance calculation based on the recommendation from Headwall 
(Barreto et al., 2019). Finally, the hyperspectral cubes were geometri
cally corrected using the onboard APX-15 GNSS/IMU data and photo
grammetric calibration procedures available in the Spectral Viewer 
software. Fig. 4a shows the major steps taken into consideration for the 
hyperspectral data cube processing part. 

3.3.2. Solar-sensor angle calculation 
The solar and sensor geometry corresponding to each hyperspectral 

cube were calculated based on the methodologies developed by Bhadra 
et al. (2022). The pipeline can take in different cube and corresponding 
GNSS/IMU information as inputs while resulting three geospatial rasters 
of solar zenith angle (θs), sensor zenith angle (θv), and relative azimuth 
angles (ϕsv). 

The solar zenith (θs) and azimuth (ϕs) angles were calculated using 
the PVLIB library (v0.9.0), which is an astronomical library in Python 
(Holmgren, Hansen, and Mikofski, 2018). θs is a function of time, lati
tude, and longitude information, which can be extracted from the GNSS/ 
IMU device with the functionalities developed by Bhadra et al. (2022). 
On the other hand, ϕs depends on the time and latitude of the corre
sponding pixel and was calculated directly by PVLIB. Both θs and ϕs were 
calculated for each pixel of each hyperspectral cube, and later converted 
as a geospatial raster data for input in the PROSAIL model. 

Alternatively, the sensor zenith (θv) and azimuth (ϕv) angles were 
calculated using trigonometric functions. Since the local coordinates of 
sensor location, V(xv, yv) and corresponding pixel location, R(xr,yr), can 
be known through the Universal Transverse Mercator (UTM) projection 
system, and the flight altitude was always 50 m, we can calculate αv as 
Equation (2) and then θv with Equation (3). The ϕv was calculated using 
equation (4), where the a→ is the true north vector and a→ is the vector 
between V and R. Finally, the relative azimuth angle between sensor and 
sun can be calculated using Equation (5). 

αv = tan−1 50
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xv − xr)
2

+ (yv − yr)
2

√ (2)  

θv = 90o − αv (3)  

ϕv = cos−1

⎡

⎣ a→ • b
→

| a→|

⃒
⃒
⃒ b
→

⃒
⃒
⃒

⎤

⎦ (4)  

ϕsv = ϕs − ϕv (5) 

The angles were first calculated based on the pixel coordinates of 
each hyperspectral cube. For further use as the input in the PROSAIL 
model, θs, θv, and ϕsv were converted as a geospatial raster data. 

3.3.3. Plot-level data extraction 
The plot boundaries were digitized in ArcGIS Pro using polygons. 

Then, plot-level average reflectance values for each wavelength were 
extracted using an automated pipeline developed in Python. We used 
geopandas, rasterio, and other GDAL-based open-source geospatial li
braries to read the hyperspectral cube, remove soil pixels and then 
calculate mean spectral data. The soil pixels were identified for each 
vegetation cube by employing k-means clustering algorithm with 2 
clusters. Since the plot-level data was extracted for individual hyper
spectral cubes, there were instances where the plot boundary only 
covered a small portion of vegetation. Those cases were identified by 
using a threshold for the ratio of pixel area in that cube and the corre
sponding plot area. The overall process is illustrated in Fig. 4c. 

3.4. Dual stream deep neural network 

The PROSAIL-Net was built as a dual-stream deep neural network 
(Fig. 5a) since it has to handle two types of input dataset (i.e., angle and 
spectra data) within its architecture. We decided to use a simple multi- 
layer perceptron (MLP) network for the angel branch and experimented 
with different types of neural networks for the spectra branch. Finally, 
the outputs from both branches were concatenated together using a 
concatenation layer followed by the prediction layer of LCC and ALA. 

3.4.1. Solar-sensor angle branch 
The angle branch consists of three features as its inputs, i.e., solar 

zenith angle θs, sensor zenith angle θv and relative azimuth angle (ϕsv), 
followed by a MLP network. MLP is composed of multiple layers of 
artificial neurons. The neurons in each layer are connected to the neu
rons in the next layer through a set of weights, and the network is trained 
to adjust these weights to perform a regression task. Each neuron in the 
MLP perform the following equation: 

y = f (W⋅x + b) (6)  

where, y is the output of the network, f is the activation function, W is 
the weight matrix, b is the vias vector, x is the input, and ⋅ is the dot 
operator. The MLP network we designed for this branch includes four 
hidden dense layers with 2, 8, 16, and 32 neurons, respectively. Each 
layer was accompanied by a Rectified Linear Unit (ReLU) activation 
function. 

3.4.2. Spectral branch 
The spectra branch was tested with several types of neural networks, 

i.e., MLP, convolutional neural network (CNN), long short-term memory 
(LSTM), and gated recurrent unit (GRU). 

3.4.2.1. Multi-layer perceptron. The MLP network used in the spectra 
branch was similar to the one in angle branch. However, since the 
spectra data had 269 features as its input, we increased the number of 
hidden layers along with the number of neurons in each layer (Fig. 5b). 
We also introduced some dropout layers in between each block of layers 
to reduce potential overfitting issues. 
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3.4.2.2. Long short-term memory. Long short-term memory (LSTM) is a 
type of recurrent neural networks (RNNs) that are designed to handle 
sequential data, such as, natural language, time series or signal data. 
They can maintain a memory of previous inputs and use that informa
tion to inform the current output. A LSTM unit (Fig. 5e) use three gates 
(i.e., input, forget, and output gates) to control the flow of information 
through the network (Equations (7) – (11)). The input gate (it) controls 
the flow of new information into the cell state, the forget gate (ft) con
trols the flow of information out of the cell state, and the output gate (ot) 
controls the flow of information from the cell state to the output. These 
gates are controlled by different weights and biases and are modeled by 
the following equations: 

it = σ(Wi⋅xt + Ui⋅ht−1 + bi) (7)  

ft = σ
(
Wf ⋅xt + Uf ⋅ht−1 + bf

)
(8)  

ot = σ(Wo⋅xt + Uo⋅ht−1 + bo) (9)  

ct = ft*ct−1 + it*tanh(Wc⋅xt + Uc⋅ht−1 + bc) (10)  

ht = ot*tanh(ct) (11)  

where, xt, ht, and ct are the input, hidden state, and cell state at time step 
t, respectively. In addition, the parameters W, U, and b are the weights 
and biases of the gates, respectively. The LSTM architecture is illustrated 
in Fig. 5d, where four hidden layers of variable LSTM units were stacked 
together as the basis of the network. 

3.4.2.3. Gated recurrent unit. Gated recurrent unit (GRU) is another 
type of RNN that can handle sequential data. It is similar to a LSTM in its 
functioning but has fewer parameters and is computationally more 
efficient. The GRU cell (Fig. 5f) has two gates, i.e., the update gate and 

the reset gate (Equations (12) – (14). The update gate (zt) controls the 
amount of information to be kept from the previous hidden state and the 
current input, and the reset gate decides how much of the previous 
hidden state information should be forgotten. 

zt = σ(Wz⋅xt + Uz⋅ht−1 + bz) (12)  

rt = σ(Wr⋅xt + Ur⋅ht−1 + br) (13)  

ht = (1 − zt)*ht−1 + zt*tanh(Wh⋅xt + rt*(Uh⋅ht−1 + bh) ) (14)  

where, xt , zt , rt and ht are the input, update state, reset state, and hidden 
state at time step t, respectively, and W, U, and b are the weights and 
biases of the gates. The GRU architecture is illustrated in Fig. 5d, where 
four hidden layers of GRU units were stacked together to process the 
sequential data. 

3.4.2.4. Convolutional neural network. Convolutional neural network 
(CNN) is a highly popular method to extract meaningful features and 
patterns from 2D images. However, the concepts of 2D convolution can 
be extended to 1D convolution that can handle a 1D array as input. The 
1D CNN is composed of multiple layers, each of which contains a set of 
convolutional and pooling filters that are trained to extract specific 
features from the input data. If f is the input vector with length n and g is 
the kernel with length m, the convolution f*g of f and g is defined as: 

(f *g)(i) =
∑m

j=1
g(i) • f

(
i − j +

m
2

)
(15) 

The mathematical operation in Equation (15) slides a kernel over a 
1D spectra and multiply the overlapping kernel with the spectra fol
lowed by the addition of them together. After each convolution layer or 
a block of convolution layers, we applied a 1D max pooling layer, which 
is also a sliding kernel moving through the spectra. In this case, the max 

Fig. 5. The schematics of dual stream neural network (a) where the angle branch uses a simple MLP to process the solar-sensor geometry data, and the spectra branch 
deals with the hyperspectral data using either MLP (b), CNN (c) or RNN (d) architectures. Two types of RNN units were considered, i.e., LSTM (e) and GRU (f). The 
explanation of different icons are given below as legends. The information from both angle branch and spectra branch was concatenated together and finally an 
output layer was used to predict either LCC or ALA. 

S. Bhadra et al.                                                                                                                                                                                                                                 



ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1–24

10

pooling layer takes the maximum value within the window and assign it 
as the output for that position. Max pooling helps reducing the high 
dimensionality in spectral data while retaining the most influential in
formation within the data. 

