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A B S T R A C T

Extensive mortality of susceptible spruce can be caused by spruce beetles at epidemic population levels,
as in the ongoing outbreak in Southcentral Alaska. Although information on outbreak extent and severity
underpins forest management and research, the data products available in Alaska have substantial gaps. Widely
available high-resolution satellite imagery are a promising data source for detecting beetle kill because it
is possible, though challenging, to identify individual trees. However, the applicability of automated deep-
learning approaches for regional-scale mapping has not been evaluated. Here, we assess a deep convolutional
network for mapping dead spruce in high-resolution (∼2m) satellite imagery of Southcentral Alaska. The
network identified dead spruce pixels across stand characteristics, achieving an average accuracy of 95%. To
upscale to the stand scale, we mitigated overestimation of dead tree pixels at elevated severity by calibration.
Stand-scale areal severity, the fraction of dead spruce pixels within a stand, was mapped with an RMSE of 0.02
at 90m scale. The estimated severity exceeded 0.05 in fewer than 4% of the landscape, and approximately 90%
of dead trees pixels were found in low-severity stands. Severity was weakly associated with stand-scale Landsat
reflectance changes, a clear relation between SWIR reflectance change and severity only emerging above 0.1
severity. In conclusion, high-resolution satellite imagery are suited to automated mapping of beetle-associated
kill at tree and stand scale across the severity spectrum. Such data products support forest and fire management
and further understanding of the dynamics and consequences of beetle outbreaks.
1. Introduction

The spruce beetle (SB; Dendroctonus rufipennis) is the tree-killing
insect that inflicts the greatest damage in Alaskan forests (Werner et al.,
2006). The most recent, ongoing outbreak in Southcentral Alaska has
affected ∼2 million acres since 2016 (Fettig et al., 2022). It had spread
orth to Cantwell and the surrounding Alaska Range by 2020 (FS-R10-
HP, 2021).
Regional mapping of infestation extent and severity is important

or understanding and responding to outbreaks (Fettig et al., 2022).
xisting maps have substantial gaps because operational monitoring
n Alaska relies on survey flights, ground observations and manual
nterpretation of high-resolution imagery (FS-R10-FHP, 2021). Conse-
uently, we lack baseline data for answering simple questions such as
here and in what forest stands the majority of dead spruce are found.

∗ Corresponding author at: Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA.
E-mail address: szwieback@alaska.edu (S. Zwieback).

Gap-free maps could elucidate the controls, drivers and consequences of
the outbreak and inform mitigation (e.g., sanitation harvest) and timber
resource and fire management strategies (Senf et al., 2015).

A major knowledge gap is how to automatically map bark beetle
infestation of low to moderate severity. Bark beetle tree kill has been
mapped with moderate-resolution imagery such as Landsat outside
Alaska (Kennedy et al., 2012; Hart and Veblen, 2015; Senf et al.,
2015; Hais et al., 2016), but with poorer accuracy in low-severity
stands (Meddens et al., 2013; Rodman et al., 2021; Ye et al., 2021).
Conversely, very-high-resolution (<50 cm) drone imagery can resolve
individual dead trees, facilitating their identification through manual
image interpretation or deep convolutional neural networks across the
severity spectrum (Safonova et al., 2019; Minařík et al., 2021; Kapil
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et al., 2022). In high-resolution (∼2m) satellite imagery, identifying
ndividual trees is possible but more challenging (White et al., 2005;
oops et al., 2006; Immitzer and Atzberger, 2014; Brandt et al., 2020),
ut these data enable wide coverage and also automation through
eural networks.
How accurately can convolutional networks identify dead spruce

rees following a beetle outbreak from ∼2m satellite imagery?
onvolutional-network-based recognition of individual trees in ∼2m
esolution imagery is well established (Li et al., 2016; Freudenberg
t al., 2019; Mubin et al., 2019), in particular in sparsely vegetated
nvironments such as the Sahel (Flood et al., 2019; Brandt et al., 2020;
Reiner et al., 2023). Identifying specific species or infested trees is more
challenging, in particular in densely vegetated environments where
partially overlapping tree crowns cannot be fully resolved in ∼2m
imagery (Yao et al., 2021; Lassalle et al., 2022). Kislov et al. (2021)
achieved a promising performance in mapping beetle-killed conifers
in predominantly dense stands, emphasizing the network’s ability to
distinguish dead trees from spectrally similar objects such as boulders.
However, the dependence of the accuracy on the infestation severity in
pure and mixed stands remains unknown.

Here, we map dead spruce across the severity spectrum in South-
central Alaska from high-resolution satellite images. We train and test
a convolutional neural network to identify dead spruce pixels and
upscale the results to stand-scale areal severity. As moderate-resolution
satellite images could shed light on this and previous outbreaks of vari-
able severity, we quantify pre- to post-outbreak changes in stand-scale
reflectance. Our specific objectives are to:

1. evaluate the performance of convolutional network for identify-
ing dead spruce pixels in high-resolution satellite imagery

2. determine the distribution of stand-scale areal severity derived
from the tree-scale classification

3. assess the association of areal severity with changes in stand-
scale Landsat reflectance

2. Background

The spruce beetle is found in all forested regions in Alaska. Extended
periods of low population levels can be interrupted by outbreaks, char-
acterized by high beetle populations that can overcome and kill healthy
trees (Berg et al., 2006; Fettig et al., 2022). In Alaska, large outbreaks
have almost exclusively been recorded in Southcentral (SC) Alaska,
south of the Alaska Range (Holsten and Werner, 1990). The ongoing
outbreak started in SC Alaska in around 2016, moving north toward
the Alaska Range (FS-R10-FHP, 2021). As of 2023, it approached the
Alaskan Interior, where outbreaks have historically been smaller in size
and number, with the exception of a ∼200,000-acre outbreak in the
1980s (Holsten and Werner, 1990).

During Alaskan outbreaks, SB preferentially attack and kill large,
mature white spruce (Picea glauca) or Lutz spruce (P. × lutzii). However,
Sitka spruce (P. sitchensis), smaller white spruce and black spruce (P.
mariana) are also attacked (Berg et al., 2006). SB larvae and adults
consume the phloem, potentially girdling the tree and inducing carbon
starvation (Werner et al., 2006). Successful colonization is conditional
on SB and its symbiotic fungi’s subjugation of the host’s defense,
the effectiveness of which varies with such factors as tree age and
drought (Doak, 2004; Ott et al., 2021). The expansion of the cur-
ent outbreak toward the Alaskan Interior raises questions about host
ree defense and SB winter survival in a climate previously thought
nconducive to large outbreaks (Holsten and Werner, 1990).
The controls on infestation severity include stand composition, tree

efenses and SB population numbers. Dense, almost pure stands of
arge, slowly-growing hosts are most heavily affected in terms of killed
rees per area and, to a lesser extent, individual tree mortality (Doak,
004). Large trees in dense stands are thought to be more heavily
ttacked and less resistant to infestation (Holsten and Werner, 1990;
413
erner et al., 2006), but younger trees and trees in mixed stands
re also affected, particularly in large outbreaks. Tree defenses are
nfluenced by abiotic factors such as drought or wind damage and tree
actors like bark thickness and phloem chemistry (Reynolds and Hol-
ten, 1996; Werner et al., 2006). Stand composition and host resistance
mpact SB population dynamics, as do meteorological conditions and SB
redators and parasites (Berg et al., 2006).
Spruce beetle outbreaks modify stand composition, ecosystem ser-

ices and land surface processes. The death of large spruce promotes
rowth of the surviving trees (Sherriff et al., 2011; Campbell et al.,
019). Changes to the understory vegetation are varied, as Matsuoka
t al. (2001) reported increased abundance of shrubs in the Copper
iver Basin, whereas grasses increased on the Kenai Peninsula (Holsten
t al., 1995). Dense grass, dead trees and associated litter can impact
ildfire risk and behavior (Schulz, 1995; Hicke et al., 2012). Falling
nags, changes in habitat, decreasing value of timber resources, and
he aesthetic deterioration of the landscape are additional concerns for
takeholders and the public (Matsuoka et al., 2001; Berg et al., 2006).
nswering open questions about post-outbreak changes in water and
arbon cycling and impacts on soil temperatures also requires regional
emote sensing products on outbreak severity (Brown et al., 2010;
feifer et al., 2011; Pugh and Small, 2012; Reed et al., 2018).

