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Pivotal Auto-Encoder via Self-Normalizing ReLLU

Nelson Goldenstein

Abstract—Sparse auto-encoders are useful for extracting low-
dimensional representations from high-dimensional data. How-
ever, their performance degrades sharply when the input noise at
test time differs from the noise employed during training. This
limitation hinders the applicability of auto-encoders in real-world
scenarios where the level of noise in the input is unpredictable. In
this paper, we formalize single hidden layer sparse auto-encoders
as a transform learning problem. Leveraging the transform
modeling interpretation, we propose an optimization problem
that leads to a predictive model invariant to the noise level at
test time. In other words, the same pre-trained model is able to
generalize to different noise levels. The proposed optimization
algorithm, derived from the square root lasso, is translated
into a new, computationally efficient auto-encoding architecture.
After proving that our new method is invariant to the noise
level, we evaluate our approach by training networks using
the proposed architecture for denoising tasks. Our experimental
results demonstrate that the trained models yield a significant
improvement in stability against varying types of noise compared
to commonly used architectures.

Index Terms—Sparse coding, transform learning, sparse auto-
encoders, square root lasso.

I. INTRODUCTION

sparse auto-encoder is a type of artificial neural network
A that learns efficient data encodings through unsupervised
learning [1]. The purpose of an auto-encoder is to capture
the most important elements of the input to learn a lower di-
mensional representation for higher dimensional data, such as
images [2]. It is commonly used for dimensionality reduction
or feature extraction. The sparse auto-encoder architecture con-
sists of two modules: an encoder and a decoder. The encoder
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compresses the input data into an encoded representation in a
different domain, which is forced to be sparse. It then processes
and filters the encoded data representations so that only the most
important information is allowed through, preventing the model
from memorizing the inputs and overfitting. The final module
of the network, the decoder, decompresses the extracted sparse
representations and reconstructs the data from its encoded state
back to its original domain.

Interestingly, the observation that natural data can often be
accurately approximated by sparse signals has been a prominent
framework over the last twenty years [3], [4], [5]. Specifically,
the transform model [6]—a generalized analysis sparse repre-
sentation model—assumes that a signal = € R™ has a sparse
representation z* € R? over a particular transformation W €
R*™ to another domain, i.e.,

Wz =z*, where ||2%]|o < d, ()

where ||-||o counts the number of nonzero elements of a vector.
This representation is typically a higher dimensional signal,
i.e., d > n, and this is the setting that we assume in this work.
When n = d and W is of full rank, the transformation forms a
basis, whereas when d > n, the transform is considered to be
overcomplete. In situations where we observe a noisy version y
of the clean signal x, corrupted by additive noise, the equation
becomes

Wy=2z"+e,

where e denotes the error or residual in the transform domain.

In this context, the task of finding the sparse representation
of a signal given W is called sparse coding. The first module of
a sparse auto-encoder—the encoder—can be formally written
as a transform sparse coding problem:

. 1
Z = arg min §||Z_Wy||§+/\||z||1, @)

where Z is the estimated latent space representation, W is a
known transformation, and A € Ry is a hyperparameter. The
optimization problem in (2) minimizes the transform residual e
with a sparse prior for z to estimate z*. The parameter A governs
the trade-off between sparsity and residual error. Observe that
the optimal selection of A is dependent on e since z* — Wy = e;
hence, the value of A ought to be calibrated to increase with the
magnitude of e.
The closed form solution to the encoding problem (2) is

Z = Proxy| |, (Wy) =S\(Wy),

where  prox;(v) = argmin, (f(z) + 3llz —v[?) is the
proximal operator and Sy is the soft-thresholding operator
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Sx(x) = sign(z)max(|z| — A, 0). If we add the assumption of
non-negativity of z*, the solution can be rewritten as

Z=ReLU(Wy — \),

where ReLU(z) = max(z, 0). From this expression we under-
stand the influence of A on the solution and its role in filtering
perturbations. Higher values of A lead to lower and sparser
solutions. Therefore, as mentioned earlier, the optimal value of
A is a function of the noise; the stronger the noise, the larger A
must be.