The 1D CNN architecture considered in this study was inspired by the 
skeleton of VGG architecture (Simonyan and Zisserman, 2015). VGG is 
one of most popular architecture for its strong performance, simplicity, 
standardization and for being one of the first architectures that used 
small convolutional filters and very deep architectures (Pak and Kim, 
2017, Ajit,Acharya,and Samanta, 2020). We used four blocks of 
convolution and pooling layers, where each convolution has 32 to 512 
kernels with 3 × 1 shape and pooling shape of 2 × 1 (Fig. 5b). At the end 
of the network, the feature maps were flattened to match the dimensions 
of the dense layer output of angle branch. 

3.5. Statistical machine learning algorithms 

We trained several statistical machine learning algorithms which has 
shown consistent performance in crop biophysical trait estimation from 
hyperspectral data. We chose partial least squares regression or PLSR 
(Foster, Kakani, and Mosali, 2017, Shen et al., 2020), random forest 
regression or RFR (Yang et al., 2021, Wang, Zhao, and Yin 2022), and 
support vector machine regression or SVR (Karimi et al., 2008, Huang 
et al., 2019) as the statistical machine learning algorithms due to their 
popularity and simplicity. For the statistical machine learning portion, 
we tested two types of training scenarios, i.e., a) ML-Raw and b) ML-VI. 
In the ML-Raw models, average reflectance from each plot for all the 
wavelengths (i.e., 269 bands) were used as the input. For the ML-VI 

models, vegetation indices (VIs) were calculated before feeding them 
into the models. Research has shown that VIs can minimize the effects of 
illumination condition, solar angle and enhance the contrast between 
soil and vegetation (Fang and Liang, 2014, Lambin, 2001). Table 3 
shows a list of the VIs considered for this analysis. 

3.6. Model training and evaluation 

The model training scenarios in this study can be categorized into 
two different sections, i.e., a) statistical machine learning and b) deep 
learning. In this section, we will explain how different models were 
trained to estimate LCC and ALA. The total dataset was randomly split 
into two sets, i.e., training (70 %) and testing (30 %) set. The models 
were trained using the train set, whereas the evaluation was performed 
with the test set that was not seen by the models during training. 

3.6.1. Training statistical machine learning algorithms 
The statistical machine learning algorithms (i.e., PLSR, RFR and 

SVR) for two modeling scenarios (i.e., ML-Raw and ML-VI) were trained 
using the Scikit-learn package (v1.0.1) in Python. Hyperparameter 
tuning is critical for optimizing the performance of statistical machine 
learning algorithms as it involves selecting the values of parameters that 
govern the learning process. The optimal values of hyperparameters can 
be determined through a systematic search over the parameter space, 
which can result in a significant improvement in the accuracy of the 
model (Dewi and Chen, 2019, Liu, Wu, and Chen 2020). We used the 
grid search hyperparameter tuning, which is a method of systematically 
searching over a predefined hyperparameter space in order to determine 

Table 3 
List of VIs used in ML-VI modeling, where in ρn, ρ is the reflectance of wavelength n.  

VI Abbreviation Formula Reference 

ARI Anthocyanin Reflectance Index 1
ρ550

−
1

ρ700 
Gitelson, Merzlyak, and Chivkunova (2001) 

NDVI Normalized Difference Vegetation Index ρ860 − ρ650
ρ860 + ρ650 

Rouse et al. (1974) 

NDRE Normalized Difference Red-edge Index ρ860 − ρ720
ρ860 + ρ720 

Nichol et al. (2000) 

GNDVI Green Normalized Vegetation Index ρ860 − ρ560
ρ860 + ρ560 

Gitelson et al. (1996) 

GDVI Green Difference Vegetation Index ρ860 −ρ560 Tucker et al. (1979) 
ARVI Atmospherically Resistant Vegetation Index ρ800 − [ρ680 − ρ450 + ρ680]

ρ800 + [ρ680 − ρ450 + ρ680]
Kaufman and Tanre (1992) 

CCCI Canopy Chlorophyll Content Index ρ800 − ρ715
ρ800 + ρ715

/
ρ800 − ρ680
ρ800 + ρ680 

Barnes et al. (2000) 

CARI Chlorophyll Absorption Ratio Index ρ700
ρ670

*[(ρ700 − ρ670) −0.2(ρ700 − ρ550) ] Daughtry et al. (2000) 

GCI Green Chlorophyll Index ρ800
ρ560

−1 Hunt et al. (2011) 

RECI Red Edge Chlorophyll Index ρ800
ρ715

−1 Gitelson, Keydan, and Merzlyak (2006) 

CI Curvature Index ρ675*ρ690
ρ683

2 Zarco-Tejada et al. (2001) 

Datt1 Datt Index 1 ρ850 − ρ710
ρ850 − ρ680 

Datt (1999) 

Datt3 Datt Index 3 ρ754
ρ704 

Datt (1999) 

Datt4 Datt Index 4 ρ672
ρ530 − ρ708 

Datt (1999) 

Datt6 Datt Index 6 ρ860
ρ550 − ρ708 

Datt (1999) 

EVI Enhanced Vegetation Index 2.5*
ρ860 − ρ650

ρ860 + 6*ρ650 − 7.5*ρ480 + 1 Huete et al. (1997) 

MTCI MERIS Terrestrial Chlorophyll Index ρ754 − ρ709
ρ709 + ρ681 

Dash and Curran (2004) 

Vog Vogelmann Index ρ740
ρ720 

Vogelmann, Rock, and Moss (1993) 

SAVI Soil Adjusted Vegetation Index ρ800 − ρ670
ρ800 + ρ670 + 0.5

*1.5 Huete et al. (1992) 

MSAVI Modified Soil Adjusted Vegetation Index 2ρ860 + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2ρ860 + 1)
2

− 8(ρ860 − ρ650)

√

2 
Qi et al. (1994) 

TSAVI Transformed Soil Adjusted Vegetation Index a(ρ860 − ρ680) − b
a*ρ860 + ρ680 − ab + X(1 + a2)

a = 1.22, b = 0.03, X = 0.08  Baret and Guyot (1991)  
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the optimal values of hyperparameters for a given machine learning 
model (Bergstra and Bengio, 2012). We searched over a wide range of 
commonly used hyperparameters for PLSR, RFR and SVR based on 
extensive literature review. During the grid search, we also enabled a 5- 
fold cross-validation to ensure that the performance of the model is 
evaluated effectively across different subsets of the data. Since a wide 
range of features were used to model the statistical machine learning 
models (i.e., 269 features for ML-Raw and 22 features for ML-VI), an 
automatic feature selection mechanism was also introduced in the 
pipeline. During the training of SVR, 10 best features were selected using 
the ‘Select K-best’ function of Scikit-learn using the Pearson’s Correla
tion Coefficient. This selection was done with only the training set, 
which ensured the robustness of the test set in evaluating the models’ 
performance. However, no feature selection was performed for the PLSR 
and RFR. Since PLSR performs Principal Component Analysis (PCA) 
before conducting the regression analysis, the feature space gets reduced 
to important principal components and reduces the chances of over
fitting from higher number of feature space. Also, the number of com
ponents is a hyperparameter for the PLSR that was tuned using the grid- 
search method to maintain the model robustness. On the other hand, 
RFR calculates the feature importance scores for each feature and avoids 
multicollinearity specifically for handling hyperspectral remote sensing 
data (Bhadra et al., 2020), i.e., gives less importance to similar features 
in the modeling scheme. Therefore, we did not perform any feature se
lection for RFR either. The statistical machine learning models were 
trained in a Windows computer with Intel Xeon Platinum E5 (3.1 GHz) 
that has 8 cores, and 128 GB of RAM. We utilized the parallel processing 
functionalities of Scikit-learn functions that reduced the amount of 
training time significantly. 

3.6.2. Training DSNNs 
We considered a variety of DSNN in our study, i.e., PROSAIL-Net 

base model, PROSAIL-Net transfer learning models, with many 
different combinations of architectures (i.e., MLP, LSTM, GRU, and 
CNN) to process the spectral data. The DSNN training and evaluation 
was performed using the TensorFlow API (v2.6.0) in Python. First, we 
created a unique data generator object to automatically process the 
input pipeline of solar-sensor geometry and spectral data. The data 
generator allowed us to efficiently read the massive amount of PROSAIL 
simulation data in batches and ensured efficient use of memory during 
the training. Since our task is a regression problem, we used the mean 
squared error as the loss function for all models. The deep learning 
model also has some hyperparameters to tune, such as, batch size, 
learning rate, and number of epochs. We used a batch size of 32 for all 
the model training. The popular ‘Adam’ optimizer was used for the 
backpropagation which requires learning rate as its one of the param
eters. To avoid searching over different learning rate values, we started 
with a learning rate of 0.001 and exponentially reduced the value if the 
epoch exceeds certain iterations. The number of epochs was set as 400 
for all DSNNs but it was controlled with an early stopping criterion. We 
divided the training set for the DSNN into another two sets, i.e., training 
(70 %) and validation (30 %), where the validation set helps us to un
derstand the bias-variance tradeoff of the models. The early stopping 
enables the models to automatically stop training if the loss of validation 
set does not decrease after 15 iterations. The use of a fixed batch size, 
automatic reduction of learning rate and early stopping criterion helped 
us to avoid expensive grid search of the hyperparameter tuning. The 
DSNNs were trained in a Windows computer with Intel Xeon Platinum 
8168 (2.7 GHz) 24 processors, 512 GB of RAM, and a Nvidia RTX 8000 
graphical processing unit (GPU) with 48 GB memory. 