. Materials and methods

.1. Study area and period

Our study area is located in the Susitna Lowlands (Wahrhaftig,
965), its east and northwest margins straddling the Talkeetna Moun-
ains and the Alaska Range, respectively (Fig. 1a). The elevation varies
rom less than 200m in the central part to more than 1500m in
he northwest (Fig. 1b). We restricted most quantitative analyses to
he TBL region between Talkeetna and Byers Lake, constrained by
mage availability and clouds. The TBL is dominated by poorly drained
owlands in the center and areas of moderate relief at the margins.
The Subarctic climate features cold and long winters (Shulski and
endler, 2007), with mean temperatures averaging −14 ◦C in January
n Talkeetna. For comparison, average January temperatures on the
ook Inlet coast (Anchorage) are −8 ◦C, while Fairbanks in the Alaskan
nterior north of the Alaska Range is colder at −22◦C (Alaska Climate
esearch Center, 2023). In Talkeetna, the mean July temperature is
6 ◦C. Average rainfall totals from June through September of 350 mm
re intermediate between maritime Anchorage and continental Fair-
anks. The region is in the isolated permafrost zone, with greater
ermafrost prevalence in and north of the Alaska Range (Jorgenson
t al., 2008).
Spruce-dominated forests are rare in the study area, in contrast to
ixed forests, wetlands, and – at higher elevations – scrub, meadows
nd sparsely vegetated terrain. Terrain, substrate and drainage condi-
ions exert the strongest apparent controls on vegetation cover (Battan,
982), as wildfires have historically been limited in frequency and
ize. Forest stands dominated by white spruce are rare and small in
he TBL region, preferentially occurring in floodplains and at higher
levations in the Northwest where conifer fraction exceed 0.4 (Fig. 1c;
rom Macander et al., 2022). The lowlands predominant in the TBL area
ere classified as Southern Alaska Spruce-Birch-Herb (SBH) Forests
nd Southern Alaska Sphagnum Bogs and Herbaceous Fens (wetlands)
y Jorgenson and Meidlinger (2015). SBH forests have conifer fractions
f 10%–30% according to the Macander et al. (2022) product shown in
Fig. 1c, dominated by beetle-preferred white spruce. Conversely, tree
and conifer cover is sparse in wetlands and largely restricted to black
spruce in moderately drained positions such as the transitions to SBH
forests (Jorgenson and Meidlinger, 2015).

The region has been heavily affected by the SB outbreak that started
in the mid-2010s (Fettig et al., 2022). Aerial Detection and Survey
(ADS) flights by the USDA Forest Service, Forest Health Protection
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Fig. 1. The study area is centered on the Susitna Lowlands in SC Alaska, a mosaic of mixed forest and wetlands, appearing in green and brown in the 2013–2015 Landsat −8
composite (a), respectively. Aerial Detection and Survey flightlines from 2015–2019 are shown in blue. High-resolution image extent is shown in (b), along with the perimeter of
the Talkeetna to Byers Lake (TBL) area. The conifer fraction in (c) from Macander et al. (2022) includes black and white spruce. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
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nd its partners between (2015–2019 flightlines shown in Fig. 1a)
nd ground observations showed the oubreak reached the TBL area
ithin the first two years, with substantial tree mortality being noted
n 2018 (FS-R10-FHP, 2018). By 2021, exhaustion of large white spruce
osts had diverted activity to smaller white spruce and also black
pruce (FS-R10-FHP, 2021). Meanwhile, the outbreak has continued to
ove north into the Alaska Range, reaching Cantwell in approximately
020.

.2. O1: Tree-scale dead spruce mapping

The dead spruce we sought to identify were defoliated spruce
rees, as these can be recognized on high-resolution imagery. After
lethal SB attack, the needles fade and are ultimately shed within
wo to three years (Werner et al., 2006). We recognize ambiguity in
this definition, as death and defoliation do not coincide and partial
defoliation can occur. Furthermore, attribution to SB requires external
information (Wulder et al., 2009).

Dead spruce pixels were automatically identified using a deep neu-
al network. In such a semantic segmentation task, the network takes as
nput a high-resolution satellite image and produces as output a pseudo-
robability that a given pixel covers a dead spruce tree. To train and
est the neural network, we manually delineated dead trees.

.2.1. High-resolution imagery
We had three Maxar Worldview-2 images at our disposal (Fig. 1b).

wo post-outbreak images from 2021-08-02 (1403 km2) and 2018-07-
7 (976 km2) were complemented by one pre-outbreak image from
013-07-14 (1930 km2). Each image consisted of a panchromatic and
multispectral image with a posting of 0.5 and 2.0m, respectively.
e used seven multispectral bands: blue (427 nm), green (546 nm),
ellow (608 nm), red (659 nm), red edge (724 nm), near infrared-1
831 nm) and near-infrared-2 (908 nm). We omitted the coastal band
ue to strong atmospheric influences.
We used pansharpening to obtain a seven-band multispectral im-

ge with a spatial resolution of ∼1.5m at a posting of 0.5m. The
ram–Schmidt pansharpening (Aiazzi et al., 2007) took as input the
anchromatic and the coarser multispectral image and replaced in each
ultispectral band that part that could be linearly explained by the
414

anchromatic band with the sharper panchromatic band.
.2.2. Training and test data
We designated 111 training areas in the pre-infestation and post-

nfestation image from 2013-07-14 and 2021-08-02, respectively. Each
raining area was 512m× 512m in size, encompassing 10242 pixels.
he areas were selected with the goal of covering a spectrum of land
over types (including areas without trees) and stand severity.
To evaluate the performance on independent data, we designated

28 test areas in the two training images (but at different locations)
nd in an independent image from 2018-07-16. The 2018 image was
aken near the peak of the outbreak, predating the peak in mortality.
he test areas were 90 × 90 m, the smaller size facilitating assess-
ent of the stand-scale areal fraction estimates for objective two.
he independent image enabled us to assess the transferability of the
rained network to different conditions (e.g., earlier stage of infestation;
ifferent insolation and atmospheric conditions) in the same area.
Manual delineation of dead spruce trees was based on spectral,

patial and contextual clues (Coops et al., 2006; Hart and Veblen,
015). In the visible to near-infrared spectrum, dead spruce in our
tudy area are characterized by greater red relative to near infrared
eflectance when compared to healthy white spruce (see Appendix).
e predominantly relied on near-infrared–red–green composites like
ig. 2, due to the distinct teal appearance of dead spruce. Further clues
of salience included: round to triangular shape; characteristic scale of
∼1–8m; triangular shadow (where free standing); in an environment
where trees can grow (e.g., excluding rivers). While expert interpre-
tation of high-resolution imagery is a standard method for assessing
bark beetle damage (Coops et al., 2006; Senf et al., 2017; FS-R10-FHP,
2021), it is inherently subjective and contingent on image quality and
timing (Kislov et al., 2021).

We digitized dead trees in two steps designed to ensure consis-
tency. First, the operator (SZ, JW or MM) delineated all dead spruce
in the area by drawing polygons, annotating challenging instances.
These were then discussed with another person. Second, SZ reviewed
and edited the area after >one week. Our goal was for each delin-
eated polygon to comprise an individual tree crown, but two or more
closely spaced individuals may be contained in a single polygon where
the image resolution precluded their separation. Challenging instances
mainly arose in mixed forests such as Fig. 2, where partial occlusion
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Fig. 2. Dead spruce trees have a teal appearance in false-color composites (NIR-R-G) of
orldview-2 images from Maxar. A post-infestation image (a), with manually delineated
ead spruce shown in (b). No dead spruce were found in the pre-infestation image (c).
For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

y broadleaf trees impedes reliable identification. We did not delin-
ate ambiguous cases of small size, predominantly in poorly drained
reas where black spruce are common. The ambiguity was due to a
lightly elevated visible reflectance, potentially indicating early or non-
ethal infestation. The digitization yielded 9194 and 3148 dead-spruce
olygons in the training and test areas, respectively.
The manually drawn polygons were rasterized for training the

etwork. The output raster, aligned with the input raster, stored the
seudo-probability of the pixel containing dead spruce. To account
or uncertainty in location of the polygons, we spatially smoothed the
aster with a Gaussian filter with 𝜎 = 0.5m. To account for uncertainty
n class assignment, we mixed the pseudo-probability with a uniform
istribution (‘‘label smoothing’’) with an admixture weight of 𝛼 = 10−3.
This pseudo-probability raster was the target that the network was
trained to replicate.