The decoder can also be written as an inverse operation
following the same model. Formally, given W and Zz, we can
obtain a least squares approximation to the true signal = by
minimizing ||Wz — Z||3 with respect to z. Thus, the recovered
signal is

=Wz,

where W is the pseudoinverse of W. In particular, if W has
full column rank, W+ = (WTW)-1WT.

The connection between the transform model (1) and sparse
auto-encoders is clear. The linear transformation W represents
the weights of any combination of linear layers, including con-
volutional operations, and A is the bias parameter; and both are
trainable parameters of the network. This connection has been
successfully applied to numerous computer vision and image
processing tasks [7]. When adapted to deep learning, it has
demonstrated state-of-the-art performance in various machine
learning applications, such as image classification [8], online
video denoising [9], semantic segmentation of images [10],
super-resolution [11], clustering [12], and others.

The main problem of the presented encoder algorithm (2) is
the bias parameter \. The optimal selection of A is influenced
by the noise, which means its ideal value varies with differing
noise levels. Indeed, the optimality conditions for the correct
estimation of the sparse representation z* are not guaranteed
at different noise intensities, even for a known W. In other
words, the model’s performance may deteriorate significantly
if the noise level at test time is different from the one used
during training [13]. Therefore, the network must be re-trained,
and a different bias must be learned for each noise level [14].
Moreover, in an environment where the noise is unknown, as in
most practical cases, finding the best bias becomes infeasible:
it is impossible to choose the correct bias without estimating
the noise level.

Our contribution. To overcome the dependence of the bias
A on the noise level, we draw inspiration from the square root
lasso problem, introduced by [15] and detailed in Section II-A,
and propose a modification of the transform sparse coding
algorithm for the encoder module

Z=argmin||z — Wyll2 + Al|z||1. 3)
Notice that the residual term is no longer quadratic. The main
advantage of (3) is that the hyperparameter \ is now pivotal
to the noise energy. In other words, the optimal choice of
A is independent of the noise level, which is difficult to
estimate reliably because it is an ill-posed problem [16]. We

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

prove in Section III that this property holds in the presence of
both bounded noise and additive Gaussian noise. This stands in
sharp contrast to vanilla sparse auto-encoders, where one needs
to know the true standard deviation of the noise to fit the bias
of the original transform sparse coding problem (2).

Furthermore, we propose an efficient and differentiable al-
gorithm to solve the new pivotal sparse coding problem based
on proximal gradient descent, as described in Section IV. Our
algorithm is differentiable in the sense that it is compatible with
gradient-based optimization techniques, enabling the minimiza-
tion of a cost function through methods such as automatic dif-
ferentiation and backpropagation. This leads to the development
of a novel non-linear function called Self Normalizing ReLU
(NeLU), which easily integrates into common neural network
architectures. In Section V, we conduct numerical experiments
using both synthetic and real data to illustrate how our approach
is significantly more resilient to various noise levels.

II. RELATED WORK
A. Synthesis Sparse Modeling of Signals

We begin by introducing a framework parallel to the analysis
sparse representation model, presented in Section I, named the
synthesis model. This model serves as the premise for intro-
ducing the square root lasso algorithm, which we will extend
to the transform model. The synthesis model assumes that a
signal z € R™ can be represented as a linear combination of a
few columns, called atoms, from a matrix D € R"*% named
dictionary. In plain language, the signal corresponds to a mul-
tiplication of a dictionary by a sparse vector z* € RY, i.e.,

r=Dz".

