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Marine protected areas promote stability of
reef fish communities under climate
warming

Lisandro Benedetti-Cecchi 1 , Amanda E. Bates 2, Giovanni Strona3,

Fabio Bulleri 1, Barbara Horta e Costa 4, Graham J. Edgar 5,6,

Bernat Hereu 7, Dan C. Reed 8, Rick D. Stuart-Smith5,6, Neville S. Barrett 5,

David J. Kushner9, Michael J. Emslie 10, Jose Antonio García-Charton 11,

Emanuel J. Gonçalves12 & Eneko Aspillaga 13

Protection from direct human impacts can safeguard marine life, yet ocean

warming crosses marine protected area boundaries. Here, we test whether

protection offers resilience to marine heatwaves from local to network scales.

We examine 71,269 timeseries of population abundances for 2269 reef fish

species surveyed in 357 protected versus 747 open sites worldwide. We

quantify the stability of reef fish abundance from populations to meta-

communities, considering responses of species and functional diversity

including thermal affinity of different trophic groups. Overall, protection

mitigates adverse effects of marine heatwaves on fish abundance, community

stability, asynchronous fluctuations and functional richness. We find that local

stability is positively related to distance from centers of high human density

only in protected areas. We provide evidence that networks of protected areas

have persistent reef fish communities in warming oceans by maintaining large

populations and promoting stability at different levels of biological

organization.

Climate change and direct anthropogenic disturbances are threaten-

ing global biodiversity1,2, often leading to the collapse of ecosystems

and the reorganization of ecological communities due to geographic

shifts and increasing rates of species extirpations and introductions3,4.

These processes are increasingly compromising key ecological func-

tions and services such as productivity, nutrient cycling and commu-

nity resilience to environmental fluctuations5,6. When appropriately

designed and resourced7, Marine Protected Areas (MPAs) have proven

to be strategic management tools, providing marine life with safe

harbors from human disturbances8,9. By limiting human extractive

uses, direct habitat destruction and a range of local stressors, MPAs

can provide multiple ecological and socioeconomic benefits. Decades

of research have shown that well-enforced MPAs can increase the

diversity, abundance, individual body size and reproductive output of

fishes and invertebrates compared to unprotected areas10–13. Positive

human well-being outcomes may result from increased food security,
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enhanced local fisheries and promotion of cultural, recreational and

aesthetic values14.

While many benefits of reducing local stressors are well docu-

mented,whetherMPAs canprovide ecological resilienceand increased

adaptive capacity to climate change remains unclear15–17. In principle,

MPAs can buffer communities from large-scale environmental fluc-

tuations by maintaining high species richness and functional

diversity18–20. Diverse communities are more likely to compensate for

species loss and adapt to environmental change through functional

redundancy21. Owing to a larger portfolio of ecological responses,

effectively protected communities are also expected to display greater

temporal stability of aggregated variables such as total species abun-

dance, biomass, and productivity13,18. Although improving stability is

one of the key goals ofMPAs, few studies have provided a direct test of

this expectation13,22–24. Moreover, how stability varies in relation to key

attributes of MPAs such as spatial scale and network size is currently

unknown.

Growing interest in understanding how ecosystems respond to

increasing environmental fluctuations has led to the development of a

theoretical framework to quantify stability and the underlying

mechanisms at multiple levels of organization, from individual popu-

lations to the metacommunity (i.e., a set of local communities con-

nected by dispersal)25–29. This framework adopts an intuitive measure

of stability commonly used in the biodiversity-ecosystem functioning

literature, which is the inverse of the temporal coefficient of variation –

i.e., temporalmean of the variable of interest (e.g., species abundance)

divided by its standard deviation30. Central to this framework is the

mathematical relationship thatquantifies the stability of anaggregated

variable as the product of the average stability of its constituting ele-

ments and the degree of asynchrony in their temporal fluctuations29.

For example, stability in total community abundance at a particular

site (hereafter, alpha stability) results from the product of average

temporal stability and asynchrony among the species in the commu-

nity (Fig. 1a). Lower temporal variation of individual species abun-

dances will result in greater stability in total community abundance,

whereas asynchronous fluctuations will promote stability because

temporal increases in abundance of some species will compensate

temporal declines in other species.

When applied to a metacommunity, the framework allows the

partitioning of stability and asynchrony into multiple levels of biolo-

gical organization (Fig. 1b–f). Metacommunity stability (hereafter,

gamma stability) is primarily determined by average alpha stability

among local communities and by the degree of asynchrony among

them (spatial asynchrony) (Fig. 1b). However, recent work has shown

that the degree of stability and asynchrony among species in the

metacommunity and among populations within species (metapopu-

lations) are also potentially important mechanisms promoting gamma

stability26,31,32 (Fig. 1, c–f). Furthermore, functional richness – the pro-

portion of the multidimensional trait space occupied by the species in

a community33
– is expected to amplify the stabilizing effects of

asynchronous species fluctuations at all levels of organization by

broadening the portfolio of possible responses to environmental

fluctuations5,30.

We adopted this framework to compare alpha and gamma stabi-

lity of reef fish communities and the underlying mechanisms between

well-enforced MPAs and areas subjected to some form of extractive

use (open areas). We compiled a dataset of 71,269 timeseries of

population abundances with a minimum length of 5 years from 2269

reef fish species surveyed at 357MPA and 747 open area sites across 50

Marine Ecoregions (Fig. 2a). First, we provided a high-resolution ana-

lysis using all available sites to examine the effect of protection on

alpha stability (Table 1). We expected thatMPAs would bemore stable

than open areas owing to greater stability (lower fluctuations) in the

abundance of individual species and greater functional richness. In

contrast to these straightforwardpredictions, anticipating the effectof

protection on species asynchrony was more difficult. Suppressing

extractive activities within MPAs may reduce asynchrony between

targeted and non-targeted species, thereby mitigating the positive

effect of asynchrony on stability. However, increased strength in spe-

cies interactions due to higher species abundances and food-web

complexity within MPAs10,11,34,35 may enhance the contribution of

asynchrony to alpha stability compared to open areas.

We also tested the hypothesis that MPAs can buffer commu-

nities from marine heatwaves and from other direct human pres-

sures not constrained by MPA boundaries (using the proximity to

large cities as a proxy) by relating them to alpha stability and its

underlying mechanisms (species stability, asynchrony, and func-

tional richness, Table 1). We adopted a standardized approach to

quantify marine heatwaves, defined as sea surface temperatures

(SST) anomalies that exceed a seasonally varying climatological

threshold (the 90th percentile of SST variation calculated over a

30-yr climatological period), for at least 5 consecutive days36,37 (see

Methods for details). We further quantified the sensitivity of reef fish

abundance to marine heatwaves inside and outside MPAs using the

Species Temperature Index (STI) – a well-known measure of the

realized temperature niche of a species18,38. Marine heatwaves affect

marine biodiversity globally20,39, thus providing an appropriate

synthetic climate variable to evaluate the potential buffering effect

of protection on reef fish abundance and stability. Similarly, distance

from large human settlements is a suitable predictor of the abun-

dance, richness, and vulnerability of reef fish communities and is

thus a suitable surrogatemeasure of direct human pressure on these

communities40,41.

Finally, we compared stability and asynchrony betweenMPAs and

open areas at the metacommunity level. We considered the sites in an

ecoregion as part of a metacommunity and the MPA sites as a spatial

network of connected sites based on proximity42,43. We expected two

opposite mechanisms to affect gamma stability in metacommunities.

On the one hand, we hypothesized that environmental heterogeneity

wouldmagnify large-scale population and species spatial and temporal

fluctuations,weakening their contribution to gammastability. Thus, by

reducing direct human disturbances, MPAs should mitigate popula-

tion and species fluctuations, increasing gamma stability. On the other

hand, environmental variability should increase the contribution of

asynchrony to gamma stability at all levels of organization (spatial,

species,metapopulations, Fig. 1, b–e). Therefore, wehypothesized that

both asynchrony and gamma stability should increase in large MPA

networks across a wide range of habitats and environmental

conditions44,45 (Table 1).