3.2.3. Training by transfer learning
The deep convolutional network for semantic segmentation is de-

signed to incorporate complex spatial, spectral and contextual patterns
such as those we relied on for manual delineation (LeCun and Bengio,
1998). We used the DeepLabV3 convolutional neural network archi-
tecture with a pre-trained Resnet50 backbone (Chen et al., 2017), as
vailable through Pytorch. The input multichannel image is fed to the
ncoder, comprising the backbone and an atrous spatial pyramid pool-
ng component for extracting multiscale information. Subsequently, the
ecoder produces the classification output. To account for the required
haracteristics of the input and output, we modified the encoder and
ecoder, respectively. The encoder’s first layer was enlarged from three
o seven bands, matching the imagery. We initialized its weights by
opying those of the original layer (scaled by 0.7) (Pan et al., 2019) and
disturbing them with zero-mean uncorrelated Gaussian noise, keeping
the variance constant. The last layer of the decoder was replaced by
a fully connected layer that yielded an output image with two bands
(0: no dead spruce, 1: dead spruce), a softmax operation yielding the
pseudo-probability 𝑝 of dead spruce occurrence.

We trained the network by adjusting the parameters so as to min-
imize the misfit between the network’s prediction and the manually
derived labels from the training set. The initial parameter values were
taken from a network that had been pre-trained for detecting objects
such as bicycles on photographs from the COCO dataset (Lin et al.,
014). Our transfer learning (Pires de Lima and Marfurt, 2020) lever-
ages the ability of the pre-trained network to extract salient visual
patterns but guides it to recognize dead spruce trees in satellite images.

Training was achieved by minimizing a weighted cross entropy loss
with respect to the augmented training samples (Jadon, 2020). The
weight of the dead spruce class 1 was set to 20 times that of class 0
to account for class imbalance. To minimize the loss, we employed the
Adam optimizer with a learning rate of 10−5, batch size of eight, and
500 epochs. The data set was augmented (Shorten and Khoshgoftaar,
2019) by random cropping to 512 × 512 pixels (discarding three
quarters of the input training image), flipping and changes in brightness
415

and contrast for each input channel. t
3.2.4. Tree-scale evaluation
To quantify the classification performance, we compared the

pseudo-probability 𝑝 from the convolutional network with the in-
dependent, manually derived test data across pixels. From a binary
classification result based on 𝑝 > 0.5, we computed the confusion matrix
with respect to the test data by counting the pixels corresponding to
true positives (TP; pixel contains a dead spruce and was classified as
such), true negatives (TN), false negatives (FN) and false positives (FP)
across all test areas. We computed three tree-scale (i.e., 0.5m m pixels)
metrics; first, the overall accuracy

accuracy = TP + TN
TP + TN + FP + FN

. (1)

Second, the false positive rate,

FPR = FP
FP + TN

, (2)

measures the fraction of pixels without dead spruce that were incor-
rectly classified as containing dead spruce. Third, the true positive rate,

TPR = TP
TP + FN

, (3)

measures what fraction of pixels containing dead spruce were recog-
nized as such by the convolutional network.

We computed these three metrics separately for (i) the same images
as were used for training (2013, 2021) and (ii) for the independent
image (2018).

3.3. O2: Stand-scale severity from tree-scale classification

3.3.1. Stand-scale severity
We upscaled the tree-scale binary classification to gridded areal

severity estimates at the stand scale, focusing on three stand scales 𝑠
between 30 and 250m. In absence of reliable forest stand data prod-
ucts, we report the stand-scale results on grids with uniform sampling
distance 𝑠.

Stand-scale areal severity (Hart and Veblen, 2015), 𝑓 , was estimated
from the network-derived tree-scale pseudo-probability through

𝑓 = 1
|𝑠|

|

|

|

{

𝑚 ∈ 𝑠 ∣ 𝑝𝑚 ≥ 0.5
}

|

|

|

, (4)

where |⋅| denotes set cardinality. The set 𝑠 consists of all the 0.5m
pixels within a stand-scale pixel of size 𝑠×𝑠, and the pseudo-probability
of the 0.5m-pixel 𝑚 is denoted by 𝑝𝑚.

The definition of areal severity differs from other common intensity
metrics. The unitless 𝑓 refers to the crown area of dead trees (estimated
at a scale determined by the high-resolution image) within a given area,
similar to the mortality area within a grid cell computed by Meddens
et al. (2013). As the denominator in Eq. (4) is the total area, 𝑓 needs
o be distinguished from metrics that normalize by the treed area, the
umber of suitable host trees or the number of trees. For instance, the
DS intensity classification the operator assigns is based on trees with
anopy fading (as opposed to needle loss) per treed area (Jason Moan,
ersonal communication), rendering direct comparison difficult.
We obtained calibrated severity estimates 𝑓 c from the raw severity

stimate 𝑓 to compensate bias in 𝑓 at elevated severity. The calibration
urve 𝑓 c(𝑓 ) was established at 90m and subsequently also applied at
0 and 250m. Specifically, we modeled logit(𝑓 ), the logarithm of the
dds of 𝑓 , as

ogit(𝑓 c) = 𝛽0 + 𝛽1 logit(𝑓 ) + 𝛽3 logit(𝑓 )3 . (5)

e estimated 𝛽⋅ by minimizing the least-squares misfit with respect
o 𝑓 , the severity from the manually delineated polygons in the test
reas in the training images. The constraints 𝛽1 ≥ 0 and 𝛽3 ≥ 0 were
on-binding at the optimum.
We evaluated the 𝑓 c severity estimates at 90m using the root mean

quare error (RMSE) and 𝑅2 with respect to the test data for (i) the
raining images and (ii) the independent image.
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3.3.2. Distribution of severity across scales
We quantified the distribution of areal severity across scales 𝑠 ∈

{30, 90, 250m} from the 2021 post-infestation image in three ways.
First, we derived spatial maps. Second, we computed cumulative his-
tograms of 𝑓 c over 𝑠, the set of all stands of scale 𝑠 in the TBL region.
hird, we evaluated the cumulative areal mortality in dependence of
he areal severity 𝑓 through

𝑠(𝑓 ) =
1

∑

𝑛∈𝑠 𝑓
c
𝑛

∑

𝑛∈𝑠

𝑓 c
𝑛
[

𝑓 c
𝑛 ≤ 𝑓

]

, (6)

where the Iverson bracket [𝑞] evaluates to one when 𝑞 is true and to
zero otherwise. If half the dead-spruce pixels are in stands with areal
severity of no more than 10%, then 𝑠(0.1) = 0.5.

3.4. O3: Spectral changes in stand-scale reflectance

3.4.1. Stand-scale spectral changes from landsat
We contrasted pre- to post-infestation Landsat spectral changes at

the stand scale (30, 90, and 250 m). We opted for a simple differencing
approach because of the paucity (∼2/yr) of suitable Landsat images
in this cloudy region. Increasing image availability favors time series
approaches that account for changes on subseasonal to decadal time
scales (Senf et al., 2015; Hais et al., 2016; Ye et al., 2021).

We mapped the difference 𝛥 in shortwave infrared (SWIR) re-
lectance and a normalized difference index (NDI). These two quantities
re proven indicators of beetle-killed trees, but including additional
bservables can enhance detection and attribution performance (Cohen
t al., 2018). Increased SWIR reflectance is commonly used for iden-
ifying vegetation mortality (Senf et al., 2017; Zhu et al., 2020), and
eetle-killed spruce show a pronounced increase in reflectance above
.5 μ m in our study area (see Appendix). We also used a normalized
ndex that compares the SWIR with the near infrared (NIR) reflectance,

DI = SWIR − NIR
SWIR + NIR

= −NBR, (7)

exploiting the opposite direction of change in the NIR and SWIR upon
tree death. It is the negative of the normalized burn ratio (NBR), his-
torically the most popular indicator for bark beetle mapping (Kennedy
et al., 2012; Senf et al., 2015).