3.6.3. Model evaluation 
The performance of both statistical machine learning and DSNNs 

were evaluated using three commonly used regression metrics, i.e., R2, 
root mean squared error (RMSE) and normalized root mean squared 
error (NRMSE), of the corresponding test set. The equations are as given 

below: 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

(yi − yi)
2 (16)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n − 1

√
√
√
√
√

(17)  

NRMSE =
RMSE

y
*100 (18)  

where, i = 1, 2, ⋯⋯, n is the test sample, ŷi and yi are predicted and 
measured target variables, respectively, and y is the average of each 
measurable variable. However, in terms of multi-angular DSNN (i.e., 
PROSAIL-Net-MA), the prediction from multiple angular samples were 
averaged together to get one prediction value for each sample plot. 

4. Results 

4.1. Descriptive statistics of target variables 

The target variables considered in this study was the LCC (in μg/cm2) 
and the ALA (in Degrees). Table 4 shows the descriptive statistics of each 
variable for the entire study area, whereas Fig. 6a illustrates the distri
butions. The number of samples for ALA (n = 601) was higher than LCC 
(n = 200), among which 199 sample plots had both observation of LCC 
and ALA. The distribution of LCC shows a normal distribution (Fig. 6a), 
which also appeared as statistically significant (with 99 % confidence 
interval) in the normality test of D’Agostino and Pearson (1973). 
Alternatively, ALA shows a slight positive skewness in its spread. The 
overall spread of ALA distribution is found higher than LCC (Fig. 6a), 
which is also evident in its relatively higher standard deviation, range, 
and interquartile range values (Table 4). Lastly, Fig. 6b shows whether 
there exists any intercorrelation between the two target variables. Based 
on the Pearson’s correlation coefficient and Fig. 6b, it seems there is no 
correlation between LCC and ALA. 

4.2. Sensitivity analysis of reflectance 

The sensitivity analysis between the reflectance spectra from PRO
SAIL and UAV with the target variables can reveal the justification for 
using PROSAIL spectra along with UAV spectra for crop biophysical 
parameter estimation. We calculated the Pearson’s correlation coeffi
cient between the target variables and the direct reflectance from the 
ach wavelength in both PROSAIL and UAV spectra (Fig. 7a-b). Addi
tionally, the Normalized Difference Spectral Index between a pair of 
wavelengths from both PROSAIL and UAV was also correlated with the 
target variables (Fig. 7c-d). 

The pattern of correlation between individual wavelength reflec
tance and LCC (Fig. 7a) for both PROSAIL and UAV seems to follow the 
similar pattern. However, the magnitude of correlation coefficient for 
UAV spectra is much lower than the PROSAIL spectra. The wavelength 
region between 550 nm and 800 nm seems highly informative in 

Table 4 
Descriptive statistics of LCC and ALA.  

Statistics LCC (μg/cm2) ALA (Degrees) 

Number of Samples 200 601 
Minimum 19.03 1.67 
Mean 41.55 32.89 
Median 41.61 30.83 
Maximum 58.08 80.00 
Standard Deviation 7.07 12.96 
Range 39.05 78.33 
Interquartile Range 8.06 16.67  
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explaining the variation of LCC. Specifically, the red (~660 nm) and red- 
edge (~710 nm) shows peak negative correlation (Pearson’s R≈-0.5) for 
PROSAIL spectra. Similar pattern is also observable in terms of the 
correlation between Normalized Spectral Difference Index (NDSI) and 
LCC (Fig. 7c-d). NDSI is the ratio of ρa −ρb and ρa + ρb, where ρa and ρb 
are the reflectance of two corresponding wavelengths of a and b, that 
enhances the relationship between a target variable and a pair of 
wavelengths. Fig. 7c suggests that the NDSI values significantly 
improved the correlation between UAV and LCC compared to the values 
achieved by single wavelengths (Fig. 7a). Also, the pattern between UAV 
NDSI (Fig. 7c) and PROSAIL NDSI (Fig. 7d) looks similar with the only 
difference between increased Pearson’s R values for PROSAIL. Overall, 
the wavelength pairs of green (~500 nm) and blue (~450 nm) shows 
positive, whereas red-edge (~700 nm) and red (~650 nm) pairs show 
negative correlation with LCC. Additionally, some negative correlation 

can be also seen in the pairs of red-edge and NIR (~800 nm) along with 
green and NIR. 

On the other hand, the relationship between reflectance and ALA 
(Fig. 7b) seems insignificant (0.0 < Pearson’s R < 0.2) for UAV, whereas 
PROSAIL shows peak positive correlation at the blue (450 – 500 nm) and 
red region (695 – 700 nm). For the correlation between NDSI and ALA 
(Fig. 7e-f), the green and red pair as well as the NIR and red pair show a 
strong correlation with ALA for both UAV and PROSAIL. 

4.3. PROSAIL-Net performance on simulation data 

The proposed PROSAIL-Net consists of two types of training, i.e., the 
PROSAIL-Net base model, which is trained on PROSAIL-simulated data, 
and the PROSAIL-Net transfer learning model, which is trained on 
limited UAV data using the pretrained PROSAIL-Net base model. The 

Fig. 6. Descriptive statistics of the target variables. (a) Shows the violin plot of LCC and ALA, where the dashed line (−−−) indicates the median and dotted line (⋅⋅⋅) 
represents the 25th and 75th percentile of the data. (b) shows the scatterplot between the two target variables, which does not show any correlation between them. 

Fig. 7. Sensitivity analysis between the spectra and target variables, i.e., Pearson’s correlation coefficient between LCC (a), ALA (b) and reflectance spectra from both 
PROSAIL and UAV; correlation between Normalized Difference Spectral Index (NDSI) of UAV reflectance and LCC (a), PROSAIL reflectance and LCC (b), UAV 
reflectance and ALA (c) and PROSAIL reflectance and ALA (f). 
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PROSAIL-Net has two branches in its architecture, where one branch 
handles the solar-sensor angle data, and the other branch processes the 
spectra data. We experimented the performance of different neural 
networks in the spectral branch along with the solar-sensor angle branch 
to estimate LCC and ALA of simulation data. Table 5 shows the perfor
mance of PROSAIL-Net base model with different spectral branch on 
PROSAIL-simulated test set (n = 30,000). 

Table 5 suggests that the best performance was achieved by the CNN 
architecture for predicting both LCC (R2 0.98, NRMSE 1.34 %) and ALA 
(R2 0.86, NRMSE 17.44 %). The performance for both target variables 
were followed by GRU, LSTM, and MLP. Overall, the PROSAIL-Net base 
model showed better performance for LCC estimation rather than ALA 
prediction in all type of DSNN spectra branch. Since the CNN architec
ture consistently outperformed the other networks, we chose CNN as the 
basis of DSNN spectra branch for the rest of the analysis. 

4.4. Performance of models on actual data 

The performance of different modeling techniques for the LCC and 
ALA prediction from actual UAV-born data is provided in Table 6. Fig. 8 
shows the test R2 of different modeling approaches in different bars. The 
modeling strategies can be broadly divided into 5 segments, such as, ML- 
Raw is the statistical machine learning algorithms (i.e., PLSR, RFR, and 
SVR) with raw reflectance data from all wavelengths; ML-VI is also the 
statistical machine learning algorithms with 24 vegetation indices (VIs) 
specified in Table 3; DSNN-Raw is the neural network model directly 
trained on the UAV-spectra data and angle parameters, PROSAIL-Net- 
NAD is the DSNN model pretrained by PROSAIL simulation model but 
using only the NADIR view observations from UAV; and finally the 
PROSAIL-Net-MA that is same as PROSAIL-Net-NAD but considering 
multi-angular observations during the training. 

The modeling results suggest that the prediction performance of LCC 
was higher than that of ALA. Without using pretrained PROSAIL-Net, 
none of the models could predict ALA (Fig. 8b). Among the statistical 
machine learning algorithms, ML-VI models outperformed the perfor
mance ML-Raw models. All three models (i.e., PLSR, RFR, and SVR) 
showed improved results when using VIs as model input instead of direct 
wavelength reflectance. However, PLSR tends to perform better (R2 

0.37) than the other models (RFR R2 0.19 and SVR R2 0.12) when no 
feature engineering was performed. However, both RFR and SVR 
slightly outperformed PLSR when fewer independent features engi
neered by VIs were used as model input. 

The DSNN-Raw was trained using UAV-based reflectance and angle 
information as input and actual ground truth information collected from 
field measurements as output. Different types of neural networks for the 
spectral branch were also considered. While MLP, LSTM and GRU all 
suffered from poorer performance in predicting LCC from observed data, 
CNN outperformed the others (R2 0.44). However, the DSNN-Raw 
models could not learn any significant pattern to estimate ALA from 
the observable data (Fig. 8b). 

The model performance from UAV observed data was significantly 
improved by using pretrained PROSAIL-Net models for both LCC and 
ALA prediction. When only the single nadir view data was used in the 
PROSAIL-Net models (i.e., PROSAIL-Net-NAD), the MLP, LSTM and GRU 
network showed a large improvement from the DSNN-Raw models. 
However, the CNN-based PROSAIL-Net-NAD model significantly 
improved the result of ALA (R2 0.35) and LCC (R2 0.52) prediction. This 
indicates that the use of transfer learning helped the models perform 
better by utilizing PROSAIL-simulation knowledge. However, the utili
zation of multi-angular observation during the transfer learning (PRO
SAIL-Net-MA) improved the prediction performance even more for all 
types of neural network architecture. For LCC, the highest performance 
was achieved by the PROSAIL-Net-MA with CNN (R2 0.66), and a similar 
result was also observed for the ALA prediction (R2 0.57). Although the 
PROSAIL-Net-MA models with MLP, LSTM, and GRU did not improve 
the performance for ALA prediction compared to the PROSAIL-Net-NAD 
modes. Therefore, we have identified that the transfer learning enabled 
PROSAIL-Net model with multi-angular observation and CNN as the 
spectral architecture can accurately predict LCC and ALA compared to 
other data-driven approaches. Fig. 9 explains the prediction perfor
mance of PROSAIL-Net-MA for LCC and ALA focusing on the error 
distribution. 