Overall, our results indicate thatwell-enforcedMPAs can promote

stability of reef fish abundance at the communities and metacommu-

nity levels,mitigating the adverse effects ofMHWs in addition to direct

human disturbance.

Results
Alpha stability
We first examined the relationships between stability components and

their predictors using Linear Mixed Effect Models with a random

intercept for study ID and including the total area sampled at each site

as an offset to control for sampling effort (full results are reported in

Supplementary Tables 1–3). Note that by including an offset in the

mixed-effect models, we scaled each response variable (alpha and

species stability, asynchrony and functional richness) to the total area

sampled at each site (seeMethods, ‘Controlling for sampling effort’ for a

justification of this approach). Alpha stability was positively related to

species asynchrony (measured using the Gross index46) and species

stability in MPAs and open areas (Fig. 2b, c). In contrast, alpha stability

declined with increasing mean intensity of marine heatwaves in open

areas, but not in MPAs (Fig. 2d). Similar patterns were observed for

species stability (Fig. 2f), species asynchrony (Fig. 2h) and functional
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richness (Fig. 2j), all decreasing significantly with marine heatwaves in

open areas, but not inMPAs. Alpha stability increased significantlywith

remoteness in MPAs, but not in open areas (Fig. 2e), whereas species

stability was positively associated with remoteness both in MPAs and

in open areas (Fig. 2g). Species asynchrony and functional richness

were unrelated to remoteness (Fig. 2i, k), although functional richness

was higher in MPAs than in open areas at all values of remoteness

(Fig. 2k). Functional richness was positively associated with species

stability in MPAs and open areas and negatively associated with alpha

stability and species asynchrony in open areas (Supplementary Fig. 1,

Supplementary Table 1). Alternativemixed-effectmodels that included

interaction terms between protection levels (MPA vs. open areas) and
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predictors produced similar results (Supplementary Fig. 2, Supple-

mentary Tables 2, 3).

Results were robust to detrending of timeseries47 and specific

choices of asynchrony measures (Supplementary Fig. 3), as well as to

quantification of marine heatwaves (mean vs. cumulative intensity,

Supplementary Fig. 4). Alternative analyses based on log-response

ratios, where sampling effort was controlled by dividing response

variables directly by the total area sampled at each site, rather than

through anoffset, provided similar results to those of themain analysis

(Supplementary Fig. 5). Consistent results were also obtained by

excluding monitoring programs that targeted a limited set of species

(50 or less), suggesting differences in taxonomic scope among pro-

grams did not affect the results (Supplementary Fig. 6). Furthermore,

sample coverage, a measure of sampling completeness48, indicated

that fish communities were sampled with comparable accuracy in

MPAs and open areas (Supplementary Fig. 7). Only transects in the size

category of 180m2 indicated larger completeness in open areas than in

MPAs. These transects represented a small fraction (2.2%) of the total

samples and removing them from the analysis did not change the

results.

Causal pathways
We used piecewise Structural Equation Modeling (SEM)49 to explore

the causal pathways illustrated in Fig. 1, along with the hypothesized

influences of marine heatwaves (quantified through mean intensity)

and remoteness. SEMs conducted in MPAs and open areas differed

markedly in terms of magnitude, direction, and sign of significant

links, with a prevalence of destabilizing effects in the absence of

protection (Fig. 3a, b). Themost striking difference involved the links

connecting marine heatwaves to alpha and species stability, species

asynchrony and functional richness. While marine heatwaves had no

significant direct or indirect effects on stability and asynchrony in

MPAs (Fig. 3a, c), they destabilized reef fishes in open areas through

significant negative direct and indirect effects on alpha stability and

negative direct effects on species stability and asynchrony (Fig. 3b, c).

Marine heatwaves also had direct negative effects on functional

richness in open areas, which generated weak positive and negative

indirect effects on species asynchrony and species stability, respec-

tively (Fig. 3b, c). Remoteness translated into positive direct and

indirect effects on alpha stability in MPAs and open areas, respec-

tively, the latter through species stability (Fig. 3). Overall, all the

significant paths pointed to positive effects in MPAs, whereas only 4

of the 10 significant links were positive in open areas (Fig. 3c). SEM

results were robust to detrending of timeseries47 and specific choices

of asynchrony measures (Supplementary Fig. 8).

Thermal sensitivity trends
We performed two additional analyses to explore the mechanisms

behind the different impact of marine heatwaves on stability in MPAs

and open areas observed in the SEM results. First, we examined how

the two components of stability, the temporal mean and standard

deviation of total fish abundance, varied in relation to marine

heatwaves. Greater stability may result from larger mean abundance

(the numerator of stability), lower standard deviation (the denomi-

nator), or a combination of both50. We found that changes in stability

were driven mainly by variation in the mean rather than in standard

deviation,withmeanfish abundance increasingwithmarine heatwaves

in MPAs and decreasing in open areas. The standard deviation did not

change in MPAs, while it declined with intensifying marine heatwaves

in open areas (Supplementary Fig. 9).

Second, we examined whether MPAs could support higher fish

abundances and promote stability by allowing thermally resistant

species to attain large population sizes under intensifying warming

conditions. To test this hypothesis, we defined a thermal threshold

based on the maximum intensity of marine heatwaves observed over

the sampling period of fish abundance at each site. Then we divided

fish species into two groups depending on their Species Temperature

Index (STI), a well-knownmeasure of the realized temperature niche of

a species18,38 (see Methods): those with a STI equal to or above

threshold (thermally resistant species); and those with a STI below

threshold (thermally sensitive species). Our definition of thermal

threshold based on the maximum intensity of marine heatwaves pro-

vided a more stringent definition of thermally resistant species com-

pared to a threshold based onmean intensity (which we used, instead,

as a covariate as in the previous mixed-effect models and SEM ana-

lyses). We summed species abundances separately for species with

STIs above or below threshold at each site and used these aggregated

values to compare thermal sensitivity trends between MPAs and open

areas against themean intensity ofmarine heatwaves. Previous studies

have shown that different trophic groups can respond differently to

warming. For example, grazers can benefit from elevated tempera-

tures owing to increased metabolism and faster feeding and digestion

rates18,51. Thus, we examined thermal sensitivity trends separately for

four trophic categories: carnivores, grazers, microphages and plank-

tivores (Fig. 4, Supplementary Table 4). We used Generalized Additive

Mixed Models (GAMMs, which included a random effect for study ID)

in these analyses to account for the non-linear relationships between

the abundance of trophic categories and marine heatwaves. When

considering species with STIs above the threshold, all trophic groups

showed a peak in abundance at intermediate to high intensities of

MHWs in MPAs, but not in open areas (Fig. 4, Supplementary Table 4).

A similar pattern was observed for thermally sensitive species (STIs

below threshold), although with some exceptions. Abundances of

thermally sensitive carnivores and planktivores were only weakly

related to marine heatwaves in MPAs, whereas grazers showed a con-

sistent trend of increasing abundance with marine heatwaves both in

MPAs and in open areas. The abundance of all other trophic groups

generally declined at maximum intensity of marine heatwaves (Fig. 4,

Supplementary Table 4).

Metacommunity networks and connectivity
Most ecoregions includedmultiple open area andMPA sites, the latter

distributed over a single large MPA (e.g., Great Barrier Reef Park) or

multiple smaller MPAs (Supplementary Table 5). We considered the

Fig. 1 | The stability framework. Panels illustrate the different components of

stability and asynchrony obtained from reef fish abundance data at the community

(a) and metacommunity (b–f) levels of organization. Two sites, each including one

population of two species, are used throughout to illustrate the derivation of sta-

bility and asynchrony measures from timeseries of fish abundance. Stability is

indicated as the ratio between the temporal mean and standard deviation of fish

abundance (µ/σ), whereas η indicates asynchrony. aAlpha stability, species stability

and species asynchrony; μi,j and Ãi,j are the temporal mean and standard deviation

of species j at site i, respectively. b Average alpha stability (AAS) and spatial com-

munity asynchrony (SCA) calculated from total fish abundance between two sites.

c Average species stability (ASS) and average species asynchrony (ASA) calculated

from the two populations of each species and then averaged between species.

d Spatial species asynchrony (SSA) quantified as the average dissimilarity of tem-

poral fluctuations between populations. e Metapopulation stability (MPS) and

metapopulation asynchrony (MPAS), calculated from total population abundance

and averaged across species. f Gamma stability (GAS) obtained by dividing the

temporal mean of total metacommunity abundance by its standard deviation.