Various algorithms have been proposed to implement the
sparse coding task of estimating z* given x [17]. These include
the matching pursuit [18] and the basis pursuit [19], also called
lasso in the statistics literature [20]

o1
min |l — D2[|3 + Ar|2]1. )

As with (2), the primary drawback of lasso is that the optimal
value of the parameter Ay, is dependent on the noise level and,
therefore, must be adjusted for each specific noise level. For
example, in a Gaussian noise environment, \; proportional
to o+/logd/n is minimax optimal for signal reconstruction,
| — z||2, in high dimensions [21]. Therefore, to achieve a good
estimation of z* or prediction of x for an unknown noise level,
one must estimate o.

Square root lasso. A modified version of the lasso has been
proposed to solve the dependence of A on noise power, called
square root lasso [15]

.1 D A\
min —ly — Dzl + Az 2l
which takes the square root of the error term of (4). Belloni
et al. [15] have proven that the square root lasso achieves
minimax optimality of estimation and signal reconstruction
error for a hyperparameter A 7, which is pivotal to the noise
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level. For instance, in the case of Gaussian noise, the minimax
optimal A 7 is proportional to y/logd/n, which is indepen-
dent of o and leads to a constant parameter for all Gaussian
distributions. Moreover, numerous algorithms have been de-
veloped to efficiently solve the problem based on its convex
property [21].

Although the square root lasso is powerful and attractive, it
has never been applied in the context of dictionary learning or
adapted to form a novel neural network architecture. In this
work, we draw an exciting connection between the square root
lasso and transform modeling. The extension to synthesis model
and dictionary learning is a direct consequence of the analysis
of the transform learning since (3) can be seen as a particular
case of (5), where D = I and the input signal is Wy. Further
details are provided in Appendix B.

B. Transform Learning

As elaborated in Section I, the transform model and sparse
auto-encoders are tightly connected. The forward pass in sparse
encoders essentially acts as a sparse representation pursuit
within the transform model. In this framework, the transforma-
tion is characterized by the weights within a set of layers, which
may include convolutional ones. Thus, the transformation is
also learned during the model training process. This method
of deriving the transformation directly from the data is known
as transform learning.

At its core, transform learning [22] employs a data-driven
feature extractor to transform input data into a suitable repre-
sentation. This approach can improve upon the limited abil-
ity of analytical transformation methods, such as wavelets,
to handle data. As a result, transform learning often yields
superior restoration performance compared to the analytical
approaches [6].

Transform learning is comparable to dictionary learning from
an analysis perspective [23]. In dictionary learning, a basis D
is trained to recover the data, x = Dz, from the representation
z* [24]. In contrast, transform learning aims to learn a transfor-
mation W to generate the representation z*. Since the transfor-
mation W is data-dependent and the output representation z*
is unknown, jointly learning both is a challenging task.

In this work, we propose a new learning problem that com-
bines the transform model with deep learning through the inter-
pretable framework of transform learning. Our objective is to
demonstrate that our method can exhibit the interesting prop-
erties of the classical problem established in Section III. We
extend our algorithm to the transform learning framework and
demonstrate its effectiveness in enhancing the robustness of
deep learning through experiments in Section V.

C. Blind Denoising Networks

Blind denoising is the task of removing noise from an in-
put signal when the noise magnitude is unknown at test time.
This task is closely related to our objective. Several meth-
ods have been proposed to tackle this task, with the most
common approach for blind denoising being to estimate the
noise distribution (or simply the noise level) to identify and
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remove it from the signal [25], [26], [27]. However, this
method lacks flexibility because it requires learning different
weights for each noise level and solving the difficult problem of
noise estimation.

In contrast to this approach, where all weights are learned
from scratch for each noise level, some existing methods recog-
nize that not all weights depend on the noise and only adjust the
regularization parameters, such as the bias in the case of auto-
encoders, for different noise levels [14]. This method reduces
the overall number of network parameters to be learned, but
they still need to be adjusted for each noise level.

