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Accurate and efficient estimation of crop biophysical traits, such as leaf chlorophyll concentrations (LCC) and
average leaf angle (ALA), is an important bridge between intelligent crop breeding and precision agriculture.
While Unmanned Aerial Vehicle (UAV)-based hyperspectral sensors and advanced machine learning models offer
high-throughput solutions, collecting sufficient ground truth data for machine learning training can be chal-
lenging, leading to models that lack generalizability for practical uses. This study proposes a transfer learning
based dual stream neural network (DSNN) called PROSAIL-Net, which leverages the knowledge gained from
PROSAIL simulation and improves the estimation of corn LCC and ALA from UAV-borne hyperspectral images. In
addition to hyperspectral data, the DSNN also includes solar-sensor geometry data, which was automatically
extracted from a cross-grid UAV flight. The hyperspectral branch in the DSNN was also tested with multi-layer
perceptron (MLP), long short-term memory (LSTM), gated recurrent unit (GRU), and 1D convolutional neural
network (CNN) architectures. The results suggest that the 1D CNN architecture exhibits superior performance
compared to MLP, LSTM, and GRU networks when used in the spectral branch of DSNN. PROSAIL-Net out-
performs all other modeling scenarios in predicting LCC (R? 0.66, NRMSE 8.81%) and ALA (R? 0.57, NRMSE
24.32%) and the use of multi-angular UAV observations significantly improves the prediction accuracy of both
LCC (R2 improved from 0.52 to 0.66) and ALA (R2 improved from 0.35 to 0.57). This study highlights the
importance of utilizing large amounts of PROSAIL-simulated data in conjunction with transfer learning and
multi-angular UAV observations in precision agriculture.

1. Background (LCC) can reveal the health and vigor of a crop, as well as its ability to

photosynthesize efficiently (Brewer et al., 2022, Vollmann et al., 2011).

Predicting leaf biophysical properties is crucial for sustainable agri-
culture as it allows for more efficient crop management. Leaf biophysical
properties, such as chlorophyll content and leaf inclination angle, pro-
vide valuable information about the health and growth of crops, which
can revolutionize the precision farming and crop breeding operations
(Haboudane et al., 2002, Boggs et al., 2003, Mantilla-Perez and Fer-
nandez, 2017). Chlorophyll is the pigment that allows plants to absorb
light and convert it into energy through photosynthesis (Li, Sun, et al.
2019). Therefore, accurate measurement of leaf chlorophyll content

The leaf angle, also known as the leaf inclination angle or average leaf
angle (ALA) in terms of the canopy, is the average angle at which most of
the leaves in a canopy is held relative to the direction of light (Falster
and Westoby, 2003). ALA can affect the amount of light that leaves
receive and therefore has a direct impact on the photosynthesis and
plant productivity as well as the planting densities (Falster and Westoby,
2003, Mantilla-Perez and Fernandez, 2017). Therefore, understanding
the variability of LCC and ALA can help farmers in making more
informed decisions about crop management, while the breeders can use
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the high-throughput data to create more efficient, resilient, and pro-
ductive crop varieties.

Remote sensing technology, specifically the use of unmanned aerial
vehicles (UAVs) has been revolutionizing crop biophysical trait esti-
mation by providing a more efficient, cost-effective, and accurate way to
collect data about crops (Xie and Yang, 2020, Burud et al., 2017). UAVs
can be equipped with sensors that are enriched in higher spatial-spectral
resolution and can cover large areas of land efficiently (Xiang and Tian,
2011, Colomina and Molina, 2014). Hyperspectral camera is one type of
sensor that can accurately measure the reflectance or radiance of an
object across a wide range of wavelengths (Barreto et al., 2019), ranging
from visible (400-700 nm) to near-infrared (800-2500 nm). The UAV-
borne hyperspectral camera can image the reflected light from the
crops, which can be used to model different biophysical attributes. For
example, chlorophyll in leaves absorbs sunlight in the blue and red re-
gions for photosynthesis but reflects sunlight in the green and near-
infrared region of the spectrum (Gitelson,Gritz,and Merzlyak, 2003).
Alternatively, the amount of reflected light is lower when the leaves are
perpendicular and rises with increasing ALA (Alton,North,and Los,
2007). However, the relationship between ALA and reflected spectra is
complex and often relies on the leaf texture, wetness, and pigmentation
(Blackburn, 1999, Grant,Daughtry,and Vanderbilt, 1993, Meng et al.,
2014). With the ability to measure these biophysical traits non-
destructively, UAV-borne hyperspectral cameras have greatly
improved the precision of crop management and breeding (Zhang, Zhao,
et al. 2019, Shu et al., 2021, Fan et al., 2022, Wang et al., 2023).

The UAV-based non-destructive measurement of crop biophysical
attributes can be broadly divided into three different segments: 1) data-
driven approach, 2) physics-based approach, and 3) hybrid approach.
The data-driven approach or supervised machine learning uses statisti-
cal models trained on labeled data to predict different crop biophysical
attributes from processed remote sensing data collected by the UAVs.
Due to the simplicity and efficiency of many advanced machine learning
models, data-driven approach is quite popular within the crop breeding
and precision agriculture community. Numerous studies have explored
partial least squares (Capolupo et al., 2015, Kanning et al., 2018),
random forests (Lopez-Calderon et al., 2020, Peng et al., 2021), support
vector regression (Yang et al., 2022, Wang et al. 2022, Singhal et al.,
2019) and artificial neural networks (Borges et al., 2022, Maimaitijiang
et al., 2020, Poblete et al., 2017) to estimate LCC or other traits from
UAV-borne remote sensing products. Recent advancement in computer
vision techniques, specifically convolutional neural networks (CNN)
have enabled even more efficient data-driven learning as CNN can
handle direct imagery as its inputs (Dericquebourg, Hafiane,and Canals,
2022, Bellis et al., 2022, Du et al., 2021, Zhang, Han, et al. 2019).
However, the data-driven approaches often suffer from the challenges of
requiring large ground truth datasets and reproducibility or robustness.
Machine learning models have been often found to be more accurate and
robust when large number of ground truth dataset is used in the training
and validation (Kamilaris and Prenafeta-Boldu, 2018, Ruf3 and Brenning,
2010). This is especially evident in deep learning models, where a
wealth of training data enables the model to expand its understanding
and effectively make predictions for new, unseen data (Kamilaris and
Prenafeta-Bold, 2018, Moazzam et al., 2019). The collection of a sub-
stantial training dataset, which comprises both ground truths and aerial
observations in an agricultural setting, can be a time-intensive,
destructive, and costly process. (Bhat and Huang, 2021, Koh,Spangen-
berg,and Kant, 2021). Additionally, a machine learning model trained
using datasets from one location, might not perform accurately for a
different location where the interaction between genotypes, environ-
ment and management could be different (Paudel et al., 2021). There-
fore, data-driven approaches are not entirely reliable for production-
level decision making and require human-in-the-loop maintenance
(Wu et al., 2022, Mosqueira-Rey et al., 2022).

Physics-based approach on the other hand, utilizes the inversion of
radiative transfer model (RTM)-based simulation to estimate different

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

crop biophysical attributes. RTMs are developed by the principles of
radiative transfer, which is the study of how sunlight interacts with
gases, particles, vegetation canopies and other objects in the environ-
ment (Hedley, Roelfsema, and Phinn, 2009). Since RTMs understand the
spectral response relative to different object characteristics, scientists
have explored the inversion of RTMs with remote sensing methods to
reverse-engineer a certain trait (Yang et al., 2011, Pragnere et al., 1999).
For crop biophysical trait estimation, PROSAIL is one of the most pop-
ular RTMs as it combines Leaf Optical Properties Database Model
(PROSPECT-D) and Semi-Analytical Model of Inversion of Leaf reflec-
tance (SAIL) together. PROSPECT-D describes the reflection and trans-
mission of light by the leaves, while SAIL describes the radiative transfer
in a vegetation canopy. Therefore, PROSAIL can take several leaf and
canopy level attributes as inputs (such as, LCC, carotenoid, anthocyanin,
leaf area index, leaf inclination angle, etc.) and outputs a reflectance
spectra ranging from 400 nm to 2400 nm. Numerous studies have uti-
lized the simulated spectra produced by randomly initializing PROSAIL
variables and hyperspectral reflectance spectra from remote sensing
techniques to explore the inverse relationship for estimating crop bio-
physical traits (Liang et al., 2015, Duan et al., 2014, Botha et al., 2007,
Kayad et al., 2022, Casa and Jones, 2004, Liang et al., 2016). Most of
these studies used look-up table or iterative optimization models (Baret
and Buis, 2008) to estimate LCC and leaf area index parameters from
crops. The major advantage of PROSAIL inversion over data-driven
approach is the reproducibility or robustness of the models, as the
PROSAIL simulation considers the biophysical characteristics of a crop
given certain environmental conditions (Sun et al., 2022). However, the
challenge of PROSAIL inversion is its ‘ill-posed’ problem, where
different combinations of model parameters may contribute to similar
canopy reflectance resulting in higher uncertainty (Combal, Baret, and
Weiss, 2002, Li and Wang, 2011, Combal et al., 2003). Additionally, the
inversion model can become too expensive to train as there can be
millions of parameter combinations during the simulation (Liang et al.,
2016).

Hybrid approach aims to combine the machine learning model and
PROSAIL simulation model together in conjunction with hyperspectral
observation. Such integration has the capabilities of reducing the model
training time by leveraging the optimization efficiency of machine
learning algorithms (de Sa et al., 2021). Many studies have integrated
gaussian process (Camps-Valls et al., 2018, Svendsen et al., 2018),
random forest (Campos-Taberner et al., 2018), support vector machine
(Tuia et al., 2011) and artificial neural networks (Annala et al., 2020)
with PROSAIL simulation and found considerable accuracy in prediction
performance. However, the literature has not yet extensively explored
the hybrid approach for crop biophysical attribute estimation with most
studies focusing on satellite-based inversion, which doesn’t provide the
level of detail needed by crop breeders and precision agriculture prac-
titioners. Therefore, there exists a knowledge gap in understanding the
hybridization of PROSAIL and machine learning models to estimate
different crop biophysical properties at plot-level from UAV-borne
hyperspectral data.

Several studies have demonstrated the efficacy of hybrid models in
predicting crop biophysical properties from UAV data. Many of them
relied on multispectral sensors mounted in UAV, which typically in-
volves blue, green, red, near-infrared and often red-edge region of the
spectrum. Most of these studies utilized different types of inversion
techniques in retrieving crop parameters from PROSAIL. For example,
Wan et al. (2021) and Su et al. (2019) performed the inversion of CHL
and LAI using the root mean squared error as the loss function between
the simulated and observed response variables. Similarly, Antonucci
et al. (2023) retrieved LCC, canopy chlorophyll, and LAI using the
inversion of gaussian process regression. On the other hand, Sun et al.
(2021) utilized the NDVI derived from the UAV multispectral camera as
a correction parameter for the inverting the LAI from PROSAIL simu-
lation and achieved improved result. However, the use of only 4 or 5
wavelengths during the PROSAIL inversion incurs the challenge of ill-
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posed problem and might not be ideal to develop a generalized model for
future use. Alternatively, few studies have explored the capabilities of
hyperspectral data in PROSAIL simulation, where most of them
employed the lookup table method to estimate either LAI or CHL for
maize (Duan et al., 2014, Kayad et al., 2022), Gingko (Yin et al., 2022),
rice (Wang et al., 2021), potato and sunflower (Duan et al., 2014). A
lookup table is a well-organized collection of relationships, which is
often limited by the size of the database and can be computationally
intensive to use. Among these studies, Yin et al. (2022) determined the
distributions of pigment content in Gingko plantations by leveraging
both LiDAR (Light Detection and Ranging) and hyperspectral sensor
along with PROSAIL inversion. Although they highlighted the superi-
ority of coupling LiDAR and hyperspectral data with PROSAIL simula-
tion, it is not always feasible to employ a co-aligned dual-sensor system
for data collection and the postprocessing steps can be computationally
expensive. Alternatively, Roosjen et al. (2018) employed a cost function
optimization algorithm to estimate LAI and CHL of potato crop. Their
approach introduced the concept of multi-angular spectral data in the
process, which significantly improved the estimation accuracy.
Recently, Zhang et al. (2021) used the concept of transfer learning in
their deep neural network developed from PROSAIL-simulation to esti-
mate CHL of winter wheat. Transfer learning enabled the reproducibility
of knowledge learned by PROSAIL simulation to observed hyperspectral
data collected by UAV. However, the study did not delve into the
evaluation of various neural network structures and did not incorporate
multi-angular observations into the analysis.

PROSAIL includes a set of solar-sensor angular information during
the simulation, which is used to better understand the anisotropic
relationship between the canopy spectral reflectance and its biophysical
traits (Breunig et al., 2015). The angle of incoming solar radiation and
reflectance can strongly interact with vegetation at both leaf (Jacque-
moud and Baret, 1990) and canopy (Verhoef, 1984) level, which offer
valuable information about the object. Therefore, several studies have
achieved significant improvement in crop biophysical attribute estima-
tion when multiple solar-sensor angles were considered during the
hyperspectral data collection (Dorigo, 2012, Hilker et al., 2011, Song
et al., 2016, Yang et al., 2011). However, collecting spectral data from
multiple angles is often limited to handheld spectraradiometer (Thorp
et al.,, 2015), goniometer (Sandmeier et al., 1998, Sandmeier, 2000), or
satellite-borne hyperspectral imagers (Barnsley et al., 2004), which are
challenging in a high-throughput phenotyping environment. For
example, handheld spectraradiometer and goniometers (i.e., an instru-
ment that can precisely measure the sensor geometry angles during data
collection) can be accurate and precise but increases the logistical
complexity. Satellite-based hyperspectral imagers on the other hand,
cannot provide information at finer-scale, which is often required for
crop breeding and precision agriculture practices. Therefore, UAVs
mounted with hyperspectral sensors can offer better ground sampling
distance to retrieve plant parameters and can be programmed to collect
multi-angular observation. Although few studies have explored the use
of multi-angular observation from UAV-borne hyperspectral sensors,
they either explored only the anisotropic characteristics of plants (Bur-
kart et al., 2015, Roosjen et al., 2017, Roosjen et al., 2016) or did not
explore the use of efficient modeling techniques to perform PROSAIL
inversion (Roosjen et al., 2018).

Deep neural networks (DNN) have improved the crop biophysical
trait estimation accuracy from hyperspectral data by leveraging the
complex non-linear relationship between traits and reflectance. Studies
have utilized artificial neural network (ANN) or multi-layer perceptron
(MLP) to estimate different crop traits and received comparable per-
formance (Moghimi, Yang, and Anderson, 2020, Rehman et al., 2020,
Feng et al., 2022, Fei et al., 2022). However, few studies have also
explored into recurrent neural networks (RNN) and convolutional neu-
ral networks (CNN) for 1D spectral data and found better model per-
formance. RNN was initially designed for handling sequence data as its
input, specifically for natural language processing and timeseries
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forecasting (Michel, 2003). However, several studies have utilized the
two most common types of RNN units, i.e., long short-term memory
(LSTM) and gated recurrent unit (GRU), to understand the sequential
pattern of hyperspectral data and received improved accuracy (Mou,
Ghamisi, and Zhu, 2017, Paoletti et al., 2020, Hang et al., 2019).
Alternatively, CNN has revolutionized the computer vision domain by
extracting meaningful information from 2D images. However, CNN can
be also extended to understand the 1D pattern from a signal data by
considering a single dimensional kernel in the process. Many studies
have reported the superior performance of 1D CNN architectures in
extracting meaningful information from hyperspectral reflectance data
(Huang, He, et al. 2022, Li et al., 2021, Mansuri et al., 2022, Riese and
Keller, 2019, Liu and Xiao, 2020). However, none of these DNN archi-
tectures (other than the MLP) have not been well explored in terms of
PROSAIL-inversion technique.

Transfer learning is a machine learning technique where a model
trained on one task is fine-tuned for another similar task with limited
training data (Pan and Yang, 2010). This approach has the potential to
address one of the main challenges in using DNNs for crop biophysical
trait estimation, which typically suffers from the unavailability of large
datasets. By training a base model on a vast database of spectral data and
corresponding crop traits generated from PROSAIL simulations, the
PROSAIL-trained model can then be applied to UAV-borne hyperspectral
data. The incorporation of varying solar-sensor geometry in the analysis
can further increase the robustness of the model. Considering these facts,
we propose a dual stream neural network (DSNN) approach that com-
bines both solar-sensor geometry data and spectral data. This strategy is
also aimed at leveraging transfer learning from PROSAIL to improve the
prediction accuracy of LCC and ALA of maize crops. Therefore, we ask
the following research questions in this study: 1) What type of DNN
architecture (i.e., MLP, LSTM, GRU, or CNN) in the spectral stream of
PROSAIL-Net is suitable for accurately estimating LCC and ALA? 2) How
well the PROSAIL-Net perform compared to statistical machine learning
algorithms in terms of prediction accuracy? 3) Does the inclusion of
multi-angular UAV observations in the PROSAIL-Net provide better
performance over single observations?

2. Experimental setup
2.1. Study area

Our study area is located in the heart of the USA Midwest, which
produces over 33 % of the world’s corn (Wang et al., 2020). Two loca-
tions were chosen for our experiment, i.e., two fields in Missouri and
another one in Illinois. The Missouri (MO) sites were located at the
Planthaven Farms, O’Fallon, where two experimental fields named D3
and D16 were prepared in 2021 and 2022, respectively. Another field
named U1 was located at the University of Illinois in Urbana Champaign,
Mlinois (IL) in 2022. Both sites were planted with corn as part of the
experimental design. The sites in O’Fallon, MO has an average yearly
temperature of 14 °C with the hottest temperature in July (average
27 °C). It receives around 4 cm of precipitation on average each year
with 65 % humidity. On the other hand, the IL site usually shows 11 °C
yearly temperature on average, whereas the mean precipitation is
around 3.7 cm over the year with 73 % humidity. The fields at these
experimental sites were established as part of the research efforts be-
tween Saint Louis University, University of Illinois and Donald Danforth
Plant Science Center.

2.2. Field design

The D3 field (Fig. 1a) was planted with 55 genotypes of corn on May
25, 2021. The lines were selected based on previous unpublished leaf
angle and tassel branch number data. Additionally, classical mutants
with distinct leaf angle phenotypes were also selected. The field was
roughly 110 m in length and 30 m in width. The field was planted with



S. Bhadra et al.

| (b) Field D16, MO £

I 550 nm

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

“(c) Field U1, IL

L(d) Location of the fields OMilwaukee ‘
in U.S. Midwest s o
Towa oChicag‘oi By 3
VLY UIUC, IL

{ { Hlinois@@ | OIndlan‘apolls
¢ ; N | Cincinr

Y Kansas City \ { Lo\
; @ St Louis ) et

? OFallon, MO ™ © ; oLoulszIe

Kentucky

| Missouri

oNashvnlle 9

Tennessee V‘Q,A

Klahoma City

I 550 nm

Fig. 1. Location of the study area. The D3 (a) and D16 (b) fields were located in O’Fallon, MO, whereas the U1 field (c) was in Champaign, IL. The sampling locations
(i.e., plot boundaries) are marked with yellow polygons. Underneath each plot boundary, a false color composite (near infrared, red, and green bands) of the
hyperspectral orthomosaic is shown. The false color composite shows slight difference of color intensity among plots. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

around 270 plots that contains two rows of corn. The plot dimension was
roughly 5 m by 2 m and 2 replicates per genotype was considered. On
the other hand, the D16 field (Fig. 1b) was planted on June 13, 2022,
with 84 genotypes of corn. The field dimensions were also similar to D3
(i.e., 85 m in length and 30 m in width) that roughly contained 169 2-
row plots of corn. For both D3 and D16, there were 2 replicates per
genotype. However, not all the plots were considered part of the
experiment (yellow boxes in Fig. 1 shows the plot boundary considered
for phenotyping). Finally, the U1 field was larger than both D3 and D16.
It was 90 m long but 80 m wide with around 385 (dimensions were 3 m
by 3 m) 4-row plots of corn. Total 500 genotypes were planted on May
31, 2022, based on the same selection criteria we considered for D3 and
D16.

3. Methods
3.1. Data collection

Two types of datasets were collected in this experiment, i.e., UAV-

borne hyperspectral imagery and ground truth data from selected sam-
ples. The overall process and data collection scenario is illustrated in
Fig. 2.

3.1.1. UAV data collection

We used a DJI Matrice 600 Pro UAV platform (DJI, Shenzhen, China)
equipped with a Headwall NanoHyperspec VNIR camera (Headwall
Photonics, Massachusetts, USA). The M600 Pro is a popular UAV
hexacopter, which has a maximum payload capacity of 6 kg. The
NanoHyperspec hyperspectral camera was aligned with APX-15 Global
Navigation System Satellite/Inertial Measurement (GNSS/IMU) unit
(Applanix, Ontario, Canada) and the whole system was mounted with
the UAV using a Ronin-MX gimbal (DJI, Shenzhen, China). The use of
gimbal and high-resolution GNSS/IMU unit ensures good quality data
collection specifically for a push-broom hyperspectral sensor. We also
used a reflectance tarp (Fig. 2d) on the ground to perform radiometric
calibration of the hyperspectral cubes after the data collection. The
NanoHyperspec camera is a line scanner hyperspectral camera that has
12 mm focal length and can capture 640 spatial pixels perpendicular to
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Fig. 2. Data collection scenarios. The UAV system (a) consisted of a gimbal that holds the hyperspectral sensor and GNSS/IMU (b). The UAV was flown in a cross-grid
fashion (c) using the UGCS software. The radiometric calibration was done using a reflectance tarp (d) laid down on the ground during data collection. The ground
truth data collection was performed on the same days of the UAV flights by manual measurement(e). We calculated the ALA using a handmade protractor tool (f),
which can calculate the angle between the stem and leaf, and LCC using a Dualex Scientific 4 instrument (g).

its flight path. Therefore, we had to define a geographic polygon
boundary during the data collection window, and the system automat-
ically started capturing data whenever the UAV system was inside that
boundary. The camera provided 269 spectral bands ranging from 400
nm to 1000 nm in very near-infrared (VNIR) region with around 2.3 nm
spectral resolution. The flight missions were planned in a cross-grid
pattern using the UGCS Mission Planning software (v4.14, SPH Engi-
neering, Riga, Latvia). The flights had 50 m altitude, 3 m/s speed, which
roughly gave us around 3 cm ground sampling distance (GSD) per pixel.