The prediction performance of PROSAIL-Net-MA on the LCC test set 
clearly indicates some underprediction pattern for the relatively higher 
values (Fig. 9a). For the lower values, the model could predict with 
better accuracy. Similarly, the model overpredicts the lower ALA values, 
whereas it underpredicts the extreme values (Fig. 9b). The standardized 
residual plot can also indicate potential issues related to a regression 
model. The residual of LCC (Fig. 9c) and ALA (Fig. 9d) appear to be quite 
randomly distributed near the baseline (y = 0) which indicates that the 
PROSAIL-Net-MA was complex enough to capture the non-linearity 
within the data. 

5. Discussion 

5.1. Comparison between PROSAIL and UAV spectra 

We analyzed the direct relationship between PROSAIL-simulated and 
UAV-extracted spectra with the two target variables, i.e., LCC and ALA. 
The analysis suggests the similarities of both PROSAIL and UAV spectra 
in terms of their linear relationship with the target variables. However, 
the linearity between different independent features and crop traits is 
often not sufficient enough to develop predictive models as there could 
exist non-linear relationships (Furbank et al., 2021, Ma et al., 2001, 
Garriga et al., 2017). However, the sensitivity analysis provides a 
justification for using PROSAIL-pretrained deep learning model to UAV- 
extracted hyperspectral spectra. 

The magnitude of correlation between UAV-generated spectra and 
LCC was significantly lower than the correlation between PROSAIL- 
simulated spectra and LCC (Fig. 7a). The major reason behind this dif
ference could result from the lower sample size for observed data (n =

200) compared to PROSAIL simulation (n = 100, 000). However, the 
pattern of the relationship for UAV (i.e., the positive and negative peaks) 
seems to match with PROSAIL for explaining LCC. The sensitive wave
lengths identified by this analysis (i.e., 550 – 650 nm, 680 – 710 nm) also 
agrees with findings from other literature. For instance, Klimov, Kle
vanik, and Shuvalov (1977) identified the reflectance at 545 nm and 
685 nm to be related to pheophytin in the reaction centers of photo
system II, which is an excellent indicator of plant chlorophyll (Lu, 2016). 
In addition, several studies have identified the red-edge region as the 
photosystem I absorption spectrum, which is another mechanism 
involving different chlorophyll-protein complexes (Chen, Quinnell, and 
Larkum, 2002, Lamb et al., 2002, Kobayashi et al., 1996). In terms of 
NDSI-based analysis, we found the pair of red-edge and red as highly 
informative for explaining LCC, which was also identified by Mishra and 
Mishra (2012) as the basis of Normalized Difference Chlorophyll Index 

Table 5 
Performance of PROSAIL-Net base model on PROSAIL-simulated test set.  

Biophysical 
Parameter 

Data set Metrics DSNN Spectra Branch 
MLP LSTM GRU CNN 

LCC Test R2  0.93  0.95  0.95  0.98 
RMSE  4.55  3.96  3.99  1.34 
NRMSE  11.40  9.92  9.99  3.35 

Train R2  0.96  1.00  1.00  1.00 
RMSE  2.96  0.61  0.55  0.28 
NRMSE  7.41  1.53  1.36  0.69 

ALA Test R2  0.69  0.76  0.79  0.86 
RMSE  12.90  11.32  10.65  8.71 
NRMSE  25.81  22.66  21.30  17.44 

Train R2  0.78  0.83  0.88  0.93 
RMSE  10.77  9.54  8.31  7.09 
NRMSE  21.56  19.10  16.65  14.19  
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Table 6 
Performance of models on the test set for predicting LCC and ALA.    

LCC ALA   
Test Set Train Set Test Set Train Set 
R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE 

ML-Raw PLSR  0.37  5.06  11.78  0.46  4.81  11.10  0.04  12.09  36.06  0.46  9.03  27.23 
RFR  0.19  5.75  13.39  0.76  3.37  7.91  0.00  13.62  40.61  0.52  8.53  25.72 
SVR  0.12  5.98  13.93  0.21  6.01  13.75  0.02  12.36  36.88  0.15  11.64  35.03 

ML-VI PLSR  0.43  4.79  11.16  0.54  4.43  10.25  0.00  12.35  36.83  0.43  9.29  27.98 
RFR  0.48  4.59  10.70  0.91  2.65  6.32  0.01  13.57  40.47  0.56  8.19  24.71 
SVR  0.47  4.64  10.81  0.52  4.52  10.46  0.01  12.39  36.96  0.13  11.81  35.54 

DSNN-Raw MLP  0.05  7.02  16.37  0.19  6.10  13.96  0.03  13.04  39.91  0.43  9.29  27.98 
LSTM  0.03  6.58  15.34  0.12  6.44  14.71  0.03  12.92  39.54  0.32  10.21  30.75 
GRU  0.04  6.82  15.90  0.14  6.34  14.50  0.03  12.90  39.48  0.27  10.63  32.01 
CNN  0.44  4.87  11.36  0.54  4.43  10.25  0.03  12.84  39.30  0.21  11.13  33.52 

PROSAIL-Net-NAD (Nadir view) MLP  0.41  5.19  12.12  0.51  4.57  10.57  0.07  12.07  36.22  0.15  11.64  35.03 
LSTM  0.47  4.72  11.02  0.59  4.19  9.72  0.19  11.27  33.81  0.46  9.03  27.23 
GRU  0.36  5.33  12.46  0.48  4.71  10.88  0.12  11.75  35.25  0.43  9.29  27.98 
CNN  0.52  4.63  10.81  0.68  3.76  8.76  0.35  10.10  30.30  0.65  7.44  22.45  

PROSAIL-Net-MA 
(Multiangular view) 

MLP  0.52  4.75  11.08  0.69  3.71  8.65  0.06  12.08  36.02  0.24  10.88  32.77 
LSTM  0.59  4.07  9.47  0.76  3.37  7.91  0.25  10.83  32.30  0.53  8.45  25.47 
GRU  0.50  4.53  10.55  0.65  3.90  9.08  0.12  11.62  34.67  0.44  9.20  27.73 
CNN  0.66  3.78  8.81  0.81  3.13  7.38  0.57  8.15  24.32  0.71  6.93  20.94  

Fig. 8. Model performance on actual data for predicting (a) LCC and (b) ALA. The explanations of different model categories are given in (b). The CNN architecture 
in the PROSAIL-Net along with multi-angular (MA) data outperforms all other models. 
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(NDCI) developed for MERIS satellite. Use of normalized indices paired 
with different bands and red-edge was also highlighted by several 
studies to explain the LCC variance in plants (Ju et al., 2010, Li et al., 
2014, Thompson et al., 2019). 

The relationship between reflectance and ALA of crop canopies is not 
well-explored in the literature. However, Huang et al. (2006) identified 
the canopy reflectance at 680 nm as an influencing factor for lead angle 
distribution, which was also found and significant in our study for ALA 
explanation (Fig. 7b). Alternatively, leaf area index (LAI) has been found 
as to be highly correlated with ALA (Chen and Black, 1992,1991), which 
has been widely explored by remote sensing features in the scientific 
community. For example, the ratio and difference indices derived from 
green, red, and NIR has been identified as important features for LAI 
estimation in many different studies (Bouman, 1992, Yu et al., 2020, 
Siegmann and Jarmer, 2015, Vina et al., 2011). 

5.2. Effectiveness of deep transfer learning 

One of the key advantages of deep learning algorithms over statis
tical machine learning methods, particularly in the realm of high- 
dimensional hyperspectral data, is the ability to perform automatic 
feature extraction. Numerous studies have highlighted the use of 
different dimensionality reduction techniques before the predictive 
modeling, such as, principal component analysis or PCA (Farrell and 
Mersereau, 2005, Jiang et al., 2018), singular value decomposition or 
SVD (Menon, Du, and Fowler, 2016, Ma et al., 2019), and linear 
discriminant analysis or LDA (Jayaprakash et al., 2020, Fabiyi et al., 
2021). PLSR is a multivariate regression technique that automatically 
performs PCA before generating a predictive model (Godoy, Vega, and 
Marchetti, 2014), which was found to be very effective in our results. We 
can see that PLSR perform relatively well (R2 0.37) compared to RFR (R2 

0.19) or SVR (R2 0.12) when high-dimensional hyperspectral wave
lengths are considered as the input feature space (i.e., ML-Raw in Fig. 8). 

Many studies have also identified the effectiveness of PLSR for regres
sion tasks based on hyperspectral data (Meacham-Hensold et al., 2019, 
Gomez, Lagacherie, and Coulouma, 2008, Shen et al., 2020, Zhou et al., 
2018). However, when vegetation indices (VIs) were extracted and used 
as the independent variables for modeling, RFR (R2 0.48) and SVR (R2 

0.47) tend to perform slightly better than PLSR (R2 0.43). Therefore, the 
importance of using different VIs opposed to direct reflectance has been 
well explored in many literatures when data-driven machine learning 
algorithms are the point of concern (Selvaraj et al., 2020, Khan et al., 
2018, Koh et al., 2022, Richardson,Duigan,and Berlyn, 2002). However, 
attention should be given to the type of target variables in the analysis 
and VIs relating to that target variable should be used. 