Another standard technique, which emerged alongside the
advancement of deep learning in computer vision tasks, is
to train one model across a wide range of expected noise
levels [28]. In this case, the denoising performance of such
a model is generally inferior compared to a model trained
for a specific noise distribution [29]. Moreover, it has been
shown that a model trained using this method tends to focus
on the average noise level of the training range, rather than
learning generalizable weights for all noise levels. To address
this issue, Gnansambandam et al. [29] proposed determining
the optimal noise training sample distribution from a mini-
max risk optimization perspective. The approach proposed in
[29] is orthogonal to ours, as it does not suggest modify-
ing the network architecture but instead focuses solely on the
training strategy.

In this work, we propose a new architecture for implementing
(3) that is inherently noise level independent. Our theoretical
study, presented in Section III, shows that the same model
parameters achieve high-quality signal recovery across all noise
levels when learned correctly. Indeed, our experimental results
indicate that a single neural network can be trained and prac-
tically applied to handle all noise levels, without re-training or
updating the bias term.

III. THEORY

We begin by formally restating the transform model from
Section I. Specifically, we consider a sparse linear model in high
dimensions for a noisy signal

y=z+¢,

where x € R" is the clean sparsifiable signal and £ € R™ de-
notes the random additive noise. Thus, applying a given trans-
formation W to y yields

Wy=W(@x+&=Wa+WE=z2"+e.

Here, the goal is to recover the clean sparse representation z* =
Wz, while e = W is the error.

In the following subsections, we demonstrate that the desired
properties of the square root lasso also hold for the sparse
encoding problem (3), given a known transform W. Specifi-
cally, the parameter A\ is pivotal to the noise level, and as a
result, not only can the solution of (3) be computed efficiently,
but all parameters of the problem are also independent of the
noise level. We prove that the recovery of the correct support,
i.e., the group of nonzero elements {i € [d] : |z]| > 0}, and the
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bound on the estimation error, ||Z — z*||2, can be extended to
our proposed new optimization problem under the presence of
bounded noise.

A. Support Recovery

First, we prove the recovery of the correct support in the pres-
ence of bounded noise, a prevalent scenario in the robustness
literature [30], [31]. Subsequently, we extend these results to
Gaussian noise within a probabilistic setting. To prove these
results, the following assumptions are necessary.

Assumption 1: The noise ||£]|2 is bounded.

Consequently, ||e]|2 is also bounded since

llell2 < smaxll€]l2 £ €

where spax 1S the largest singular value of WW.
Assumption 2: There exists a minimal positive number 7) that
satisfies the condition

A[2" [l < me.

The constant 7 represents the ratio between the regularization
term \A||z*||; and the noise threshold ¢, which is the value of the
reconstruction error term when z = z*. A smaller value of 7
implies that the regularization term is proportionally smaller,
leading to reduced shrinkage and potentially more accurate
signal recovery.

Theorem 1: Let Assumption 1 be satisfied, let 1 satisfy
Assumption 2. Then, for

_ llelloo
- bl
lefl2

A

and Z be the solution to (3), we get that
IZ = 2" |0 S A2+ n)e.
Moreover, if

min | 27| > 2A(2 + n)e,
min || > 222+ n)e

then the estimated support
S={jeld: |5 >A\2+n)}

recovers the true sparsity pattern S = {j € [d] : |z;| > 0} cor-
rectly, i.e.,

S=3S.

Proof of Theorem 1: Our derivation is inspired by the one
in [32]. For the solution Z of (3), we have:

2= 2"l =l =€l (E=Wy—2)

< €l + llelloc

< [[€lloo + Ae. (©6)
We bound ||€]| « using KKT sub-gradient optimality conditions,

[Elloo < All€]]2- )
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It now remains to bound |e||o, which is done with Assump-
tion 2. By minimality of the estimator,

l[ellz + AllZl < llell2 4+ Allz"[|x
l[ell2 < llellz + All2"[lx
<et e ®)
Combining equations (6), (7) and (8), we get:
12— 2% |loo < ||€lloe + Ae < A(n+ 1)e + Ae.