Total four UAV flights were conducted in the experimental sites.
Table 1 shows the list of days for data collection. For each day, we chose
to fly around noon or a little before noon to avoid unpredictable cloud
conditions. The dates were chosen based on clear sky condition and
maturity stages of the corn. We chose the early reproductive stages of
corn as the data collection dates.

3.1.2. Ground truth data collection

The number of samples collected for LCC and ALA are provided in
Table 1. We used a Dualex Scientific 4 (Force-A, Orsay, Ile-de-France,
France) instrument to measure the LCC for each sample plot. Three

Table 1
Data collection dates and number of ground truth samples.

Date Field Name Number of Ground Truth Samples
LCC ALA

July 20, 2021 D3 50 50

August 4, 2021 D3 50 50

August 11, 2022 D16 100 116

August 17, 2022 U1l 0 385

Total Samples 200 601

well-lit healthy leaves from close to the top of the canopies were selected
randomly for each plot. We used the average value of the three leaves as
one representative LCC value. Ground truthing of leaf angle was per-
formed using a simple printed protractor tool (Fig. 2f), measured as
degrees from horizontal. The leaf directly above the highest ear was
chosen, or if no ear was present, the fifth leaf from the top of the plant.
Plants that didn’t have an ear and had not yet tasseled were not
measured. The stem of the plant was aligned to the protractor, and the
angle of the leaf was measured to the closest 5°. Three replicates from
each plot were measured, with 2 replicate plots. However, the PROSAIL
simulation only considers the leaf inclination angle, which refers to the
angle at which a leaf is tilted relative to the direction perpendicular to
the ground. Since the stalk of corn plant is commonly perpendicular to
the ground, we subtracted the leaf angle measured using the protractor
tool from 90° to get the leaf inclination angle for PROSAIL. The average
value of all three replicates within a plot was considered as the ALA for
this study.

3.2. PROSAIL-Net schematics

3.2.1. PROSAIL simulation

PROSAIL is a radiative transfer model (RTM) that combines
PROSPECT-D and SAIL together (Fig. 3a). PROSPECT-D is a leaf model
which understands different leaf biophysical properties (Table 2) and
simulates leaf reflectance and transmittance. The SAIL model on the
other hand takes the leaf reflectance and transmittance from the
PROSPECT-D model along with several canopy, soil and viewing ge-
ometry parameters to simulate canopy reflectance. The canopy reflec-
tance ranges from 400 nm to 2500 nm with 1 nm interval (Fig. 3c).

For the simulation part, we first identified typical ranges of different
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Fig. 3. The schematics of PROSAIL-Net. The PROSAIL simulation (a) is consisted of PROSPECT-D, a leaf model, and SAIL, a canopy model. The random initialization
of PROSAIL variables results in a large number of simulated spectra (c). The multi-angular cross-grid UAV flight (b) enables us to get variable 6;, 6,, and ¢,,, along
with hyperspectral spectra (d). The PROSAIL-Net consists of a neural network trained by the simulated dataset and later trasnfering that knowledge to the observed

data from UAV hyperspectral system.

Table 2
Overview of the PROSAIL input variables of corn based on literature review.
Model Variable Name Symbol Unit Typical
Range
PROSPECT-D Leaf structure index N Unitless 1.2-1.8
(Leaf model) Chlorophyll a + b content ~ Cg/LCC  pg/cm? 0.1-80
Total carotenoid content Cex ug/ cm? 1.0-24.0
Total anthocyanin content  Cgn ug/cm? 1.2-1.8
Brown pigments Cyp Unitless  0.01 - 1.0
Dry matter content Cn g/cm? 0.004 -
0.0075
Leaf water depth Cyw cm 0.01 -
0.03
SAIL (Canopy Leaf area index LAI m? /m2 0.1-7.0
model) Average leaf inclination ALA ©) 10.0 -
angle 80.0
Hot spot parameter Hot m/m 0.01 -
0.20
Soil reflectance Psoil (%) -
Soil brightness factor soil Unitless 1
Fraction of diffuse skyl (%) 23
illumination
Solar zenith angle O ©) 10.0 —
90.0
Sensor (viewing) zenith 0, ©) 10.0 —
angle 90.0
Relative azimuth angle by ©) 10.0 -
between sun and sensor 360.0

PROSPECT-D and SAIL variables available for corn in the literature
(Bsaibes et al., 2009, Koetz et al., 2005, Kong et al., 2016, Berger et al.,
2018). The ranges considered for our study is listed in Table 2. We used
the PROSAIL bindings in Python developed by Domenzain, Gomez-Dans,

and Lewis (2019). We simulated 100,000 simulated spectra using
randomly assigned variables within the ranges of Table 2. However, we
added some constraints during the simulation, which excluded the
generation of unusual spectral data. For instance, some combination of
angular variables may result in null spectral data, which were discarded
automatically from the simulation. In addition, if the reflectance values
were more than 1.0 or negative, such samples were dropped as well. The
soil reflectance spectra were collected from 10 well sunlit spots
randomly distributed within the experimental fields. We used the
Spectral Evolution PSR-3500 handheld spectraradiometer to capture the
reflectance spectra (400 — 2500 nm) from the soil for each day. The soil
reflectance from 10 samples were then averaged together as the input
for PROSAIL model. The solar zenith (¢;), sensor (or viewing) zenith
(6,), and relative azimuth angle between the sun and sensor (¢,,) were
also considered since we hypothesized the influence of multi-angular
viewpoint would have better performance accuracy in the inversion
model.

3.2.2. Transfer learning

Transfer learning is a machine learning technique in which a model
trained on one task (i.e., source domain) is re-purposed for a different
task (i.e., target domain) to achieve robust performance (Pan and Yang,
2010). The goal of transfer learning is to leverage the knowledge learned
from the source domain to improve the performance of the model on the
target domain, especially when the amount of labeled data in the target
domain is limited. There are different types of transfer learning,
including inductive, transductive, and unsupervised transfer learning
(Zhuang et al., 2021). In inductive transfer learning, the pre-trained
model is used as a feature extractor for a new model that is trained on
the target domain. In transductive transfer learning, the pre-trained
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model is fine-tuned on the target domain using a limited set of labeled
data, and in unsupervised transfer learning, the pre-trained model is
used as a starting point for training a new model on the target domain
without using labeled data. Based on the scenario of our problem, it falls
under the transductive transfer learning. However, our source domain is
the PROSAIL simulation model (Fig. 3¢) and multi-angular UAV data
(Fig. 3b), where the features are the spectral data and solar-sensor ge-
ometry data. The target domain for our case is also the spectral data
from UAV-borne hyperspectral sensor and the solar-sensor geometry
data extracted from the GNSS/IMU of the UAV. Therefore, the transfer
learning scenario is straightforward, and the features of source domain
and target domain are the same. This is also known as “fine-tuning”
transfer learning (Vrbancic and Podgorelec, 2020) as the task is to
leverage the large training dataset of the source domain into the small
amount of labeled data in the target domain.

The basis of our PROSAIL-Net was simply three-fold, i.e., first,
simulate a large amount of spectral data from PROSAIL using many
combinations of the crop biophysical variables specified in Table 2;
second, train two base neural networks from the simulation data where
the inputs are spectral and solar-sensor geometry data, and the output is

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

either LCC or ALA; and finally, use the pretrained base model that
performed the best to estimate LCC or ALA from observed UAV data.

Our initial analysis of PROSAIL-simulated and UAV-extracted spec-
tral data revealed that the UAV spectra includes some noise within its
value. The noise can originate from various factors, such as, atmospheric
environment, UAV flying platform, imaging optical devices, etc. (Ked-
zierski et al., 2019, Sekrecka, Wierzbicki, and Kedzierski, 2020, Arroyo-
Mora et al., 2021). Consequently, we applied the Savitzky-Golay trans-
form (Press and Teukolsky, 1990), a frequently utilized smoothing
method for spectral data, to process the UAV spectra with the objective
of eliminating noise. The method involves fitting a polynomial function
to a window of adjacent data points and then using the polynomial to
estimate the smooth values of the data points within the window. The
transformation can be expressed by Equation (1):

yi= Z Cj*yiﬂ' (@]

where, y; is the estimated smoot value of the data point at position i, y;;
are the data points within the window centered at i, m is the half-width
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Fig. 4. Data processing steps. The hyperspectral cubes were first converted from digital number to radiance to reflectance to orthorectified rasters (a). The solar-
sensor geometry was calculated for each hyperspectral cube using the methods described in Bhadra et al. (2022). Figure (b) was updated with permissions from
the authors of Bhadra et al. (2022). Finally, the plot-level data extraction (c) was done using a custom-made Python tool that clips the data based on plot boundary,
applies k-nearest neighbor to get soil mask, and extracts the soil removed average hyperspectral spectra per plot.
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of the window, and c; are the coefficients of the polynomial function,
which are calculated using a least-squares method. We use a 1st order
polynomial and a window length of 13 for the Savitzky-Golay transform,
which gave us an optimum spectrum from UAV that closely matches the
PROSAIL spectra. The details of PROSAIL-Net neural network structure
are explained in Section 3.4.

3.3. Data preprocessing

The data preprocessing steps can be broadly categorized into: a)
hyperspectral cube processing, b) solar-sensor geometry calculation,
and c) plot-level data extraction. Fig. 4 illustrates the major steps
involved in each category.

3.3.1. Hyperspectral cube processing

The hyperspectral images were collected as 3D cubes across the flight
path, where the x and y axis represent the spatial dimension, and the z
axis holds the spectral information. The initial data cube only stored the
amount of light passing through the sensor as Digital Numbers (DN). We
used Headwall’s proprietary software, ‘Spectral Viewer’, to convert the
DN values into radiance (Wm~2sr~1), which is the amount of light en-
ergy reflected by an object. The conversion is done using the empirical
line method which is a linear regression model that is trained for each
sensor to convert raw DN into radiance values. Each unique sensor
comes with its own proprietary model within the software for this
conversion. To account for the variability of solar irradiance or solar
intensity during the data collection, we converted the radiance into
reflectance values by using a reflectance tarp placed on the ground
during data collection (Fig. 2d). The reflectance tarp has three different
levels, i.e., 56 %, 33 % and 11 %, among which we chose the 56 % for
reflectance calculation based on the recommendation from Headwall
(Barreto et al., 2019). Finally, the hyperspectral cubes were geometri-
cally corrected using the onboard APX-15 GNSS/IMU data and photo-
grammetric calibration procedures available in the Spectral Viewer
software. Fig. 4a shows the major steps taken into consideration for the
hyperspectral data cube processing part.

3.3.2. Solar-sensor angle calculation

The solar and sensor geometry corresponding to each hyperspectral
cube were calculated based on the methodologies developed by Bhadra
et al. (2022). The pipeline can take in different cube and corresponding
GNSS/IMU information as inputs while resulting three geospatial rasters
of solar zenith angle (6;), sensor zenith angle (6,), and relative azimuth
angles (¢s,).

The solar zenith (6;) and azimuth (¢,) angles were calculated using
the PVLIB library (v0.9.0), which is an astronomical library in Python
(Holmgren, Hansen, and Mikofski, 2018). 6; is a function of time, lati-
tude, and longitude information, which can be extracted from the GNSS/
IMU device with the functionalities developed by Bhadra et al. (2022).
On the other hand, ¢, depends on the time and latitude of the corre-
sponding pixel and was calculated directly by PVLIB. Both ¢ and ¢, were
calculated for each pixel of each hyperspectral cube, and later converted
as a geospatial raster data for input in the PROSAIL model.

Alternatively, the sensor zenith (6,) and azimuth (¢,) angles were
calculated using trigonometric functions. Since the local coordinates of
sensor location, V(x,,y,) and corresponding pixel location, R(x;,y:), can
be known through the Universal Transverse Mercator (UTM) projection
system, and the flight altitude was always 50 m, we can calculate a, as
Equation (2) and then 6, with Equation (3). The ¢, was calculated using
equation (4), where the @ is the true north vector and @ is the vector
between V and R. Finally, the relative azimuth angle between sensor and
sun can be calculated using Equation (5).

1 50

(2)
\/(xv - xr)z + (O = )’r)z

a, = tan~
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0, =90° —a, 3)

o =cos! | L0 )
@l

b =d.— 9, (5)

The angles were first calculated based on the pixel coordinates of
each hyperspectral cube. For further use as the input in the PROSAIL
model, 6;, 6,, and ¢,, were converted as a geospatial raster data.

3.3.3. Plot-level data extraction

The plot boundaries were digitized in ArcGIS Pro using polygons.
Then, plot-level average reflectance values for each wavelength were
extracted using an automated pipeline developed in Python. We used
geopandas, rasterio, and other GDAL-based open-source geospatial li-
braries to read the hyperspectral cube, remove soil pixels and then
calculate mean spectral data. The soil pixels were identified for each
vegetation cube by employing k-means clustering algorithm with 2
clusters. Since the plot-level data was extracted for individual hyper-
spectral cubes, there were instances where the plot boundary only
covered a small portion of vegetation. Those cases were identified by
using a threshold for the ratio of pixel area in that cube and the corre-
sponding plot area. The overall process is illustrated in Fig. 4c.

3.4. Dual stream deep neural network

The PROSAIL-Net was built as a dual-stream deep neural network
(Fig. 5a) since it has to handle two types of input dataset (i.e., angle and
spectra data) within its architecture. We decided to use a simple multi-
layer perceptron (MLP) network for the angel branch and experimented
with different types of neural networks for the spectra branch. Finally,
the outputs from both branches were concatenated together using a
concatenation layer followed by the prediction layer of LCC and ALA.

3.4.1. Solar-sensor angle branch

The angle branch consists of three features as its inputs, i.e., solar
zenith angle 6;, sensor zenith angle 6, and relative azimuth angle (¢,,),
followed by a MLP network. MLP is composed of multiple layers of
artificial neurons. The neurons in each layer are connected to the neu-
rons in the next layer through a set of weights, and the network is trained
to adjust these weights to perform a regression task. Each neuron in the
MLP perform the following equation:

y=f(Wx+b) (6)

where, y is the output of the network, f is the activation function, W is
the weight matrix, b is the vias vector, x is the input, and - is the dot
operator. The MLP network we designed for this branch includes four
hidden dense layers with 2, 8, 16, and 32 neurons, respectively. Each
layer was accompanied by a Rectified Linear Unit (ReLU) activation
function.

3.4.2. Spectral branch

The spectra branch was tested with several types of neural networks,
i.e., MLP, convolutional neural network (CNN), long short-term memory
(LSTM), and gated recurrent unit (GRU).

3.4.2.1. Multi-layer perceptron. The MLP network used in the spectra
branch was similar to the one in angle branch. However, since the
spectra data had 269 features as its input, we increased the number of
hidden layers along with the number of neurons in each layer (Fig. 5b).
We also introduced some dropout layers in between each block of layers
to reduce potential overfitting issues.
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Fig. 5. The schematics of dual stream neural network (a) where the angle branch uses a simple MLP to process the solar-sensor geometry data, and the spectra branch
deals with the hyperspectral data using either MLP (b), CNN (c) or RNN (d) architectures. Two types of RNN units were considered, i.e., LSTM (e) and GRU (f). The
explanation of different icons are given below as legends. The information from both angle branch and spectra branch was concatenated together and finally an

output layer was used to predict either LCC or ALA.

3.4.2.2. Long short-term memory. Long short-term memory (LSTM) is a
type of recurrent neural networks (RNNs) that are designed to handle
sequential data, such as, natural language, time series or signal data.
They can maintain a memory of previous inputs and use that informa-
tion to inform the current output. A LSTM unit (Fig. 5e) use three gates
(i.e., input, forget, and output gates) to control the flow of information
through the network (Equations (7) — (11)). The input gate (i;) controls
the flow of new information into the cell state, the forget gate (f;) con-
trols the flow of information out of the cell state, and the output gate (o)
controls the flow of information from the cell state to the output. These
gates are controlled by different weights and biases and are modeled by
the following equations:

ii = 6(Wyx, + Uy +by) ™
fi = 0(Wyx+ Uphyy +by) (8)
01 = 6(Wox, + Up-hi +b,) ©
¢ =fi¥c,1 +i*tanh(Wex, + Uerhy g +b,) (10)
h, = o,*tanh(c,) 1)

where, x;, h;, and c; are the input, hidden state, and cell state at time step
t, respectively. In addition, the parameters W, U, and b are the weights
and biases of the gates, respectively. The LSTM architecture is illustrated
in Fig. 5d, where four hidden layers of variable LSTM units were stacked
together as the basis of the network.

3.4.2.3. Gated recurrent unit. Gated recurrent unit (GRU) is another
type of RNN that can handle sequential data. It is similar to a LSTM in its
functioning but has fewer parameters and is computationally more
efficient. The GRU cell (Fig. 5f) has two gates, i.e., the update gate and

the reset gate (Equations (12) — (14). The update gate (z;) controls the
amount of information to be kept from the previous hidden state and the
current input, and the reset gate decides how much of the previous
hidden state information should be forgotten.

i = G(Wz-x, +U.hy +bz) (12)
rr = o(Wyx,+ U,-h_y +b,) 13)
h = (1 _Zt)*hrfl +Zz*tanh(Wh‘xt +rr*(Uh'hr—l + bh)) 14

where, x, 2, r: and h; are the input, update state, reset state, and hidden
state at time step t, respectively, and W, U, and b are the weights and
biases of the gates. The GRU architecture is illustrated in Fig. 5d, where
four hidden layers of GRU units were stacked together to process the
sequential data.

3.4.2.4. Convolutional neural network. Convolutional neural network
(CNN) is a highly popular method to extract meaningful features and
patterns from 2D images. However, the concepts of 2D convolution can
be extended to 1D convolution that can handle a 1D array as input. The
1D CNN is composed of multiple layers, each of which contains a set of
convolutional and pooling filters that are trained to extract specific
features from the input data. If f is the input vector with length n and g is
the kernel with length m, the convolution f*g of f and g is defined as:

() =Y s of (i=i+5)

j=1

(15)

The mathematical operation in Equation (15) slides a kernel over a
1D spectra and multiply the overlapping kernel with the spectra fol-
lowed by the addition of them together. After each convolution layer or
a block of convolution layers, we applied a 1D max pooling layer, which
is also a sliding kernel moving through the spectra. In this case, the max
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pooling layer takes the maximum value within the window and assign it
as the output for that position. Max pooling helps reducing the high
dimensionality in spectral data while retaining the most influential in-
formation within the data.

The 1D CNN architecture considered in this study was inspired by the
skeleton of VGG architecture (Simonyan and Zisserman, 2015). VGG is
one of most popular architecture for its strong performance, simplicity,
standardization and for being one of the first architectures that used
small convolutional filters and very deep architectures (Pak and Kim,
2017, Ajit,Acharya,and Samanta, 2020). We used four blocks of
convolution and pooling layers, where each convolution has 32 to 512
kernels with 3 x 1 shape and pooling shape of 2 x 1 (Fig. 5b). At the end
of the network, the feature maps were flattened to match the dimensions
of the dense layer output of angle branch.

3.5. Statistical machine learning algorithms

We trained several statistical machine learning algorithms which has
shown consistent performance in crop biophysical trait estimation from
hyperspectral data. We chose partial least squares regression or PLSR
(Foster, Kakani, and Mosali, 2017, Shen et al., 2020), random forest
regression or RFR (Yang et al., 2021, Wang, Zhao, and Yin 2022), and
support vector machine regression or SVR (Karimi et al., 2008, Huang
et al., 2019) as the statistical machine learning algorithms due to their
popularity and simplicity. For the statistical machine learning portion,
we tested two types of training scenarios, i.e., a) ML-Raw and b) ML-VIL.
In the ML-Raw models, average reflectance from each plot for all the
wavelengths (i.e., 269 bands) were used as the input. For the ML-VI
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models, vegetation indices (VIs) were calculated before feeding them
into the models. Research has shown that VIs can minimize the effects of
illumination condition, solar angle and enhance the contrast between
soil and vegetation (Fang and Liang, 2014, Lambin, 2001). Table 3
shows a list of the VIs considered for this analysis.

3.6. Model training and evaluation

The model training scenarios in this study can be categorized into
two different sections, i.e., a) statistical machine learning and b) deep
learning. In this section, we will explain how different models were
trained to estimate LCC and ALA. The total dataset was randomly split
into two sets, i.e., training (70 %) and testing (30 %) set. The models
were trained using the train set, whereas the evaluation was performed
with the test set that was not seen by the models during training.