On the other hand, deep neural networks offer the capability of 
automatic feature extraction through their network of neurons. Several 
studies have explored such feature extraction capabilities, specifically 
for hyperspectral data in terms of image classification and regression 
(Zhao and Du, 2016, Chen et al., 2016, Chen et al., 2014, He et al., 
2017). However, the issue of having large training dataset in deep neural 
networks remains a challenge (Nguyen et al., 2021, Liu and Xiao, 2020), 
specifically for agricultural decision making. Therefore, we have 
demonstrated the potential of large training samples extracted by 
PROSAIL-simulation and transfer learning in the context of plant trait 
extraction and achieved significant performance improvement. Our 
DSNN, which is the basis of PROSAIL-Net was first trained with the 
limited observed sample for estimating LCC (n = 140) and ALA (n =

492). The DSNN only performed relatively well for predicting LCC, 
when the 1D CNN architecture was considered as the spectral branch (R2 

0.52). However, there was no knowledge gain for explaining the ALA by 
any of the architectures considered in DSNN-Raw. One the other hand, 
the test accuracy for the DSNN models (i.e., PROSAIL-Net base model in 
Table 3) showed significant improvement, specifically for predicting 
LCC (R2 0.98 and NRMSE 3.35 %). Although the result for ALA was not 
as good as LCC, the CNN-based DSNN still could explain 86 % variance 

Fig. 9. Prediction performance of PROSAIL-Net-MA for LCC and ALA, where the scatterplots between measured and predicted values for LCC (a) and ALA (b); and 
corresponding standardized residual plot of LCC (c) and ALA (d). 
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of the unseen ALA samples. Later we used the pretrained DSNN for the 
limited observed data and achieved performance improvement for both 
LCC and ALA, specifically when CNN was considered as the spectral 
branch architecture. 

The use of 1D CNN as an excellent feature extractor for hyperspectral 
image processing has been reported by many literatures (Zhang et al., 
2017, Gao et al., 2021, Du et al., 2022, Li, Cui, et al. 2019, Huang, He, 
et al. 2022). The convolution operation in CNN prioritizes in capturing 
local patterns in the input data (Lopez Pinaya et al., 2020), whereas the 
MLP, LSTM or GRU struggle to understand the long-term dependencies. 
For 2D images, the objective of convolution operation is to identify 
textural or structural patterns within the image and discard unnecessary 
information by reducing the feature map while the network progresses 
(Lo et al., 1995). Similarly, 1D convolution tries to highlight uncorre
lated spectral features from the high-dimensional spectral data and find 
optimum kernel weights through back-propagation (Kiranyaz et al., 
2021). For example, the variation of reflectance values at 450 nm and 
455 nm might not be critical enough for explaining a certain target 
variable, which could suggest the use of only one feature instead of both 
during the model training. The 1D kernel in the CNN can learn this 
unique feature through a large training database and only captures 
relevant information from fewer features. In our result, we have also 
seen the superiority of 1D CNN over MLP, LSTM or GRU networks. The 
CNN-based PROSAIL-Net network was later leveraged to transfer the 
learned knowledge from a simulated dataset into an observable space 
through UAV-based hyperspectral imaging. 

The objective of transfer learning is to let a machine learning model 
leverage the knowledge learned from source tasks in different domains, 
so the model already knows about the relationship between independent 
and dependent variables (Pan et al., 2011, Pan and Yang, 2010). 
Numerous studies have leveraged deep transfer learning to solve prob
lems in image classification (Shaha and Pawar, 2018, Quattoni, Collins, 
and Darrell, 2008), object detection (Talukdar et al., 2018, Bu et al., 
2021), natural language processing (Raffel et al., 2020, Houlsby et al., 
2019), sentiment analysis (Huang, Zhang, et al. 2022, Tao and Fang, 
2020), etc. In our study, the transfer learning mechanism is homoge
neous and straightforward. Since the feature space of PROSAIL- 
simulated and UAV-extracted were same, we could simply use the 
entire pre-trained model from PROSAIL in the UAV-observed data space. 
For LCC, our result shows that the PROSAIL-Net with multi-angular data 
improved the model performance significantly compared to training 
from scratch (i.e., DSNN-Raw) or statistical machine learning algorithms 
(i.e., ML-Raw and ML-VI). However, the performance of ALA was way 
more consequential when pretrained PROSAIL-Net was used. Our results 
show that none of the statistical machine learning algorithms or DSNN- 
Raw models could learn to predict ALA from spectral data. Due to the 
massive amount of training data generated by PROSAIL-simulation, our 
proposed DSNN with CNN learned the appropriate relationship between 
spectral data, solar-sensor geometry angle data and ALA. We have not 
found many studies that used PROSAIL-inversion to estimate the ALA 
other than Lunagaria and Patel (2019) and Tripathi et al. (2012). 
However, both studies relied on inefficient lookup table based inversion 
method using either satellite (Tripathi et al., 2012) or goniometer 
(Lunagaria and Patel, 2019), which are not practical in terms of plot- 
level decision making. On the other hand, our study provides a cost- 
effective high-throughput solution to estimate two major crop bio
physical parameters by transforming cross-grid UAV data into goniom
eter like multi-angular data. 

In terms of transfer learning and PROSAIL-inversion for crop bio
physical trait estimation, we have found only one study (Zhang et al., 
2021) in the literature. While (Zhang et al., 2021) highlighted the effi
ciency of transfer learning strategy with PROSAIL-simulation and 
ground/UAV-based observations for LCC estimation, we identified some 
major gaps in the process. For instance, the effect of different architec
ture in the modeling process was not well explored. In addition, the 
methodology required the use of ground-based spectroscopic 

measurement, which is often hard to collect in a large agricultural 
experiment. Moreover, the study used ‘sigmoid’ activation function in 
the final output layer of the MLP model, which is questionable as the 
output of ‘sigmoid’ is a probability distribution and suitable for classi
fication tasks. We argue that the activation function in the final output 
layer for a regression task should be a linear function, such as, ReLU or 
simply the output of the last dense layer. Numerous studies have also 
reported the use of ReLU or linear activation function in the final layer 
when the target is a continuous variable (Maimaitijiang et al., 2020, 
Nevavuori, Narra, and Lipping, 2019, Chu and Yu, 2020). Our study on 
the other hand, investigated many different spectral branch architec
tures and identified that CNN works well in extracting meaningful in
formation from spectral data. We have also used specific features that 
can be easily collected in a real-world scenario. For example, the solar- 
sensor angle geometry information can be easily extracted by the end-to- 
end pipeline developed by Bhadra et al. (2022). Additionally, the only 
the spectral data was the required input for the PROSAIL-Net, which can 
also be easily extracted by the UAV hyperspectral cubes. 

5.3. Influence of multi-angular observations 

Our result clearly identifies the effectiveness of having multi-angular 
observations in the PROSAIL-Net model. When PROSAIL-Net-MA 
models were used to estimate LCC and ALA, the performance 
improved significantly from the PROSAIL-Net-NAD models (Fig. 8). 
Many studies performing PROSAIL-inversion have also identified the 
importance of having multi-angular hyperspectral observations (Luna
garia and Patel, 2019, Weiss et al., 2000, Atzberger, 2004). The reason 
lies behind the fundamentals of bi-directional reflectance distribution 
function (BRDF), which characterizes how light is reflected from an 
object or surface (Buchhorn, Raynolds, and Walker, 2016, Hou et al., 
2019). The relationship between solar reflection and an object depends 
on the angle of the incoming light relative to the Earth’s surface (i.e., 
solar zenith angle, θs) and the angle of the sensor in relation to the 
surface (i.e., sensor zenith angle, θv). In addition to the solar and sensor 
zenith angles (i.e., θs and θv), PROSAIL considers the relative azimuth 
angle between the sun and sensor (ϕsv) as one of its parameters. 
Therefore, having hyperspectral reflectance information from multiple 
angles allows the PROSAIL-Net-MA to understand the object properties 
with more certainty, thus reducing the ill-posed challenge of PROSAIL 
inversion (Duan et al., 2014, Jay et al., 2017, Roosjen et al., 2018, Sun 
et al., 2022). 

The methodology developed for this study introduces a novel 
concept of using UAV-borne push-broom hyperspectral camera to cap
ture the varying solar-sensor geometry angles. Roosjen et al. (2017) 
developed a similar method but used a frame-based hyperspectral 
camera, which often suffers from several challenges when mounted in a 
UAV. The post-processing of frame hyperspectral camera is a chal
lenging task as there could be offsets of the bands within individual 
hyperspectral cube (Honkavaara et al., 2017, Jakob, Zimmermann, and 
Gloaguen, 2017). Additionally, the larger field of view (FOV) of the 
frame camera reduces the spectral and spatial resolution of the cube due 
to the requirement of high energy (Fan et al., 2021). Push-broom 
hyperspectral cameras on the other hand, provides more accurate data 
capture with higher spatial and spectral resolution (Aasen et al., 2018). 
However, the push-broom camera system on a UAV should be equipped 
with precise GNSS/IMU sensors as the line scanning system of the push 
broom camera is sensitive to flight dynamics. Also, the use of GNSS/IMU 
information is used in the post-processing steps to accurately perform 
the geometric correction and orthorectification. While the inclusion of 
GNSS/IMU sensors with the push-broom camera increases the overall 
cost of the system, we used the GNSS/IMU data to extract important 
sensor geometry angle information. Additionally, the solar angle data 
relative to the ground pixel coordinates is also precise specifically when 
highly accurate GNSS information is considered. Fig. 10 shows two 
sample hyperspectral cubes with different angles. Having access to the 
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accurate GNSS information allowed us to interpolate angle rasters for 
each cube. 