This proves the bound on ||Z — z*|| . Finally, the correct sup-
port recovery follows directly from Theorem 4.1 in [33]. [

Remark 1: 1t is essential to highlight that A\ maintains the
same value across different noise levels. For example, let &;
be a realization from a standard normal distribution A/ (0, I)
and define {; = 0&;, for any standard deviation o € R,. Con-
sequently, we obtain

o lelloe _ IWeille _ IWealloo
el W&z W&l
This observation underscores the importance of our choice of A,
as it is independent of ¢ and remains consistent across various
noise levels.

On a different note, we can deduce that the correct support
can be fully recovered if the signal-to-noise ratio is sufficiently
high, as formally stated in Theorem 1. Furthermore, A can be
conveniently bounded in all cases by

1o llelloe )
vn llell2

A bound for A can be used to guarantee that no false positive

support error occurs. Improved bounds can be achieved with

additional assumptions on the noise. In fact, we investigate this

aspect for the Gaussian case in Section III-C.

B. Estimation Error

We now proceed to show that the estimation error, ||Z — z*||2,
can also be bounded with the same choice of parameter A, under
the same Assumptions 1 and 2.

Theorem 2: Let Assumption 1 be satisfied and let 7 satisfy
Assumption 2. Then, for Z, the solution to (3), we get

12— 2"l < 2+ n)e.
Proof of Theorem 2: From the optimality of the solution:
12 = Wyll2 + Al < [l27 = Wyll2 + Al[27]]1.

Using Wy = z* + e, and applying the reverse triangle inequal-
ity, we get

lleflz + Allz" [l = Allzlh
leflz + Allz" [l = AllZlh
2fleflz + A (="l = 1Z11) -
Finally, using Assumptions 1 and 2, we have

12 = 2"l < 2llell + All"[[r < (2 + e,

12— 2" —ella <
12 = 2"[l2 = llefl2 <
<

12 =272

which concludes the proof. O
In Appendix F, we present an empirical validation of
Theorem 2.
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C. Gaussian Noise

We now extend the results of Section III-A to the Gaussian
case. The key point of this analysis is that we can use practical
values for A\, which can be computed independently of the noise
level. We show that these A values are suitable for any additive
Gaussian noise in the input and are thus pivotal to its standard
deviation o.

Assumption 3: The entries of ¢ are i.i.d. N'(0,0?) random
variables.

Assumption 4: The rows of W are normalized to unit /o
norm.

Theorem 3: Let Assumption 3 and 4 be satisfied, let 7 satisfy
Assumption 2. Then, set

121
A=a 70gd,
n

where a > 2v/2 is a constant. ,
With probability at least 1 — 2d'~*/8 — (1 + e?)e™"/?*, we
have

~ 1
HZ — Z*Hoo < A <2 + 27] + > \/ﬁsmaxaa
Smin
where spin and syax are the minimum and maximum singular
values of W, respectively.

Proof of Theorem 3: Let A be the event

— Jlelle A o elle
A* { ||eH2 g QSmin} m {smln\/i < \/ﬁ < 2Smaxa} .
From Lemma 1 pr2esented in Appendix A, it is deduced that
P(A) >1—2d'"*/% — (14 ¢*)e~"/?*. For our model and
under the event A, we have

12 = 2" ||loo < Ilelloc + llefloo

<felloo + A2 /o, )

Sml

By minimality of the estimator and Assumption 2,
[ellz < lell2 + Allz"{x
< 2v/N8max0 + 20V NS1max0.

Combining equations (7), (9) and (10), we get:

12— 2%l < A (2\/ﬁsmaxa + 2n\/ﬁsmaxa) + /\Znﬁ\/ﬁa
min
1

12— 2l < A (2 o+ ) VTSm0
—

min

(10)

IV. COMPUTATIONAL ALGORITHM
A. An Iterative Solver

In this section, we introduce an iterative optimization algo-
rithm for minimizing (3) that can be efficiently implemented
and formulated as a novel sparse auto-encoder architecture. It
is worth noting that this objective function corresponds to a
convex optimization problem. Therefore, it inherits not only
all the theoretical properties of convex optimization problems,
but also the algorithms that can be used to solve it, such as the
interior point method [34] or the alternating direction method
of multipliers [35].
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Algorithm 1 Self Normalizing ReLLU (NeLU)
Input:

y < Wy, where W is the transform and y its input signal.
Parameters:

)\ — bias.