3.6.1. Training statistical machine learning algorithms

The statistical machine learning algorithms (i.e., PLSR, RFR and
SVR) for two modeling scenarios (i.e., ML-Raw and ML-VI) were trained
using the Scikit-learn package (v1.0.1) in Python. Hyperparameter
tuning is critical for optimizing the performance of statistical machine
learning algorithms as it involves selecting the values of parameters that
govern the learning process. The optimal values of hyperparameters can
be determined through a systematic search over the parameter space,
which can result in a significant improvement in the accuracy of the
model (Dewi and Chen, 2019, Liu, Wu, and Chen 2020). We used the
grid search hyperparameter tuning, which is a method of systematically
searching over a predefined hyperparameter space in order to determine

Table 3
List of VIs used in ML-VI modeling, where in p,, p is the reflectance of wavelength n.
VI Abbreviation Formula Reference
ARI Anthocyanin Reflectance Index 1 1 . .
e Gitelson, Merzlyak, and Chivkunova (2001)
Pss50  P700
NDVI Normalized Difference Vegetation Index P860 — Pes0
T Rouse et al. (1974)
Pge0 T Peso
NDRE Normalized Difference Red-edge Index Pg60 — P720 X
D T Do Nichol et al. (2000)
Pge0 T P720
GNDVI Green Normalized Vegetation Index P860 — Ps60 .
T Gitelson et al. (1996)
P60 T Ps60
GDVI Green Difference Vegetation Index -
8 P850 ~Ps60 Tucker et al. (1979)
ARVI Atmospherically Resistant Vegetation Index P800 — [Peso — Paso + Pesol

Psoo + [Peso — Paso + Pesol

Kaufman and Tanre (1992)

CCCI Canopy Chlorophyll Content Index Pgoo0 — P715 ;P800 — Peso Barnes et al. (2000)
Pgoo + P715" Pgoo + Peso arnes et at
ARI hl hyll Ab: i io I P
CAR! Chlorophy’ sorption Ratio Index ﬁ*[(l’mo — pe70) —0-2(p700 — Pss0) | Daughtry et al. (2000)
GCI Green Chlorophyll Index Psoo _q Hunt et al. (2011)
Psso unt et al.
RECI Red Edge Chlorophyll Index Psoo
8 phy m -1 Gitelson, Keydan, and Merzlyak (2006)
CI Curvature Index *
116757’12690 Zarco-Tejada et al. (2001)
Pes3
Dattl Datt Index 1 Pgs0 — P710 Datt (1999)
P50 ~ Peso a
Datt3 Datt Index 3 P754.
Datt (1999)
P704
Datt4 Datt Index 4 Pe72 Datt (1999)
Ps30 ~ P708 a
Datt6 Datt Index 6 Pg60 Datt (1999)
Pss0 — P708 a
EVI Enhanced Vegetation Index 2.5% P860 — Pe50 - L (1997
Pse0 + 6*Peso — 7-5%Pagy + 1 uete et al. ( )
MTCI MERIS Terrestrial Chlorophyll Index P754 — P709
Dash and Curran (2004)
P700 + Peg1
Vo Vogelmann Index P740
J 8 /% Vogelmann, Rock, and Moss (1993)
SAVI Soil Adjusted Vegetation Index P800 —P670 41 g - L (1992
Ps00 + Poro + 05 uete et al. ( )
MSAVI Modified Soil Adjusted Vegetation Index
) 8 2pge0 + 1 — \/(2[’860 + 1)2 — 8(pge0 — Peso) Qi et al. (1994)
2
TSAVI Transformed Soil Adjusted Vegetation Index a(pseo — Pego) — b

a*pgeo + Peso — ab +X(1 +a?)

a=122b =0.03X =008

Baret and Guyot (1991)
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the optimal values of hyperparameters for a given machine learning
model (Bergstra and Bengio, 2012). We searched over a wide range of
commonly used hyperparameters for PLSR, RFR and SVR based on
extensive literature review. During the grid search, we also enabled a 5-
fold cross-validation to ensure that the performance of the model is
evaluated effectively across different subsets of the data. Since a wide
range of features were used to model the statistical machine learning
models (i.e., 269 features for ML-Raw and 22 features for ML-VI), an
automatic feature selection mechanism was also introduced in the
pipeline. During the training of SVR, 10 best features were selected using
the ‘Select K-best’ function of Scikit-learn using the Pearson’s Correla-
tion Coefficient. This selection was done with only the training set,
which ensured the robustness of the test set in evaluating the models’
performance. However, no feature selection was performed for the PLSR
and RFR. Since PLSR performs Principal Component Analysis (PCA)
before conducting the regression analysis, the feature space gets reduced
to important principal components and reduces the chances of over-
fitting from higher number of feature space. Also, the number of com-
ponents is a hyperparameter for the PLSR that was tuned using the grid-
search method to maintain the model robustness. On the other hand,
RFR calculates the feature importance scores for each feature and avoids
multicollinearity specifically for handling hyperspectral remote sensing
data (Bhadra et al., 2020), i.e., gives less importance to similar features
in the modeling scheme. Therefore, we did not perform any feature se-
lection for RFR either. The statistical machine learning models were
trained in a Windows computer with Intel Xeon Platinum E5 (3.1 GHz)
that has 8 cores, and 128 GB of RAM. We utilized the parallel processing
functionalities of Scikit-learn functions that reduced the amount of
training time significantly.

3.6.2. Training DSNNs

We considered a variety of DSNN in our study, i.e., PROSAIL-Net
base model, PROSAIL-Net transfer learning models, with many
different combinations of architectures (i.e., MLP, LSTM, GRU, and
CNN) to process the spectral data. The DSNN training and evaluation
was performed using the TensorFlow API (v2.6.0) in Python. First, we
created a unique data generator object to automatically process the
input pipeline of solar-sensor geometry and spectral data. The data
generator allowed us to efficiently read the massive amount of PROSAIL
simulation data in batches and ensured efficient use of memory during
the training. Since our task is a regression problem, we used the mean
squared error as the loss function for all models. The deep learning
model also has some hyperparameters to tune, such as, batch size,
learning rate, and number of epochs. We used a batch size of 32 for all
the model training. The popular ‘Adam’ optimizer was used for the
backpropagation which requires learning rate as its one of the param-
eters. To avoid searching over different learning rate values, we started
with a learning rate of 0.001 and exponentially reduced the value if the
epoch exceeds certain iterations. The number of epochs was set as 400
for all DSNNs but it was controlled with an early stopping criterion. We
divided the training set for the DSNN into another two sets, i.e., training
(70 %) and validation (30 %), where the validation set helps us to un-
derstand the bias-variance tradeoff of the models. The early stopping
enables the models to automatically stop training if the loss of validation
set does not decrease after 15 iterations. The use of a fixed batch size,
automatic reduction of learning rate and early stopping criterion helped
us to avoid expensive grid search of the hyperparameter tuning. The
DSNNs were trained in a Windows computer with Intel Xeon Platinum
8168 (2.7 GHz) 24 processors, 512 GB of RAM, and a Nvidia RTX 8000
graphical processing unit (GPU) with 48 GB memory.

3.6.3. Model evaluation

The performance of both statistical machine learning and DSNNs
were evaluated using three commonly used regression metrics, i.e., R%,
root mean squared error (RMSE) and normalized root mean squared
error (NRMSE), of the corresponding test set. The equations are as given
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below:
n ~\2
an
NRMSE = M*IOO (18)
y
where, i =1,2, -+ ,n is the test sample, ¥; and y; are predicted and

measured target variables, respectively, and y is the average of each
measurable variable. However, in terms of multi-angular DSNN (i.e.,
PROSAIL-Net-MA), the prediction from multiple angular samples were
averaged together to get one prediction value for each sample plot.

4. Results
4.1. Descriptive statistics of target variables

The target variables considered in this study was the LCC (in yg/cm?)
and the ALA (in Degrees). Table 4 shows the descriptive statistics of each
variable for the entire study area, whereas Fig. 6a illustrates the distri-
butions. The number of samples for ALA (n = 601) was higher than LCC
(n = 200), among which 199 sample plots had both observation of LCC
and ALA. The distribution of LCC shows a normal distribution (Fig. 6a),
which also appeared as statistically significant (with 99 % confidence
interval) in the normality test of D’Agostino and Pearson (1973).
Alternatively, ALA shows a slight positive skewness in its spread. The
overall spread of ALA distribution is found higher than LCC (Fig. 6a),
which is also evident in its relatively higher standard deviation, range,
and interquartile range values (Table 4). Lastly, Fig. 6b shows whether
there exists any intercorrelation between the two target variables. Based
on the Pearson’s correlation coefficient and Fig. 6b, it seems there is no
correlation between LCC and ALA.

4.2. Sensitivity analysis of reflectance

The sensitivity analysis between the reflectance spectra from PRO-
SAIL and UAV with the target variables can reveal the justification for
using PROSAIL spectra along with UAV spectra for crop biophysical
parameter estimation. We calculated the Pearson’s correlation coeffi-
cient between the target variables and the direct reflectance from the
ach wavelength in both PROSAIL and UAV spectra (Fig. 7a-b). Addi-
tionally, the Normalized Difference Spectral Index between a pair of
wavelengths from both PROSAIL and UAV was also correlated with the
target variables (Fig. 7c-d).

The pattern of correlation between individual wavelength reflec-
tance and LCC (Fig. 7a) for both PROSAIL and UAV seems to follow the
similar pattern. However, the magnitude of correlation coefficient for
UAV spectra is much lower than the PROSAIL spectra. The wavelength
region between 550 nm and 800 nm seems highly informative in

Table 4
Descriptive statistics of LCC and ALA.

Statistics

LCC (ug/cm?) ALA (Degrees)

Number of Samples 200 601
Minimum 19.03 1.67
Mean 41.55 32.89
Median 41.61 30.83
Maximum 58.08 80.00
Standard Deviation 7.07 12.96
Range 39.05 78.33
Interquartile Range 8.06 16.67
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explaining the variation of LCC. Specifically, the red (~660 nm) and red-
edge (~710 nm) shows peak negative correlation (Pearson’s R~-0.5) for
PROSAIL spectra. Similar pattern is also observable in terms of the
correlation between Normalized Spectral Difference Index (NDSI) and
LCC (Fig. 7c-d). NDSI is the ratio of p, —p;, and p, + p;,, where p, and p,
are the reflectance of two corresponding wavelengths of a and b, that
enhances the relationship between a target variable and a pair of
wavelengths. Fig. 7c suggests that the NDSI values significantly
improved the correlation between UAV and LCC compared to the values
achieved by single wavelengths (Fig. 7a). Also, the pattern between UAV
NDSI (Fig. 7c) and PROSAIL NDSI (Fig. 7d) looks similar with the only
difference between increased Pearson’s R values for PROSAIL. Overall,
the wavelength pairs of green (~500 nm) and blue (~450 nm) shows
positive, whereas red-edge (~700 nm) and red (~650 nm) pairs show
negative correlation with LCC. Additionally, some negative correlation
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can be also seen in the pairs of red-edge and NIR (~800 nm) along with
green and NIR.

On the other hand, the relationship between reflectance and ALA
(Fig. 7b) seems insignificant (0.0 < Pearson’s R < 0.2) for UAV, whereas
PROSAIL shows peak positive correlation at the blue (450 — 500 nm) and
red region (695 — 700 nm). For the correlation between NDSI and ALA
(Fig. 7e-f), the green and red pair as well as the NIR and red pair show a
strong correlation with ALA for both UAV and PROSAIL.

4.3. PROSAIL-Net performance on simulation data

The proposed PROSAIL-Net consists of two types of training, i.e., the
PROSAIL-Net base model, which is trained on PROSAIL-simulated data,
and the PROSAIL-Net transfer learning model, which is trained on
limited UAV data using the pretrained PROSAIL-Net base model. The



S. Bhadra et al.

PROSAIL-Net has two branches in its architecture, where one branch
handles the solar-sensor angle data, and the other branch processes the
spectra data. We experimented the performance of different neural
networks in the spectral branch along with the solar-sensor angle branch
to estimate LCC and ALA of simulation data. Table 5 shows the perfor-
mance of PROSAIL-Net base model with different spectral branch on
PROSAIL-simulated test set (n = 30,000).

Table 5 suggests that the best performance was achieved by the CNN
architecture for predicting both LCC (R? 0.98, NRMSE 1.34 %) and ALA
(R2 0.86, NRMSE 17.44 %). The performance for both target variables
were followed by GRU, LSTM, and MLP. Overall, the PROSAIL-Net base
model showed better performance for LCC estimation rather than ALA
prediction in all type of DSNN spectra branch. Since the CNN architec-
ture consistently outperformed the other networks, we chose CNN as the
basis of DSNN spectra branch for the rest of the analysis.

4.4. Performance of models on actual data

The performance of different modeling techniques for the LCC and
ALA prediction from actual UAV-born data is provided in Table 6. Fig. 8
shows the test R? of different modeling approaches in different bars. The
modeling strategies can be broadly divided into 5 segments, such as, ML-
Raw is the statistical machine learning algorithms (i.e., PLSR, RFR, and
SVR) with raw reflectance data from all wavelengths; ML-VI is also the
statistical machine learning algorithms with 24 vegetation indices (VIs)
specified in Table 3; DSNN-Raw is the neural network model directly
trained on the UAV-spectra data and angle parameters, PROSAIL-Net-
NAD is the DSNN model pretrained by PROSAIL simulation model but
using only the NADIR view observations from UAV; and finally the
PROSAIL-Net-MA that is same as PROSAIL-Net-NAD but considering
multi-angular observations during the training.

The modeling results suggest that the prediction performance of LCC
was higher than that of ALA. Without using pretrained PROSAIL-Net,
none of the models could predict ALA (Fig. 8b). Among the statistical
machine learning algorithms, ML-VI models outperformed the perfor-
mance ML-Raw models. All three models (i.e., PLSR, RFR, and SVR)
showed improved results when using VIs as model input instead of direct
wavelength reflectance. However, PLSR tends to perform better (R?
0.37) than the other models (RFR R? 0.19 and SVR R? 0.12) when no
feature engineering was performed. However, both RFR and SVR
slightly outperformed PLSR when fewer independent features engi-
neered by VIs were used as model input.

The DSNN-Raw was trained using UAV-based reflectance and angle
information as input and actual ground truth information collected from
field measurements as output. Different types of neural networks for the
spectral branch were also considered. While MLP, LSTM and GRU all
suffered from poorer performance in predicting LCC from observed data,
CNN outperformed the others (R2 0.44). However, the DSNN-Raw
models could not learn any significant pattern to estimate ALA from
the observable data (Fig. 8b).

Table 5
Performance of PROSAIL-Net base model on PROSAIL-simulated test set.

Biophysical Dataset  Metrics DSNN Spectra Branch
Parameter MLP LSTM GRU CNN
LCC Test R? 0.93 0.95 0.95 0.98
RMSE 4.55 3.96 3.99 1.34
NRMSE 11.40 9.92 9.99 3.35
Train R? 0.96 1.00 1.00 1.00
RMSE 2.96 0.61 0.55 0.28
NRMSE 7.41 1.53 1.36 0.69
ALA Test R? 069 076 079 0.86
RMSE 12.90 11.32 10.65 8.71
NRMSE 25.81 22.66 21.30 17.44
Train R? 078 083 088 0.93
RMSE 10.77 9.54 8.31 7.09
NRMSE 21.56 19.10 16.65 14.19
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The model performance from UAV observed data was significantly
improved by using pretrained PROSAIL-Net models for both LCC and
ALA prediction. When only the single nadir view data was used in the
PROSAIL-Net models (i.e., PROSAIL-Net-NAD), the MLP, LSTM and GRU
network showed a large improvement from the DSNN-Raw models.
However, the CNN-based PROSAIL-Net-NAD model significantly
improved the result of ALA (R?0.35) and LCC (R% 0.52) prediction. This
indicates that the use of transfer learning helped the models perform
better by utilizing PROSAIL-simulation knowledge. However, the utili-
zation of multi-angular observation during the transfer learning (PRO-
SAIL-Net-MA) improved the prediction performance even more for all
types of neural network architecture. For LCC, the highest performance
was achieved by the PROSAIL-Net-MA with CNN (R? 0.66), and a similar
result was also observed for the ALA prediction (R?0.57). Although the
PROSAIL-Net-MA models with MLP, LSTM, and GRU did not improve
the performance for ALA prediction compared to the PROSAIL-Net-NAD
modes. Therefore, we have identified that the transfer learning enabled
PROSAIL-Net model with multi-angular observation and CNN as the
spectral architecture can accurately predict LCC and ALA compared to
other data-driven approaches. Fig. 9 explains the prediction perfor-
mance of PROSAIL-Net-MA for LCC and ALA focusing on the error
distribution.

The prediction performance of PROSAIL-Net-MA on the LCC test set
clearly indicates some underprediction pattern for the relatively higher
values (Fig. 9a). For the lower values, the model could predict with
better accuracy. Similarly, the model overpredicts the lower ALA values,
whereas it underpredicts the extreme values (Fig. 9b). The standardized
residual plot can also indicate potential issues related to a regression
model. The residual of LCC (Fig. 9¢) and ALA (Fig. 9d) appear to be quite
randomly distributed near the baseline (y = 0) which indicates that the
PROSAIL-Net-MA was complex enough to capture the non-linearity
within the data.

5. Discussion
5.1. Comparison between PROSAIL and UAYV spectra

We analyzed the direct relationship between PROSAIL-simulated and
UAV-extracted spectra with the two target variables, i.e., LCC and ALA.
The analysis suggests the similarities of both PROSAIL and UAYV spectra
in terms of their linear relationship with the target variables. However,
the linearity between different independent features and crop traits is
often not sufficient enough to develop predictive models as there could
exist non-linear relationships (Furbank et al., 2021, Ma et al., 2001,
Garriga et al., 2017). However, the sensitivity analysis provides a
justification for using PROSAIL-pretrained deep learning model to UAV-
extracted hyperspectral spectra.

The magnitude of correlation between UAV-generated spectra and
LCC was significantly lower than the correlation between PROSAIL-
simulated spectra and LCC (Fig. 7a). The major reason behind this dif-
ference could result from the lower sample size for observed data (n =
200) compared to PROSAIL simulation (n = 100, 000). However, the
pattern of the relationship for UAV (i.e., the positive and negative peaks)
seems to match with PROSAIL for explaining LCC. The sensitive wave-
lengths identified by this analysis (i.e., 550 — 650 nm, 680 — 710 nm) also
agrees with findings from other literature. For instance, Klimov, Kle-
vanik, and Shuvalov (1977) identified the reflectance at 545 nm and
685 nm to be related to pheophytin in the reaction centers of photo-
system II, which is an excellent indicator of plant chlorophyll (Lu, 2016).
In addition, several studies have identified the red-edge region as the
photosystem I absorption spectrum, which is another mechanism
involving different chlorophyll-protein complexes (Chen, Quinnell, and
Larkum, 2002, Lamb et al., 2002, Kobayashi et al., 1996). In terms of
NDSI-based analysis, we found the pair of red-edge and red as highly
informative for explaining LCC, which was also identified by Mishra and
Mishra (2012) as the basis of Normalized Difference Chlorophyll Index
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Table 6
Performance of models on the test set for predicting LCC and ALA.
LCC ALA
Test Set Train Set Test Set Train Set
R? RMSE  NRMSE  R? RMSE  NRMSE  R? RMSE  NRMSE  R? RMSE  NRMSE
ML-Raw PLSR 0.37 5.06 11.78 0.46 4.81 11.10 0.04 12.09 36.06 0.46 9.03 27.23
RFR 0.19 5.75 13.39 0.76 3.37 7.91 0.00 13.62 40.61 0.52 8.53 25.72
SVR 0.12 5.98 13.93 0.21 6.01 13.75 0.02 12.36 36.88 0.15 11.64 35.03
ML-VI PLSR 0.43 4.79 11.16 0.54 4.43 10.25 0.00 12.35 36.83 0.43 9.29 27.98
RFR 0.48 4.59 10.70 0.91 2.65 6.32 0.01 13.57 40.47 0.56 8.19 24.71
SVR 0.47 4.64 10.81 0.52 4.52 10.46 0.01 12.39 36.96 0.13 11.81 35.54
DSNN-Raw MLP 0.05 7.02 16.37 0.19 6.10 13.96 0.03 13.04 39.91 0.43 9.29 27.98
LSTM 0.03 6.58 15.34 0.12 6.44 14.71 0.03 12.92 39.54 0.32 10.21 30.75
GRU 0.04 6.82 15.90 0.14 6.34 14.50 0.03 12.90 39.48 0.27 10.63 32.01
CNN 0.44 4.87 11.36 0.54 4.43 10.25 0.03 12.84 39.30 0.21 11.13 33.52
PROSAIL-Net-NAD (Nadir view) MLP 0.41 5.19 12.12 0.51 4.57 10.57 0.07 12.07 36.22 0.15 11.64 35.03
LSTM 0.47 4.72 11.02 0.59 4.19 9.72 0.19 11.27 33.81 0.46 9.03 27.23
GRU 0.36 5.33 12.46 0.48 4.71 10.88 0.12 11.75 35.25 0.43 9.29 27.98
CNN 0.52 4.63 10.81 0.68 3.76 8.76 0.35 10.10 30.30 0.65 7.44 22.45
MLP 0.52 4.75 11.08 0.69 3.71 8.65 0.06 12.08 36.02 0.24 10.88 32.77
PROSAIL-Net-MA LSTM 0.59 4.07 9.47 0.76 3.37 7.91 0.25 10.83 32.30 0.53 8.45 25.47
(Multiangular view) GRU 0.50 4.53 10.55 0.65 3.90 9.08 0.12 11.62 34.67 0.44 9.20 27.73
CNN 0.66 3.78 8.81 0.81 3.13 7.38 0.57 8.15 24.32 0.71 6.93 20.94
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Fig. 8. Model performance on actual data for predicting (a) LCC and (b) ALA. The explanations of different model categories are given in (b). The CNN architecture
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(NDCI) developed for MERIS satellite. Use of normalized indices paired
with different bands and red-edge was also highlighted by several
studies to explain the LCC variance in plants (Ju et al., 2010, Li et al.,
2014, Thompson et al., 2019).