5.4. Limitations 

Although we have demonstrated the superior performance of 
PROSAIL-Net using transfer learning and multi-angular UAV observa
tions for accurate estimation of LCC and ALA, we have identified some 
limitations within our study. 

The major limitation of the proposed methodology is the use of cross- 
grid flight pattern to acquire multi-angular hyperspectral observation. 
UAVs equipped with push-broom sensors take more time to capture data 
since the payload is typically heavier than RGB or multispectral camera 

systems. Also, such complex UAV system requires flight calibration 
before and after collecting the actual data, which reduces the data 
collection time even more. For instance, we used the DJI M600 UAV 
equipped with a Headwall NanoHyperspec 12 mm VNIR camera system, 
which can fly up to 20 min with a fully charged battery set. Performing a 
cross grid flight pattern with that time limit can be challenging specif
ically when large fields are considered in the experiment. For instance, 
the D3 (2020) and D16 (2021) fields in Missouri were relatively smaller 
in size than the U1 field in Illinois (2021). Therefore, we flew the entire 
cross-grid pattern at D3 and D16 without any issue, but we had to fly two 
separate flights for the U1 field due to its larger size. Having enough 
flight time for capturing the multi-angular data from a large experi
mental field can be challenging when UAV-borne push-broom 

Fig. 10. The result of having multi-angular hyperspectral image (HSI) cubes from cross-grid flight pattern. The HSI cubes along with the actual cross-grid flight path 
is shown in (a), whereas (b) shows the footprints of each cube. The sample image is shown for the D16 field. Two side by side cubes marked (with bold red) in (b) are 
further expanded to visualize the solar zenith (θs), sensor zenith (θv), and relative azimuth angle (ϕsv) from c-h. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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hyperspectral system is in consideration. However, capturing data with 
higher altitude may solve such issues if careful consideration is given to 
the balance of flight altitude and spatial resolution. 

Another challenge of having longer flight time with hyperspectral 
UAVs is the issue of radiometric calibration. Since hyperspectral sensors 
are highly sensitive, a pre-flight camera calibration is performed using a 
factory-standard reflectance panel to determine the exposure and frame 
rate of the data capture. The exposure and frame rate are determined 
based on the solar intensity, flight altitude and speed. However, an 
assumption of solar intensity being the same through the entire flight 
time is made, which is often challenging when the flight time is longer. 
Because within a longer timeframe, the possibility of solar intensity 
being changed increases and that can reduce the quality of the reflec
tance data. For instance, we had to collect data two times for one 
experimental day (i.e., July 21, 2021, in D3) because of sudden solar 
intensity change during the flight. Such issues can hamper the high- 
throughput nature of data collection in a crop breeding or precision 
agriculture operation. However, inclusion of a downwelling irradiance 
sensor on the UAV system and applying novel calibration techniques 
during the tilting condition can reduce the issue of unprecedented solar 
condition changes (Koppl et al., 2021). 

While the PROSAIL simulation can produce reflectance spectra from 
400 to 2500 nm wavelength, we had to only consider the very near- 
infrared (VNIR) section (i.e., 400 – 1000 nm) during the modeling. 
Since the hyperspectral sensor considered in our experiment could only 
capture data in the VNIR region, we had to discard the short-wave 
infrared (SWIR) region from our analysis. However, reflectance at the 
SWIR region has been often found as very important in explaining water 
absorption within the plant leaves, which might be connected to certain 
biophysical traits (Raya-Sereno et al., 2022, Herrmann et al., 2010, 
Kandylakis et al., 2020). Therefore, conducting this similar study with a 
co-aligned VNIR-SWIR hyperspectral camera would have given better 
performance for predicting LCC and ALA. 

Finally, the scope of our study did not allow us to collect sample 
measurements of other PROSAIL variables, such as, anthocyanin, 
carotenoid, dry matter content, brown pigments, etc. Availability of 
such values would have been helpful to perform the sensitivity of 
knowing such measurement in the PROSAIL-Net training. Moreover, the 
LCC values were measured using a handheld proximal sensing instru
ment (i.e., Dualex Scientific) that uses leaf reflectance and transmittance 
to estimate LCC. Despite the wide usage of proximal sensing techniques 
to evaluate crop health parameters, such as LCC, calibrating these in
struments through laboratory wet analysis remains the preferred 
approach. Additionally, we could not collect the LCC data for the U1 
field on August 17, 2022 due to a technical malfunction of the Dualex 
instrument. Availability of LCC data would have been better for the 
model training as the dataset would include ground truths from two 
different locations for LCC. 

5.5. Future studies 

The potential of merging physical remote sensing models and deep 
neural networks through transfer learning is enormous in the field of 
crop breeding and precision agriculture. Future studies should focus on 
collecting more precise PROSAIL variables and perform PROSAIL-Net 
operation on other crops in different management conditions. Since 
we have identified that CNN-based network for spectral data and having 
multiple viewing angle for UAVs offer more robust learning mechanism, 
future work can focus on other aspects of the modeling. 

In recent times, a new wave of foundational deep learning models 
have surfaced in many disciplines, aiming to serve as a base model for 
one task that can be fine-tuned for more specific tasks. For instance, 
generative pre-trained transformer or GPT (Brown et al., 2020), bidi
rectional encoder representation from transformer or BERT (Devlin 
et al., 2019), language model for dialogue applications or LaMDA 
(Thoppilan et al., 2022), are some of the most popular foundational 

models for natural language processing that can be fine-tuned for more 
specific tasks. Similarly, the meteorological community has developed a 
foundational model named ClimaX that understands the complex rela
tionship between weather variables through physical groundings 
(Nguyen et al., 2023). The PROSAIL-Net can also become a foundational 
model after trained with billions of simulated spectra, to enable re
searchers and scientists worldwide to fine-tune it for more specific 
vegetation trait retrieval. Furthermore, reinforcement learning can be 
implemented to allow the pretrained network to continually improve 
and adapt, based on feedback from the outcomes. 

UAV-hyperspectral data, when coupled with the PROSAIL model, 
helps in understanding various crop biophysical properties. However, 
adapting UAV-hyperspectral systems for large-scale monitoring presents 
challenges as it can be expensive and resource-intensive. Satellite-based 
hyperspectral systems emerge as a potential solution for such moni
toring needs. Some hyperspectral satellites, like EnMAP (Guanter et al., 
2015) and PRISMA (Loizzo et al., 2018), offer moderate spatial resolu
tion coverage globally, typically around 30 m. Nonetheless, this reso
lution might not suffice for plot-level crop monitoring. Despite this 
limitation, upcoming commercial hyperspectral systems promise better 
ground sampling distance (GSD), thus enabling finer-scale monitoring. 
On another front, satellite-based multispectral data holds promise for 
PROSAIL-Net application. However, PROSAIL-Net necessitates high- 
dimensional spectral data, posing challenges with multispectral reflec
tance. For instance, missions like Landsat and Sentinel-2 offer around 
10–13 bands in the VNIR and SWIR ranges, raising questions regarding 
their compatibility with PROSAIL-Net without further examination. 
Moreover, these missions feature relatively coarse spatial resolution (i. 
e., 10–30 m), potentially unsuitable for precise agricultural applications 
at the plot level. Commercial satellite missions with increased bands and 
finer spatial resolution, such as WorldView-3 (Longbotham et al., 2015), 
with approximately 16 bands and 3-meter spatial resolution, emerge as 
promising candidates for PROSAIL-Net. Consequently, future research 
should explore the impact of spectral bands on PROSAIL-Net’s perfor
mance and determine the optimal balance between the number of bands 
and accuracy. Such investigations will guide the selection of a suitable 
multispectral satellite for scalable application of PROSAIL-Net. 

The integration of PROSAIL with deep neural networks using transfer 
learning underscores the potential of combining data-driven approaches 
with other remote sensing or crop growth models. The use of UAV-based 
hyperspectral remote sensing in conjunction with other radiative 
transfer models (RTMs), such as MODTRAN (MODerate resolution at
mospheric TRANsmission), which simulates radiation transmission 
through the atmosphere, reflection, and emission from surfaces, can 
provide a deeper understanding of crop health (Gail et al., 2000). 
Likewise, crop growth models, such as DSSAT (Decision Support System 
for Agrotechnology Transfer), which is capable of simulating the growth 
of over 40 crops including corn, soybeans, and wheat, can provide 
crucial information for agricultural management (Jones et al., 2003). 
The fusion of deep learning, various RTMs, and crop growth models 
could potentially unleash the power of general intelligence in decision- 
making for a wide range of agricultural applications. 