[ — step size.
Output:

The estimated representation Z.
Process:

Z2+0

While not converged:

TS {2- 81k )
return z

In [21], the authors studied the geometric structure of the
square root lasso problem and concluded that the /5 loss func-
tion is non-differentiable only in extreme cases of overfitting.
In practice, this situation is rare when the data are corrupted
by noise and a sufficiently large regularization parameter \ is
used to produce a sparse solution. Consequently, the data fitting
term in the objective function behaves as a strongly convex and
smooth function.

Leveraging these attractive geometric properties, we can use
proximal gradient descent to iteratively minimize (3). The the-
oretical analysis in [21] shows that such an optimization algo-
rithm achieves fast local linear convergence. The same theo-
retical justification also applies to (3) since our optimization
problem can be viewed as a simpler instance of the square
root lasso, presented in Section II-A. Therefore, we propose
adapting proximal gradient descent to the problem studied here,
as described in Algorithm 1, which we have named Self Nor-
malizing ReLU or NeLU for short.

The algorithm works by continuously refining the solution
via iterative updates, progressing in the direction opposite to
the gradient of the objective function. Each iterative update
incorporates a proximal operator, which introduces a penalty
term to the objective function, thereby promoting sparsity. In
the specific problem at hand, the proximal operator takes the
form of a soft-thresholding operator, as outlined in Section I.
This operator performs a shrinkage operation on the variables,
setting any values below a specified absolute threshold to zero.
Importantly, the soft-thresholding operator can be replaced
with ReLU to enforce nonnegative representations. The iter-
ative process continues until the desired level of convergence
is achieved.

B. Transform Learning

We propose to adapt Algorithm 1 for transform learning by
unrolling the algorithm into a layered neural network archi-
tecture, following the approach presented in [36]. The idea is
to unfold an iterative algorithm and construct it as a network
architecture, mapping each iteration to a single operation and
stacking a finite number of operations on top of each other.
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Fig. 1. The NeLU architecture: A recurrent sparse encoder model, unrolled
for a predetermined number of iterations.

Algorithm 2 Accelerated NeLLU
Input:

y < Wy, where W is the transform and y its input signal.
Learnable weights:

A\ — bias.

[ — step size.

« — momentum factor.
Hyperparameters:

N — number of iterations.
Output:

The estimated representation Z.
Process:

Z+0

v 0

Fori=1:N R )

V4 qu — fratauy

[[Z+av—7]l2
Z<ReLU (Z+v — B\)
return z

This approach enables the incorporation of a wide range of
mathematical techniques into deep learning models [37], [38],
[39]. Specifically, we achieve this unfolding by limiting the
number of iterations in Algorithm 1 to NV iterations. The re-
sulting architecture is depicted in Fig. 1.

In addition, we propose to improve the performance of the
algorithm by employing Nesterov acceleration [40]. Nesterov
acceleration is a variant of momentum that speeds up the con-
vergence of gradient descent algorithms, and has demonstrated
efficacy in various contexts. By incorporating it into Algo-
rithm 1, we aim to achieve superior performance in transform
learning tasks, based on the understanding that accelerated
gradient descent converges faster and operates effectively with
shallower networks, which are easier to train.

Finally, we note that all parameters of the resulting algorithm,
including W, A\, B8, and «, can be trained end-to-end. This
means that the network can be trained on a dataset to learn
the optimal values for these parameters, allowing it to perform
well on various transform learning tasks. The final accelerated
algorithm is presented in Algorithm 2.