The relationship between reflectance and ALA of crop canopies is not
well-explored in the literature. However, Huang et al. (2006) identified
the canopy reflectance at 680 nm as an influencing factor for lead angle
distribution, which was also found and significant in our study for ALA
explanation (Fig. 7b). Alternatively, leaf area index (LAI) has been found
as to be highly correlated with ALA (Chen and Black, 1992,1991), which
has been widely explored by remote sensing features in the scientific
community. For example, the ratio and difference indices derived from
green, red, and NIR has been identified as important features for LAI
estimation in many different studies (Bouman, 1992, Yu et al., 2020,
Siegmann and Jarmer, 2015, Vina et al., 2011).

5.2. Effectiveness of deep transfer learning

One of the key advantages of deep learning algorithms over statis-
tical machine learning methods, particularly in the realm of high-
dimensional hyperspectral data, is the ability to perform automatic
feature extraction. Numerous studies have highlighted the use of
different dimensionality reduction techniques before the predictive
modeling, such as, principal component analysis or PCA (Farrell and
Mersereau, 2005, Jiang et al., 2018), singular value decomposition or
SVD (Menon, Du, and Fowler, 2016, Ma et al., 2019), and linear
discriminant analysis or LDA (Jayaprakash et al., 2020, Fabiyi et al.,
2021). PLSR is a multivariate regression technique that automatically
performs PCA before generating a predictive model (Godoy, Vega, and
Marchetti, 2014), which was found to be very effective in our results. We
can see that PLSR perform relatively well (R2 0.37) compared to RFR (R2
0.19) or SVR (R? 0.12) when high-dimensional hyperspectral wave-
lengths are considered as the input feature space (i.e., ML-Raw in Fig. 8).
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Many studies have also identified the effectiveness of PLSR for regres-
sion tasks based on hyperspectral data (Meacham-Hensold et al., 2019,
Gomez, Lagacherie, and Coulouma, 2008, Shen et al., 2020, Zhou et al.,
2018). However, when vegetation indices (VIs) were extracted and used
as the independent variables for modeling, RFR (R? 0.48) and SVR (R>
0.47) tend to perform slightly better than PLSR (R2 0.43). Therefore, the
importance of using different VIs opposed to direct reflectance has been
well explored in many literatures when data-driven machine learning
algorithms are the point of concern (Selvaraj et al., 2020, Khan et al.,
2018, Koh et al., 2022, Richardson,Duigan,and Berlyn, 2002). However,
attention should be given to the type of target variables in the analysis
and VIs relating to that target variable should be used.

On the other hand, deep neural networks offer the capability of
automatic feature extraction through their network of neurons. Several
studies have explored such feature extraction capabilities, specifically
for hyperspectral data in terms of image classification and regression
(Zhao and Du, 2016, Chen et al., 2016, Chen et al., 2014, He et al.,
2017). However, the issue of having large training dataset in deep neural
networks remains a challenge (Nguyen et al., 2021, Liu and Xiao, 2020),
specifically for agricultural decision making. Therefore, we have
demonstrated the potential of large training samples extracted by
PROSAIL-simulation and transfer learning in the context of plant trait
extraction and achieved significant performance improvement. Our
DSNN, which is the basis of PROSAIL-Net was first trained with the
limited observed sample for estimating LCC (n = 140) and ALA (n =
492). The DSNN only performed relatively well for predicting LCC,
when the 1D CNN architecture was considered as the spectral branch (R?
0.52). However, there was no knowledge gain for explaining the ALA by
any of the architectures considered in DSNN-Raw. One the other hand,
the test accuracy for the DSNN models (i.e., PROSAIL-Net base model in
Table 3) showed significant improvement, specifically for predicting
LCC (R? 0.98 and NRMSE 3.35 %). Although the result for ALA was not
as good as LCC, the CNN-based DSNN still could explain 86 % variance
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of the unseen ALA samples. Later we used the pretrained DSNN for the
limited observed data and achieved performance improvement for both
LCC and ALA, specifically when CNN was considered as the spectral
branch architecture.

The use of 1D CNN as an excellent feature extractor for hyperspectral
image processing has been reported by many literatures (Zhang et al.,
2017, Gao et al., 2021, Du et al., 2022, Li, Cui, et al. 2019, Huang, He,
et al. 2022). The convolution operation in CNN prioritizes in capturing
local patterns in the input data (Lopez Pinaya et al., 2020), whereas the
MLP, LSTM or GRU struggle to understand the long-term dependencies.
For 2D images, the objective of convolution operation is to identify
textural or structural patterns within the image and discard unnecessary
information by reducing the feature map while the network progresses
(Lo et al., 1995). Similarly, 1D convolution tries to highlight uncorre-
lated spectral features from the high-dimensional spectral data and find
optimum kernel weights through back-propagation (Kiranyaz et al.,
2021). For example, the variation of reflectance values at 450 nm and
455 nm might not be critical enough for explaining a certain target
variable, which could suggest the use of only one feature instead of both
during the model training. The 1D kernel in the CNN can learn this
unique feature through a large training database and only captures
relevant information from fewer features. In our result, we have also
seen the superiority of 1D CNN over MLP, LSTM or GRU networks. The
CNN-based PROSAIL-Net network was later leveraged to transfer the
learned knowledge from a simulated dataset into an observable space
through UAV-based hyperspectral imaging.

The objective of transfer learning is to let a machine learning model
leverage the knowledge learned from source tasks in different domains,
so the model already knows about the relationship between independent
and dependent variables (Pan et al., 2011, Pan and Yang, 2010).
Numerous studies have leveraged deep transfer learning to solve prob-
lems in image classification (Shaha and Pawar, 2018, Quattoni, Collins,
and Darrell, 2008), object detection (Talukdar et al., 2018, Bu et al.,
2021), natural language processing (Raffel et al., 2020, Houlsby et al.,
2019), sentiment analysis (Huang, Zhang, et al. 2022, Tao and Fang,
2020), etc. In our study, the transfer learning mechanism is homoge-
neous and straightforward. Since the feature space of PROSAIL-
simulated and UAV-extracted were same, we could simply use the
entire pre-trained model from PROSAIL in the UAV-observed data space.
For LCC, our result shows that the PROSAIL-Net with multi-angular data
improved the model performance significantly compared to training
from scratch (i.e., DSNN-Raw) or statistical machine learning algorithms
(i.e., ML-Raw and ML-VI). However, the performance of ALA was way
more consequential when pretrained PROSAIL-Net was used. Our results
show that none of the statistical machine learning algorithms or DSNN-
Raw models could learn to predict ALA from spectral data. Due to the
massive amount of training data generated by PROSAIL-simulation, our
proposed DSNN with CNN learned the appropriate relationship between
spectral data, solar-sensor geometry angle data and ALA. We have not
found many studies that used PROSAIL-inversion to estimate the ALA
other than Lunagaria and Patel (2019) and Tripathi et al. (2012).
However, both studies relied on inefficient lookup table based inversion
method using either satellite (Tripathi et al., 2012) or goniometer
(Lunagaria and Patel, 2019), which are not practical in terms of plot-
level decision making. On the other hand, our study provides a cost-
effective high-throughput solution to estimate two major crop bio-
physical parameters by transforming cross-grid UAV data into goniom-
eter like multi-angular data.

In terms of transfer learning and PROSAIL-inversion for crop bio-
physical trait estimation, we have found only one study (Zhang et al.,
2021) in the literature. While (Zhang et al., 2021) highlighted the effi-
ciency of transfer learning strategy with PROSAIL-simulation and
ground/UAV-based observations for LCC estimation, we identified some
major gaps in the process. For instance, the effect of different architec-
ture in the modeling process was not well explored. In addition, the
methodology required the use of ground-based spectroscopic
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measurement, which is often hard to collect in a large agricultural
experiment. Moreover, the study used ‘sigmoid’ activation function in
the final output layer of the MLP model, which is questionable as the
output of ‘sigmoid’ is a probability distribution and suitable for classi-
fication tasks. We argue that the activation function in the final output
layer for a regression task should be a linear function, such as, ReLU or
simply the output of the last dense layer. Numerous studies have also
reported the use of ReLU or linear activation function in the final layer
when the target is a continuous variable (Maimaitijiang et al., 2020,
Nevavuori, Narra, and Lipping, 2019, Chu and Yu, 2020). Our study on
the other hand, investigated many different spectral branch architec-
tures and identified that CNN works well in extracting meaningful in-
formation from spectral data. We have also used specific features that
can be easily collected in a real-world scenario. For example, the solar-
sensor angle geometry information can be easily extracted by the end-to-
end pipeline developed by Bhadra et al. (2022). Additionally, the only
the spectral data was the required input for the PROSAIL-Net, which can
also be easily extracted by the UAV hyperspectral cubes.

5.3. Influence of multi-angular observations

Our result clearly identifies the effectiveness of having multi-angular
observations in the PROSAIL-Net model. When PROSAIL-Net-MA
models were used to estimate LCC and ALA, the performance
improved significantly from the PROSAIL-Net-NAD models (Fig. 8).
Many studies performing PROSAIL-inversion have also identified the
importance of having multi-angular hyperspectral observations (Luna-
garia and Patel, 2019, Weiss et al., 2000, Atzberger, 2004). The reason
lies behind the fundamentals of bi-directional reflectance distribution
function (BRDF), which characterizes how light is reflected from an
object or surface (Buchhorn, Raynolds, and Walker, 2016, Hou et al.,
2019). The relationship between solar reflection and an object depends
on the angle of the incoming light relative to the Earth’s surface (i.e.,
solar zenith angle, 6;) and the angle of the sensor in relation to the
surface (i.e., sensor zenith angle, 6,). In addition to the solar and sensor
zenith angles (i.e., 65 and 6,), PROSAIL considers the relative azimuth
angle between the sun and sensor (¢,) as one of its parameters.
Therefore, having hyperspectral reflectance information from multiple
angles allows the PROSAIL-Net-MA to understand the object properties
with more certainty, thus reducing the ill-posed challenge of PROSAIL
inversion (Duan et al., 2014, Jay et al., 2017, Roosjen et al., 2018, Sun
et al., 2022).

The methodology developed for this study introduces a novel
concept of using UAV-borne push-broom hyperspectral camera to cap-
ture the varying solar-sensor geometry angles. Roosjen et al. (2017)
developed a similar method but used a frame-based hyperspectral
camera, which often suffers from several challenges when mounted in a
UAV. The post-processing of frame hyperspectral camera is a chal-
lenging task as there could be offsets of the bands within individual
hyperspectral cube (Honkavaara et al., 2017, Jakob, Zimmermann, and
Gloaguen, 2017). Additionally, the larger field of view (FOV) of the
frame camera reduces the spectral and spatial resolution of the cube due
to the requirement of high energy (Fan et al., 2021). Push-broom
hyperspectral cameras on the other hand, provides more accurate data
capture with higher spatial and spectral resolution (Aasen et al., 2018).
However, the push-broom camera system on a UAV should be equipped
with precise GNSS/IMU sensors as the line scanning system of the push
broom camera is sensitive to flight dynamics. Also, the use of GNSS/IMU
information is used in the post-processing steps to accurately perform
the geometric correction and orthorectification. While the inclusion of
GNSS/IMU sensors with the push-broom camera increases the overall
cost of the system, we used the GNSS/IMU data to extract important
sensor geometry angle information. Additionally, the solar angle data
relative to the ground pixel coordinates is also precise specifically when
highly accurate GNSS information is considered. Fig. 10 shows two
sample hyperspectral cubes with different angles. Having access to the



S. Bhadra et al.

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

(b) HSI Cube
Footprints

L

N

v
y P‘T::/,;m/:r

C IMeters

(c) Cube A (6,) (d) Cube B (6;) (e) Cube A (8,)

<

?

10 Meters

1m0 [ o

1242 - 0.01 2056 [Jf 124.52

(f) Cube B (6,) (9) Cube A (¢sv) (h) Cube B (¢s,)

2450 [ .2446 ssoss [l oot ssoaz [l . .vos

Fig. 10. The result of having multi-angular hyperspectral image (HSI) cubes from cross-grid flight pattern. The HSI cubes along with the actual cross-grid flight path
is shown in (a), whereas (b) shows the footprints of each cube. The sample image is shown for the D16 field. Two side by side cubes marked (with bold red) in (b) are
further expanded to visualize the solar zenith (6;), sensor zenith (6,), and relative azimuth angle (¢,,) from c-h. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

accurate GNSS information allowed us to interpolate angle rasters for
each cube.

5.4. Limitations

Although we have demonstrated the superior performance of
PROSAIL-Net using transfer learning and multi-angular UAV observa-
tions for accurate estimation of LCC and ALA, we have identified some
limitations within our study.

The major limitation of the proposed methodology is the use of cross-
grid flight pattern to acquire multi-angular hyperspectral observation.
UAVs equipped with push-broom sensors take more time to capture data
since the payload is typically heavier than RGB or multispectral camera
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systems. Also, such complex UAV system requires flight calibration
before and after collecting the actual data, which reduces the data
collection time even more. For instance, we used the DJI M600 UAV
equipped with a Headwall NanoHyperspec 12 mm VNIR camera system,
which can fly up to 20 min with a fully charged battery set. Performing a
cross grid flight pattern with that time limit can be challenging specif-
ically when large fields are considered in the experiment. For instance,
the D3 (2020) and D16 (2021) fields in Missouri were relatively smaller
in size than the Ul field in Illinois (2021). Therefore, we flew the entire
cross-grid pattern at D3 and D16 without any issue, but we had to fly two
separate flights for the Ul field due to its larger size. Having enough
flight time for capturing the multi-angular data from a large experi-
mental field can be challenging when UAV-borne push-broom
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hyperspectral system is in consideration. However, capturing data with
higher altitude may solve such issues if careful consideration is given to
the balance of flight altitude and spatial resolution.

Another challenge of having longer flight time with hyperspectral
UAVs is the issue of radiometric calibration. Since hyperspectral sensors
are highly sensitive, a pre-flight camera calibration is performed using a
factory-standard reflectance panel to determine the exposure and frame
rate of the data capture. The exposure and frame rate are determined
based on the solar intensity, flight altitude and speed. However, an
assumption of solar intensity being the same through the entire flight
time is made, which is often challenging when the flight time is longer.
Because within a longer timeframe, the possibility of solar intensity
being changed increases and that can reduce the quality of the reflec-
tance data. For instance, we had to collect data two times for one
experimental day (i.e., July 21, 2021, in D3) because of sudden solar
intensity change during the flight. Such issues can hamper the high-
throughput nature of data collection in a crop breeding or precision
agriculture operation. However, inclusion of a downwelling irradiance
sensor on the UAV system and applying novel calibration techniques
during the tilting condition can reduce the issue of unprecedented solar
condition changes (Koppl et al., 2021).

While the PROSAIL simulation can produce reflectance spectra from
400 to 2500 nm wavelength, we had to only consider the very near-
infrared (VNIR) section (i.e., 400 — 1000 nm) during the modeling.
Since the hyperspectral sensor considered in our experiment could only
capture data in the VNIR region, we had to discard the short-wave
infrared (SWIR) region from our analysis. However, reflectance at the
SWIR region has been often found as very important in explaining water
absorption within the plant leaves, which might be connected to certain
biophysical traits (Raya-Sereno et al., 2022, Herrmann et al., 2010,
Kandylakis et al., 2020). Therefore, conducting this similar study with a
co-aligned VNIR-SWIR hyperspectral camera would have given better
performance for predicting LCC and ALA.

Finally, the scope of our study did not allow us to collect sample
measurements of other PROSAIL variables, such as, anthocyanin,
carotenoid, dry matter content, brown pigments, etc. Availability of
such values would have been helpful to perform the sensitivity of
knowing such measurement in the PROSAIL-Net training. Moreover, the
LCC values were measured using a handheld proximal sensing instru-
ment (i.e., Dualex Scientific) that uses leaf reflectance and transmittance
to estimate LCC. Despite the wide usage of proximal sensing techniques
to evaluate crop health parameters, such as LCC, calibrating these in-
struments through laboratory wet analysis remains the preferred
approach. Additionally, we could not collect the LCC data for the Ul
field on August 17, 2022 due to a technical malfunction of the Dualex
instrument. Availability of LCC data would have been better for the
model training as the dataset would include ground truths from two
different locations for LCC.

5.5. Future studies

The potential of merging physical remote sensing models and deep
neural networks through transfer learning is enormous in the field of
crop breeding and precision agriculture. Future studies should focus on
collecting more precise PROSAIL variables and perform PROSAIL-Net
operation on other crops in different management conditions. Since
we have identified that CNN-based network for spectral data and having
multiple viewing angle for UAVs offer more robust learning mechanism,
future work can focus on other aspects of the modeling.

In recent times, a new wave of foundational deep learning models
have surfaced in many disciplines, aiming to serve as a base model for
one task that can be fine-tuned for more specific tasks. For instance,
generative pre-trained transformer or GPT (Brown et al., 2020), bidi-
rectional encoder representation from transformer or BERT (Devlin
et al.,, 2019), language model for dialogue applications or LaMDA
(Thoppilan et al., 2022), are some of the most popular foundational

18

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

models for natural language processing that can be fine-tuned for more
specific tasks. Similarly, the meteorological community has developed a
foundational model named ClimaX that understands the complex rela-
tionship between weather variables through physical groundings
(Nguyen et al., 2023). The PROSAIL-Net can also become a foundational
model after trained with billions of simulated spectra, to enable re-
searchers and scientists worldwide to fine-tune it for more specific
vegetation trait retrieval. Furthermore, reinforcement learning can be
implemented to allow the pretrained network to continually improve
and adapt, based on feedback from the outcomes.

UAV-hyperspectral data, when coupled with the PROSAIL model,
helps in understanding various crop biophysical properties. However,
adapting UAV-hyperspectral systems for large-scale monitoring presents
challenges as it can be expensive and resource-intensive. Satellite-based
hyperspectral systems emerge as a potential solution for such moni-
toring needs. Some hyperspectral satellites, like EnNMAP (Guanter et al.,
2015) and PRISMA (Loizzo et al., 2018), offer moderate spatial resolu-
tion coverage globally, typically around 30 m. Nonetheless, this reso-
lution might not suffice for plot-level crop monitoring. Despite this
limitation, upcoming commercial hyperspectral systems promise better
ground sampling distance (GSD), thus enabling finer-scale monitoring.
On another front, satellite-based multispectral data holds promise for
PROSAIL-Net application. However, PROSAIL-Net necessitates high-
dimensional spectral data, posing challenges with multispectral reflec-
tance. For instance, missions like Landsat and Sentinel-2 offer around
10-13 bands in the VNIR and SWIR ranges, raising questions regarding
their compatibility with PROSAIL-Net without further examination.
Moreover, these missions feature relatively coarse spatial resolution (i.
e., 10-30 m), potentially unsuitable for precise agricultural applications
at the plot level. Commercial satellite missions with increased bands and
finer spatial resolution, such as WorldView-3 (Longbotham et al., 2015),
with approximately 16 bands and 3-meter spatial resolution, emerge as
promising candidates for PROSAIL-Net. Consequently, future research
should explore the impact of spectral bands on PROSAIL-Net’s perfor-
mance and determine the optimal balance between the number of bands
and accuracy. Such investigations will guide the selection of a suitable
multispectral satellite for scalable application of PROSAIL-Net.

The integration of PROSAIL with deep neural networks using transfer
learning underscores the potential of combining data-driven approaches
with other remote sensing or crop growth models. The use of UAV-based
hyperspectral remote sensing in conjunction with other radiative
transfer models (RTMs), such as MODTRAN (MODerate resolution at-
mospheric TRANsmission), which simulates radiation transmission
through the atmosphere, reflection, and emission from surfaces, can
provide a deeper understanding of crop health (Gail et al., 2000).
Likewise, crop growth models, such as DSSAT (Decision Support System
for Agrotechnology Transfer), which is capable of simulating the growth
of over 40 crops including corn, soybeans, and wheat, can provide
crucial information for agricultural management (Jones et al., 2003).
The fusion of deep learning, various RTMs, and crop growth models
could potentially unleash the power of general intelligence in decision-
making for a wide range of agricultural applications.

6. Conclusion

In our study we present PROSAIL-Net, a transfer learning-based
neural network aimed at accurately and efficiently estimating the LCC
and ALA of corn using UAV-borne hyperspectral images. Precision
agriculture and crop breeding operations often face challenges due to
limited sample sizes when using deep neural networks. Our approach
overcomes this challenge by leveraging the vast amount of simulated
data from the PROSAIL model. By integrating transfer learning and the
PROSAIL model, PROSAIL-Net offers a promising solution for improving
the accuracy of crop parameter estimation in precision agriculture and
crop breeding applications. Key findings from our study are:
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1. 1D CNN architecture exhibits superior performance compared to
MLP, LSTM, and GRU networks when utilized in the spectral branch
of DSNN. This superiority was demonstrated through the evaluation
of both PROSAIL-simulated data and transfer learning scenarios for
estimating LCC and ALA.