Arrows pointing to this panel indicate the positive contribution of stability and

asynchrony at lower organizational levels to gamma stability. Pink and green ovals

indicate whether timeseries were aggregated among species within sites (b, c),

among populations in the metacommunity (d) or among metapopulations (e) to

derive stability and asynchrony measures. Panels indicate the equations (Eq) used

to calculate the various stability and asynchrony measures, which are described in

full inMethods.
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MPA sites in an ecoregion as part of a metacommunity network,

regardless of whether they occurred in one or in several MPAs. Dis-

tances among sites ranged from<1 km to about 1000 km and although

the largest distance is beyond the direct dispersal range of most, if not

all, reef fish species, distant sitesmaybecome connected overmultiple

generations through stepping-stone effects52.

Although connectivity is rarely assessed in studies of gamma

stability27,28, understanding whether sites are linked by the movement
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Fig. 2 | Timeseries of reef fish abundance and derived measures. a Study sites.
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results are reported in Supplementary Tables 1–3.
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of individuals (larvae, juveniles and adults) is important for delineating

a metacommunity. Given the limited knowledge on dispersal of reef

fishes, we used graph theory to characterize the spatial structure and

connectivity of metacommunities53. Following previous work, we

derived a minimum spanning tree graph using all sites in each ecor-

egion and quantified centrality metrics on these graphs. A minimum

spanning tree graph is a network that uses the minimum number of

shortest links to ensure that all nodes (sites) are connected without

closed paths among nodes54. We derived two networks for each

metacommunity, one based on biological distance (community com-

positional dissimilarity, quantified by the Jaccard index, Supplemen-

tary Fig. 10) and another based on geographic distance (least-cost path

distance among sites by the sea, Supplementary Fig. 11).We computed

two centralitymetrics to characterize the topological features of these

networks and to extract information on connectivity: degree centrality

and closeness centrality53,55. In weighted networks, degree centrality is

computed, for eachnode, as the sumof theweights of links connecting

the target node to its neighbors, hence providing a measure of local

connectivity. Closeness centrality is computed for each node as the

reciprocal of the average weighted distance (i.e. shorted cumulative

weighted path across network links) from the target node to all other

nodes in the network. This provides a measure of global connectivity.

Using these metrics, we tested the prediction that, in a dispersal-

limited metacommunity, physically isolated sites with low closeness

centrality should also be more biologically distinct (high community

dissimilarity and low degree centrality) than more central sites in a

minimum spanning tree graph. This should result in significant posi-

tive relationships between closeness centrality measured on a

geographically-derived graph and degree centrality measured on a

biologically-derived graph. In contrast, in a well-mixed metacommu-

nity, geographic distance among sites should have no bearing on

biological distance. We found no significant relationships between

centrality measures in any of the metacommunities analyzed,

suggesting that geographic isolation did not preclude biological con-

nectivity (Supplementary Table 6). Furthermore, average composi-

tional dissimilarity, computed across all sites within each

metacommunity using the Jaccard index, ranged between 0.21-0.74

and 0.26-0.64 in MPAs and open areas, respectively, suggesting that

fish dispersal neither completely differentiated nor completely

homogenized metacommunities (Supplementary Table 5).

Metacommunity stability and asynchrony
We compare differences in stability and asynchrony measures at the

metacommunity level (Fig. 1b–f) between MPA and open area sites in

relation to three key attributes of MPA networks: spatial scale, the

number of MPAs and the total number of sampled sites. The spatial

scale of each MPA network was defined by the maximum distance

between MPA sites in an ecoregion and was used to match MPA an

open area sites for comparison (Methods: Metacommunity-level ana-

lysis). Since calculating asynchrony at the metacommunity level

required matching timeseries (i.e., data sampled in the same years)

among sites, we limited this analysis to a subset of ecoregions that

allowed comparisons between at least two MPA and two open area

sites, while ensuring a minimum length of timeseries of 5 years.

We calculated the following abundance-weighted stability and

asynchrony measures separately for MPA and open area sites within

metacommunities (see Fig. 1, b–f and Methods for details): gamma

stability, as the inverse of the coefficient of variation of total meta-

community abundance (TCV−1); average alpha stability, as the TCV−1 of

total site abundance (the alpha stability measure used in the previous

site-scale analysis) averaged across sites; average species stability, as

the average of species TCV−1s in a site further averaged across sites;

metapopulation stability, as the TCV−1 of summed population abun-

dances averaged over species. Similarly, for asynchrony we calculated:

spatial community asynchrony, as the average asynchrony in total

abundance among sites; spatial species asynchrony, as the average

Table 1 | Main hypotheses relating effects of Marine Protected Areas (MPA) on site (alpha) stability, species stability and
asynchrony, compared to open areas (OA)

Hypothesized relationships Predicted effect Mechanisms References

Within sites (communities)

MPA → alpha stability MPA are more stable than OA. Greater stability (lower fluctuations) in abundance of indi-

vidual species and greater functional richness increases

stability in MPA compared to OA.

13,15–18,22

MPA → species stability → alpha

stability

Stronger positive relationship between alpha

stability and species stability in MPA than OA.

MPA increase alpha stability by maintaining more stable

populations compared to OA.

13,22–24

§MPA → asynchrony → alpha stability The contribution of asynchrony to stability is

stronger (weaker) in MPA than OA.

MPA increase (decrease) asynchrony if relieve from fishing

and direct human disturbances induce divergent (coherent)

temporal fluctuations in fishes.

10,11,34,35

MPA → MHW → species and alpha

stability

Alpha and species stability declinemore abruptly

with intensifying MHW in OA than MPAs.

MPA buffer reef fishes from MHW by maintaining greater

population abundances, functional richness and asynchro-

nous fluctuations, all of which contribute to increase

stability.

18

MPA → Remoteness → species and

alpha stability

Stronger positive relationshipbetween alpha and

species stability with remoteness in MPA

than OA.

Remote MPA are relieved from both fishing and direct

human impacts, whereas fishing can still impact remote

sites in OA, decreasing alpha and species stability.

40

MPA → temperature niche Stronger positive relationship between the

abundance of thermally resistant species with

intensifying MHW in MPA than OA.

MPA support higher fish abundances and promote stability

by allowing thermally resistant species to attain large

population sizes under intensifying warming conditions.

18,61,62

Among sites (metacommunities)

MPA → gamma stability and under-

lying mechanisms

Greater asynchrony and stability in MPA than OA

at the metacommunity scale.

Local effects of MPA on species stability and asynchrony

scale-up at the metacommunity level.

44,45,65

Size of MPA network → gamma sta-

bility and underlying mechanisms

Differences between MPA and OA increase with

the size of MPA networks.

Gamma stability and the underlying mechanisms operate

more strongly in large MPA networks embracing a wide

range of habitats and environmental conditions.

44,45,65

MPAs are hypothesized tomediate effects ofMarineHeatwaves (MHW) and remoteness (distance from large cities) at local scales. At themetacommunity scale, gamma stability is related tomultiple

underlying mechanisms, including population and species stability and population, species and spatial asynchrony (Fig. 1).

§There is no clear a priori expectation about the direction of the effect of MPAs on asynchrony and both positive and negative effects are considered here.
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asynchrony among populations; average species asynchrony, aver-

aging asynchrony among species in a site (the asynchrony measure

used in the previous site-scale analysis) and then over sites; metapo-

pulation asynchrony, as the asynchrony among summed population

abundances.

This analysis resulted in a single value of the gamma stability

metric (and any other metacommunity measure) for each of the MPA

and open area conditions in an ecoregion, precluding the direct esti-

mation of variances and hindering the statistical comparison between

these conditions. To overcome this problem, we used a jackknife

(leave-one-out) procedure that allowed us to obtain robust estimates

of variances and to derive the Hedge’s g effect size of the difference

betweenMPAs and open areas for eachmetric, which we analyzed in a

Bayesian meta-analytical framework (see Methods).