We computed the temporal difference in the SWIR reflectance and
DI mean from Landsat by subtracting the post-outbreak (2019–2021;
ay of year 175–227) mean from the pre-outbreak (2014–2016) mean.
he standard error was computed assuming uncorrelated errors with
onstant variance. For Landsat, we processed Collection 2 Level 2
mages from Landsat 8 and 5 with total cloud cover of less than 15%,
etaining those NIR and SWIR2 surface reflectance measurements that
et the pixel-level cloud Quality Assessment (QA) based on bits 1–5. In
ddition to the native 30m posting, we also evaluated the differences
t 90m and 250m scale.

.4.2. Association with areal severity
Kernel density estimation was used to determine the stand-scale

patial association between the spectral changes and areal severity
nferred from the convolutional neural network. We computed the
ernel density for (i) those pixels with more than 10% conifer fraction
ccording to Macander et al. (2022) and (ii) all pixels in the TBL area.

. Results

.1. O1: Tree-scale dead spruce mapping

.1.1. Classification results
Fig. 3 shows tree-scale classification results of eight test areas

panning a range of stand characteristics and infestation severity.
The network recognized dense white spruce across a range of areal
416

everity (a–d). In the low-density stands in (a–b), all dead spruce were
recognized. In (b), two spruce not included in the manual delineation
due to insufficient spectral contrast were identified by the network. The
network also identified dead spruce in stands with greater density and
severity (c–d).

The network correctly assigned low 𝑝 to healthy white spruce (e),
black spruce (f) and wetlands (f).

Three weaknesses are apparent in Fig. 3. First, the inflated size
of dead spruce in the classification results, most pronounced in the
high-severity stand (d). Second, in dense mixed forests dominated by
deciduous broadleaf trees (g), the network missed dead spruce partially
occluded by other trees. Third, panel (h) shows a rare example of a
non-tree object that was assigned 𝑝 ≳ 0.5.

4.1.2. Performance assessment
The accuracy across all test areas was 0.95. Fig. 4a shows that the

network performance was almost identical for the images used during
training (2021: late in outbreak; 2013: pre-outbreak) and for the 2018
image earlier in the outbreak. The accuracy decreased with the areal
severity 𝑓 determined from the manually delineated polygons.

The false positive rate FPR increased with severity 𝑓 , exceeding
0.2 for elevated-severity stands (Fig. 4b). In the examples from Fig. 3
imaged in 2021, the false positives corresponded to the inflated size of
mapped dead trees.

The true positive rate TPR was on the order of 90%, with best
performance for high-severity stands. TPR was lower for stands with
low and moderate severity. In the mixed forest stand of Fig. 3g imaged
in 2021, the TPR was diminished because the network assigned lower
𝑝 to partially occluded dead spruce.

4.2. O2: Stand-scale severity and its distribution

4.2.1. Calibration and assessment
Calibration was required for upscaling tree-scale classification re-

sults to 90m stand-scale areal severity. The uncalibrated severity esti-
mates 𝑓 overestimated the severity 𝑓 from manual delineation in the
test areas. Fig. 5a shows that 𝑓 over test areas in the same images
as used for training (2013, 2021) was accurate for low 𝑓 ≲ 0.03 but
overestimated 𝑓 by more than a factor of 2 𝑓 ≳ 0.1. We corrected
for this by applying the calibration curve to obtain 𝑓 c from 𝑓 . The
same curve (from the 2013 and 2021 test areas) also reduced the
overestimation in the 2018 image (Fig. 5b), reducing 𝑓 ≈ 0.2 to 𝑓 c ≈ 0.1
for 𝑓 ≈ 0.1.

The calibrated severity estimate 𝑓 c achieved root-mean-square er-
rors (RMSE) of better than 0.02 (Fig. 5c). The performance was worse
at elevated severity, with RMSEs of up to 0.03.

4.2.2. Distribution of areal severity
Areal severity 𝑓 c at the 90 and 250m stand scale was below 0.1

in most of the TBL area in 2021 (Fig. 6a–b). Landscape fragmenta-
tion was associated with a narrower 𝑓 c range at 250m. Mixed-forest
severity of 0.03 to 0.10 contrasts with negligible severity in wetlands,
treeless floodplains and above the timberline (Fig. 6c). Stands with
elevated severity 𝑓 c ≳ 0.10 occurred at higher elevations toward the
northwestern corner and also in mature floodplains.

A heterogeneous subregion shown in Fig. 6d–g contains patches
with elevated severity, including a dense, almost pure stand of white
spruce with 𝑓 c ≳ 0.2 highlighted Fig. 6g. The subregion illustrates
the patchy nature of 𝑓 c in mixed forests with 0.02 ≲ 𝑓 c ≲ 0.10 and
consistently low values on tree-less terrain such as floodplains (Fig. 6e).

Moderate to large areal severity locations were rare, as the cumu-
lative histogram in Fig. 7a shows 97% of the area had severity below
0.05 at 𝑠 = 90m stand scale. At 𝑠 = 30m, 70% had negligible severity
𝑓 c < 0.01 and 6% had at least moderate severity 𝑓 c > 0.05. At a scale
of 250m, the distribution was more narrow.

The vast majority of dead spruce trees were identified in low-
severity stands (Fig. 7b). At 90 and 250m stand scales, more than 85%
of the tree-scale (0.5m) pixels inferred to contain dead spruce were in
stands with low severity 𝑓 c ≤ 0.05. The percentage dropped to 63 at

̂c
30m, while 96% were in areas with 𝑓 ≤ 0.10.
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Fig. 3. The top row shows tree-scale pseudo-probabilities of dead spruce presence at 0.5m posting, estimated by the network from 2021 (a–d, f–h) and 2013 (e) Worldview-2
images (NIR-R-G composite in bottom row). The middle row shows the probability derived from manually delineated dead spruce.
Fig. 4. Tree-scale performance metrics from comparison of network predictions with manually derived polygons over test areas. Each row shows the aggregate over a severity
interval.
Fig. 5. Raw network-estimated areal severity 𝑓 versus areal severity derived from the manually delineated polygons within the test areas in (a) the 2013 and 2021 image, (b)
the 2008 image. The curve fitted to the data in (a) converts the raw estimate 𝑓 to the calibrated areal severity 𝑓 c. (c) RMSE of the 90m stand-scale severity estimates 𝑓 c relative
o severity from manually delineated polygons, otherwise same as Fig. 4.
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.3. O3: Spectral changes in stand-scale reflectance

Pre- to post-outbreak spectral changes are apparent in high-severity
reas. At 30m scale, the stands identified by the network to have
igh severity in Fig. 6d increased in Landsat SWIR reflectance by
0.03 (Fig. 6f). Increases of ∼0.01 were observed in mixed stands with
oderate severity but also in low-severity sites dominated by black
pruce or largely tree-free wetlands.
Stand-scale SWIR reflectance changes were less associated with

real severity than with wetland dynamics. Across the study area
Fig. 8a), changes in mean SWIR reflectance were dominated by wet-
ands, the elevated standard error in (b) reflecting strong spectral
luctuations. An association with severity at 30 and 90m scale emerges
t elevated severity 𝑓 c ≳ 0.1 in Fig. 8d: an increase in 𝛥SWIR from
.01 to 0.02 correlated with an increase in severity from 0.1 to 0.2.
owever, 𝛥SWIR alone was poor predictor of severity, especially when
417

ot excluding locations with low conifer cover such as most wetlands. i
A noticeable SWIR reflectance change is only apparent in the high-
everity stand in Fig. 8e. It exhibited a sustained 0.02 increase between
017 and 2019, in contrast to low and moderate severity stands.
The association between severity and change in NDI was weaker

han that with the SWIR reflectance at 30 and 90m scale (Fig. 8d).
hile there was a tendency for increasing 𝛥NDI with increasing sever-
ty 𝑓 c, the distribution of 𝛥NDI conditional on 𝑓 c remained wide.