At each iteration, the algorithm computes the gradient of the
objective function with respect to the model parameters at a
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point in the direction of the momentum and updates the mo-
mentum in the opposite direction of the gradient. The solution
is then updated based to the momentum, taking into account the
proximal operator. This operator introduces regularization to
prevent overfitting and improve the generalization performance
of the model.

V. EXPERIMENTS

In this section, we present experimental results to evaluate
the effectiveness of our proposed method under three differ-
ent settings. First, in Section V-A, we use synthetic data to
compare the performance of the soft-thresholding algorithm (2)
with that of our proposed algorithm (3), which we minimize
using the iterative approach detailed in Algorithm 1, given a
known transformation. Next, in Section V-B, we use the same
synthetic data to assess the trainable version of our method,
where the transformation matrix is also learned, as summa-
rized in Algorithm 2. Here, we compare our method with a
baseline model based on a standard sparse auto-encoder. Lastly,
in Section V-C, we evaluate the performance of our trainable
Algorithm 2 against a baseline convolutional neural network in
the task of image denoising.

A. Synthetic Data

First, we present experiments conducted on synthetic data to
demonstrate the advantage of our proposed method over the
traditional sparse encoder algorithm (2). We assume that the
transformation W is known and construct a 100 x 100 random
matrix, where each entry is sampled from the standard normal
distribution, and then normalize the rows to have unit 5 norm
to satisfy Assumption 4. Next, we generate the input signal
by creating a vector z* with fixed sparsity level, following
the procedure described in [41], to obtain a signal consistent
with the transform model, such that |[WWz|o = 5. Finally, we
contaminate the signal with i.i.d. Gaussian noise of level o to
produce the measurements y = x + &.

We evaluate the estimation error, ||Z — z*||2, which measures
the distance between the estimated signal z and the true signal
z*, as a function of the noise standard deviation . We compare
the solutions obtained by minimizing (2) and (3) in two settings.
In the first setting, we perform an oracle cross-validation that
sweeps over a range of parameters A to find the regularization
parameter that minimizes the estimation error for each algo-
rithm. Importantly, this setting is infeasible since it requires the
ground truth data to calculate the estimation error. Nevertheless,
it reveals the best performance that one can hope to achieve. In
the second setting, we consider a more realistic scenario where
we compare the performance of the proposed Algorithm 1 using
the theoretical value of A divided by 2, following Belloni’s
empirical improvement [15].

Fig. 2 shows that both algorithms achieve similar perfor-
mance in the oracle setting. However, the optimal value of A
for the soft-thresholding algorithm (2) is linearly proportional
to the noise level o, while the optimal value for the proposed
algorithm (3) is pivotal to it. This conclusion is consistent with
our theoretical analysis presented in Section III. Additionally,
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Experimental results for analytical transform with synthetic data. (a) Mean squared error (MSE) of ¢2 estimation error as a function of the noise

level o, evaluated in both settings. In the oracle setting, the regularization parameter is tuned to achieve the smallest estimation error. In the theoretical setting,
we use A = 1 lelloe Algorithm 1. (b) A values used for each algorithm in the previous graph. Note that the optimal A values for Algorithm 1 are constant,

2 [lell2

while they are linear for the traditional algorithm. The standard errors are below 0.02 and thus barely visible.

we observe that the theoretical value of A for the proposed
algorithm, described in Theorem 1, is very close to the actual
optimal value. This indicates that the proposed optimization
problem may be a reasonable alternative to the current soft-
thresholding algorithm, which forms classic encoder architec-
tures, in practical situations where the noise level is unknown.

B. Trainable Transforms

Trainable transforms often outperform analytical transfor-
mations, such as total variation and wavelets, in most signal
processing applications [6]. This is because the transformation
used in signal processing is frequently unknown and must be
inferred from the data. This motivates the use of neural net-
works to simultaneously learn the transformation and the sparse
representation of the data.