2. PROSAIL-Net outperforms all other modeling scenarios in predicting
LCC (R? 0.66 and NRMSE 8.81 %) and ALA (R* 0.57 and NRMSE
24.32 %), which underscores the importance of utilizing large
number of PROSAIL-simulated data in conjunction with transfer
learning.

3. PROSAIL-Net with multi-angular observations significantly out-
performed PROSAIL-Net with only nadir observations for both LCC
(R? improved from 0.52 to 0.66) and ALA (R? improved from 0.35 to
0.57). This signifies the importance of having multi-angular UAV
observations during the application process.

In summary, our study provides a valuable contribution to the field
of precision agriculture and crop breeding and highlights the potential
of transfer learning and deep learning as a tool for improving crop
parameter estimation. Future research can focus on collecting more
precise PROSAIL variables and expanding the application of PROSAIL-
Net to other crops in varying management conditions. Additionally,
the integration of PROSAIL-Net with other remote sensing and crop
growth models has the potential to unlock the power of general intel-
ligence in decision-making for a wide range of agricultural applications.

Funding

This work was supported by the United States Geological Survey
(USGS) AmericaView Grant (G18AP00077); Foundation for Food &
Agricultural Research (FFAR # 2331-201-0103); National Science
Foundation Plant Genome Research Program (NSF PGRP # 1733606);
NSF/USDA NIFA (Grant # 2020-67021-31530); NSF Cyber Physical
Systems (CPS award # 2133407); and Sustainable Agriculture and Ed-
ucation (Project #: GNC22-343).

CRediT authorship contribution statement

Sourav Bhadra: Conceptualization, Data curation, Writing - original
draft, Visualization, Investigation, Validation, Formal analysis, Project
administration, Software. Vasit Sagan: Conceptualization, Funding
acquision, Writing - review & editing, Investigation, Validation, Meth-
odology, Supervision, Resources, Project administration, Software.
Supria Sarkar: Writing - review & editing, Visualization, Maxwell
Braud: Data curation, Writing - review & editing. Todd C.Mock:
Funding acquision, Writing - review & editing, Supervision, Resources.
Andrea Eveland: Writing - review & editing, Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Aasen, H., Honkavaara, E., Lucieer, A., Zarco-Tejada, P.J., 2018. Quantitative remote
sensing at ultra-high resolution with UAV spectroscopy: a review of sensor
technology, measurement procedures, and data correction workflows. Remote Sens.
(Basel) 10 (7). https://doi.org/10.3390/rs10071091.

Ajit, A., Acharya, K., Samanta, A., 2020. A review of convolutional neural networks.
2020 International Conference on Emerging Trends in Information Technology and
Engineering (ic-ETITE), 24-25 Feb.

Alton, P.B., North, P.R., Los, S.0., 2007. The impact of diffuse sunlight on canopy light-
use efficiency, gross photosynthetic product and net ecosystem exchange in three
forest biomes. Glob. Chang. Biol. 13 (4), 776-787. https://doi.org/10.1111/7.1365-
2486.2007.01316.x.

Annala, L., Honkavaara, E., Tuominen, S., Polonen, I., 2020. Chlorophyll concentration
retrieval by training convolutional neural network for stochastic model of leaf
optical properties (SLOP) inversion. Remote Sens. (Basel) 12 (2). https://doi.org/
10.3390/rs12020283.

19

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

Antonucci, G., Impollonia, G., Croci, M., Potenza, E., Marcone, A., Amaducci, S., 2023.
Evaluating biostimulants via high-throughput field phenotyping: biophysical traits
retrieval through PROSAIL inversion. Smart Agricultural Technology 3, 100067.
https://doi.org/10.1016/j.atech.2022.100067.

Arroyo-Mora, J.P., Kalacska, M., Loke, T., Schlapfer, D., Coops, N.C., Lucanus, O.,
Leblanc, G., 2021. Assessing the impact of illumination on UAV pushbroom
hyperspectral imagery collected under various cloud cover conditions. Remote Sens.
Environ. 258 https://doi.org/10.1016/j.rse.2021.112396.

Atzberger, C., 2004. Object-based retrieval of biophysical canopy variables using
artificial neural nets and radiative transfer models. Remote Sens. Environ. 93 (1-2),
53-67. https://doi.org/10.1016/].rse.2004.06.016.

Baret, Frédéric, Buis, Samuel, 2008. “Estimating Canopy Characteristics from Remote
Sensing Observations: Review of Methods and Associated Problems.” In Advances in
Land Remote Sensing: System, Modeling, Inversion and Application, edited by Shunlin
Liang, 173-201. Dordrecht: Springer Netherlands.

Baret, F., Guyot, G., 1991. Potentials and limits of vegetation indices for LAI and APAR
assessment. Remote Sens. Environ. 35 (2), 161-173. https://doi.org/10.1016/0034-
4257(91)90009-U.

Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., Haberland, J., Kostrzewski, M.,
Waller, P., Choi, C., Riley, E., Thompson, T., 2000. Coincident detection of crop
water stress, nitrogen status and canopy density using ground-based multispectral
data. 5th International Conference on Precision Agriculture and Other Resource
Management, Bloomington, MN, USA, July 16-19.

Barnsley, M.J., Settle, J.J., Cutter, M.A., Lobb, D.R., Teston, F., 2004. The PROBA/CHRIS
mission: a low-cost smallsat for hyperspectral multiangle observations of the earth
surface and atmosphere. IEEE Trans. Geosci. Remote Sens. 42 (7), 1512-1520.
https://doi.org/10.1109/Tgrs.2004.827260.

Barreto, M.A.P., Johansen, K., Angel, Y., McCabe, M.F., 2019. Radiometric assessment of
a UAV-based push-broom hyperspectral camera. Sensors 19 (21). https://doi.org/
10.3390/519214699.

Bellis, E.S., Hashem, A.A., Causey, J.L., Runkle, B.R.K., Moreno-Garcia, B., Burns, B.W.,
Green, V.S., Burcham, T.N., Reba, M.L., Huang, X.Z., 2022. Detecting intra-field
variation in rice yield with unmanned aerial vehicle imagery and deep learning.
Front. Plant Sci. 13 https://doi.org/10.3389/fpls.2022.716506.

Berger, K., Atzberger, C., Danner, M., D'Urso, G., Mauser, W., Vuolo, F., Hank, T., 2018.
Evaluation of the PROSAIL model capabilities for future hyperspectral model
environments: A review study. Remote Sensing 10 (1). https://doi.org/10.3390/
rs10010085.

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization.

J. Mach. Learn. Res. 13, 281-305. https://doi.org/10.5555/2188385.2188395.

Bhadra, S., Sagan, V., Maimaitijiang, M., Maimaitiyiming, M., Newcomb, M.,

Shakoor, N., Mockler, T.C., 2020. Quantifying leaf chlorophyll concentration of
sorghum from hyperspectral data using derivative calculus and machine learning.
Remote Sens. (Basel) 12 (13). https://doi.org/10.3390/rs12132082.

Bhadra, S., Sagan, V., Nguyen, C., Braud, M., Eveland, A.L., Mockler, T.C., 2022.
Automatic extraction of solar and sensor imaging geometry from UAV-borne push-
broom hyperspectral camera. In: ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences V-3-2022:131-137. https://doi.org/
10.5194/isprs-annals-V-3-2022-131-2022.

Bhat, S.A., Huang, N.F., 2021. Big data and Al revolution in precision agriculture: survey
and challenges. IEEE Access 9, 110209-110222. https://doi.org/10.1109/
Access.2021.3102227.

Blackburn, G.A., 1999. Relationships between spectral reflectance and pigment
concentrations in stacks of deciduous broadleaves. Remote Sens. Environ. 70 (2),
224-237. https://doi.org/10.1016/5S0034-4257(99)00048-6.

Boggs, J.L., Tsegaye, T.D., Coleman, T.L., Reddy, K.C., Fahsi, A., 2003. Relationship
between hyperspectral reflectance, soil nitrate-nitrogen, cotton leaf chlorophyll, and
cotton yield: a step toward precision agriculture. J. Sustain. Agric. 22 (3), 5-16.
https://doi.org/10.1300/J064v22n03_03.

Borges, M.V.V., Garcia, J.D., Batista, T.S., Silva, A.N.M., Baio, F.H.R., Da Silva, C.A., de
Azevedo, G.B., Azevedo, G.T.D.S., Teodoro, L.P.R., Teodoro, P.E., 2022. High-
throughput phenotyping of two plant-size traits of eucalyptus species using neural
networks. J. For. Res. 33 (2), 591-599. https://doi.org/10.1007/s11676-021-01360-
6.

Botha, E.J., Leblon, B., Zebarth, B., Watmough, J., 2007. Non-destructive estimation of
potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted
PROSAIL model. Int. J. Appl. Earth Obs. Geoinf. 9 (4), 360-374. https://doi.org/
10.1016/j.jag.2006.11.003.

Bouman, B.A.M., 1992. Accuracy of estimating the leaf-area index from vegetation
indexes derived from crop reflectance characteristics, a simulation study. Int. J.
Remote Sens. 13 (16), 3069-3084. https://doi.org/10.1080/01431169208904103.

Breunig, F.M., Galvao, L.S., dos Santos, J.R., Gitelson, A.A., de Moura, Y.M., Teles, T.S.,
Gaida, W., 2015. Spectral anisotropy of subtropical deciduous forest using MISR and
MODIS data acquired under large seasonal variation in solar zenith angle. Int. J.
Appl. Earth Obs. Geoinf. 35, 294-304. https://doi.org/10.1016/j.jag.2014.09.017.

Brewer, K., Clulow, A., Sibanda, M., Gokool, S., Naiken, V., Mabhaudhi, T., 2022.
Predicting the chlorophyll content of maize over phenotyping as a proxy for crop
health in smallholder farming systems. Remote Sens. (Basel) 14 (3). https://doi.org/
10.3390/rs14030518.

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Jeffrey, W.u., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, 1., Amodei, D., 2020. Language models are
few-shot learners. ArXiv. https://doi.org/10.48550/ARXIV.2005.14165.


https://doi.org/10.3390/rs10071091
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0010
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0010
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0010
https://doi.org/10.1111/j.1365-2486.2007.01316.x
https://doi.org/10.1111/j.1365-2486.2007.01316.x
https://doi.org/10.3390/rs12020283
https://doi.org/10.3390/rs12020283
https://doi.org/10.1016/j.atech.2022.100067
https://doi.org/10.1016/j.rse.2021.112396
https://doi.org/10.1016/j.rse.2004.06.016
https://doi.org/10.1016/0034-4257(91)90009-U
https://doi.org/10.1016/0034-4257(91)90009-U
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0050
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0050
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0050
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0050
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0050
https://doi.org/10.1109/Tgrs.2004.827260
https://doi.org/10.3390/s19214699
https://doi.org/10.3390/s19214699
https://doi.org/10.3389/fpls.2022.716506
https://doi.org/10.3390/rs10010085
https://doi.org/10.3390/rs10010085
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.3390/rs12132082
https://doi.org/10.5194/isprs-annals-V-3-2022-131-2022
https://doi.org/10.5194/isprs-annals-V-3-2022-131-2022
https://doi.org/10.1109/Access.2021.3102227
https://doi.org/10.1109/Access.2021.3102227
https://doi.org/10.1016/S0034-4257(99)00048-6
https://doi.org/10.1300/J064v22n03_03
https://doi.org/10.1007/s11676-021-01360-6
https://doi.org/10.1007/s11676-021-01360-6
https://doi.org/10.1016/j.jag.2006.11.003
https://doi.org/10.1016/j.jag.2006.11.003
https://doi.org/10.1080/01431169208904103
https://doi.org/10.1016/j.jag.2014.09.017
https://doi.org/10.3390/rs14030518
https://doi.org/10.3390/rs14030518
https://doi.org/10.48550/ARXIV.2005.14165

S. Bhadra et al.

Bsaibes, A., Courault, D., Baret, F., Weiss, M., Olioso, A., Jacob, F., Hagolle, O.,
Marloie, O., Bertrand, N., Desfond, V., Kzemipour, F., 2009. Albedo and LAI
estimates from FORMOSAT-2 data for crop monitoring. Remote Sens. Environ. 113
(4), 716-729. https://doi.org/10.1016/j.rse.2008.11.014.

Bu, X., Peng, J., Yan, J., Tan, T., Zhang, Z., 2021. GAIA: a transfer learning system of
object detection that fits your needs. 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Buchhorn, M., Raynolds, M.K., Walker, D.A., 2016. Influence of BRDF on NDVI and
biomass estimations of Alaska Arctic tundra. Environ. Res. Lett. 11 (12) https://doi.
org/10.1088/1748-9326/11/12/125002.

Burkart, A., Aasen, H., Alonso, L., Menz, G., Bareth, G., Rascher, U., 2015. Angular
dependency of hyperspectral measurements over wheat characterized by a novel
UAV based goniometer. Remote Sens. (Basel) 7 (1), 725-746. https://doi.org/
10.3390/1rs70100725.

Burud, 1., Lange, G., Lillemo, M., Bleken, E., Grimstad, L., From, P.J., 2017. Exploring
robots and UAVs as phenotyping tools in plant breeding. IFAC-PapersOnLine 50 (1),
11479-11484. https://doi.org/10.1016/j.ifacol.2017.08.1591.

Campos-Taberner, M., Moreno-Martinez, A., Garcia-Haro, F.J., Camps-Valls, G.,
Robinson, N.P., Kattge, J., Running, S.W., 2018. Global estimation of biophysical
variables from google earth engine platform. Remote Sens. (Basel) 10 (8). https://
doi.org/10.3390/rs10081167.

Camps-Valls, G., Martino, L., Svendsen, D.H., Campos-Taberner, M., Munoz-Mari, J.,
Laparra, V., Luengo, D., Garcia-Haro, F.J., 2018. Physics-aware gaussian processes in
remote sensing. Appl. Soft Comput. 68, 69-82. https://doi.org/10.1016/j.
asoc.2018.03.021.

Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., Suomalainen, J., 2015. Estimating
plant traits of grasslands from UAV-acquired hyperspectral images: a comparison of
statistical approaches. ISPRS Int. J. Geo Inf. 4 (4), 2792-2820. https://doi.org/
10.3390/ijgi4042792.

Casa, R., Jones, H.G., 2004. Retrieval of crop canopy properties: a comparison between
model inversion from hyperspectral data and image classification. Int. J. Remote
Sens. 25 (6), 1119-1130. https://doi.org/10.1080/01431160310001595046.

Chen, J.M., Black, T.A., 1991. Measuring leaf-area index of plant canopies with branch
architecture. Agric. For. Meteorol. 57 (1-3), 1-12. https://doi.org/10.1016/0168-
1923(91)90074-Z.

Chen, J.M., Black, T.A., 1992. Defining leaf-area index for non-flat leaves. Plant Cell
Environ. 15 (4), 421-429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x.

Chen, Y.S., Lin, Z.H., Zhao, X., Wang, G., Gu, Y.F., 2014. Deep learning-based
classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7
(6), 2094-2107. https://doi.org/10.1109/Jstars.2014.2329330.

Chen, Y.S., Jiang, H.L., Li, C.Y., Jia, X.P., Ghamisi, P., 2016. Deep feature extraction and
classification of hyperspectral images based on convolutional neural networks. IEEE
Trans. Geosci. Remote Sens. 54 (10), 6232-6251. https://doi.org/10.1109/
Tgrs.2016.2584107.

Chen, M., Quinnell, R.G., Larkum, A.W.D., 2002. Chlorophyll d as the major
photopigment in acaryochloris marina. J. Porphyrins Phthalocyanines 6 (11-12),
763-773. https://doi.org/10.1142/51088424602000889.

Chu, Z., Yu, J., 2020. An end-to-end model for rice yield prediction using deep learning
fusion. Comput. Electron. Agric. 174 https://doi.org/10.1016/j.
compag.2020.105471.

Colomina, I., Molina, P., 2014. Unmanned aerial systems for photogrammetry and
remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 92, 79-97. https://
doi.org/10.1016/j.isprsjprs.2014.02.013.

Combal, B., Baret, F., Weiss, M., 2002. Improving canopy variables estimation from
remote sensing data by exploiting ancillary information. case study on sugar beet
canopies. Agronomie 22 (2), 205-215. https://doi.org/10.1051/agro:2002008.

Combal, B., Baret, F., Weiss, M., Trubuil, A., Mace, D., Pragnere, A., Myneni, R.,
Knyazikhin, Y., Wang, L., 2003. Retrieval of canopy biophysical variables from
bidirectional reflectance - using prior information to solve the ill-posed inverse
problem. Remote Sens. Environ. 84 (1), 1-15. https://doi.org/10.1016/50034-4257
(02)00035-4.

D’Agostino, R., Pearson, E.S., 1973. Tests for departure from normality. empirical results
for the distributions of b2 and \/bl. Biometrika 60 (3), 613-622. https://doi.org/
10.2307/2335012.

Dash, J., Curran, P.J., 2004. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens.
25 (23), 5403-5413. https://doi.org/10.1080/0143116042000274015.

Datt, B., 1999. Remote sensing of water content in eucalyptus leaves. Aust. J. Bot. 47 (6),
909-923. https://doi.org/10.1071/Bt98042.

Daughtry, C.S.T., Walthall, C.L., Kim, M.S., de Colstoun, E.B., McMurtrey, J.E., 2000.
Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance.
Remote Sens. Environ. 74 (2), 229-239. https://doi.org/10.1016/50034-4257(00)
00113-9.

de Sa, N.C., Baratchi, M., Hauser, L.T., van Bodegom, P., 2021. Exploring the impact of
noise on hybrid inversion of PROSAIL RTM on Sentinel-2 data. Remote Sens. (Basel)
13 (4). https://doi.org/10.3390/1s13040648.

Dericquebourg, E., Hafiane, A., Canals, R., 2022. Generative-model-based data labeling
for deep network regression: application to seed maturity estimation from UAV
multispectral images. Remote Sens. (Basel) 14 (20). https://doi.org/10.3390/
1s14205238.

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2019. BERT: pre-training of deep
bidirectional transformers for language understanding. ArXiv. https://doi.org/
10.48550/ARXIV.1810.04805.

Dewi, C., Chen, R.C., 2019. Random forest and support vector machine on features
selection for regression analysis. International Journal of Innovative Computing
Information and Control 15 (6), 2027-2037. https://doi.org/10.24507/
ijicic.15.06.2027.

20

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

Domenzain, Luis Mario, Gomez-Dans, José, Lewis, Philip, 2019. Python bindings for the
PROSAIL canopy reflectance model.

Dorigo, W.A., 2012. Improving the robustness of cotton status characterisation by
radiative transfer model inversion of multi-angular CHRIS/PROBA data. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 5 (1), 18-29. https://doi.org/10.1109/
Jstars.2011.2171181.

Du, Y., Jiang, J.B., Liu, Z.W., Pan, Y.Y., 2022. Combining a crop growth model with CNN
for underground natural gas leakage detection using hyperspectral imagery. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 15, 1846-1856. https://doi.org/10.1109/
Jstars.2022.3150089.

Du, B.J., Mao, D.H., Wang, Z.M., Qiu, Z.Q., Yan, H.Q., Feng, K.D., Zhang, Z.B., 2021.
Mapping wetland plant communities using unmanned aerial vehicle hyperspectral
imagery by comparing object/pixel-based classifications combining multiple
machine-learning algorithms. IEEE J. Selected Topics in Appl. Earth Observations
and Remote Sensing 14, 8249-8258. https://doi.org/10.1109/Jstars.2021.3100923.

Duan, S.B,, Li, Z.L., Wu, H., Tang, B.H., Ma, L.L., Zhao, E.Y., Li, C.R., 2014. Inversion of
the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields
from unmanned aerial vehicle hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 26,
12-20. https://doi.org/10.1016/j.jag.2013.05.007.

Fabiyi, S.D., Murray, P., Zabalza, J., Ren, J.C., 2021. Folded LDA: extending the linear
discriminant analysis algorithm for feature extraction and data reduction in
hyperspectral remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14,
12312-12331. https://doi.org/10.1109/Jstars.2021.3129818.

Falster, D.S., Westoby, M., 2003. Leaf size and angle vary widely across species: what
consequences for light interception? New Phytol. 158 (3), 509-525. https://doi.org/
10.1046/j.1469-8137.2003.00765.x.

Fan, X.H., Liu, C.Y., Liu, S., Xie, Y.Q., Zheng, L.L., Wang, T.C., Feng, Q.P., 2021. The
instrument design of lightweight and large field of view high-resolution
hyperspectral camera. Sensors 21 (7). https://doi.org/10.3390/521072276.

Fan, J.H., Zhou, J., Wang, B.W., de Leon, N., Kaeppler, S.M., Lima, D.C., Zhang, Z., 2022.
Estimation of maize yield and flowering time using multi-temporal UAV-based
hyperspectral data. Remote Sens. (Basel) 14 (13). https://doi.org/10.3390/
rs14133052.

Fang, H., Liang, S., 2014. “Leaf Area Index Models.” In Reference Module in Earth Systems
and Environmental Sciences. Elsevier.

Farrell, M.D., Mersereau, R.M., 2005. On the impact of PCA dimension reduction for
hyperspectral detection of difficult targets. IEEE Geosci. Remote Sens. Lett. 2 (2),
192-195. https://doi.org/10.1109/Lgrs.2005.846011.