There was no clear trend of variation in stability and asynchrony

measures with spatial scale across the 12 metacommunities examined

(Fig. 5, Supplementary Fig. 12). A positive effect size indicating larger

gamma stability in MPAs than in open areas was observed in 6

metacommunities, whilst effect sizes either did not deviate sig-

nificantly from zero or were negative, the latter indicating higher

gamma stability in open areas than in MPAs, in the other 6 meta-

communities (Fig. 5b). Higher stability in MPAs than in open areas was

more evident for the other components of stability, with 8, 9 and 10 of

the 12 metacommunities having higher alpha, species and metapopu-

lation stability in MPAs than in open areas, respectively (Fig. 5c–e).

Asynchronymeasures did not show any consistent difference between

MPAs and open areas, with the possible exception of spatial asyn-

chrony, which was greater in open areas than MPAs (negative effect

size) in 6 metacommunities, whilst MPAs had large spatial asynchrony

in 4 metacommunities (Supplementary Fig. 12). Effect sizes did not

vary significantly with the number of MPAs in each network nor with

the total number of sites examined (Supplementary Table 7).

To assess the robustness of our results to the choice of the spatial

scale over which comparisons were conducted, we repeated the ana-

lysis by matching MPA and open area sites within a spatial scale of

50–100 km, insteadof using themaximumdistance betweenMPA sites
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Fig. 3 | Piecewise Structural Equation Models (SEM) of reef fish alpha stability.

Path diagrams are illustrated for amarine protected areas (MPA) and b open areas

(OA). Positive (negative) links are shown in blue (orange), with path size propor-

tional to the standardized regression coefficient. Not significant paths (p >0.05) are

shown in light grey. Numbers within boxes indicate the variance explained by fixed

(marginal, left) and total – i.e. fixed and random together – (conditional, right)

effects in themodel. c Standardized direct and indirect effect sizes (means and 95%

Confidence Intervals derived from n = 10,000 bootstrap replicates of the SEM

model) of factors influencing alpha and species stability and species asynchrony in

MPA (blue) andOA (orange). Effect sizeswhose confidence intervals do not overlap

with zero (dashed red line) are considered significant. Positive (negative) effect

sizes indicate larger (lower) stability or asynchrony in MPAs than open areas.

ASYNC: species asynchrony; SP.STAB: species stability; FRIC: functional richness;

MHW: marine heatwaves intensity; REM: remoteness. The not significant (p >0.5)

link from remoteness to functional richness was removed from the original MPA

path diagram to improve model fit (Fisher’s C statistic: p >0.05 for both models).
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(Methods: Metacommunity-level analysis). This range of distances was

intermediate between the maximum distances separating MPAs in

metacommunities (Supplementary Table 5), with 100 km representing

a potential upper limit of direct fish dispersal40,56. Results for the six

metacommunities that encompassed the 100 km spatial scale were

very similar to those observed in the analysis using maximum dis-

tances, suggesting that results were not affected by the particular

spatial scale at which metacommunity stability and asynchrony were

compared (compare Fig. 5b–e and Supplementary Fig. 12 with Sup-

plementary Fig. 13). Null model analysis indicated that asynchrony was

lower than expected by chance for most metacommunities, and that

differences between MPAs and open areas were highly context-

dependent (Supplementary Fig. 14).

Discussion
To our knowledge, our study provides the first global analysis of

whether, to what extent and through which mechanisms MPAs affect

reef fish stability in the face of global warming. Our results support the

hypothesis thatMPAs promote reef fish stability at the community and

metacommunity levels. A fundamental question in marine conserva-

tion is whether MPAs can mitigate the effects of large-scale climate

change and anthropogenic impacts on natural communities. The

rationale is that MPAs can promote resilience and adaptation to cli-

mate change by sustaining large populations and diverse

communities15,18. Indeed, our comprehensive analysis of reef fish

timeseries suggests that well-enforced MPAs can buffer the impact of

marine heatwaves on species and community stability by supporting

larger populations, preserving functional richness and maintaining

stronger asynchronous fluctuations compared to open areas.

Marine heatwaves are a major threat to the structure and func-

tioning ofmarine ecosystems and have been associatedwith extensive

and recurrent mass mortality events of marine life and loss of

ecosystem services39,57. Projections suggest thatmarine heatwaves will

becomemore pervasive leading to abrupt changes in ocean climate in

the next decades58,59 and that current warming rates will soon exceed

the thermal safety margin of many species16. A continent-wide eva-

luation of decadal trends in abundance of reef fishes, corals, inverte-

brates and algae around the coasts of Australia, showed significant

population declines followingmarine heatwaves, especially near warm

range edges and for large-size organisms60. Similarly, mass mortality

events of reef-dwelling species are increasingly documented in the

MediterraneanSea,which iswarming at an alarming rate of three times

that of the global ocean57,61. Yet, we found a positive relationship

between fish abundance and marine heatwaves for most trophic

categories in MPAs. Surprisingly, fishes that experienced warming

events beyond their upper realized thermal limit (STI below threshold)

increased in abundance with maximum intensity of marine heatwaves

when protected from direct human disturbance (Fig. 4, lower panels).

In contrast, the abundance of most trophic categories declined with

intensifying marine heatwaves in open areas, regardless of their ther-

mal sensitivity.

Grazers were the only trophic category that showed a con-

sistent trend of increasing abundance with marine heatwaves in

open areas. This outcome was in agreement with previous studies

documenting positive responses of herbivorous fishes to warming,

in terms of increased population abundance, species richness and

tropicalization – i.e. the range expansion of tropical species into

temperate regions18,62,63. However, only grazers with a STI below the

threshold increased in abundance with marine heatwaves in open

areas, whereas those with a STI above the threshold declined. Since

marine heatwaves are generally more intense away from the

tropics37, a trend of declining abundance for trophic groups with

STIs above the threshold could be a consequence of the poleward

decline in grazers and tropicalization impacts63, with warm-water
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Fig. 4 | Thermal sensitivity trends of reef fish. Panels show the trajectories

obtained by fitting Generalized AdditiveMixedModels (GAMMs) to the abundance

(log-transformed and standardized) of four fish trophic categories with thermal

affinities below (thermally sensitive species) or equal-above (thermally resistant

species) the thermal threshold, against mean intensity of marine heatwaves

(MHWs). Thermal thresholds are based on the maximumMHW intensity recorded

at a site during the sampling period. Trends are plotted separately for marine

protected areas (MPA, blue lines, and symbols) and open areas (OA, orange lines,

and symbols); filled areas indicate standard errors; data are shown as z-scores.

Panels includeGAMMeffective degrees of freedom, their significance (***p <0.001;

**p <0.01; *p <0.05) and the coefficients of determination (R2). Full statistical

results are reported in Supplementary Table 4.
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species contributing less and less to the group STI with increasing

latitude. In contrast, a positive trend of abundance with marine

heatwaves for trophic groups with a STI below the threshold could

indicate a transient stage where warm-water species have not yet

established, and native species with low STI values are resisting

intensifying marine heatwaves.

In contrast to grazers, carnivores required a STI value above the

threshold tomaintain a positive trend of abundance at intermediate to

high intensity of marine heatwaves and this occurred only in MPAs.

Fish carnivores include many large body-sized species with relatively

low thermal tolerance, which generally decreases with body size and

trophic position due to highmetabolic demands arising from foraging

activity64. One mechanistic explanation for the negative relationship

between body size and thermal tolerance is that warming enhances

metabolic rates and large organisms may be more thermally limited

than smaller ones owing to physiological constraints (e.g., oxygen

limitation)64. Carnivores are also a major target of commercial and

recreational fishing. Accordingly, carnivores showed a more pro-

nounced peak in abundance in MPAs than in open areas. Whether

these trends were driven by increased dominance of extant thermally

resistant species, expansion of warm-water species, or a combination

of both, will require further analysis.