6. Conclusion 

In our study we present PROSAIL-Net, a transfer learning-based 
neural network aimed at accurately and efficiently estimating the LCC 
and ALA of corn using UAV-borne hyperspectral images. Precision 
agriculture and crop breeding operations often face challenges due to 
limited sample sizes when using deep neural networks. Our approach 
overcomes this challenge by leveraging the vast amount of simulated 
data from the PROSAIL model. By integrating transfer learning and the 
PROSAIL model, PROSAIL-Net offers a promising solution for improving 
the accuracy of crop parameter estimation in precision agriculture and 
crop breeding applications. Key findings from our study are: 
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1. 1D CNN architecture exhibits superior performance compared to 
MLP, LSTM, and GRU networks when utilized in the spectral branch 
of DSNN. This superiority was demonstrated through the evaluation 
of both PROSAIL-simulated data and transfer learning scenarios for 
estimating LCC and ALA.  

2. PROSAIL-Net outperforms all other modeling scenarios in predicting 
LCC (R2 0.66 and NRMSE 8.81 %) and ALA (R2 0.57 and NRMSE 
24.32 %), which underscores the importance of utilizing large 
number of PROSAIL-simulated data in conjunction with transfer 
learning. 

3. PROSAIL-Net with multi-angular observations significantly out
performed PROSAIL-Net with only nadir observations for both LCC 
(R2 improved from 0.52 to 0.66) and ALA (R2 improved from 0.35 to 
0.57). This signifies the importance of having multi-angular UAV 
observations during the application process. 

In summary, our study provides a valuable contribution to the field 
of precision agriculture and crop breeding and highlights the potential 
of transfer learning and deep learning as a tool for improving crop 
parameter estimation. Future research can focus on collecting more 
precise PROSAIL variables and expanding the application of PROSAIL- 
Net to other crops in varying management conditions. Additionally, 
the integration of PROSAIL-Net with other remote sensing and crop 
growth models has the potential to unlock the power of general intel
ligence in decision-making for a wide range of agricultural applications. 

Funding 
This work was supported by the United States Geological Survey 

(USGS) AmericaView Grant (G18AP00077); Foundation for Food & 
Agricultural Research (FFAR # 2331-201-0103); National Science 
Foundation Plant Genome Research Program (NSF PGRP # 1733606); 
NSF/USDA NIFA (Grant # 2020-67021-31530); NSF Cyber Physical 
Systems (CPS award # 2133407); and Sustainable Agriculture and Ed
ucation (Project #: GNC22-343). 

CRediT authorship contribution statement 

Sourav Bhadra: Conceptualization, Data curation, Writing - original 
draft, Visualization, Investigation, Validation, Formal analysis, Project 
administration, Software. Vasit Sagan: Conceptualization, Funding 
acquision, Writing - review & editing, Investigation, Validation, Meth
odology, Supervision, Resources, Project administration, Software. 
Supria Sarkar: Writing - review & editing, Visualization, Maxwell 
Braud: Data curation, Writing - review & editing. Todd C.Mock: 
Funding acquision, Writing - review & editing, Supervision, Resources. 
Andrea Eveland: Writing - review & editing, Supervision, Resources. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Aasen, H., Honkavaara, E., Lucieer, A., Zarco-Tejada, P.J., 2018. Quantitative remote 
sensing at ultra-high resolution with UAV spectroscopy: a review of sensor 
technology, measurement procedures, and data correction workflows. Remote Sens. 
(Basel) 10 (7). https://doi.org/10.3390/rs10071091. 

Ajit, A., Acharya, K., Samanta, A., 2020. A review of convolutional neural networks. 
2020 International Conference on Emerging Trends in Information Technology and 
Engineering (ic-ETITE), 24-25 Feb. 

Alton, P.B., North, P.R., Los, S.O., 2007. The impact of diffuse sunlight on canopy light- 
use efficiency, gross photosynthetic product and net ecosystem exchange in three 
forest biomes. Glob. Chang. Biol. 13 (4), 776–787. https://doi.org/10.1111/j.1365- 
2486.2007.01316.x. 

Annala, L., Honkavaara, E., Tuominen, S., Polonen, I., 2020. Chlorophyll concentration 
retrieval by training convolutional neural network for stochastic model of leaf 
optical properties (SLOP) inversion. Remote Sens. (Basel) 12 (2). https://doi.org/ 
10.3390/rs12020283. 

Antonucci, G., Impollonia, G., Croci, M., Potenza, E., Marcone, A., Amaducci, S., 2023. 
Evaluating biostimulants via high-throughput field phenotyping: biophysical traits 
retrieval through PROSAIL inversion. Smart Agricultural Technology 3, 100067. 
https://doi.org/10.1016/j.atech.2022.100067. 

Arroyo-Mora, J.P., Kalacska, M., Loke, T., Schlapfer, D., Coops, N.C., Lucanus, O., 
Leblanc, G., 2021. Assessing the impact of illumination on UAV pushbroom 
hyperspectral imagery collected under various cloud cover conditions. Remote Sens. 
Environ. 258 https://doi.org/10.1016/j.rse.2021.112396. 

Atzberger, C., 2004. Object-based retrieval of biophysical canopy variables using 
artificial neural nets and radiative transfer models. Remote Sens. Environ. 93 (1–2), 
53–67. https://doi.org/10.1016/j.rse.2004.06.016. 

Baret, Frédéric, Buis, Samuel, 2008. “Estimating Canopy Characteristics from Remote 
Sensing Observations: Review of Methods and Associated Problems.” In Advances in 
Land Remote Sensing: System, Modeling, Inversion and Application, edited by Shunlin 
Liang, 173-201. Dordrecht: Springer Netherlands. 

Baret, F., Guyot, G., 1991. Potentials and limits of vegetation indices for LAI and APAR 
assessment. Remote Sens. Environ. 35 (2), 161–173. https://doi.org/10.1016/0034- 
4257(91)90009-U. 

Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., Haberland, J., Kostrzewski, M., 
Waller, P., Choi, C., Riley, E., Thompson, T., 2000. Coincident detection of crop 
water stress, nitrogen status and canopy density using ground-based multispectral 
data. 5th International Conference on Precision Agriculture and Other Resource 
Management, Bloomington, MN, USA, July 16-19. 

Barnsley, M.J., Settle, J.J., Cutter, M.A., Lobb, D.R., Teston, F., 2004. The PROBA/CHRIS 
mission: a low-cost smallsat for hyperspectral multiangle observations of the earth 
surface and atmosphere. IEEE Trans. Geosci. Remote Sens. 42 (7), 1512–1520. 
https://doi.org/10.1109/Tgrs.2004.827260. 

Barreto, M.A.P., Johansen, K., Angel, Y., McCabe, M.F., 2019. Radiometric assessment of 
a UAV-based push-broom hyperspectral camera. Sensors 19 (21). https://doi.org/ 
10.3390/s19214699. 

Bellis, E.S., Hashem, A.A., Causey, J.L., Runkle, B.R.K., Moreno-Garcia, B., Burns, B.W., 
Green, V.S., Burcham, T.N., Reba, M.L., Huang, X.Z., 2022. Detecting intra-field 
variation in rice yield with unmanned aerial vehicle imagery and deep learning. 
Front. Plant Sci. 13 https://doi.org/10.3389/fpls.2022.716506. 

Berger, K., Atzberger, C., Danner, M., D’Urso, G., Mauser, W., Vuolo, F., Hank, T., 2018. 
Evaluation of the PROSAIL model capabilities for future hyperspectral model 
environments: A review study. Remote Sensing 10 (1). https://doi.org/10.3390/ 
rs10010085. 

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. 
J. Mach. Learn. Res. 13, 281–305. https://doi.org/10.5555/2188385.2188395. 

Bhadra, S., Sagan, V., Maimaitijiang, M., Maimaitiyiming, M., Newcomb, M., 
Shakoor, N., Mockler, T.C., 2020. Quantifying leaf chlorophyll concentration of 
sorghum from hyperspectral data using derivative calculus and machine learning. 
Remote Sens. (Basel) 12 (13). https://doi.org/10.3390/rs12132082. 

Bhadra, S., Sagan, V., Nguyen, C., Braud, M., Eveland, A.L., Mockler, T.C., 2022. 
Automatic extraction of solar and sensor imaging geometry from UAV-borne push- 
broom hyperspectral camera. In: ISPRS Annals of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences V-3-2022:131–137. https://doi.org/ 
10.5194/isprs-annals-V-3-2022-131-2022. 

Bhat, S.A., Huang, N.F., 2021. Big data and AI revolution in precision agriculture: survey 
and challenges. IEEE Access 9, 110209–110222. https://doi.org/10.1109/ 
Access.2021.3102227. 

Blackburn, G.A., 1999. Relationships between spectral reflectance and pigment 
concentrations in stacks of deciduous broadleaves. Remote Sens. Environ. 70 (2), 
224–237. https://doi.org/10.1016/S0034-4257(99)00048-6. 

Boggs, J.L., Tsegaye, T.D., Coleman, T.L., Reddy, K.C., Fahsi, A., 2003. Relationship 
between hyperspectral reflectance, soil nitrate-nitrogen, cotton leaf chlorophyll, and 
cotton yield: a step toward precision agriculture. J. Sustain. Agric. 22 (3), 5–16. 
https://doi.org/10.1300/J064v22n03_03. 

Borges, M.V.V., Garcia, J.D., Batista, T.S., Silva, A.N.M., Baio, F.H.R., Da Silva, C.A., de 
Azevedo, G.B., Azevedo, G.T.D.S., Teodoro, L.P.R., Teodoro, P.E., 2022. High- 
throughput phenotyping of two plant-size traits of eucalyptus species using neural 
networks. J. For. Res. 33 (2), 591–599. https://doi.org/10.1007/s11676-021-01360- 
6. 