. Discussion

.1. O1: Tree-scale dead spruce mapping performance

The classification performance from ∼2m resolution satellite im-
gery was deemed satisfactory in stands from low to high severity. The
verall accuracy of 95% (Fig. 4) was comparable to the 94% balanced
ccuracy obtained by Kislov et al. (2021)’s deep network for spruce
rees killed by Ips typographus. Across our study area, false positives
n locations without dead spruce were rare, in agreement with Kislov
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Fig. 6. (a–b) Areal severity 𝑓 c over the TBL area at 90 and 250m scale, respectively, and (c) a pre-infestation Landsat true-color image. Panels (d–g) show the heterogeneous
ubregion indicated in (a), with annotated wetlands, black [b.] spruce and a dense, high-severity white spruce stand highlighted in (f). The conifer fraction (g) is from Macander
t al. (2022). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. (a) Cumulative distribution of areal severity 𝑓 c across the TBL study area; (b)
fraction of tree-scale dead spruce pixels in stands with below a given severity. The
lines correspond to the three stand scales 𝑠 ∈ 30, 90, 250m.

et al. (2021)’s finding that convolutional networks accurately differ-
entiate dead spruce from spectrally similar features such as boulders.
Transferability of the network, as evidenced by comparable accuracy
on an independent image, can expedite operational mapping.

The principal limitations were false negatives in dense mixed forests
and the inflated size in elevated-severity stands (false positives). There
is a trade-off between the two types of errors, as changing, say, the loss
function tends to improve one to the detriment of the other (Jadon,
2020). Future studies could benefit from improved network architec-
tures, post-classification cleaning, and – especially in mixed forests –
winter scenes or higher-resolution satellite imagery with near-nadir
viewing geometries (Shrestha and Vanneschi, 2018; Brandt et al., 2020;
Pires de Lima and Marfurt, 2020). At the stand scale, the calibrated up-
scaling compensated for the dependence of false positives and negatives
on severity, achieving a severity RMSE of better than 0.02 (Fig. 5c).

Interpretation of the mapping performance needs to consider two
imitations of the independent test data. First, the lack of spatially
istributed ground data precludes an assessment of how accurately
he training and test data captured partially or completely occluded
ead spruce. Second, we were not able to directly identify a tree’s
418

pecies, whether it was alive or dead, or the mortality agent when
assembling the test data. Ambiguities in mixed black-spruce-dominated
stands highlight the inherent ambiguities in identifying beetle-killed
spruce from high-resolution imagery alone (Hart and Veblen, 2015).

.2. O2: Most dead spruce in low-severity stands

In our study area, approximately 90% of dead spruce tree pixels
ere inferred in stands of low areal severity 𝑓 c ≲ 0.05 at 90m scale. In
his region with few dense stands of susceptible spruce, areal severity
xceeding 0.10 was rare, such stands containing 1% of dead spruce
pixels). Conversely, stands with high SB-associated areal severity were
ore prevalent after an outbreak in Colorado (Hart and Veblen, 2015).
The low density of susceptible spruce hosts in mixed forests seem-

ingly did not impede infestation. While dense stands of large white
spruce have been observed to be preferentially attacked (Werner et al.,
2006), Doak (2004) did not find a significant relationship between
stand density and the fraction of white spruce killed by SB in the
Copper River Valley in Alaska during a 1990s outbreak. Conversely, a
classification tree predicting SB-induced mortality on the Kenai penin-
sula trained by Reynolds and Holsten (1996) identified spruce basal
area relative to the total basal area and basal area of large-diameter
spruce relative to spruce basal area as top-level predictors, both being
positively associated with mortality. Owing to the incommensurability
of field-based per-tree and remotely sensed per-area metrics such as our
𝑓 c, development of remotely sensed estimates of the fraction of sus-
ceptible trees killed is necessary to enhance understanding of outbreak
dynamics and consequences (Senf et al., 2017).

While lighter SB consequences are expected in areas of low rather
han high severity (Wulder et al., 2009), the impacts on the energy
and water balance, biogeochemical cycling, succession, and habitat
are poorly understood in Alaska (Werner et al., 2006; Fettig et al.,
2022). Safety hazards from beetle-killed trees at the Byers Lake camp-
ground in our study area further illustrate that low to moderate areal
severity infestation poses a concern to the public, land managers and
stakeholders (Department of Natural Resources, State of Alaska, 2019).
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Fig. 8. Pre- to post-outbreak changes in mean Landsat SWIR reflectance (a) and associated standard error (b), alongside areal severity (c). (d) Kernel density 𝑝 estimates of
reflectance change (SWIR or NDI) and areal severity at 30 and 90m scale (left column: all stands in TBL area, right column: only those with conifers and low standard error in
the right row). (e) Timeseries of Landsat reflectance for the four stands shown in (a), L (low), M1 and M2 (moderate) and H (high) corresponding to Fig. 3a–c, respectively.
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5.3. O3: Suitability of stand-scale reflectance for mapping low-severity
infestation

We identified major limitations. At low to moderate areal severity,
Fig. 8d shows poor association between severity and temporal changes
in Landsat SWIR (reflectance and NDI), even when excluding locations
with low conifer cover. Conversely, the increased SWIR reflectance in
the few high-severity stands (Figs. 6f, 8e) supports the suitability of
SWIR-based indices for tracking severe beetle infestations (Senf et al.,
2017; Cohen et al., 2018; Zhu et al., 2020).

Mapping past and future outbreaks of low severity from Landsat
alone will be challenging. The subtle reflectance changes (Fig. 8d) are
compounded by data sparsity due to frequent cloud cover, curtailing
time series analysis to account for subseasonal variability. In con-
trast to historical outbreaks, the growing availability of hyperspectral,
Cubesat multispectral, thermal infrared and synthetic aperture radar
hold promise for early-stage infestation and mortality mapping (Lausch
et al., 2013; Immitzer and Atzberger, 2014; Einzmann et al., 2021;
Zakrzewska and Kopeć, 2022). The richness and frequency of data
opens opportunities for machine learning approaches (Cohen et al.,
2018; Ye et al., 2021), trained with, among other data sources, indepen-
ent machine learning predictions from high-resolution imagery (Kislov
t al., 2021).

. Conclusion

To map dead spruce at tree and stand scale across the severity
pectrum in Southcentral Alaska, we trained, assessed and applied a
onvolutional neural network using satellite imagery of ∼2m resolu-
ion. Our work addressed the knowledge gap of how well convolutional
etworks perform on such satellite images in which individual trees are
ore difficult to recognize than in ∼0.1m drone images. Our principal
indings are as follows.
419
• The network was able to identify dead spruce over variable stand
characteristics and areal severity, achieving an average accuracy
of 95%. Moderate weaknesses were omissions of dead spruce in
dense mixed forest stands (false negatives) and the inflated extent
of dead spruce (false positives) at elevated severity.

• At the 90m stand scale, the fraction of 0.5m pixels contain-
ing dead spruce was less than 0.05 in 97% of the study area.
Ninety percent of the dead tree pixels were located in stands with
severity below 0.05.

• Areal severity was weakly associated with temporal changes in
stand-scale SWIR reflectance change derived from Landsat. A
clear increase in SWIR reflectance was observed for the few stands
with high severity.

utomated satellite-based insect infestation mapping in sparsely popu-
ated regions such as Alaska enables better management and response
trategies and is critical for improved understanding of the dynamics
nd consequences of bark beetle outbreaks.
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Data availability

The manually delineated dead spruce tree outlines for training
and test data have been uploaded to https://zenodo.org/doi/10.5281/
zenodo.10569990, the PyTorch model to https://zenodo.org/doi/10.
5281/zenodo.10569975, and the severity maps to https://zenodo.org/
doi/10.5281/zenodo.8423568. The high-resolution Maxar imagery are
proprietary.
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Appendix. Shoot-scale spectra of healthy and dead spruce

To characterize spectral differences between healthy and dead white
spruce, we collected shoot-scale field spectra using a PSR+ 3500 Field
Spectroradiometer. The reflectance factor as a function of wavelength
was determined by dividing the raw shoot-scale observations obtained
using the fiber-optic probe (without lens, 10 cm distance) by white
spectralon reference measurements. Data were acquired north of the
TBL study region in July 2022.