Remoteness influences various aspects of reef fish ecology. For

example, proximity to human populations was associated with
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reduced biomass of reef fishes, smaller sizes of individuals, and fewer

species40. Distance from direct human disturbance was also a key

feature in maximizing conservation benefits of MPAs8,65. Our results

emphasized the joint effects of remoteness and protection to enhance

the stability of reef fish communities. Specifically, remoteness and

functional richness were the primary pathways promoting species

stability in open areas. Yet, remoteness can also increase the strength

of ecological dependences and specializations, such as between fishes

and corals, and thus increase the vulnerability of remote reefs to

species loss through cascading effects across networks of interacting

species41.

Although numerous studies have documented the positive effects

of individual MPAs on biodiversity, whether these findings also apply

to population and community resilience across entire MPA networks

has remained an open issue66, as has the extent to which spatial scale

affects conservation outcomes. Criteria have been proposed to design

MPA networks that can address multiple conservation benefits,

including increasing resilience to climate change44,45. The location and

separation of individualMPAs is important for determining spatial and

thermal refuges for vulnerable species and ensuring genetic flow and

exchange of individuals through network connectivity15,44,45. Well-

connected MPAs can benefit from the exchange of individuals that

help mitigate local impacts and the effects of climate change15,17,24.

Although knowledge of the dispersal capabilities of many reef fishes is

limited, increasing evidence suggests that long-distance dispersal (10 s

to 100 s of km) may be more common than currently thought52. Our

analysis of MPA networks supported this view. Using graph theory, we

found that geographic isolation did not preclude biological con-

nectivity, suggesting that even the most isolated sites could be part of

a metacommunity network.

Large MPA networks are expected to include a greater breadth of

key habitats and environmental conditions, potentially increasing the

portfolio of responses against climate uncertainties45. Thus, we hypo-

thesized that gamma stability and the underlying stability and asyn-

chrony mechanisms would increase with the spatial scale of MPA

networks. Counter to our expectation, we found no relationship link-

ing stability and asynchrony to spatial scale, number of MPAs and

number of sites in metacommunities. Nevertheless, metapopulation

stability and, to a lesser extent, average alpha and species stabilitywere

consistently greater in MPAs than in open areas. These results support

the hypothesis that MPAs can promote gamma stability by mitigating

population and species fluctuations, suggesting that even small MPA

networks (sites 1-10 kmapart) canprovide conservation benefits tofish

communities.

In conclusion, we provide strong evidence that the benefits of

well-enforced MPAs extended beyond the direct effects of mitigating

human disturbances. By fostering species abundance and stability,

maintaining asynchronous fluctuations and preserving functional

richness, MPAs can help stabilize reef fish communities to abrupt

changes in climate such as those associated with marine heatwaves.

Although reef fishes will be increasingly challenged by the cumulative

effects of humanpressures andglobal change in thenext decades, they

generally have greater margins of adaptation and resilience to marine

heatwaves if released from direct human disturbances. As such, MPAs

have the potential to play an increasingly important role in promoting

reef fish stability in a warming ocean.

Methods
Reef fish timeseries
All analyses were performed in R 4.1.367. We assembled timeseries of

reef fish abundance from two globally distributed databases, Reef Life

Survey (RLS, https://reeflifesurvey.com/) and Reef Check (RC, https://

www.reefcheck.org/), published datasets68,69 and scientific monitoring

programs (Supplementary Table 7). All data consisted of quantitative

surveys of reef fish abundances obtained by a combination of marine

scientists and trained recreational SCUBA divers, using standardized

visual methods. Methodological details, data curation and diver

training are provided in refs. 70,71 for RLS and ref. 72 for RC. All

surveys were conducted along transects, with the exception of data

from ref. 69,whichwereobtained from15-mdiameter cylindrical plots.

Data were aggregated by site and year by summing the abundance of

individual fish species across replicate transects (and cylindrical plots),

when present. We retained sites with at least five years of observation,

which is appropriate for the analysis of stability and population trends

in a wide range of taxa28,50,73. The final dataset consisted of 71,269

timeseries of population abundances from 2269 reef fish species

sampled in 357 MPA and 747 open area sites across 50 Marine Ecor-

egions. Timeseries ranged from 5 to 28 years between 1992 and 2021

(February).

We identified well-enforced MPAs using the criteria set by the

International Union for Conservation of Nature (IUCN)74, as areas

classified either as “No-Take All” or falling in the I-III categories of

protection. Expert opinions fromdata providers and information from

published studies were used to determine the level of enforcement

when IUCN categories were not applicable or the “No-Take” status was

not reported. For example, Medes Islands in the Mediterranean have

IUCN category V and has no reported “No-Take” status, but it is typi-

cally considered a well-enforced MPA75. Similarly, sites included in the

first zoning plan of the Great Barrier Reef Park (GBRP), which was

established in 1981, have neither “No-Take” status reported nor IUCN

category applicable. Co-author ME distinguished between MPAs and

open areas in the dataset provided for both the first and the second

zoning plan, which was established in 2004. Expert opinion matched

IUCN criteria for the second zoning plan, as MPA sites correspond to

IUCN category II and “No-Take-All” status.

Environmental data
We considered two environmental variables as putative drivers of

stability and asynchrony: marine heatwaves as an indicator of thermal

stress and remoteness (the travel time to large cities) as a proxy

measure of direct human pressure. Marine heatwaves were identified

fromdaily Sea-Surface-Temperatures (SST) using theNational Oceanic

and Atmospheric Administration (NOAA) daily optimum interpolation

gridded dataset V2.1 in the period 1 January 1982 to 31 December

202076. The dataset is a blend of observations from satellites, ships,

and buoys and includes bias adjustment of satellite and ship obser-

vations to compensate for platform differences and sensor biases.

Remotely sensed SSTs were obtained through the Advanced Very-

High-Resolution Radiometer and interpolated daily onto a 0.25° x

0.25° spatial grid globally. Datawere downloaded in January 2022 from

https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-

interpolation/v2.1/access/avhrr/.

A marine heatwave can be defined as an anomalously warm water

event with daily SSTs exceeding the seasonally varying 90th percentile

(climatological threshold) for at least 5 consecutive days36,37. The cli-

matologywas derived from the 30-yr period 1982 to 2011.We used this

period as our baseline to identifymarine heatwaves to complywith the

recommendation of using at least 30 years for deriving a climatology,

while limiting the number of instances in which the climatology

extended beyond the year in which amarine heatwavewas identified36.

This occurred at 40 of the 1104 sites used in the alpha stability analysis

and involved less than 2% of the 46,976 marine heatwave events

identified in the study. Removing these sites from the analysis did not

change the results (Supplementary Figure 15). The climatologicalmean

and threshold were computed for each calendar day within a 11-day

window centered on the focal calendar day across all years within the

climatological period. Themean and thresholdwere further smoothed

by applying a 31-day moving average. Two events with a break of less

than 3 days were considered the same marine heatwave. All marine

heatwave events were computed relative to the threshold – i.e. as the
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difference between the observed SST and the threshold SST. Char-

acteristic measures of marine heatwaves, including mean, maximum,

and cumulative intensity, were obtained by pairing events with fish

timeseries at the site level. That is, marine heatwaves characteristics

were aggregated over the sameyears inwhich fisheswere sampled.We

usedmeanmarineheatwave intensity as theprimarymetric to quantify

marine heatwaves, but we also performed a sensitivity analysis based

on cumulative intensity (Supplementary Fig. 4), whereas maximum

marine heatwave intensity was used to define thermal thresholds at

individual sites. Marine heatwaves were identified and analyzed with

the R package heatwaveR77, using SST timeseries with less than 10% of

missing data.

We quantified the “remoteness” of each site as the travel time (in

hours) to the closest major city (>100,000 residents), using the pro-

cedurefirstdeveloped for terrestrial environments byWeiss et al.78 and

adapted to marine localities by Strona et al.41. Briefly, travel time was

computed from a global friction surface map (at the resolution of

1 km2) indicating the average speed at which humans can travel

through each pixel using the fastest possible aquatic and terrestrial

means (thus excluding aerial transportation) and then applying an

algorithm to identify the least-cost path (i.e. the shortest travel time)

from each site to the closest major city41.