Fei, S.P., Hassan, M.A., Xiao, Y.G., Rasheed, A., Xia, X.C., Ma, Y.T., Fu, L.P., Chen, Z.,
He, Z.H., 2022. Application of multi-layer neural network and hyperspectral
reflectance in genome-wide association study for grain yield in bread wheat. Field
Crop Res 289. https://doi.org/10.1016/j.fcr.2022.108730.

Feng, L., Wu, B.H., Chen, S.S., Zhang, C., He, Y., 2022. Application of visible/near-
infrared hyperspectral imaging with convolutional neural networks to phenotype
aboveground parts to detect cabbage Plasmodiophora brassicae (clubroot). Infrared
Phys. Technol. 121 https://doi.org/10.1016/j.infrared.2022.104040.

Foster, A.J., Kakani, V.G., Mosali, J., 2017. Estimation of bioenergy crop yield and N
status by hyperspectral canopy reflectance and partial least square regression. Precis.
Agric. 18 (2), 192-209. https://doi.org/10.1007/5s11119-016-9455-8.

Furbank, R.T., Silva-Perez, V., Evans, J.R., Condon, A.G., Estavillo, G.M., He, W.N.,
Newman, S., Poire, R., Hall, A., He, Z., 2021. Wheat physiology predictor: predicting
physiological traits in wheat from hyperspectral reflectance measurements using
deep learning. Plant Methods 17 (1). https://doi.org/10.1186/513007-021-00806-6.

Gail, P. Anderson, Berk Alexander, K. Acharya Prabhat, W. Matthew Michael, S.
Bernstein Lawrence, H. Chetwynd James, Jr., H. Dothe, M. Adler-Golden Steven, J.
Ratkowski Anthony, W. Felde Gerald, A. Gardner James, L. Hoke Michael, C.
Richtsmeier Steven, Pukall Brian, B. Mello Jason, and S. Jeong Laila. 2000.
“MODTRAN4: radiative transfer modeling for remote sensing.” Proc.SPIE.

Gao, J.Y., Zhao, L.G., Li, J., Deng, L.M,, Ni, J.G., Han, Z.Z., 2021. Aflatoxin rapid
detection based on hyperspectral with 1D-convolution neural network in the pixel
level. Food Chem. 360 https://doi.org/10.1016/j.foodchem.2021.129968.

Garriga, M., Romero-Bravo, S., Estrada, F., Escobar, A., Matus, I.A., del Pozo, A.,
Astudillo, C.A., Lobos, G.A., 2017. Assessing wheat traits by spectral reflectance: do
we really need to focus on predicted trait-values or directly identify the elite
genotypes group? Front. Plant Sci. 8 https://doi.org/10.3389/fpls.2017.00280.

Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a green channel in remote
sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58 (3),
289-298. https://doi.org/10.1016/50034-4257(96)00072-7.

Gitelson, A.A., Merzlyak, M.N., Chivkunova, O.B., 2001. Optical properties and
nondestructive estimation of anthocyanin content in plant leaves. Photochem.
Photobiol. 74 (1), 38-45. https://doi.org/10.1562/0031-8655(2001)074<0038:
Opaneo>2.0.Co;2.

Gitelson, A.A., Gritz, Y., Merzlyak, M.N., 2003. Relationships between leaf chlorophyll
content and spectral reflectance and algorithms for non-destructive chlorophyll
assessment in higher plant leaves. J. Plant Physiol. 160 (3), 271-282. https://doi.
org/10.1078/0176-1617-00887.

Gitelson, A.A., Keydan, G.P., Merzlyak, M.N., 2006. Three-band model for noninvasive
estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant
leaves. Geophys. Res. Lett. 33 (11) https://doi.org/10.1029/2006g1026457.

Godoy, J.L., Vega, J.R., Marchetti, J.L., 2014. Relationships between PCA and PLS-
regression. Chemom. Intel. Lab. Syst. 130, 182-191. https://doi.org/10.1016/j.
chemolab.2013.11.008.

Gomez, C., Lagacherie, P., Coulouma, G., 2008. Continuum removal versus PLSR method
for clay and calcium carbonate content estimation from laboratory and airborne
hyperspectral measurements. Geoderma 148 (2), 141-148. https://doi.org/
10.1016/j.geoderma.2008.09.016.


https://doi.org/10.1016/j.rse.2008.11.014
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0140
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0140
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0140
https://doi.org/10.1088/1748-9326/11/12/125002
https://doi.org/10.1088/1748-9326/11/12/125002
https://doi.org/10.3390/rs70100725
https://doi.org/10.3390/rs70100725
https://doi.org/10.1016/j.ifacol.2017.08.1591
https://doi.org/10.3390/rs10081167
https://doi.org/10.3390/rs10081167
https://doi.org/10.1016/j.asoc.2018.03.021
https://doi.org/10.1016/j.asoc.2018.03.021
https://doi.org/10.3390/ijgi4042792
https://doi.org/10.3390/ijgi4042792
https://doi.org/10.1080/01431160310001595046
https://doi.org/10.1016/0168-1923(91)90074-Z
https://doi.org/10.1016/0168-1923(91)90074-Z
https://doi.org/10.1111/j.1365-3040.1992.tb00992.x
https://doi.org/10.1109/Jstars.2014.2329330
https://doi.org/10.1109/Tgrs.2016.2584107
https://doi.org/10.1109/Tgrs.2016.2584107
https://doi.org/10.1142/S1088424602000889
https://doi.org/10.1016/j.compag.2020.105471
https://doi.org/10.1016/j.compag.2020.105471
https://doi.org/10.1016/j.isprsjprs.2014.02.013
https://doi.org/10.1016/j.isprsjprs.2014.02.013
https://doi.org/10.1051/agro:2002008
https://doi.org/10.1016/S0034-4257(02)00035-4
https://doi.org/10.1016/S0034-4257(02)00035-4
https://doi.org/10.2307/2335012
https://doi.org/10.2307/2335012
https://doi.org/10.1080/0143116042000274015
https://doi.org/10.1071/Bt98042
https://doi.org/10.1016/S0034-4257(00)00113-9
https://doi.org/10.1016/S0034-4257(00)00113-9
https://doi.org/10.3390/rs13040648
https://doi.org/10.3390/rs14205238
https://doi.org/10.3390/rs14205238
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.24507/ijicic.15.06.2027
https://doi.org/10.24507/ijicic.15.06.2027
https://doi.org/10.1109/Jstars.2011.2171181
https://doi.org/10.1109/Jstars.2011.2171181
https://doi.org/10.1109/Jstars.2022.3150089
https://doi.org/10.1109/Jstars.2022.3150089
https://doi.org/10.1109/Jstars.2021.3100923
https://doi.org/10.1016/j.jag.2013.05.007
https://doi.org/10.1109/Jstars.2021.3129818
https://doi.org/10.1046/j.1469-8137.2003.00765.x
https://doi.org/10.1046/j.1469-8137.2003.00765.x
https://doi.org/10.3390/s21072276
https://doi.org/10.3390/rs14133052
https://doi.org/10.3390/rs14133052
https://doi.org/10.1109/Lgrs.2005.846011
https://doi.org/10.1016/j.fcr.2022.108730
https://doi.org/10.1016/j.infrared.2022.104040
https://doi.org/10.1007/s11119-016-9455-8
https://doi.org/10.1186/s13007-021-00806-6
https://doi.org/10.1016/j.foodchem.2021.129968
https://doi.org/10.3389/fpls.2017.00280
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1562/0031-8655(2001)074<0038:Opaneo>2.0.Co;2
https://doi.org/10.1562/0031-8655(2001)074<0038:Opaneo>2.0.Co;2
https://doi.org/10.1078/0176-1617-00887
https://doi.org/10.1078/0176-1617-00887
https://doi.org/10.1029/2006gl026457
https://doi.org/10.1016/j.chemolab.2013.11.008
https://doi.org/10.1016/j.chemolab.2013.11.008
https://doi.org/10.1016/j.geoderma.2008.09.016
https://doi.org/10.1016/j.geoderma.2008.09.016

S. Bhadra et al.

Grant, L., Daughtry, C.S.T., Vanderbilt, V.C., 1993. Polarized and specular reflectance
variation with leaf surface-features. Physiol. Plant. 88 (1), 1-9. https://doi.org/
10.1111/§.1399-3054.1993.tb01753.x.

Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T.,
Hollstein, A., Rossner, G., Chlebek, C., Straif, C., Fischer, S., Schrader, S., Storch, T.,
Heiden, U., Mueller, A., Bachmann, M., Miihle, H., Miiller, R., Habermeyer, M.,
Ohndorf, A., Hill, J., Buddenbaum, H., Hostert, P., van der Linden, S., Leitao, P.J.,
Rabe, A., Doerffer, R., Krasemann, H., Xi, H.Y., Mauser, W., Hank, T., Locherer, M.,
Rast, M., Staenz, K., Sang, B., 2015. The EnMAP spaceborne imaging spectroscopy
mission for earth observation. Remote Sens. (Basel) 7 (7), 8830-8857. https://doi.
org/10.3390/rs70708830.

Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L., 2002.
Integrated narrow-band vegetation indices for prediction of crop chlorophyll content
for application to precision agriculture. Remote Sens. Environ. 81 (2-3), 416-426.
https://doi.org/10.1016/50034-4257(02)00018-4.

Hang, R.L., Liu, Q.S., Hong, D.F., Ghamisi, P., 2019. Cascaded recurrent neural networks
for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57 (8),
5384-5394. https://doi.org/10.1109/Tgrs.2019.2899129.

He, Z., Liu, H., Wang, Y.W., Hu, J., 2017. Generative adversarial networks-based semi-
supervised learning for hyperspectral image classification. Remote Sens. (Basel) 9
(10). https://doi.org/10.3390/rs9101042.

Hedley, J., Roelfsema, C., Phinn, S.R., 2009. Efficient radiative transfer model inversion
for remote sensing applications. Remote Sens. Environ. 113 (11), 2527-2532.
https://doi.org/10.1016/j.rse.2009.07.008.

Herrmann, 1., Karnieli, A., Bonfil, D.J., Cohen, Y., Alchanatis, V., 2010. SWIR-based
spectral indices for assessing nitrogen content in potato fields. Int. J. Remote Sens.
31 (19), 5127-5143. https://doi.org/10.1080/01431160903283892.

Hilker, T., Gitelson, A., Coops, N.C., Hall, F.G., Black, T.A., 2011. Tracking plant
physiological properties from multi-angular tower-based remote sensing. Oecologia
165 (4), 865-876. https://doi.org/10.1007/s00442-010-1901-0.

Holmgren, W.F., Hansen, C.W., Mikofski, M.A., 2018. pvlib python: a python package for
modeling solar energy systems. Ournal of Open Source Software 3 (29):3. https://
doi.org/10.21105/joss.00884.

Honkavaara, E., Rosnell, T., Oliveira, R., Tommaselli, A., 2017. Band registration of
tuneable frame format hyperspectral UAV imagers in complex scenes. ISPRS J.
Photogramm. Remote Sens. 134, 96-109. https://doi.org/10.1016/j.
isprsjprs.2017.10.014.

Hou, Q.Y., Wang, Z.L., Su, J.Y., Tan, F.J., 2019. Measurement of equivalent BRDF on the
surface of solar panel with periodic structure. Coatings 9 (3). https://doi.org/
10.3390/coatings9030193.

Houlsby, Neil, Giurgiu, Andrei, Jastrzebski, Stanislaw, Morrone, Bruna, de Laroussilhe,
Quentin, Gesmundo, Andrea, Attariyan, Mona, Gelly, Sylvain, 2019. “Parameter-
Efficient Transfer Learning for NLP.” International Conference on Machine Learning,
Long Beach, California, USA.

Huang, L.S., Ding, W.J., Liu, W.J., Zhao, J.L., Huang, W.J., Xu, C., Zhang, D.Y., Liang, D.,
2019. Identification of wheat powdery mildew using in-situ hyperspectral data and
linear regression and support vector machines. J. Plant Pathol. 101 (4), 1035-1045.
https://doi.org/10.1007/s42161-019-00334-2.

Huang, J.D., He, H.Y., Lv, R.L., Zhang, G.T., Zhou, Z.X., Wang, X.B., 2022b. Non-
destructive detection and classification of textile fibres based on hyperspectral
imaging and 1D-CNN. Anal. Chim. Acta 1224. https://doi.org/10.1016/j.
aca.2022.340238.

Huang, W.J., Niu, Z., Wang, J.H., Liu, L.Y., Zhao, C.J., Liu, Q., 2006. Identifying crop leaf
angle distribution based on two-temporal and bidirectional canopy reflectance. IEEE
Trans. Geosci. Remote Sens. 44 (12), 3601-3609. https://doi.org/10.1109/
Tgrs.2006.881755.

Huang, H., Zhang, B.W., Jing, L.W., Fu, X.H., Chen, X.J., Shi, J.Y., 2022a. Logic tensor
network with massive learned knowledge for aspect-based sentiment analysis.
Knowl.-Based Syst. 257 https://doi.org/10.1016/j.knosys.2022.109943.

Huete, A.R., Hua, G., Qi, J., Chehbouni, A., Vanleeuwen, W.J.D., 1992. Normalization of
multidirectional red and nir reflectances with the savi. Remote Sens. Environ. 41
(2-3), 143-154. https://doi.org/10.1016/0034-4257(92)90074-T.

Huete, A.R., Liu, H.Q., Batchily, K., vanLeeuwen, W., 1997. A comparison of vegetation
indices global set of TM images for EOS-MODIS. Remote Sens. Environ. 59 (3),
440-451. https://doi.org/10.1016/50034-4257(96)00112-5.

Hunt, E.R., Daughtry, C.S.T., Eitel, J.U.H., Long, D.S., 2011. Remote sensing leaf
chlorophyll content using a visible band index. Agron. J. 103 (4), 1090-1099.
https://doi.org/10.2134/agronj2010.0395.

Jacquemoud, S., Baret, F., 1990. Prospect - a model of leaf optical-properties spectra.
Remote Sens. Environ. 34 (2), 75-91. https://doi.org/10.1016,/0034-4257(90)
90100-Z.

Jakob, S., Zimmermann, R., Gloaguen, R., 2017. The need for accurate geometric and
radiometric corrections of drone-borne hyperspectral data for mineral exploration:
MEPHySToA toolbox for pre-processing drone-borne hyperspectral data. Remote
Sens. (Basel) 9 (1). https://doi.org/10.3390/rs9010088.

Jay, S., Maupas, F., Bendoula, R., Gorretta, N., 2017. Retrieving LAI, chlorophyll and
nitrogen contents in sugar beet crops from multi-angular optical remote sensing:
comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field
Crop Res 210, 33-46. https://doi.org/10.1016/j.fcr.2017.05.005.

Jayaprakash, C., Damodaran, B.B., Viswanathan, S., Soman, K.P., 2020. Randomized
independent component analysis and linear discriminant analysis dimensionality
reduction methods for hyperspectral image classification. J. Appl. Remote Sens. 14
(3) https://doi.org/10.1117/1.Jrs.14.036507.

Jiang, J.J., Ma, J.Y., Chen, C., Wang, Z.Y., Cai, Z.H., Wang, L.Z., 2018. SuperPCA: a
superpixelwise PCA approach for unsupervised feature extraction of hyperspectral

21

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

imagery. IEEE Trans. Geosci. Remote Sens. 56 (8), 4581-4593. https://doi.org/
10.1109/Tgrs.2018.2828029.

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A.,
Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping
system model. Eur. J. Agron. 18 (3-4), 235-265. https://doi.org/10.1016/S1161-
0301(02)00107-7.

Ju, C.H., Tian, Y.C., Yao, X., Cao, W.X., Zhu, Y., Hannaway, D., 2010. Estimating leaf
chlorophyll content using red edge parameters. Pedosphere 20 (5), 633-644.
https://doi.org/10.1016/51002-0160(10)60053-7.

Kamilaris, A., Prenafeta-Boldu, F.X., 2018. A review of the use of convolutional neural
networks in agriculture. J. Agric. Sci. 156 (3), 312-322. https://doi.org/10.1017/
50021859618000436.

Kamilaris, A., Prenafeta-Boldd, F.X., 2018. Deep learning in agriculture: a survey.
Comput. Electron. Agric. 147, 70-90. https://doi.org/10.1016/j.
compag.2018.02.016.

Kandylakis, Z., Falagas, A., Karakizi, C., Karantzalos, K., 2020. Water stress estimation in
vineyards from aerial SWIR and multispectral UAV data. Remote Sens. (Basel) 12
(15). https://doi.org/10.3390/rs12152499.

Kanning, M., Kuhling, I., Trautz, D., Jarmer, T., 2018. High-resolution UAV-based
hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield
prediction. Remote Sens. (Basel) 10 (12). https://doi.org/10.3390/rs10122000.

Karimi, Y., Parasher, S.0., Madani, A., Kim, S., 2008. Application of support vector
machine technology for the estimation of crop biophysical parameters using aerial
hyperspectral observations. Can. Biosyst. Eng. 50, 13-20.

Kaufman, Y.J., Tanre, D., 1992. Atmospherically resistant vegetation index (ARVI) for
EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30 (2), 261-270. https://doi.org/
10.1109/36.134076.

Kayad, A., Rodrigues, F.A., Naranjo, S., Sozzi, M., Pirotti, F., Marinello, F., Schulthess, U.,
Defourny, P., Gerard, B., Weiss, M., 2022. Radiative transfer model inversion using
high-resolution hyperspectral airborne imagery - retrieving maize LAI to access
biomass and grain yield. Field Crop Res 282. https://doi.org/10.1016/j.
fcr.2022.108449.

Kedzierski, M., Wierzbicki, D., Sekrecka, A., Fryskowska, A., Walczykowski, P.,
Siewert, J., 2019. Influence of lower atmosphere on the radiometric quality of
unmanned aerial vehicle imagery. Remote Sens. (Basel) 11 (10). https://doi.org/
10.3390/rs11101214.

Khan, Z., Rahimi-Eichi, V., Haefele, S., Garnett, T., Miklavcic, S.J., 2018. Estimation of
vegetation indices for high-throughput phenotyping of wheat using aerial imaging.
Plant Methods 14. https://doi.org/10.1186/513007-018-0287-6.

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J., 2021. 1D
convolutional neural networks and applications: a survey. Mech. Syst. Sig. Process.
151 https://doi.org/10.1016/j.ymssp.2020.107398.

Klimov, V.V, Klevanik, A.V., Shuvalov, V.A., 1977. Reduction of pheophytin in the
primary light reaction of photosystem II. FEBS Lett. 82 (2), 183-186. https://doi.
org/10.1016/0014-5793(77)80580-2.

Kobayashi, M., Wang, Z.Y., Yoza, K., Umetsu, M., Konami, H., Mimuro, M., Nozawa, T.,
1996. Molecular structures and optical properties of aggregated forms of
chlorophylls analyzed by means of magnetic circular dichroism. Spectrochim. Acta
Part a-Mol. Biomol. Spectrosc. 52 (5), 585-598. https://doi.org/10.1016/0584-8539
(95)01645-7.

Koetz, B., Baret, F., Poilve, H., Hill, J., 2005. Use of coupled canopy structure dynamic
and radiative transfer models to estimate biophysical canopy characteristics. Remote
Sens. Environ. 95 (1), 115-124. https://doi.org/10.1016/j.rse.2004.11.017.

Koh, J.C.O., Spangenberg, G., Kant, S., 2021. Automated machine learning for high-
throughput image-based plant phenotyping. Remote Sens. (Basel) 13 (5). https://
doi.org/10.3390/rs13050858.

Koh, J.C.O., Banerjee, B.P., Spangenberg, G., Kant, S., 2022. Automated hyperspectral
vegetation index derivation using a hyperparameter optimisation framework for
high-throughput plant phenotyping. New Phytol. 233 (6), 2659-2670. https://doi.
org/10.1111/nph.17947.

Kong, W.P., Huang, W.J., Zhou, X.F., Song, X.Y., Casa, R., 2016. Estimation of carotenoid
content at the canopy scale using the carotenoid triangle ratio index from in situ and
simulated hyperspectral data. J. Appl. Remote Sens. 10 https://doi.org/10.1117/1.
Jrs.10.026035.

Koppl, C.J., Malureanu, R., Dam-Hansen, C., Wang, S., Jin, H.X., Barchiesi, S., Sandi, J.M.
S., Munoz-Carpena, R., Johnson, M., Duran-Quesada, A.M., Bauer-Gottwein, P.,
McKnight, U.S., Garcia, M., 2021. Hyperspectral reflectance measurements from
UAS under intermittent clouds: correcting irradiance measurements for sensor tilt.
Remote Sens. Environ. 267 https://doi.org/10.1016/j.rse.2021.112719.

Lamb, D.W., Steyn-Ross, M., Schaare, P., Hanna, M.M., Silvester, W., Steyn-Ross, A.,
2002. Estimating leaf nitrogen concentration in ryegrass (lolium spp.) pasture using
the chlorophyll red-edge: theoretical modelling and experimental observations. Int.
J. Remote Sens. 23 (18), 3619-3648. https://doi.org/10.1080/
01431160110114529.

Lambin, E.F., 2001. Remote sensing and geographic information systems analysis. In:
Smelser, N.J., Baltes, P.B. (Eds.), International Encyclopedia of the Social &
Behavioral Sciences. Pergamon, Oxford, pp. 13150-13155.

Li, J., Cui, R,, Li, B., Li, Y., Mei, S., Du, Q., 2019a. Dual 1D-2D spatial-spectral CNN for
hyperspectral image super-resolution. IGARSS 2019-2019 IEEE International
Geoscience and Remote Sensing Symposium.