Fig. A.9. Field spectra of health and beetle-infested dead white spruce. The dark line
shows the grand mean, the shaded area the mean absolute deviation, and the faint line
the individual scans.

Fig. A.9 compares the reflectance spectra for healthy (no signs of in-
festation) and dead (needles shed; signs of SB infestation). The clearest
differences for dead versus healthy trees are the weakening of the green
peak and red edge (residual red edge from understory vegetation?);
decreased reflectance in the near-infrared; increased reflectance in the
shortwave infrared; and weaker water absorption features.

References

Aiazzi, B., Baronti, S., Selva, M., 2007. Improving component substitution pansharpen-
ing through multivariate regression of MS + Pan data. IEEE Trans. Geosci. Remote
Sens. 45 (10), 3230–3239.

Alaska Climate Research Center, 2023. Temperature Normals. URL: https://akclimate.
org/.

Battan, A.R., 1982. A Literature Survey on the Wetland Vegetation of Alaska. U.S. Army
420

Engineer Waterways Experiment Station.
Berg, E.E., David Henry, J., Fastie, C.L., De Volder, A.D., Matsuoka, S.M., 2006.
Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National
Park and Reserve, Yukon Territory: Relationship to summer temperatures and
regional differences in disturbance regimes. Forest Ecol. Manag. 227 (3), 219–232.
http://dx.doi.org/10.1016/j.foreco.2006.02.038.

Brandt, M., Tucker, C.J., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., Chave, J.,
Rasmussen, L.V., Hiernaux, P., Diouf, A.A., et al., 2020. An unexpectedly large
count of trees in the West African Sahara and Sahel. Nature 587 (7832), 78–82.

Brown, M., Black, T., Nesic, Z., Foord, V., Spittlehouse, D., Fredeen, A., Grant, N.,
Burton, P., Trofymow, J., 2010. Impact of mountain pine beetle on the net
ecosystem production of lodgepole pine stands in British Columbia. Agricult. Forest
Meteorol. 150 (2), 254–264.

Campbell, E.M., Antos, J.A., vanAkker, L., 2019. Resilience of southern Yukon boreal
forests to spruce beetle outbreaks. Forest Ecol. Manag. 433, 52–63. http://dx.doi.
org/10.1016/j.foreco.2018.10.037.

Chen, L., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution
for semantic image segmentation. CoRR abs/1706.05587. arXiv:1706.05587.

ohen, W.B., Yang, Z., Healey, S.P., Kennedy, R.E., Gorelick, N., 2018. A LandTrendr
multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 205,
131–140. http://dx.doi.org/10.1016/j.rse.2017.11.015.

oops, N.C., Johnson, M., Wulder, M.A., White, J.C., 2006. Assessment of QuickBird
high spatial resolution imagery to detect red attack damage due to mountain pine
beetle infestation. Remote Sens. Environ. 103 (1), 67–80.

epartment of Natural Resources, State of Alaska, 2019. Two state campgrounds closed
due to bark beetle-infested trees. Press release. URL: www.dnr.alaska.gov.

oak, P., 2004. The impact of tree and stand characteristics on spruce beetle
(Coleoptera: Scolytidae) induced mortality of white spruce in the Copper River
Basin, Alaska. Can. J. Forest Res. 34 (4), 810–816. http://dx.doi.org/10.1139/x03-
256.

inzmann, K., Atzberger, C., Pinnel, N., Glas, C., Böck, S., Seitz, R., Immitzer, M.,
2021. Early detection of spruce vitality loss with hyperspectral data: Results of
an experimental study in Bavaria, Germany. Remote Sens. Environ. 266, 112676.
http://dx.doi.org/10.1016/j.rse.2021.112676.

ettig, C.J., Asaro, C., Nowak, J.T., Dodds, K.J., Gandhi, K.J.K., Moan, J.E., Robert, J.,
2022. Trends in bark beetle impacts in North America during a period (2000–2020)
of rapid environmental change. J. Forestry 120 (6), 693–713. http://dx.doi.org/10.
1093/jofore/fvac021.

lood, N., Watson, F., Collett, L., 2019. Using a U-net convolutional neural network
to map woody vegetation extent from high resolution satellite imagery across
Queensland, Australia. Int. J. Appl. Earth Obs. Geoinf. 82, 101897.

reudenberg, M., Nölke, N., Agostini, A., Urban, K., Wörgötter, F., Kleinn, C., 2019.
Large scale palm tree detection in high resolution satellite images using U-Net.
Remote Sens. 11 (3), http://dx.doi.org/10.3390/rs11030312.

S-R10-FHP, 2018. Forest Health Conditions in Alaska 2018. Technical Report
R10-PR-44, U.S. Forest Service, Alaska Region.

S-R10-FHP, 2021. Forest Health Conditions in Alaska 2021. Technical Report FS-R10-
FHP Publication R10-PR-47, U.S. Department of Agriculture, Forest Service, Alaska
Region.

ais, M., Wild, J., Berec, L., Bruna, J., Kennedy, R., Braaten, J., Brož, Z., 2016. Landsat
imagery spectral trajectories—important variables for spatially predicting the risks
of bark beetle disturbance. Remote Sens. 8 (8), 687.

art, S.J., Veblen, T.T., 2015. Detection of spruce beetle-induced tree mortality using
high- and medium-resolution remotely sensed imagery. Remote Sens. Environ.
168, 134–145. http://dx.doi.org/10.1016/j.rse.2015.06.015, URL: https://www.
sciencedirect.com/science/article/pii/S0034425715300456.

icke, J.A., Johnson, M.C., Hayes, J.L., Preisler, H.K., 2012. Effects of bark beetle-
caused tree mortality on wildfire. Forest Ecol. Manag. 271, 81–90. http://dx.doi.
org/10.1016/j.foreco.2012.02.005.

olsten, E.H., Werner, R.A., 1990. Comparison of white, Sitka, and Lutz spruce as
hosts of the spruce beetle in Alaska. Can. J. Forest Res. 20 (3), 292–297. http:
//dx.doi.org/10.1139/x90-043.

olsten, E.H., Werner, R.A., Develice, R.L., 1995. Effects of a spruce beetle (Coleoptera:
Scolytidae) outbreak and fire on Lutz spruce in Alaska. Environ. Entomol. 24 (6),
1539–1547. http://dx.doi.org/10.1093/ee/24.6.1539.

mmitzer, M., Atzberger, C., 2014. Early detection of bark beetle infestation in Norway
spruce (Picea abies, L.) using WorldView-2 data. Photogramm. Fernerkund. Geoinf.
5, 351–367.

adon, S., 2020. A survey of loss functions for semantic segmentation. In: 2020 IEEE
Conference on Computational Intelligence in Bioinformatics and Computational
Biology. CIBCB, pp. 1–7. http://dx.doi.org/10.1109/CIBCB48159.2020.9277638.

orgenson, T., Meidlinger, D., 2015. The Alaska Yukon Region of the Circumboreal
Vegetation Map (CBVM). Technical Report, Conservation of Arctic Flora and Fauna
(CAFF)..

orgenson, M., Yoshikawa, K., Kanevskiy, M., Shur, Y., Romanovsky, V., Marchenko, S.,
Grosse, G., Brown, J., Jones, B., 2008. Permafrost characteristics of Alaska. In:
Proceedings of the Ninth International Conference on Permafrost. University of
Alaska: Fairbanks, pp. 121–122.

apil, R., Marvasti-Zadeh, S.M., Goodsman, D., Ray, N., Erbilgin, N., 2022. Classification
of bark beetle-induced forest tree mortality using deep learning. arXiv preprint
arXiv:2207.07241.

ennedy, R.E., Yang, Z., Cohen, W.B., Pfaff, E., Braaten, J., Nelson, P., 2012. Spatial
and temporal patterns of forest disturbance and regrowth within the area of the

Northwest Forest Plan. Remote Sens. Environ. 122, 117–133.