Botha, E.J., Leblon, B., Zebarth, B., Watmough, J., 2007. Non-destructive estimation of 
potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted 
PROSAIL model. Int. J. Appl. Earth Obs. Geoinf. 9 (4), 360–374. https://doi.org/ 
10.1016/j.jag.2006.11.003. 

Bouman, B.A.M., 1992. Accuracy of estimating the leaf-area index from vegetation 
indexes derived from crop reflectance characteristics, a simulation study. Int. J. 
Remote Sens. 13 (16), 3069–3084. https://doi.org/10.1080/01431169208904103. 

Breunig, F.M., Galvao, L.S., dos Santos, J.R., Gitelson, A.A., de Moura, Y.M., Teles, T.S., 
Gaida, W., 2015. Spectral anisotropy of subtropical deciduous forest using MISR and 
MODIS data acquired under large seasonal variation in solar zenith angle. Int. J. 
Appl. Earth Obs. Geoinf. 35, 294–304. https://doi.org/10.1016/j.jag.2014.09.017. 

Brewer, K., Clulow, A., Sibanda, M., Gokool, S., Naiken, V., Mabhaudhi, T., 2022. 
Predicting the chlorophyll content of maize over phenotyping as a proxy for crop 
health in smallholder farming systems. Remote Sens. (Basel) 14 (3). https://doi.org/ 
10.3390/rs14030518. 

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., 
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., 
Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Jeffrey, W.u., Winter, C., 
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., 
McCandlish, S., Radford, A., Sutskever, I., Amodei, D., 2020. Language models are 
few-shot learners. ArXiv. https://doi.org/10.48550/ARXIV.2005.14165. 

S. Bhadra et al.                                                                                                                                                                                                                                 

https://doi.org/10.3390/rs10071091
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0010
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0010
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0010
https://doi.org/10.1111/j.1365-2486.2007.01316.x
https://doi.org/10.1111/j.1365-2486.2007.01316.x
https://doi.org/10.3390/rs12020283
https://doi.org/10.3390/rs12020283
https://doi.org/10.1016/j.atech.2022.100067
https://doi.org/10.1016/j.rse.2021.112396
https://doi.org/10.1016/j.rse.2004.06.016
https://doi.org/10.1016/0034-4257(91)90009-U
https://doi.org/10.1016/0034-4257(91)90009-U
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0050
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0050
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0050
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0050
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0050
https://doi.org/10.1109/Tgrs.2004.827260
https://doi.org/10.3390/s19214699
https://doi.org/10.3390/s19214699
https://doi.org/10.3389/fpls.2022.716506
https://doi.org/10.3390/rs10010085
https://doi.org/10.3390/rs10010085
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.3390/rs12132082
https://doi.org/10.5194/isprs-annals-V-3-2022-131-2022
https://doi.org/10.5194/isprs-annals-V-3-2022-131-2022
https://doi.org/10.1109/Access.2021.3102227
https://doi.org/10.1109/Access.2021.3102227
https://doi.org/10.1016/S0034-4257(99)00048-6
https://doi.org/10.1300/J064v22n03_03
https://doi.org/10.1007/s11676-021-01360-6
https://doi.org/10.1007/s11676-021-01360-6
https://doi.org/10.1016/j.jag.2006.11.003
https://doi.org/10.1016/j.jag.2006.11.003
https://doi.org/10.1080/01431169208904103
https://doi.org/10.1016/j.jag.2014.09.017
https://doi.org/10.3390/rs14030518
https://doi.org/10.3390/rs14030518
https://doi.org/10.48550/ARXIV.2005.14165


ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1–24

20

Bsaibes, A., Courault, D., Baret, F., Weiss, M., Olioso, A., Jacob, F., Hagolle, O., 
Marloie, O., Bertrand, N., Desfond, V., Kzemipour, F., 2009. Albedo and LAI 
estimates from FORMOSAT-2 data for crop monitoring. Remote Sens. Environ. 113 
(4), 716–729. https://doi.org/10.1016/j.rse.2008.11.014. 

Bu, X., Peng, J., Yan, J., Tan, T., Zhang, Z., 2021. GAIA: a transfer learning system of 
object detection that fits your needs. 2021 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR). 

Buchhorn, M., Raynolds, M.K., Walker, D.A., 2016. Influence of BRDF on NDVI and 
biomass estimations of Alaska Arctic tundra. Environ. Res. Lett. 11 (12) https://doi. 
org/10.1088/1748-9326/11/12/125002. 

Burkart, A., Aasen, H., Alonso, L., Menz, G., Bareth, G., Rascher, U., 2015. Angular 
dependency of hyperspectral measurements over wheat characterized by a novel 
UAV based goniometer. Remote Sens. (Basel) 7 (1), 725–746. https://doi.org/ 
10.3390/rs70100725. 

Burud, I., Lange, G., Lillemo, M., Bleken, E., Grimstad, L., From, P.J., 2017. Exploring 
robots and UAVs as phenotyping tools in plant breeding. IFAC-PapersOnLine 50 (1), 
11479–11484. https://doi.org/10.1016/j.ifacol.2017.08.1591. 

Campos-Taberner, M., Moreno-Martinez, A., Garcia-Haro, F.J., Camps-Valls, G., 
Robinson, N.P., Kattge, J., Running, S.W., 2018. Global estimation of biophysical 
variables from google earth engine platform. Remote Sens. (Basel) 10 (8). https:// 
doi.org/10.3390/rs10081167. 

Camps-Valls, G., Martino, L., Svendsen, D.H., Campos-Taberner, M., Munoz-Mari, J., 
Laparra, V., Luengo, D., Garcia-Haro, F.J., 2018. Physics-aware gaussian processes in 
remote sensing. Appl. Soft Comput. 68, 69–82. https://doi.org/10.1016/j. 
asoc.2018.03.021. 

Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., Suomalainen, J., 2015. Estimating 
plant traits of grasslands from UAV-acquired hyperspectral images: a comparison of 
statistical approaches. ISPRS Int. J. Geo Inf. 4 (4), 2792–2820. https://doi.org/ 
10.3390/ijgi4042792. 

Casa, R., Jones, H.G., 2004. Retrieval of crop canopy properties: a comparison between 
model inversion from hyperspectral data and image classification. Int. J. Remote 
Sens. 25 (6), 1119–1130. https://doi.org/10.1080/01431160310001595046. 

Chen, J.M., Black, T.A., 1991. Measuring leaf-area index of plant canopies with branch 
architecture. Agric. For. Meteorol. 57 (1–3), 1–12. https://doi.org/10.1016/0168- 
1923(91)90074-Z. 

Chen, J.M., Black, T.A., 1992. Defining leaf-area index for non-flat leaves. Plant Cell 
Environ. 15 (4), 421–429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x. 

Chen, Y.S., Lin, Z.H., Zhao, X., Wang, G., Gu, Y.F., 2014. Deep learning-based 
classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7 
(6), 2094–2107. https://doi.org/10.1109/Jstars.2014.2329330. 

Chen, Y.S., Jiang, H.L., Li, C.Y., Jia, X.P., Ghamisi, P., 2016. Deep feature extraction and 
classification of hyperspectral images based on convolutional neural networks. IEEE 
Trans. Geosci. Remote Sens. 54 (10), 6232–6251. https://doi.org/10.1109/ 
Tgrs.2016.2584107. 

Chen, M., Quinnell, R.G., Larkum, A.W.D., 2002. Chlorophyll d as the major 
photopigment in acaryochloris marina. J. Porphyrins Phthalocyanines 6 (11–12), 
763–773. https://doi.org/10.1142/S1088424602000889. 

Chu, Z., Yu, J., 2020. An end-to-end model for rice yield prediction using deep learning 
fusion. Comput. Electron. Agric. 174 https://doi.org/10.1016/j. 
compag.2020.105471. 

Colomina, I., Molina, P., 2014. Unmanned aerial systems for photogrammetry and 
remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 92, 79–97. https:// 
doi.org/10.1016/j.isprsjprs.2014.02.013. 

Combal, B., Baret, F., Weiss, M., 2002. Improving canopy variables estimation from 
remote sensing data by exploiting ancillary information. case study on sugar beet 
canopies. Agronomie 22 (2), 205–215. https://doi.org/10.1051/agro:2002008. 

Combal, B., Baret, F., Weiss, M., Trubuil, A., Mace, D., Pragnere, A., Myneni, R., 
Knyazikhin, Y., Wang, L., 2003. Retrieval of canopy biophysical variables from 
bidirectional reflectance - using prior information to solve the ill-posed inverse 
problem. Remote Sens. Environ. 84 (1), 1–15. https://doi.org/10.1016/S0034-4257 
(02)00035-4. 

D’Agostino, R., Pearson, E.S., 1973. Tests for departure from normality. empirical results 
for the distributions of b2 and √b1. Biometrika 60 (3), 613–622. https://doi.org/ 
10.2307/2335012. 

Dash, J., Curran, P.J., 2004. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 
25 (23), 5403–5413. https://doi.org/10.1080/0143116042000274015. 

Datt, B., 1999. Remote sensing of water content in eucalyptus leaves. Aust. J. Bot. 47 (6), 
909–923. https://doi.org/10.1071/Bt98042. 

Daughtry, C.S.T., Walthall, C.L., Kim, M.S., de Colstoun, E.B., McMurtrey, J.E., 2000. 
Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. 
Remote Sens. Environ. 74 (2), 229–239. https://doi.org/10.1016/S0034-4257(00) 
00113-9. 
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