Functional richness
Prior to analysis, species names were matched with the World Reg-

ister of Marine Species79 and the FishBase80 database for validation,

accessed through the R packages worrms81 and rfishbase82, respec-

tively. We compiled six traits for each of the 2,269 fish species in the

dataset, representing body size, trophic position, gregariousness,

water position, intrinsic vulnerability to extinction and thermal affi-

nity. These traits covered attributes determining species life history,

trophic ecology, habitat preferences, behavior and species tem-

perature distribution71,83. Gregariousness and water position were

ordered variables, the first coded as solitary, pairing or schooling

categories and the second coded as benthic (sedentary), demersal

(swimming near the bottom), pelagic-reef (swimming away from the

bottom within a reef) and pelagic (swimming away from the bottom

among reefs) categories. The other traits were continuous variables:

body size, reflecting the theoretical maximum size attainable by a

species based on its growth curve; trophic position, describing the

position of each species in the food web; intrinsic vulnerability, a

synthetic index of the likelihood of a species to go extinct in

response to fishing. Finally, thermal affinity, quantified through the

Species Temperature Index (STI), measured the upper realized

thermal niche of each species. This analysis required matching spa-

tial information of species occurrences with long-term SST means.

We obtained species occurrences from the Ocean Biodiversity

Information System (OBIS: https://obis.org/) using the R package

robis84 and SST long-term means for each occurrence location from

the Bio-ORACLE v2.0 database85. To remove possible outliers, we first

pruned the occurrence data by excluding extreme SST – i.e. values

below the fifth and above the 95th percentiles of the temperature

distribution occupied by each species. We then calculated the upper

realized STI as the 95th percentile of the pruned temperature dis-

tribution of each species. All other traits were obtained from

FishBase80. Continuous traits were averaged at the genus or family

level for the fishes that could not be resolved at the species level (8%

of the taxa); for ordinal traits, we first determined the most frequent

attribute across all members within a genus or family and then

converted this trait into the corresponding ordinal score.

Several functional diversity measures can be computed from a

species by trait matrix33. We used the function alpha.fd.multidim in R

package mFD86. The key step of the analysis is the construction of a

multidimensional trait space, which is usually done through a Prin-

cipal Coordinate Analysis (PCoA) applied to a Gower similarity matrix

of the original species by trait matrix. Gower similarity can handle

categorical, ordinal and continuous traits with missing data simulta-

neously, which is a desirable property for fish traits, which typically

include variables of different nature, as in our analysis87. PCoA axes

define a reduced multidimensional trait space within which several

indices of functional community structure can be obtained at the site

scale. We used the first three PCoAs in our analysis, which explained

40% of the variance on average, as a compromise between quality of

trait space representation and computational speed. We focused

primarily on functional richness, the proportion of the multi-

dimensional trait space filled by all species in a site, as this measure

was independent of other functional indices (correlation coefficients

and 95% confidence intervals – functional richness vs. functional

diversity: 0.066, 0.007–0.12; functional richness vs. functional even-

ness: 0.018, −0.04-0.08; functional richness vs. functional dispersion:

0.09, 0.03–0.15), which were significantly correlated (correlation

coefficients and 95% confidence intervals – functional diversity vs.

functional evenness: 0.15, 0.09–0.21; functional diversity vs. func-

tional dispersion: 0.54, 0.50–0.58; functional evenness vs. functional

dispersion: 0.31, 0.26–0.37). Furthermore, these alternative indices

performed less well than functional richness in SEMs (see Methods:

Sensitivity analyses and null models).

Stability and asynchrony
We computed six measures of stability: alpha and species stability at

the site scale and gamma stability (GAS), average alpha stability (AAS),

average species stability (ASS) and metapopulation stability (MPS) at

the metacommunity scale5,27,32,50,88 (within ecoregions).

Alpha stability at the site scale was simply the inverse of the

coefficient of variation of total fish abundance at a site:

³Stab,i =
μi

Ãi
ð1Þ

where μi and Ãi are the temporal mean and standard deviation of total

fish abundance at site i, respectively.

Species stability at the site scale was the mean stability among

species weighted by relative species abundance:

SPStab,i =
X

jðiÞ

μjðiÞ

μi

ÃjðiÞ

μjðiÞ

 !�1

ð2Þ

where μjðiÞ and ÃjðiÞ are the temporal mean and standard deviation of

abundance of species j at site i, respectively.

Gamma stability was obtained as:

GAS=
μM

ÃM
ð3Þ

where μM and ÃM are the temporal mean and standard deviation of

total fish abundance in metacommunity M.

Average alpha stability in a metacommunity was calculated as the

sum of the stability values of individual sites, weighted by relative site

abundance in the metacommunity:

AAS=
X

i

μi

μM

Ãi

μi

 !�1

ð4Þ

Average species stability was obtained by summing the weighted

stability of individual species in a site (from Eq. (2)) over sites and
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weighting by site relative abundance in the metacommunity:

ASS=
X

i

μi

μM

SPStab,i

 !�1

ð5Þ

where μjðiÞ and ÃjðiÞ are the temporal mean and standard deviation of

abundance of species j at site i.

Finally, metapopulation stability was computed as the sum of the

stability of total population abundance for each species in the meta-

community, weighted by relative species abundance:

MPS=
X

j

μj

μM

Ãj

μj

 !�1

ð6Þ

where μj and Ãj are the temporal mean and standard deviation of total

abundance of species j in the metacommunity.

We computed five measures of asynchrony: species asynchrony

at the site scale and spatial community asynchrony (SCA), spatial

species asynchrony (SSA), average species asynchrony (ASA) and

metapopulation asynchrony (MPAS) at the metacommunity scale.

We first quantified synchrony using both Gross and Loreau and

de Mazancourt (LdM) measures27,46,50,89 and then converted these

measures into asynchrony by changing sign (Gross) or by subtracting

synchrony from unity (LdM). Gross et al.46 quantified the average

synchrony among species in a community as the mean correlation

coefficient between the temporal abundance of each species vs. the

temporal vector of the total abundance of all the other species. The

index varies between −1 and 1, reflecting maximum synchrony and

asynchrony, respectively, after changing sign. We used the modified

version of Gross index that weights correlation coefficients by rela-

tive species abundance50:

·i = �
X

j

μjðiÞ

μi

r AjðiÞ,
X

k≠j

AkðiÞ

0

@

1

A

2

4

3

5 ð7Þ

where ·i is the weighted asynchrony index at site i and the term

rðAjðiÞ,
P

k≠j AkðiÞÞ indicates Pearson’s r correlation between the tem-

poral vector of abundances of species j in site i (AjðiÞ) and the vector

originating from the sum of the abundances of all the remaining k

species in the community (AkðiÞ). Spatial community asynchrony

quantified the average dissimilarity of temporal fluctuations among

sites in a metacommunity, weighted by relative site abundance:

SCA= �
X

i

μi

μ
rðAi,

X

m≠i

AmÞ

" #

ð8Þ

whereAi is the temporal vector of total community abundance at site i

and
P

m≠i Am is the temporal vector originating from the sum of the

abundances over the remaining m sites in the metacommunity. Fol-

lowing the same rationale, spatial species asynchrony quantified the

average dissimilarity of temporal fluctuations among populations in

the metacommunity, weighted by relative species abundance:

SSA= �
X

i

X

j

μjðiÞ

μi

μi

μ
rðAjðiÞ,

X

m≠i

AjðmÞÞ

" #

ð9Þ

were AjðiÞ is the temporal vector of the abundance of species j in site i

and
P

m≠i AjðmÞ is the temporal vector of total fish abundance summed

over the remainingm populations of species j in the metacommunity.

Average species asynchrony quantified the average dissimilarity of

temporal fluctuations among all species in a site (Eq. (7)) averaged

among sites and weighted by relative site abundance in the

metacommunity:

ASA= �
X

i

μi

μ
·i

� �

ð10Þ

Finally, metapopulation asynchrony quantified the dissimilarity in

temporal fluctuations among total species abundances, weighted by

relative species abundance in the metacommunity:

MPAS = �
X

j

μj

μ
rðAj ,

X

k≠j

AkÞ

2

4

3

5 ð11Þ

where Aj is the temporal vector of the total abundance of species j in

the metacommunity and
P

k≠j Ak is the temporal vector of total fish

abundance summed over the remaining k species in the

metacommunity.