https://zenodo.org/doi/10.5281/zenodo.10569990
https://zenodo.org/doi/10.5281/zenodo.10569990
https://zenodo.org/doi/10.5281/zenodo.10569990
https://zenodo.org/doi/10.5281/zenodo.10569975
https://zenodo.org/doi/10.5281/zenodo.10569975
https://zenodo.org/doi/10.5281/zenodo.10569975
https://zenodo.org/doi/10.5281/zenodo.8423568
https://zenodo.org/doi/10.5281/zenodo.8423568
https://zenodo.org/doi/10.5281/zenodo.8423568
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb1
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb1
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb1
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb1
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb1
https://akclimate.org/
https://akclimate.org/
https://akclimate.org/
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb3
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb3
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb3
http://dx.doi.org/10.1016/j.foreco.2006.02.038
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb5
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb5
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb5
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb5
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb5
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb6
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb6
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb6
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb6
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb6
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb6
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb6
http://dx.doi.org/10.1016/j.foreco.2018.10.037
http://dx.doi.org/10.1016/j.foreco.2018.10.037
http://dx.doi.org/10.1016/j.foreco.2018.10.037
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
http://dx.doi.org/10.1016/j.rse.2017.11.015
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb10
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb10
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb10
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb10
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb10
http://www.dnr.alaska.gov
http://dx.doi.org/10.1139/x03-256
http://dx.doi.org/10.1139/x03-256
http://dx.doi.org/10.1139/x03-256
http://dx.doi.org/10.1016/j.rse.2021.112676
http://dx.doi.org/10.1093/jofore/fvac021
http://dx.doi.org/10.1093/jofore/fvac021
http://dx.doi.org/10.1093/jofore/fvac021
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb15
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb15
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb15
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb15
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb15
http://dx.doi.org/10.3390/rs11030312
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb17
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb17
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb17
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb18
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb18
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb18
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb18
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb18
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb19
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb19
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb19
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb19
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb19
http://dx.doi.org/10.1016/j.rse.2015.06.015
https://www.sciencedirect.com/science/article/pii/S0034425715300456
https://www.sciencedirect.com/science/article/pii/S0034425715300456
https://www.sciencedirect.com/science/article/pii/S0034425715300456
http://dx.doi.org/10.1016/j.foreco.2012.02.005
http://dx.doi.org/10.1016/j.foreco.2012.02.005
http://dx.doi.org/10.1016/j.foreco.2012.02.005
http://dx.doi.org/10.1139/x90-043
http://dx.doi.org/10.1139/x90-043
http://dx.doi.org/10.1139/x90-043
http://dx.doi.org/10.1093/ee/24.6.1539
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb24
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb24
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb24
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb24
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb24
http://dx.doi.org/10.1109/CIBCB48159.2020.9277638
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb26
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb26
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb26
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb26
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb26
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb27
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb27
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb27
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb27
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb27
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb27
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb27
http://arxiv.org/abs/2207.07241
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb29
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb29
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb29
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb29
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb29


ISPRS Journal of Photogrammetry and Remote Sensing 212 (2024) 412–421S. Zwieback et al.

L

L

L

L

M

M

M

M

M

O

P

P

P

P

R

R

R

R

S

S

S

S

S

S

S

S
W

W

W

W

Y

Y

Z

Z

Kislov, D.E., Korznikov, K.A., Altman, J., Vozmishcheva, A.S., Krestov, P.V., 2021.
Extending deep learning approaches for forest disturbance segmentation on very
high-resolution satellite images. Remote Sens. Ecol. Conserv. 7 (3), 355–368.
http://dx.doi.org/10.1002/rse2.194.

Lassalle, G., Ferreira, M.P., La Rosa, L.E.C., de Souza Filho, C.R., 2022. Deep
learning-based individual tree crown delineation in mangrove forests using very-
high-resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 189,
220–235. http://dx.doi.org/10.1016/j.isprsjprs.2022.05.002, URL: https://www.
sciencedirect.com/science/article/pii/S0924271622001411.

ausch, A., Heurich, M., Gordalla, D., Dobner, H.-J., Gwillym-Margianto, S., Salbach, C.,
2013. Forecasting potential bark beetle outbreaks based on spruce forest vitality
using hyperspectral remote-sensing techniques at different scales. Forest Ecol.
Manag. 308, 76–89. http://dx.doi.org/10.1016/j.foreco.2013.07.043.

eCun, Y., Bengio, Y., 1998. Convolutional networks for images, speech, and time series.
In: The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge,
MA, USA, pp. 255–258. http://dx.doi.org/10.5555/303568.303704.

i, W., Fu, H., Yu, L., Cracknell, A., 2016. Deep learning based oil palm tree detection
and counting for high-resolution remote sensing images. Remote Sens. 9 (1), 22.

in, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L., 2014. Microsoft COCO: Common objects in context. In: Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13. Springer, pp. 740–755.

acander, M.J., Nelson, P.R., Nawrocki, T.W., Frost, G.V., Orndahl, K.M., Palm, E.C.,
Wells, A.F., Goetz, S.J., 2022. Time-series maps reveal widespread change in plant
functional type cover across Arctic and boreal Alaska and Yukon. Environ. Res.
Lett. 17 (5), 054042.

atsuoka, S.M., Handel, C.M., Ruthrauff, D.R., 2001. Densities of breeding birds and
changes in vegetation in an Alaskan boreal forest following a massive disturbance
by spruce beetles. Can. J. Zool. 79 (9), 1678–1690.

eddens, A.J., Hicke, J.A., Vierling, L.A., Hudak, A.T., 2013. Evaluating methods to
detect bark beetle-caused tree mortality using single-date and multi-date Landsat
imagery. Remote Sens. Environ. 132, 49–58. http://dx.doi.org/10.1016/j.rse.2013.
01.002.

inařík, R., Langhammer, J., Lendzioch, T., 2021. Detection of bark beetle disturbance
at tree level using UAS multispectral imagery and deep learning. Remote Sens. 13
(23), 4768.

ubin, N.A., Nadarajoo, E., Shafri, H.Z.M., Hamedianfar, A., 2019. Young and mature
oil palm tree detection and counting using convolutional neural network deep
learning method. Int. J. Remote Sens. 40 (19), 7500–7515.

tt, D.S., Davis, T.S., Mercado, J.E., 2021. Interspecific variation in spruce constitutive
and induced defenses in response to a bark beetle–fungal symbiont provides
insight into traits associated with resistance. Tree Physiol. 41 (7), 1109–1121.
http://dx.doi.org/10.1093/treephys/tpaa170.

an, B., Shi, Z., Xu, X., Shi, T., Zhang, N., Zhu, X., 2019. CoinNet: Copy initialization
network for multispectral imagery semantic segmentation. IEEE Geosci. Remote
Sens. Lett. 16 (5), 816–820. http://dx.doi.org/10.1109/LGRS.2018.2880756.

feifer, E.M., Hicke, J.A., Meddens, A.J., 2011. Observations and modeling of above-
ground tree carbon stocks and fluxes following a bark beetle outbreak in the
western United States. Global Change Biol. 17 (1), 339–350. http://dx.doi.org/
10.1111/j.1365-2486.2010.02226.x.

ires de Lima, R., Marfurt, K., 2020. Convolutional neural network for remote-sensing
scene classification: Transfer learning analysis. Remote Sens. 12 (1), http://dx.doi.
org/10.3390/rs12010086.

ugh, E., Small, E., 2012. The impact of pine beetle infestation on snow accumulation
and melt in the headwaters of the Colorado River. Ecohydrology 5 (4), 467–477.

eed, D.E., Ewers, B.E., Pendall, E., Frank, J., Kelly, R., 2018. Bark beetle-induced tree
mortality alters stand energy budgets due to water budget changes. Theor. Appl.
Climatol. 131, 153–165.
421
einer, F., Brandt, M., Tong, X., Skole, D., Kariryaa, A., Ciais, P., Davies, A.,
Hiernaux, P., Chave, J., Mugabowindekwe, M., et al., 2023. More than one quarter
of Africa’s tree cover is found outside areas previously classified as forest. Nature
Commun. 14 (1), 2258.

eynolds, K.M., Holsten, E.H., 1996. Classification of spruce beetle hazard in Lutz and
Sitka spruce stands on the Kenai Peninsula, Alaska. Forest Ecol. Manag. 84 (1–3),
251–262.

odman, K.C., Andrus, R.A., Veblen, T.T., Hart, S.J., 2021. Disturbance detection in
Landsat time series is influenced by tree mortality agent and severity, not by prior
disturbance. Remote Sens. Environ. 254, 112244.