Li, X.P., Jiang, H.Z., Jiang, X.S., Shi, M.H., 2021. Identification of geographical origin of
chinese chestnuts using hyperspectral imaging with 1D-CNN algorithm. Agriculture-
Basel 11 (12). https://doi.org/10.3390/agriculture11121274.

Li, F., Miao, Y.X., Feng, G.H., Yuan, F., Yue, S.C., Gao, X.W., Liu, Y.Q., Liu, B., Ustine, S.
L., Chen, X.P., 2014. Improving estimation of summer maize nitrogen status with red


https://doi.org/10.1111/j.1399-3054.1993.tb01753.x
https://doi.org/10.1111/j.1399-3054.1993.tb01753.x
https://doi.org/10.3390/rs70708830
https://doi.org/10.3390/rs70708830
https://doi.org/10.1016/S0034-4257(02)00018-4
https://doi.org/10.1109/Tgrs.2019.2899129
https://doi.org/10.3390/rs9101042
https://doi.org/10.1016/j.rse.2009.07.008
https://doi.org/10.1080/01431160903283892
https://doi.org/10.1007/s00442-010-1901-0
https://doi.org/10.21105/joss.00884
https://doi.org/10.21105/joss.00884
https://doi.org/10.1016/j.isprsjprs.2017.10.014
https://doi.org/10.1016/j.isprsjprs.2017.10.014
https://doi.org/10.3390/coatings9030193
https://doi.org/10.3390/coatings9030193
https://doi.org/10.1007/s42161-019-00334-2
https://doi.org/10.1016/j.aca.2022.340238
https://doi.org/10.1016/j.aca.2022.340238
https://doi.org/10.1109/Tgrs.2006.881755
https://doi.org/10.1109/Tgrs.2006.881755
https://doi.org/10.1016/j.knosys.2022.109943
https://doi.org/10.1016/0034-4257(92)90074-T
https://doi.org/10.1016/S0034-4257(96)00112-5
https://doi.org/10.2134/agronj2010.0395
https://doi.org/10.1016/0034-4257(90)90100-Z
https://doi.org/10.1016/0034-4257(90)90100-Z
https://doi.org/10.3390/rs9010088
https://doi.org/10.1016/j.fcr.2017.05.005
https://doi.org/10.1117/1.Jrs.14.036507
https://doi.org/10.1109/Tgrs.2018.2828029
https://doi.org/10.1109/Tgrs.2018.2828029
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/S1002-0160(10)60053-7
https://doi.org/10.1017/S0021859618000436
https://doi.org/10.1017/S0021859618000436
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.3390/rs12152499
https://doi.org/10.3390/rs10122000
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0535
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0535
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0535
https://doi.org/10.1109/36.134076
https://doi.org/10.1109/36.134076
https://doi.org/10.1016/j.fcr.2022.108449
https://doi.org/10.1016/j.fcr.2022.108449
https://doi.org/10.3390/rs11101214
https://doi.org/10.3390/rs11101214
https://doi.org/10.1186/s13007-018-0287-6
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1016/0014-5793(77)80580-2
https://doi.org/10.1016/0014-5793(77)80580-2
https://doi.org/10.1016/0584-8539(95)01645-7
https://doi.org/10.1016/0584-8539(95)01645-7
https://doi.org/10.1016/j.rse.2004.11.017
https://doi.org/10.3390/rs13050858
https://doi.org/10.3390/rs13050858
https://doi.org/10.1111/nph.17947
https://doi.org/10.1111/nph.17947
https://doi.org/10.1117/1.Jrs.10.026035
https://doi.org/10.1117/1.Jrs.10.026035
https://doi.org/10.1016/j.rse.2021.112719
https://doi.org/10.1080/01431160110114529
https://doi.org/10.1080/01431160110114529
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0605
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0605
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0605
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0610
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0610
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0610
https://doi.org/10.3390/agriculture11121274

S. Bhadra et al.

edge-based spectral vegetation indices. Field Crop Res 157, 111-123. https://doi.
org/10.1016/j.fcr.2013.12.018.

Li, Y.J.,, Sun, Y., Jiang, J.M., Liu, J., 2019b. Spectroscopic determination of leaf
chlorophyll content and color for genetic selection on sassafras tzumu. Plant
Methods 15. https://doi.org/10.1186/513007-019-0458-0.

Li, P.H., Wang, Q., 2011. Retrieval of leaf biochemical parameters using PROSPECT
inversion: a new approach for alleviating ill-posed problems. IEEE Trans. Geosci.
Remote Sens. 49 (7), 2499-2506. https://doi.org/10.1109/Tgrs.2011.2109390.

Liang, L., Di, L.P., Zhang, L.P., Deng, M.X., Qin, Z.H., Zhao, S.H., Lin, H., 2015.
Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion
method. Remote Sens. Environ. 165, 123-134. https://doi.org/10.1016/j.
rse.2015.04.032.

Liang, L., Qin, Z.H., Zhao, S.H., Di, L.P., Zhang, C., Deng, M.X., Lin, H., Zhang, L.P.,
Wang, L.J., Liu, Z.X., 2016. Estimating crop chlorophyll content with hyperspectral
vegetation indices and the hybrid inversion method. Int. J. Remote Sens. 37 (13),
2923-2949. https://doi.org/10.1080/01431161.2016.1186850.

Liu, X., Wu, J., Chen, S., 2020. “Efficient Hyperparameters optimization Through Model-
based Reinforcement Learning and Meta-Learning.” 2020 IEEE 22nd International
Conference on High Performance Computing and Communications; IEEE 18th
International Conference on Smart City; IEEE 6th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), 14-16 Dec. 2020.

Liu, F., Xiao, Z., 2020. Disease spots identification of potato leaves in hyperspectral based
on locally adaptive 1D-CNN. 2020 IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA).

Lo, S.C.B., Chan, H.P., Lin, J.S., Li, H., Freedman, M.T., Mun, S.K., 1995. Artificial
convolution neural network for medical image pattern recognition. Neural Netw. 8
(7-8), 1201-1214. https://doi.org/10.1016,/0893-6080(95)00061-5.

Loizzo, R., Guarini, R., Longo, F., Scopa, T., Formaro, R., Facchinetti, C., Varacalli, G.,
2018. Prisma: the italian hyperspectral Mission. IGARSS 2018-2018 IEEE
International Geoscience and Remote Sensing Symposium.

Longbotham, Nathan, Pacifici, Fabio, Malitz, Seth, Baugh, William, Camps-Valls, Gustau,
2015. “Measuring the Spatial and Spectral Performance of WorldView-3.” Fourier
Transform Spectroscopy and Hyperspectral Imaging and Sounding of the
Environment, Lake Arrowhead, California, 2015/03/01.

Lopez-Calderon, M.J., Estrada-Avalos, J., Rodriguez-Moreno, V.M., Mauricio-
Ruvalcaba, J.E., Martinez-Sifuentes, A.R., Delgado-Ramirez, G., Miguel-Valle, E.,
2020. Estimation of Total nitrogen content in forage maize (Zea mays L.) using
spectral indices: analysis by random forest. Agriculture-Basel 10 (10). https://doi.
org/10.3390/agriculture10100451.

Lu, Y., 2016. Identification and roles of photosystem II assembly, stability, and repair
factors in arabidopsis. Front. Plant Sci. 7 https://doi.org/10.3389/dpls.2016.00168.

Lunagaria, M.M., Patel, H.R., 2019. Evaluation of PROSAIL inversion for retrieval of
chlorophyll, leaf dry matter, leaf angle, and leaf area index of wheat using
spectrodirectional measurements. Int. J. Remote Sens. 40 (21), 8125-8145. https://
doi.org/10.1080/01431161.2018.1524608.

Ma, B.L., Dwyer, L.M., Costa, C., Cober, E.R., Morrison, M.J., 2001. Early prediction of
soybean yield from canopy reflectance measurements. Agron. J. 93 (6), 1227-1234.
https://doi.org/10.2134/agronj2001.1227.

Ma, Y., Zhang, Y.S., Mei, X.G., Dai, X.B., Ma, J.Y., 2019. Multifeature-based
discriminative label consistent K-SVD for hyperspectral image classification. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 12 (12), 4995-5008. https://doi.org/
10.1109/Jstars.2019.2949621.

Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., Fritschi, F.B., 2020.
Soybean yield prediction from UAV using multimodal data fusion and deep learning.
Remote Sens. Environ. 237 https://doi.org/10.1016/j.rse.2019.111599.

Mansuri, S.M., Chakraborty, S.K., Mahanti, N.K., Pandiselvam, R., 2022. Effect of germ
orientation during Vis-NIR hyperspectral imaging for the detection of fungal
contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling. Food
Control 139. https://doi.org/10.1016/j.foodcont.2022.109077.

Mantilla-Perez, M.B., Fernandez, M.G.S., 2017. Differential manipulation of leaf angle
throughout the canopy: current status and prospects. J. Exp. Bot. 68 (21-22),
5699-5717. https://doi.org/10.1093/jxb/erx378.

Meacham-Hensold, K., Montes, C.M., Wu, J., Guan, K.Y., Fu, P., Ainsworth, E.A.,
Pederson, T., Moore, C.E., Brown, K.L., Raines, C., Bernacchi, C.J., 2019. High-
throughput field phenotyping using hyperspectral reflectance and partial least
squares regression (PLSR) reveals genetic modifications to photosynthetic capacity.
Remote Sens. Environ. 231 https://doi.org/10.1016/j.rse.2019.04.029.

Meng, X., Xie, D.H., Wang, Y., Jia, Y.F., Yan, G.J., 2014. Study on multi-angular
polarized Spectrum characteristics of leaf based on some indoor experimental data.
Spectrosc. Spectr. Anal. 34 (3), 619-624. https://doi.org/10.3964/].issn.1000-0593
(2014)03-0619-06.

Menon, V., Du, Q., Fowler, J.E., 2016. Fast SVD with random hadamard projection for
hyperspectral dimensionality reduction. IEEE Geosci. Remote Sens. Lett. 13 (9),
1275-1279. https://doi.org/10.1109/Lgrs.2016.2581172.

Michel, A.N., 2003. “Recurrent neural networks: overview and perspectives.”
Proceedings of the 2003 International Symposium on Circuits and Systems, 2003.
ISCAS °03., 25-28 May 2003.

Mishra, S., Mishra, D.R., 2012. Normalized difference chlorophyll index: a novel model
for remote estimation of chlorophyll-a concentration in turbid productive waters.
Remote Sens. Environ. 117, 394-406. https://doi.org/10.1016/j.rse.2011.10.016.

Moazzam, S.I., Khan, U.S., Tiwana, M.L, Igbal, J., Qureshi, W.S., Shah, S.I., 2019.

A review of application of deep learning for weeds and crops classification in
agriculture. 2019 International Conference on Robotics and Automation in Industry
(ICRAD).

22

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

Moghimi, A., Yang, C., Anderson, J.A., 2020. Aerial hyperspectral imagery and deep
neural networks for high-throughput yield phenotyping in wheat. Comput. Electron.
Agric. 172 https://doi.org/10.1016/j.compag.2020.105299.

Mosqueira-Rey, E., Hernandez-Pereira, E., Alonso-Rios, D., Bobes-Bascaran, J.,
Fernandez-Leal, A., 2022. Human-in-the-loop machine learning: a state of the art.
Artif. Intell. Rev. https://doi.org/10.1007/510462-022-10246-w.

Mou, L.C., Ghamisi, P., Zhu, X.X., 2017. Deep recurrent neural networks for
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55 (7),
3639-3655. https://doi.org/10.1109/Tgrs.2016.2636241.

Nevavuori, P., Narra, N., Lipping, T., 2019. Crop yield prediction with deep
convolutional neural networks. Comput. Electron. Agric. 163 https://doi.org/
10.1016/j.compag.2019.104859.

Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J.K., Grover, A., 2023. “ClimaX: A
foundation model for weather and climate.” International Conference on Machine
Learning, Honolulu, HI, USA.

Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S.,
Kwasniewski, M.T., 2021. Early detection of plant viral disease using hyperspectral
imaging and deep learning. Sensors 21 (3). https://doi.org/10.3390/521030742.

Nichol, C.J., Huemmrich, K.F., Andrew Black, T., Jarvis, P.G., Walthall, C.L., Grace, J.,
Hall, F.G., 2000. Remote sensing of photosynthetic-light-use efficiency of boreal
forest. Agric. For. Meteorol. 101 (2), 131-142. https://doi.org/10.1016/50168-1923
(99)00167-7.

Pak, M., Kim, S., 2017. A review of deep learning in image recognition. 2017 4th
International Conference on Computer Applications and Information Processing
Technology (CAIPT).

Pan, S.J., Yang, Q.A., 2010. A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22 (10), 1345-1359. https://doi.org/10.1109/Tkde.2009.191.

Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.A., 2011. Domain adaptation via transfer
component analysis. IEEE Trans. Neural Netw. 22 (2), 199-210. https://doi.org/
10.1109/Tnn.2010.2091281.

Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A., 2020. Scalable recurrent neural network
for hyperspectral image classification. J. Supercomput. 76 (11), 8866-8882. https://
doi.org/10.1007/s11227-020-03187-0.

Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C.,
Athanasiadis, I.N., 2021. Machine learning for large-scale crop yield forecasting.
Agr. Syst. 187 https://doi.org/10.1016/j.agsy.2020.103016.

Peng, J.X., Manevski, K., Korup, K., Larsen, R., Andersen, M.N., 2021. Random forest
regression results in accurate assessment of potato nitrogen status based on
multispectral data from different platforms and the critical concentration approach.
Field Crop Res 268. https://doi.org/10.1016/j.fcr.2021.108158.

Pinaya, L., Hugo, W., Vieira, S., Garcia-Dias, R., Mechelli, A., 2020. Convolutional neural
networks. In: Mechelli, A., Vieira, S. (Eds.), Machine Learning. Academic Press,
pp. 173-191.

Poblete, T., Ortega-Farias, S., Moreno, M.A., Bardeen, M., 2017. Artificial neural network
to predict vine water status spatial variability using multispectral information
obtained from an unmanned aerial vehicle (UAV). Sensors 17 (11). https://doi.org/
10.3390/517112488.

Pragnere, A., Baret, F., Weiss, M., Myneni, R., Knyazikhin, Y., Wang, L.B., 1999.
Comparison of three radiative transfer model inversion techniques to estimate
canopy biophysical variables from remote sensing data. IEEE 1999 International
Geoscience and Remote Sensing Symposium.

Press, W.H., Teukolsky, S.A., 1990. Savitzky-golay smoothing filters. Comput. Phys. 4 (6)
https://doi.org/10.1063/1.4822961.

Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil
adjusted vegetation index. Remote Sens. Environ. 48 (2), 119-126. https://doi.org/
10.1016/0034-4257(94)90134-1.

Quattoni, A., Collins, M., Darrell, T., 2008. Transfer learning for image classification with
sparse prototype representations. 2008 IEEE Conference on Computer Vision and
Pattern Recognition.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y.Q., Li, W.,
Liu, P.J., 2020. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21.

Raya-Sereno, M.D., Alonso-Ayuso, M., Pancorbo, J.L., Gabriel, J.L., Camino, C., Zarco-
Tejada, P.J., Quemada, M., 2022. Residual effect and N fertilizer rate detection by
high-resolution VNIR-SWIR hyperspectral imagery and solar-induced chlorophyll
fluorescence in wheat. IEEE Trans. Geosci. Remote Sens. 60 https://doi.org/
10.1109/Tgrs.2021.3099624.

Rehman, T.U., Ma, D.D., Wang, L.J., Zhang, L.B., Jin, J., 2020. Predictive spectral
analysis using an end-to-end deep model from hyperspectral images for high-
throughput plant phenotyping. Comput. Electron. Agric. 177 https://doi.org/
10.1016/j.compag.2020.105713.

Richardson, A.D., Duigan, S.P., Berlyn, G.P., 2002. An evaluation of noninvasive methods
to estimate foliar chlorophyll content. New Phytol. 153 (1), 185-194. https://doi.
org/10.1046/j.0028-646X.2001.00289.x.

Riese, F.M., Keller, S., 2019. Soil texture classification with 1D convolutional neural
networks based on hyperspectral data. ISPRS Ann. Photogramm. Remote Sens.
Spatial Inf. Sci. IV-2/W5:615-621 https://doi.org/10.5194/isprs-annals-1V-2-W5-
615-2019.

Roosjen, P.P.J., Suomalainen, J.M., Bartholomeus, H.M., Clevers, J.G.P.W., 2016.
Hyperspectral reflectance anisotropy measurements using a pushbroom
spectrometer on an unmanned aerial vehicle-results for barley, winter wheat, and
potato. Remote Sens. (Basel) 8 (11). https://doi.org/10.3390/rs8110909.

Roosjen, P.P.J., Suomalainen, J.M., Bartholomeus, H.M., Kooistra, L., Clevers, J.G.P.W.,
2017. Mapping reflectance anisotropy of a potato canopy using aerial images
acquired with an unmanned aerial vehicle. Remote Sens. (Basel) 9 (5). https://doi.
0rg/10.3390/rs9050417.


https://doi.org/10.1016/j.fcr.2013.12.018
https://doi.org/10.1016/j.fcr.2013.12.018
https://doi.org/10.1186/s13007-019-0458-0
https://doi.org/10.1109/Tgrs.2011.2109390
https://doi.org/10.1016/j.rse.2015.04.032
https://doi.org/10.1016/j.rse.2015.04.032
https://doi.org/10.1080/01431161.2016.1186850
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0650
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0650
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0650
https://doi.org/10.1016/0893-6080(95)00061-5
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0660
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0660
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0660
https://doi.org/10.3390/agriculture10100451
https://doi.org/10.3390/agriculture10100451
https://doi.org/10.3389/dpls.2016.00168
https://doi.org/10.1080/01431161.2018.1524608
https://doi.org/10.1080/01431161.2018.1524608
https://doi.org/10.2134/agronj2001.1227
https://doi.org/10.1109/Jstars.2019.2949621
https://doi.org/10.1109/Jstars.2019.2949621
https://doi.org/10.1016/j.rse.2019.111599
https://doi.org/10.1016/j.foodcont.2022.109077
https://doi.org/10.1093/jxb/erx378
https://doi.org/10.1016/j.rse.2019.04.029
https://doi.org/10.3964/j.issn.1000-0593(2014)03-0619-06
https://doi.org/10.3964/j.issn.1000-0593(2014)03-0619-06
https://doi.org/10.1109/Lgrs.2016.2581172
https://doi.org/10.1016/j.rse.2011.10.016
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0735
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0735
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0735
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0735
https://doi.org/10.1016/j.compag.2020.105299
https://doi.org/10.1007/s10462-022-10246-w
https://doi.org/10.1109/Tgrs.2016.2636241
https://doi.org/10.1016/j.compag.2019.104859
https://doi.org/10.1016/j.compag.2019.104859
https://doi.org/10.3390/s21030742
https://doi.org/10.1016/S0168-1923(99)00167-7
https://doi.org/10.1016/S0168-1923(99)00167-7
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0775
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0775
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0775
https://doi.org/10.1109/Tkde.2009.191
https://doi.org/10.1109/Tnn.2010.2091281
https://doi.org/10.1109/Tnn.2010.2091281
https://doi.org/10.1007/s11227-020-03187-0
https://doi.org/10.1007/s11227-020-03187-0
https://doi.org/10.1016/j.agsy.2020.103016
https://doi.org/10.1016/j.fcr.2021.108158
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0805
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0805
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0805
https://doi.org/10.3390/s17112488
https://doi.org/10.3390/s17112488
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0815
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0815
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0815
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0815
https://doi.org/10.1063/1.4822961
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1016/0034-4257(94)90134-1
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0830
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0830
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0830
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0835
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0835
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0835
https://doi.org/10.1109/Tgrs.2021.3099624
https://doi.org/10.1109/Tgrs.2021.3099624
https://doi.org/10.1016/j.compag.2020.105713
https://doi.org/10.1016/j.compag.2020.105713
https://doi.org/10.1046/j.0028-646X.2001.00289.x
https://doi.org/10.1046/j.0028-646X.2001.00289.x
https://doi.org/10.5194/isprs-annals-IV-2-W5-615-2019
https://doi.org/10.5194/isprs-annals-IV-2-W5-615-2019
https://doi.org/10.3390/rs8110909
https://doi.org/10.3390/rs9050417
https://doi.org/10.3390/rs9050417

S. Bhadra et al.

Roosjen, P.P.J., Brede, B., Suomalainen, J.M., Bartholomeus, H.M., Kooistra, L.,
Clevers, J.G.P.W., 2018. Improved estimation of leaf area index and leaf chlorophyll
content of a potato crop using multi-angle spectral data - potential of unmanned
aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 66, 14-26. https://doi.org/
10.1016/j.jag.2017.10.012.

Rouse, J.W., Haas, R.H., Schell, J.A., D.W. SDeering, 1974. Monitoring vegetation
systems in the Great Plains with ERTS. 3rd Earth Resources Technology Satellite
Symposium.

RuB, Georg, Brenning, Alexander, 2010. “Data Mining in Precision Agriculture:
Management of Spatial Information.” Computational Intelligence for Knowledge-
Based Systems Design, Berlin, Heidelberg, 2010//.

Sandmeier, S.R., 2000. Acquisition of bidirectional reflectance factor data with field
goniometers. Remote Sens. Environ. 73 (3), 257-269. https://doi.org/10.1016/
S0034-4257(00)00102-4.