For comparative purposes we recalculated all asynchrony mea-

sures from 1- Ç, with Ç indicating LdM synchrony:

Ç=
Ã2

P

j

Ãj

 !2
ð12Þ

where Ã2 is the variance in total fish community abundance and Ãj

is the temporal standard deviation of abundance of species j. Equation

(12) can bemodified toquantify asynchrony at all the hierarchical levels

addressed in Eqs. (7)–(11) (see also ref. 32).WeightedGross asynchrony

was computed using a custom function, whereas LdM asynchrony was

computed using function synchrony in the R package codyn90.

Data analysis
Community-level analysis. We used Linear Mixed Effect Models to

examine the relations between alpha stability (Eq. (1)), species stability

(Eq. (2)), species asynchrony (Eq. (7), functional richness and their

putative drivers (marine heatwaves and remoteness) and to fit piece-

wise Structural Equation Models (SEMs)49. All models included a ran-

dom intercept for study ID, which coded for the different data sources

(Supplementary Table 8) and accounted for possible generic differ-

ences in methodology among monitoring programs. In addition, we

explicitly controlled for sampling effort by including the total area

sampled at each site in each year as an offset in all models (see section

below, Controlling for sampling effort, for details). All variables were

standardized to z-scores (scaled and centered over the entire dataset)

prior to analysis to provide a common scale for both responses and

predictors; stability measures, remoteness and sampled area were log-

transformed before standardization to improve normality. We first

examined separate relationships forMPAs andopen areas tomatch the

models used in SEM, but also tested for interactions between pre-

dictors of stability, asynchrony species and functional richness and

level of protection. The adequacy ofmodel fits was assessed through a

variety of diagnostics, based primarily on visual assessment of resi-

duals using the R package performance91.

SEMs were generated separately for MPAs and open areas to

reflect the hypothesized direct and indirect casual pathways among

alpha and species stability, species asynchrony, functional richness,

marine heatwave mean intensity and remoteness. We fitted individual

pathways using the same model structure and variable transforma-

tions employed in mixed-effect models. Marine heatwaves and remo-

teness were exogenous variables in all models, whereas alpha stability

was only an endogenous variable. All other predictors were both

endogenous and exogenous variables. We started by fitting nearly-

saturated global models where each endogenous variable included

paths from all exogeneous variables in addition to the remaining
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endogenous variables, but avoiding reciprocal paths between the

same variables. The only exception was the relationship between

species stability and asynchrony, which was not considered since we

hadno apriori hypothesis about the direction of a causal path between

these variables. Thus, functional richness was initially modeled as a

function of marine heatwaves and remoteness; the models for species

stability and asynchrony included functional richness and its pre-

dictors (marine heatwaves and remoteness); alpha stability was mod-

eled as a function of all the other variables. We used Fisher’s C statistic

to evaluate the adequacy of the global models to reproduce the

hypothesized causal paths49. A model can be considered adequate

when the C statistic is not significant (p > 0.05). The initial model for

open areas was properly specified (Fisher’s C = 0.1, 2 d.f., p >0.05),

whereas the MPA model was not (Fisher’s C = 7.7, 2 d.f., p <0.05).

Removing the not significant link (p >0.5) from remoteness to func-

tional richness improved the MPA model making Fisher’s C not sig-

nificant (C = 8.65, 4 d.f., p > 0.05). Results are shown as standardized

effect sizes; direct and indirect effects (Fig. 3c, Supplementary Fig. 5)

were extracted from SEMs using function semEff from the same R

package92. Confidence intervals for standardized effects sizes were

derived by nonparametric bootstrap of the fitted modes using func-

tion bootEff in package semEff.

Wemodeled thermal sensitivity trends usingGeneralizedAdditive

Mixed Models (GAMMs) to account for the non-linear relationships

betweenMWHs and the abundance of the four fish trophic categories.

GAMMs included a tensor smooth term of marine heatwaves in inter-

action withMPA and open area conditions and a random smooth term

for study ID. The main effect of MPA vs. open areas was evaluated in

the linear part of the model. Assumptions were assessed visually by

evaluating the distribution of model residuals, plots of residuals vs.

fitted values and the linearpredictor andplots of deviance residuals vs.

theoretical quantiles. GAMMs were fitted using function gam in R

package mgcv93.

Controlling for sampling effort. Our analysis required controlling for

sampling effort. Although sampling methods of reef fish abundance

were consistent within individual survey programs, the total area

sampled varied among sites due to differences in the number of

replicates and, for different programs, in the size of individual

transects94. One way to account for sampling effort when investigating

population trends is todivide abundance (counts) by sampled area and

analyze the resulting density estimates. Unfortunately, this was not a

viable approach for our analysis of stability and asynchrony because

sampled area was a constant at any given site and dividing fish abun-

dances (or any other variable) by a constant results in exactly the same

values of stability and asynchrony as those obtained analyzing the

original data. That the coefficient of variation – from which our mea-

sures of stability are derived –does not changewhen the input data are

multiplied by a constant, is a well-known property of this statistic95.

The same applies to measures of asynchrony since dividing timeseries

of fish abundances by a constant leaves the relative differences among

timeseries unchanged.

An alternative way to control for sampling effort is to include an

offset in the model96. An offset is a fixed quantity associated with each

observation that is used to scale the response variable, such that its

influence is accounted for in the model. The offset is added to the

linear predictor with a fixed coefficient of 1 (i.e. no regression coeffi-

cient is estimated for an offset) and the scaling is simply achieved by

subtracting the offset from the response variable. When both the

response and the offset variables are log-transformed, the scaled

response variable becomes a log-response ratio (since the difference

between two log-transformed quantities is equivalent to the logarithm

of their ratio), which is the typical use of an offset in Poisson or

binomial regression to model rates or proportions. Nevertheless, off-

sets can be included in other types of regression models and they are

commonly employed in studies that combine data from multiple

programs with varying levels of sampling effort, such as in bird

surveys96,97.

Scaling the response variable by the offset requires that both

variables are on the same scale. Thiswas achievedby standardizing (i.e.

scaling and centering) the response and the predictor variables,

including the offset (sampled area), to z-scores. Thus, our community-

level analysis shows fitted trends for scaled variables obtained as the

difference between each response variable and the offset, after

standardization.

Indeed, an offset may not be needed in linear models, where one

could simply work with log-response ratios98. We show this equiva-

lence in Supplementary Fig. 5, where the whole analysis is repeated by

dividing each response variable by sampling effort (both log-trans-

formed) and removing the offset from the linear model. This analysis

does not assign any fixed coefficient to sampling effort, since it is now

part of the response variable. Results are very similar to thoseobtained

with anoffset (e.g., the stronger negative relationbetween stability and

marine heatwave intensity in open areas compared to MPAs). These

outcomes reassure that our analysis is robust to specific choices of

data transformation and that similar results are obtained whether

scaled response variables are expressed as log-response ratios or as

differences between standardized variables through the offset. We

opted to present results based on the offset in themain text, since this

improved data visualization compared to log-response ratios (com-

pare Fig. 2b–k and Supplementary Fig. 1 with Supplementary Fig. 5).

Metacommunity networks and connectivity. We derived minimum

spanning tree graphs (networks) from geographic (least-coast path

distance by the sea) and biological (using Jaccard dissimilarity) dis-

tances for each metacommunity. A minimum spanning tree includes

the minimum number of shortest distances to maintain all sites

(nodes) connected without closed paths among nodes54. We then

computed degree and closeness centrality to characterize the topol-

ogy of each metacommunity network and to investigate the relation-

ships between geographic and biological connectivity. Specifically, we

employed least-squares linear regression to relate closeness centrality

measured on a geographically-derived graph to degree centrality

measured on a biologically-derived graph. We used functions gra-

ph.adjacency, mst, strength and closeness from package igraph99 to

generate networks from distance matrices, derive minimum spanning

trees and to calculate degree and closeness centrality, respectively.