afonova, A., Tabik, S., Alcaraz-Segura, D., Rubtsov, A., Maglinets, Y., Herrera, F., 2019.
Detection of fir trees (Abies sibirica) damaged by the bark beetle in unmanned
aerial vehicle images with deep learning. Remote Sens. 11 (6), 643.

chulz, B., 1995. Changes Over Time in Fuel-Loading Associated with Spruce Beetle-
Impacted Stands of the Kenai Peninsula, Alaska. Technical Report Technical Report
R10-TP-53, USDA Forest Service, Forest Health Management.

enf, C., Pflugmacher, D., Wulder, M.A., Hostert, P., 2015. Characterizing spectral–
temporal patterns of defoliator and bark beetle disturbances using Landsat time
series. Remote Sens. Environ. 170, 166–177. http://dx.doi.org/10.1016/j.rse.2015.
09.019.

enf, C., Seidl, R., Hostert, P., 2017. Remote sensing of forest insect disturbances:
Current state and future directions. Int. J. Appl. Earth Obs. Geoinf. 60, 49–60.

herriff, R.L., Berg, E.E., Miller, A.E., 2011. Climate variability and spruce bee-
tle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska.
Ecology 92 (7), 1459–1470. http://dx.doi.org/10.1890/10-1118.1, arXiv:https://
esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/10-1118.1.

horten, C., Khoshgoftaar, T.M., 2019. A survey on image data augmentation for deep
learning. J. Big Data 6 (1), 1–48.

hrestha, S., Vanneschi, L., 2018. Improved fully convolutional network with
conditional random fields for building extraction. Remote Sens. 10 (7), 1135.

hulski, M., Wendler, G., 2007. The Climate of Alaska. University of Alaska Press.
ahrhaftig, C., 1965. Physiographic divisions of Alaska. In: Geological Survey
Professional Paper 482. US Government Printing Office, Washington, DC.

erner, R.A., Holsten, E.H., Matsuoka, S.M., Burnside, R.E., 2006. Spruce beetles and
forest ecosystems in south-central Alaska: A review of 30 years of research. Forest
Ecol. Manag. 227 (3), 195–206. http://dx.doi.org/10.1016/j.foreco.2006.02.050.

hite, J.C., Wulder, M.A., Brooks, D., Reich, R., Wheate, R.D., 2005. Detection of red
attack stage mountain pine beetle infestation with high spatial resolution satellite
imagery. Remote Sens. Environ. 96 (3), 340–351. http://dx.doi.org/10.1016/j.rse.
2005.03.007.

ulder, M.A., White, J.C., Grills, D., Nelson, T., Coops, N.C., Ebata, T., 2009. Aerial
overview survey of the mountain pine beetle epidemic in British Columbia:
Communication of impacts. J. Ecosyst. Manag..

ao, L., Liu, T., Qin, J., Lu, N., Zhou, C., 2021. Tree counting with high spatial-
resolution satellite imagery based on deep neural networks. Ecol. Indic. 125,
107591. http://dx.doi.org/10.1016/j.ecolind.2021.107591.

e, S., Rogan, J., Zhu, Z., Hawbaker, T.J., Hart, S.J., Andrus, R.A., Meddens, A.J.H.,
Hicke, J.A., Eastman, J.R., Kulakowski, D., 2021. Detecting subtle change from
dense Landsat time series: Case studies of mountain pine beetle and spruce beetle
disturbance. Remote Sens. Environ. 263, 112560. http://dx.doi.org/10.1016/j.rse.
2021.112560.

akrzewska, A., Kopeć, D., 2022. Remote sensing of bark beetle damage in Norway
spruce individual tree canopies using thermal infrared and airborne laser scanning
data fusion. For. Ecosyst. 9, 100068.

hu, Z., Zhang, J., Yang, Z., Aljaddani, A.H., Cohen, W.B., Qiu, S., Zhou, C., 2020.
Continuous monitoring of land disturbance based on Landsat time series. Remote
Sens. Environ. 238, 111116. http://dx.doi.org/10.1016/j.rse.2019.03.009.

http://dx.doi.org/10.1002/rse2.194
http://dx.doi.org/10.1016/j.isprsjprs.2022.05.002
https://www.sciencedirect.com/science/article/pii/S0924271622001411
https://www.sciencedirect.com/science/article/pii/S0924271622001411
https://www.sciencedirect.com/science/article/pii/S0924271622001411
http://dx.doi.org/10.1016/j.foreco.2013.07.043
http://dx.doi.org/10.5555/303568.303704
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb34
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb34
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb34
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb35
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb35
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb35
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb35
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb35
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb35
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb35
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb36
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb36
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb36
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb36
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb36
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb36
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb36
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb37
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb37
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb37
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb37
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb37
http://dx.doi.org/10.1016/j.rse.2013.01.002
http://dx.doi.org/10.1016/j.rse.2013.01.002
http://dx.doi.org/10.1016/j.rse.2013.01.002
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb39
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb39
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb39
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb39
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb39
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb40
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb40
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb40
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb40
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb40
http://dx.doi.org/10.1093/treephys/tpaa170
http://dx.doi.org/10.1109/LGRS.2018.2880756
http://dx.doi.org/10.1111/j.1365-2486.2010.02226.x
http://dx.doi.org/10.1111/j.1365-2486.2010.02226.x
http://dx.doi.org/10.1111/j.1365-2486.2010.02226.x
http://dx.doi.org/10.3390/rs12010086
http://dx.doi.org/10.3390/rs12010086
http://dx.doi.org/10.3390/rs12010086
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb45
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb45
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb45
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb46
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb46
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb46
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb46
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb46
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb47
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb47
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb47
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb47
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb47
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb47
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb47
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb48
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb48
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb48
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb48
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb48
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb49
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb49
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb49
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb49
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb49
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb50
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb50
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb50
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb50
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb50
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb51
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb51
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb51
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb51
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb51
http://dx.doi.org/10.1016/j.rse.2015.09.019
http://dx.doi.org/10.1016/j.rse.2015.09.019
http://dx.doi.org/10.1016/j.rse.2015.09.019
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb53
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb53
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb53
http://dx.doi.org/10.1890/10-1118.1
http://arxiv.org/abs/https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/10-1118.1
http://arxiv.org/abs/https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/10-1118.1
http://arxiv.org/abs/https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/10-1118.1
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb55
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb55
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb55
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb56
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb56
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb56
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb57
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb58
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb58
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb58
http://dx.doi.org/10.1016/j.foreco.2006.02.050
http://dx.doi.org/10.1016/j.rse.2005.03.007
http://dx.doi.org/10.1016/j.rse.2005.03.007
http://dx.doi.org/10.1016/j.rse.2005.03.007
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb61
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb61
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb61
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb61
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb61
http://dx.doi.org/10.1016/j.ecolind.2021.107591
http://dx.doi.org/10.1016/j.rse.2021.112560
http://dx.doi.org/10.1016/j.rse.2021.112560
http://dx.doi.org/10.1016/j.rse.2021.112560
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb64
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb64
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb64
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb64
http://refhub.elsevier.com/S0924-2716(24)00213-2/sb64
http://dx.doi.org/10.1016/j.rse.2019.03.009

	Low-severity spruce beetle infestation mapped from high-resolution satellite imagery with a convolutional network
	Introduction
	Background
	Materials and methods
	Study area and period
	O1: Tree-scale dead spruce mapping
	High-resolution imagery
	Training and test data
	Training by transfer learning
	Tree-scale evaluation

	O2: Stand-scale severity from tree-scale classification
	Stand-scale severity
	Distribution of severity across scales

	O3: Spectral changes in stand-scale reflectance
	Stand-scale spectral changes from Landsat
	Association with areal severity


	Results
	O1: Tree-scale dead spruce mapping
	Classification results
	Performance assessment

	O2: Stand-scale severity and its distribution
	Calibration and assessment
	Distribution of areal severity

	O3: Spectral changes in stand-scale reflectance

	Discussion
	O1: Tree-scale dead spruce mapping performance
	O2: Most dead spruce in low-severity stands
	O3: Suitability of stand-scale reflectance for mapping low-severity infestation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Shoot-scale spectra of healthy and dead spruce
	References