Sandmeier, S., Muller, C., Hosgood, B., Andreoli, G., 1998. Sensitivity analysis and
quality assessment of laboratory BRDF data. Remote Sens. Environ. 64 (2), 176-191.
https://doi.org/10.1016/5S0034-4257(97)00178-8.

Sekrecka, A., Wierzbicki, D., Kedzierski, M., 2020. Influence of the sun position and
platform orientation on the quality of imagery obtained from unmanned aerial
vehicles. Remote Sens. (Basel) 12 (6). https://doi.org/10.3390/rs12061040.

Selvaraj, M.G., Valderrama, M., Guzman, D., Valencia, M., Ruiz, H., Acharjee, A., 2020.
Machine learning for high-throughput field phenotyping and image processing
provides insight into the association of above and below-ground traits in cassava
(manihot esculentaCrantz). Plant Methods 16 (1). https://doi.org/10.1186/s13007-
020-00625-1.

Shaha, M., Pawar, M., 2018. Transfer learning for image classification. 2018 Second
International Conference on Electronics, Communication and Aerospace Technology
(ICECA), 29-31 March.

Shen, L.Z., Gao, M.F., Yan, J.W., Li, Z.L., Leng, P., Yang, Q., Duan, S.B., 2020.
Hyperspectral estimation of soil organic matter content using different spectral
preprocessing techniques and PLSR method. Remote Sens. (Basel) 12 (7). https://
doi.org/10.3390/1rs12071206.

Shu, M.Y., Shen, M.Y., Zuo, J.Y., Yin, P.F., Wang, M., Xie, Z.W., Tang, J.H., Wang, R.L.,
Li, B.G., Yang, X.H., Ma, Y.T., 2021. The application of UAV-based hyperspectral
imaging to estimate crop traits in maize inbred lines. Artn 9890745 Plant Phenomics
2021. https://doi.org/10.34133/2021,/9890745.

Siegmann, B., Jarmer, T., 2015. Comparison of different regression models and
validation techniques for the assessment of wheat leaf area index from hyperspectral
data. Int. J. Remote Sens. 36 (18), 4519-4534. https://doi.org/10.1080/
01431161.2015.1084438.

Simonyan, Karen, Zisserman, Andrew, 2015. “Very Deep Convolutional Networks for
Large-Scale Image Recognition.” International Conference on Learning
Representations (ICLR), San Diego.

Singhal, G., Bansod, B., Mathew, L., Goswami, J., Choudhury, B.U., Raju, P.L.N., 2019.
Chlorophyll estimation using multi-spectral unmanned aerial system based on
machine learning techniques. Remote Sens. Appl.-Soc. Environ. 15 https://doi.org/
10.1016/j.rsase.2019.100235.

Song, X., Xu, D.Y., He, L., Feng, W., Wang, Y.H., Wang, Z.J., Coburn, C.A., Guo, T.C.,
2016. Using multi-angle hyperspectral data to monitor canopy leaf nitrogen content
of wheat. Precis. Agric. 17 (6), 721-736. https://doi.org/10.1007/5s11119-016-
9445-x.

Su, W., Zhang, M.Z., Bian, D.H., Liu, Z., Huang, J.X., Wang, W., Wu, J.Y., Guo, H., 2019.
Phenotyping of corn plants using unmanned aerial vehicle (UAV) images. Remote
Sens. (Basel) 11 (17). https://doi.org/10.3390/rs11172021.

Sun, B., Wang, C.F., Yang, C.H., Xu, B.D., Zhou, G.S., Li, X.Y., Xie, J., Xu, S.J., Liu, B.,
Xie, T.J., Kuai, J., Zhang, J., 2021. Retrieval of rapeseed leaf area index using the
PROSAIL model with canopy coverage derived from UAV images as a correction
parameter. Int. J. Appl. Earth Obs. Geoinf. 102 https://doi.org/10.1016/j.
jag.2021.102373.

Sun, J., Wang, L.C., Shi, S., Li, Z.H., Yang, J., Gong, W., Wang, S.Q., Tagesson, T., 2022.
Leaf pigment retrieval using the PROSAIL model: influence of uncertainty in prior
canopy-structure information. Crop Journal 10 (5), 1251-1263. https://doi.org/
10.1016/j.¢j.2022.04.003.

Svendsen, D.H., Martino, L., Campos-Taberner, M., Garcia-Haro, F.J., Camps-Valls, G.,
2018. Joint gaussian processes for biophysical parameter retrieval. IEEE Trans.
Geosci. Remote Sens. 56 (3), 1718-1727. https://doi.org/10.1109/
Tgrs.2017.2767205.

Talukdar, J., Gupta, S., Rajpura, P.S., Hegde, R.S., 2018. “Transfer Learning for Object
Detection using State-of-the-Art Deep Neural Networks.” 2018 5th International
Conference on Signal Processing and Integrated Networks (SPIN), 22-23 Feb. 2018.

Tao, J., Fang, X., 2020. Toward multi-label sentiment analysis: a transfer learning based
approach. J. Big Data 7 (1). https://doi.org/10.1186/540537-019-0278-0.

Thompson, C.N., Guo, W.X., Sharma, B., Ritchie, G.L., 2019. Using normalized difference
red edge index to assess maturity in cotton. Crop Sci. 59 (5), 2167-2177. https://doi.
org/10.2135/cropsci2019.04.0227.

Thoppilan, Romal, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha,
Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae
Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng
Chen, Adam Roberts, Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching
Chang, Igor Krivokon, Will Rusch, Marc Pickett, Pranesh Srinivasan, Laichee Man,
Kathleen Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos
Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John,
Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya
Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-

23

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc Le. 2022. “LaMDA: Language
Models for Dialog Applications.” ArXiv. doi: https://doi.org/10.48550/
ARXIV.2201.08239.

Thorp, K.R., Gore, M.A., Andrade-Sanchez, P., Carmo-Silva, A.E., Welch, S.M., White, J.
W., French, A.N., 2015. Proximal hyperspectral sensing and data analysis
approaches for field-based plant phenomics. Comput. Electron. Agric. 118, 225-236.
https://doi.org/10.1016/j.compag.2015.09.005.

Tripathi, R., Sahoo, R.N., Sehgal, V.K., Tomar, R.K., Chakraborty, D., Nagarajan, S.,
2012. Inversion of PROSAIL model for retrieval of plant biophysical parameters.

J. Indian Soc. Remote Sens. 40 (1), 19-28. https://doi.org/10.1007/s12524-011-
0129-8.

Tucker, C.J., Elgin, J.H., McMurtrey, J.E., Fan, C.J., 1979. Monitoring corn and soybean
crop development with hand-held radiometer spectral data. Remote Sens. Environ. 8
(3), 237-248. https://doi.org/10.1016/0034-4257(79)90004-X.

Tuia, D., Verrelst, J., Alonso, L., Perez-Cruz, F., Camps-Valls, G., 2011. Multioutput
support vector regression for remote sensing biophysical parameter estimation. IEEE
Geosci. Remote Sens. Lett. 8 (4), 804-808. https://doi.org/10.1109/
Lgrs.2011.2109934.

Verhoef, W., 1984. Light scattering by leaf layers with application to canopy reflectance
modeling: the SAIL model. Remote Sens. Environ. 16 (2), 125-141. https://doi.org/
10.1016/0034-4257(84)90057-9.

Vina, A., Gitelson, A.A., Nguy-Robertson, A.L., Peng, Y., 2011. Comparison of different
vegetation indices for the remote assessment of green leaf area index of crops.
Remote Sens. Environ. 115 (12), 3468-3478. https://doi.org/10.1016/j.
rse.2011.08.010.

Vogelmann, J.E., Rock, B.N., Moss, D.M., 1993. Red edge spectral measurements from
sugar maple leaves. Int. J. Remote Sens. 14 (8), 1563-1575. https://doi.org/
10.1080/01431169308953986.

Vollmann, J., Walter, H., Sato, T., Schweiger, P., 2011. Digital image analysis and
chlorophyll metering for phenotyping the effects of nodulation in soybean. Comput.
Electron. Agric. 75 (1), 190-195. https://doi.org/10.1016/j.compag.2010.11.003.

Vrban¢i¢, G., Podgorelec, V., 2020. Transfer learning with adaptive fine-tuning. IEEE
Access 8, 196197-196211. https://doi.org/10.1109/ACCESS.2020.3034343.

Wan, L., Zhang, J.F., Dong, X.Y., Du, X.Y., Zhu, J.P., Sun, D.W., Liu, Y.F., He, Y., Cen, H.
Y., 2021. Unmanned aerial vehicle-based field phenotyping of crop biomass using
growth traits retrieved from PROSAIL model. Comput. Electron. Agric. 187 https://
doi.org/10.1016/j.compag.2021.106304.

Wang, L., Chen, S.S., Peng, Z.P., Huang, J.C.A., Wang, C.Y., Jiang, H., Zheng, Q., Li, D.,
2021. Phenology effects on physically based estimation of Paddy Rice canopy traits
from UAV hyperspectral imagery. Remote Sens. (Basel) 13 (9). https://doi.org/
10.3390/rs13091792.

Wang, W., Cheng, Y.K., Ren, Y., Zhang, Z.H., Geng, H.W., 2022a. Prediction of
chlorophyll content in multi-temporal winter wheat based on multispectral and
machine learning. Front. Plant Sci. 13 https://doi.org/10.3389/fpls.2022.896408.

Wang, S., Di Tommaso, S., Deines, J.M., Lobell, D.B., 2020. Mapping twenty years of corn
and soybean across the US Midwest using the landsat archive. Sci. Data 7 (1).
https://doi.org/10.1038/541597-020-00646-4.

Wang, L. Z., R. Gao, C. C. Li, J. Wang, Y. Liu, J. Y. Hu, B. Li, H. B. Qiao, H. K. Feng, and J.
B. Yue. 2023. “Mapping Soybean Maturity and Biochemical Traits Using UAV-Based
Hyperspectral Images.” Remote Sensing 15 (19). doi: ARTN 4807 10.3390/
rs15194807.

Wang, Z.H., Zhao, Z., Yin, C.L., 2022b. Fine crop classification based on UAV
hyperspectral images and random Forest. ISPRS Int. J. Geo Inf. 11 (4) https://doi.
org/10.3390/ijgi11040252.

Weiss, M., Baret, F., Myneni, R.B., Pragnere, A., Knyazikhin, Y., 2000. Investigation of a
model inversion technique to estimate canopy biophysical variables from spectral
and directional reflectance data. Agronomie 20 (1), 3-22. https://doi.org/10.1051/
agro:2000105.

Wu, X.J., Xiao, L.W., Sun, Y.X., Zhang, J.H., Ma, T.L., He, L., 2022. A survey of human-in-
the-loop for machine learning. Future Generation Computer Systems-the
International Journal of Escience 135, 364-381. https://doi.org/10.1016/j.
future.2022.05.014.

Xiang, H.T., Tian, L., 2011. Method for automatic georeferencing aerial remote sensing
(RS) images from an unmanned aerial vehicle (UAV) platform. Biosyst. Eng. 108 (2),
104-113. https://doi.org/10.1016/j.biosystemseng.2010.11.003.

Xie, C.Q., Yang, C., 2020. A review on plant high-throughput phenotyping traits using
UAV-based sensors. Comput. Electron. Agric. 178 https://doi.org/10.1016/j.
compag.2020.105731.

Yang, S.Q., Hu, L., Wu, H.B., Ren, H.Z., Qiao, H.B., Li, P.J., Fan, W.J., 2021. Integration
of crop growth model and random forest for winter wheat yield estimation from UAV
hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14,
6253-6269. https://doi.org/10.1109/Jstars.2021.3089203.

Yang, H.B., Hu, Y.H., Zheng, Z.Z., Qiao, Y.C., Zhang, K.L., Guo, T.F., Chen, J., 2022.
Estimation of potato chlorophyll content from UAV multispectral images with
stacking ensemble algorithm. Agronomy-Basel 12 (10). https://doi.org/10.3390/
agronomy12102318.

Yang, G.J., Zhao, C.J., Liu, Q., Huang, W.J., Wang, J.H., 2011. Inversion of a radiative
transfer model for estimating forest LAI from multisource and multiangular optical
remote sensing data. IEEE Trans. Geosci. Remote Sens. 49 (3), 988-1000. https://
doi.org/10.1109/Tgrs.2010.2071416.

Yin, S.Y., Zhou, K., Cao, L., Shen, X., 2022. Estimating the horizontal and vertical
distributions of pigments in canopies of ginkgo plantation based on UAV-borne
LiDAR, hyperspectral data by coupling PROSAIL model. Remote Sens. (Basel) 14 (3).
https://doi.org/10.3390/rs14030715.

Yu, L.H., Shang, J.L., Cheng, Z.Q., Gao, Z.B., Wang, Z.X., Tian, L., Wang, D.T., Che, T.,
Jin, R., Liu, J.G., Dong, T.F., Qu, Y.H., 2020. Assessment of cornfield LAI retrieved


https://doi.org/10.1016/j.jag.2017.10.012
https://doi.org/10.1016/j.jag.2017.10.012
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0875
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0875
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0875
https://doi.org/10.1016/S0034-4257(00)00102-4
https://doi.org/10.1016/S0034-4257(00)00102-4
https://doi.org/10.1016/S0034-4257(97)00178-8
https://doi.org/10.3390/rs12061040
https://doi.org/10.1186/s13007-020-00625-1
https://doi.org/10.1186/s13007-020-00625-1
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0905
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0905
http://refhub.elsevier.com/S0924-2716(24)00065-0/h0905
https://doi.org/10.3390/rs12071206
https://doi.org/10.3390/rs12071206
https://doi.org/10.34133/2021/9890745
https://doi.org/10.1080/01431161.2015.1084438
https://doi.org/10.1080/01431161.2015.1084438
https://doi.org/10.1016/j.rsase.2019.100235
https://doi.org/10.1016/j.rsase.2019.100235
https://doi.org/10.1007/s11119-016-9445-x
https://doi.org/10.1007/s11119-016-9445-x
https://doi.org/10.3390/rs11172021
https://doi.org/10.1016/j.jag.2021.102373
https://doi.org/10.1016/j.jag.2021.102373
https://doi.org/10.1016/j.cj.2022.04.003
https://doi.org/10.1016/j.cj.2022.04.003
https://doi.org/10.1109/Tgrs.2017.2767205
https://doi.org/10.1109/Tgrs.2017.2767205
https://doi.org/10.1186/s40537-019-0278-0
https://doi.org/10.2135/cropsci2019.04.0227
https://doi.org/10.2135/cropsci2019.04.0227
https://doi.org/10.1016/j.compag.2015.09.005
https://doi.org/10.1007/s12524-011-0129-8
https://doi.org/10.1007/s12524-011-0129-8
https://doi.org/10.1016/0034-4257(79)90004-X
https://doi.org/10.1109/Lgrs.2011.2109934
https://doi.org/10.1109/Lgrs.2011.2109934
https://doi.org/10.1016/0034-4257(84)90057-9
https://doi.org/10.1016/0034-4257(84)90057-9
https://doi.org/10.1016/j.rse.2011.08.010
https://doi.org/10.1016/j.rse.2011.08.010
https://doi.org/10.1080/01431169308953986
https://doi.org/10.1080/01431169308953986
https://doi.org/10.1016/j.compag.2010.11.003
https://doi.org/10.1109/ACCESS.2020.3034343
https://doi.org/10.1016/j.compag.2021.106304
https://doi.org/10.1016/j.compag.2021.106304
https://doi.org/10.3390/rs13091792
https://doi.org/10.3390/rs13091792
https://doi.org/10.3389/fpls.2022.896408
https://doi.org/10.1038/s41597-020-00646-4
https://doi.org/10.3390/ijgi11040252
https://doi.org/10.3390/ijgi11040252
https://doi.org/10.1051/agro:2000105
https://doi.org/10.1051/agro:2000105
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.1016/j.biosystemseng.2010.11.003
https://doi.org/10.1016/j.compag.2020.105731
https://doi.org/10.1016/j.compag.2020.105731
https://doi.org/10.1109/Jstars.2021.3089203
https://doi.org/10.3390/agronomy12102318
https://doi.org/10.3390/agronomy12102318
https://doi.org/10.1109/Tgrs.2010.2071416
https://doi.org/10.1109/Tgrs.2010.2071416
https://doi.org/10.3390/rs14030715

S. Bhadra et al.

from multi-source satellite data using continuous field LAI measurements based on a
wireless sensor network. Remote Sens. (Basel) 12 (20). https://doi.org/10.3390/
rs12203304.

Zarco-Tejada, P.J., Miller, J.R., Noland, T.L., Mohammed, G.H., Sampson, P.H., 2001.
Scaling-up and model inversion methods with narrowband optical indices for
chlorophyll content estimation in closed forest canopies with hyperspectral data.
IEEE Trans. Geosci. Remote Sens. 39 (7), 1491-1507. https://doi.org/10.1109/
36.934080.

Zhang, X.Y., Zhao, J.M., Yang, G.J., Liu, J.G., Cao, J.Q., Li, C.Y., Zhao, X.Q., Gai, J.Y.,
2019. “Establishment of Plot-Yield Prediction Models in Soybean Breeding Programs
Using UAV-Based Hyperspectral Remote Sensing.” Remote Sensing 11 (23). doi:
ARTN 2752 10.3390/rs11232752.

Zhang, X., Han, L.X., Dong, Y.Y., Shi, Y., Huang, W.J., Han, L.H., Gonzalez-Moreno, P.,
Ma, H.Q., Ye, H.C., Sobeih, T., 2019a. A deep learning-based approach for
automated yellow rust disease detection from high-resolution hyperspectral UAV
images. Remote Sens. (Basel) 11 (13). https://doi.org/10.3390/rs11131554.

Zhang, Y., Hui, J., Qin, Q.M., Sun, Y.H., Zhang, T.Y., Sun, H., Li, M.Z., 2021. Transfer-
learning-based approach for leaf chlorophyll content estimation of winter wheat

24

ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 1-24

from hyperspectral data. Remote Sens. Environ. 267 https://doi.org/10.1016/j.
rse.2021.112724.

Zhang, H.K., Li, Y., Zhang, Y.Z., Shen, Q., 2017. Spectral-spatial classification of
hyperspectral imagery using a dual-channel convolutional neural network. Remote
Sens. Lett. 8 (5), 438-447. https://doi.org/10.1080/2150704x.2017.1280200.

Zhao, W.Z., Du, S.H., 2016. Spectral-spatial feature extraction for hyperspectral image
classification: a dimension reduction and deep learning approach. IEEE Trans.
Geosci. Remote Sens. 54 (8), 4544-4554. https://doi.org/10.1109/
Tgrs.2016.2543748.

Zhou, X., Sun, J., Mao, H.P., Wu, X.H., Zhang, X.D., Yang, N., 2018. Visualization
research of moisture content in leaf lettuce leaves based on WT-PLSR and
hyperspectral imaging technology. J. Food Process Eng 41 (2). https://doi.org/
10.1111/jfpe.12647.

Zhuang, F.Z., Qi, Z.Y., Duan, K.Y., Xi, D.B., Zhu, Y.C., Zhu, H.S., Xiong, H., He, Q., 2021.
A comprehensive survey on transfer learning. Proc. IEEE 109 (1), 43-76. https://doi.
org/10.1109/Jproc.2020.3004555.


https://doi.org/10.3390/rs12203304
https://doi.org/10.3390/rs12203304
https://doi.org/10.1109/36.934080
https://doi.org/10.1109/36.934080
https://doi.org/10.3390/rs11131554
https://doi.org/10.1016/j.rse.2021.112724
https://doi.org/10.1016/j.rse.2021.112724
https://doi.org/10.1080/2150704x.2017.1280200
https://doi.org/10.1109/Tgrs.2016.2543748
https://doi.org/10.1109/Tgrs.2016.2543748
https://doi.org/10.1111/jfpe.12647
https://doi.org/10.1111/jfpe.12647
https://doi.org/10.1109/Jproc.2020.3004555
https://doi.org/10.1109/Jproc.2020.3004555

	PROSAIL-Net: A transfer learning-based dual stream neural network to estimate leaf chlorophyll and leaf angle of crops from ...
	1 Background
	2 Experimental setup
	2.1 Study area
	2.2 Field design

	3 Methods
	3.1 Data collection
	3.1.1 UAV data collection
	3.1.2 Ground truth data collection

	3.2 PROSAIL-Net schematics
	3.2.1 PROSAIL simulation
	3.2.2 Transfer learning

	3.3 Data preprocessing
	3.3.1 Hyperspectral cube processing
	3.3.2 Solar-sensor angle calculation
	3.3.3 Plot-level data extraction

	3.4 Dual stream deep neural network
	3.4.1 Solar-sensor angle branch
	3.4.2 Spectral branch
	3.4.2.1 Multi-layer perceptron
	3.4.2.2 Long short-term memory
	3.4.2.3 Gated recurrent unit
	3.4.2.4 Convolutional neural network


	3.5 Statistical machine learning algorithms
	3.6 Model training and evaluation
	3.6.1 Training statistical machine learning algorithms
	3.6.2 Training DSNNs
	3.6.3 Model evaluation


	4 Results
	4.1 Descriptive statistics of target variables
	4.2 Sensitivity analysis of reflectance
	4.3 PROSAIL-Net performance on simulation data
	4.4 Performance of models on actual data

	5 Discussion
	5.1 Comparison between PROSAIL and UAV spectra
	5.2 Effectiveness of deep transfer learning
	5.3 Influence of multi-angular observations
	5.4 Limitations
	5.5 Future studies

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