Degree and closeness centrality were weighted by 1/distance and

scaled before analysis. Jaccard dissimilarity was computed using

function vegdist in package vegan100.

Metacommunity stability and asynchrony. We compared meta-

community stability and asynchrony between MPAs and open areas

within ecoregions. First, we selected ecoregions that had at least two

MPA and two open area sites sampled simultaneously for at least five

years. This was necessary to obtain comparable stability and asyn-

chrony measures. There were 12 ecoregions that met these criteria.

Since there were many possible ways to combine sites and years, we

developed an algorithm to select the combination of years that max-

imized the number of MPA and open area sites (an alternative algo-

rithm that maximized the length of matching timeseries yielded too

few sites in most ecoregions).

Second, we calculated a matrix of least-cost path distances by the

sea (i.e. avoiding landmasses) among the selected sites for each of the

12metacommunities using function costDistance from terrapackage in

R101. We used these distance matrices to match MPA and open area

sites within the spatial scale defined by the maximum distance separ-

ating any two MPA sites within an ecoregion. For each MPA site we

identified all other MPA and open area sites within the defined spatial

scale and computed all metacommunity stability and asynchrony
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measures from these sites. This procedurewas repeated for allMPAs in

a metacommunity and the results were averaged. Inevitably, all MPA

sites became selected at each iteration (they were all included within

their maximum distance, by definition), thus, only the stability and

asynchrony measures obtained from one iteration were retained for

MPAs. As a sensitivity test, we repeated the analysis by matching MPA

and open area sites within a spatial scale of 50-100 km, which was

intermediate between the maximum distances separating MPAs in

metacommunities (Supplementary Table 5), with 100 km representing

a potential upper limit of direct fish dispersal40,56. Although our

matching procedure used the same sites more than once, averages

were independent between MPAs and open areas.

Third, we compared the stability and asynchrony measures

betweenMPAs and open areaswithin each of the spatial scales defined

above. To do so, we developed a simulation approach to obtain robust

estimates of variances for each stability and asynchrony measure and

level of protection. Although we had access to primary fish abundance

data, Eqs. (2)–(6) and Eqs. (8)–(11) necessarily generated a single value

for each metacommunity precluding the direct estimation of var-

iances. We addressed this problem through a Jacknife (leave-one-out)

simulation approach, which consisted in recalculating all stability and

asynchrony measures for each metacommunity by excluding one

species at the time. The resulting variances were used to derive the

Hedge’s g effect size of thedifferencebetweenMPAs andopen areas for

each measure, which we analyzed in a Bayesian meta-analytical fra-

mework. We used a model of the following form:

ym = gaussianð»m, Ã
2
mÞ ð13aÞ

»m = gaussianðμ, ÇÞ ð13bÞ

where ym was the estimated Hedge’s g effect size for any of the mea-

sures analyzed in metacommunitym, which was assumed to originate

from a Normal distribution centered on the true effect size »m with

variance Ã2
m. Metacommunity m was considered a random sample

from a population of possible metacommunities, such that »m itself

originated from a Normal distribution with true mean μ (the true

population-level effect size) and dispersion parameter Ç. We used

weakly informative priors for parameters (a normal priori for μ and a

Cauchy prior for Ç):

Pr μð Þ=N 0, 1ð Þ ð13cÞ

Pr Çð Þ=Cauchy 0, 1ð Þ ð13dÞ

Separate models were fitted for each metacommunity stability

and asynchrony measure using function brm from the brms R

package102. Models run for 4000 iterations, 1000 burn-in iterations

and 4 chains; other tunable parameters in brm function were left to

their default value. Model convergence was assessed through visual

inspection of trace plots and ensuring that the R̂ parameter – a key

diagnostic of convergence – was equal to unity. Since gamma stability

was examinedwithinmetacommunities, whichgenerally included data

from individual programs with consistent methods and sampling

effort, an offset was not included in these analyses. Finally, we exam-

ined the relations between posterior distributions and three attributes

of MPA networks, spatial scale, number of MPAs and number of sam-

pled sites, through linear regression.

Sensitivity analyses and null models
We performed a series of additional tests to evaluate the sensitivity of

our results to analytical detail and methodological differences among

monitoring programs. Checks were particularly needed for

community-level analyses, which compared data across monitoring

programs.We assessed the robustness of results and conclusions from

the analysis of alpha stability to specific choices of asynchrony (Gross

vs. LdM) and functional measures (richness, diversity, evenness, dis-

persion) and to detrending of timeseries47. All functional measures

were weakly associated with alpha stability and asynchrony, but

functional richness had stronger path coefficients than the other

functional measures in SEMs and resulted in a lower Fisher’s C score

contributing to a better representation of the hypothesized casual

pathways.

Monitoring programs differed in their taxonomic scope: although

most of them were designed to survey all the species occurring in

sampling units, some targeted a pre-determined subset of the species

(e.g., RC). We performed two analyses to evaluate whether differences

in taxonomic scope and other methodological details among mon-

itoring programs affected the main results. First, we evaluated the

robustness of one key result, the positive effect of MPAs on alpha and

species stability, asynchrony and functional richness with intensifying

marine heatwaves, by excluding study IDs with 50 species or less

(Supplementary Fig. 6). Second, we used sample coverage48 to evalu-

ate whether fish communities were adequately sampled in MPAs and

open areas, regardless of differences in taxonomic scope, sampling

effort and size of sampling units (transects, cylindrical plots) among

monitoring programs. Sample coverage is a measure of sample com-

pleteness and gives the proportion of the total number of individuals

in the community that belong to the species represented in a sampleof

that community. Sample coverage can be calculated by rarefying

(subsampling) the community, or by extrapolating abundance or

incidence data to a pre-determined value (typically, twice the total

observed abundance or number of samples)48. Subtracting sampling

coverage from unit gives the “coverage deficit”, the probability that a

newly added individual (for abundance data) or sampling unit (for

incidence data) belongs to a previously unseen species in the sample.

We compared sample coverage between MPAs and open areas for

different size categories of sampling units (transects or cylindrical

plots) using function iNEXT in the same R package103.

Although most programs started after the enforcement of pro-

tection, some (e.g., theGBRP) embracedboth before and after periods.

These timeseries could include spikes of fish abundance and diversity

in response to protection that may not have occurred in timeseries

including only after data, with unknown consequences on estimates of

stability and asynchrony. To assess this potential bias, we repeated the

analysis of alpha stability by excluding data sampled before the

establishment of an MPA from those timeseries that encompassed

both periods. Results were qualitatively similar to those of the main

analysis and are thus not reported here.

Finally, we ran null models to assess whether fish species fluc-

tuated more or less asynchronously than expected by chance in

metacommunities. Null models consisted of 999 iterations of the

cyclic shift algorithm, a common method to preserve temporal auto-

correlation in simulated timeseries. We applied the cyclic shift algo-

rithm independently to each individual species at a site. Observed

timeseries were considered one realization of the null model and were

combinedwith those originated by the cyclic shift algorithm, using the

function cyclic_shift in R package codyn90.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
All the data required to reproduce the results of this study have been

deposited in the Figshare database under accession code https://

figshare.com/s/ffa4f5cb22799532bbc1 and onGithub at https://github.

com/bencecc/ReefFishStability104. Global SST data can be accessed at
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https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-

interpolation/v2.1/access/avhrr/. Fish abundance data were obtained

from: Reef Life Survey (https://reeflifesurvey.com/), Reef Check

(https://www.reefcheck.org/), BioTime (https://onlinelibrary.wiley.

com/doi/10.1111/geb.12729), the Long-Term Monitoring of Coral Reef

Fish Assemblages in the Western Pacific (https://www.nature.com/

articles/sdata2017176). Additional data were provided by co-authors

D.J.K., D.C.R., M.J.E., B.H.C., E.J.G., N.S.B., G.J.E., J.A.G.C., E.A,. B.H.

Code availability
Analyses were run in R version 4.1.3. The code used in this study is

available on GitHub104.
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