The first learning task is supervised sparse coding, where
the input consists of signals y determined by the model and
their corresponding synthetic sparse vectors z* generated by
a sparsifying transform, as described in Section V-A. In this
case, the goal of the neural network is to learn the transfor-
mation W stored in its weights and accurately identify the
corresponding sparse output vector given a set of input-output
pairs. Mathematically, this can be expressed as an end-to-end
training scheme, minimizing the cost function

: = * (|2
i {12 = 2"l2,
where Z is the output of the network outlined in Fig. 1.

To compare the effectiveness of the proposed approach, two
different neural network architectures are used: one based on
Algorithm 2, and a baseline sparse encoder architecture. Both
networks consist of a linear layer followed by a thresholding
layer. In the baseline version, the thresholding layer is the soft-
thresholding non-linearity. In contrast, our proposed architec-
ture uses the Accelerated NeLU non-linearity as presented in
Algorithm 2, with the soft-thresholding operator. Both networks
are trained using the AdamW optimizer [42] and minimize the

1.0 Soft-thresholding
== NeLU
0.8
o
=
—~
2906
*N
I
2 0.4
0.2
0.0 S e ———————
0.0 0.2 04 0.6 0.8 10

Noise level o

Fig. 3.  Synthetic supervised sparse coding: a comparison of mean squared
error (MSE) for estimation error between a two-layer sparse encoder architec-
ture with NeLU and a similar architecture with soft-thresholding, trained on
data with a fixed noise level of 0.1. The performance is evaluated at different
noise levels, averaged over 2048 realizations of the data.

1.0 -
Soft-thresholding
0s —— NelLU
o
s
2506
=
I
(5 04
—
0.2 - —_—
0.0 ==
0.0 0.2 0.4 0.6 0.8 1.0

Noise level o

Fig. 4.  Synthetic sparse signal denoising: a comparison of the mean squared
error (MSE) for the reconstruction error, T — x. Other details are the same
as in Fig. 3.

mean squared error (MSE) loss with a fixed noise standard de-
viation of o = 0.1. After training, we evaluate the performance
of the fitted networks on different noise levels, o, than those
used during training. The results, displayed in Fig. 3, suggest
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1D example of the process utilized in the experiment in Section V-C when stride = 2. Each signal is replicated stride times and subsequently

translated, yielding slight shifts of the original for each replica. This process effectively transforms a single image into a collection of stride variations, each
exhibiting a slight spatial offset. The final output is an average of all denoised shifts.

TABLE 1
PSNR COMPARISON OF SPARSE AUTO-ENCODER MODELS WITH NELU AND
RELU ACTIVATIONS FOR NATURAL IMAGE DENOISING. THE MODELS
ARE TRAINED ON CLEAN-NOISY IMAGE PAIRS WITH A FIXED NOISE
LEVEL OF ¢ = 15 AND EVALUATED ON THE TEST SET

o 15 25 35 75 90 105 120
Noise  24.61 20.17 1725 1415 10.63  9.05 7.70 6.55
ReLU 2847 2589 2349 2058 17.07 1548 14.13 1299
NeLU 28.65 2593 2348 20.69 17.62 1637 1536 14.57

that NeLU is significantly more robust to unseen noise levels
than soft-thresholding, indicating that the NeLU non-linearity
results in a predictive model that generalizes to other noise
levels without additional training.

We also demonstrate the effectiveness of the proposed model
in signal denoising applications. In this task, the input is a noisy
signal y = x + £ and the goal is to produce a cleaned version of
the signal, 7 = W*Z, by removing the additive noise. To this
end, a final linear layer is added to each network according to
the sparse model. The first two layers perform sparse coding,
i.e., they estimate the sparse representation, while the last layer
projects the sparse estimation back into the input space. Sparse
data is generated in the same manner as before and the MSE loss
is minimized. The results, shown in Fig. 4, again reveal that the
NeLU leads to more stable recovery than the soft-thresholding
non-linearity.

C. Natural Images

In this experiment, the aforementioned networks are em-
ployed to perform natural image denoising using a patch aver-
aging technique based on the Convolution Sparse Coding model
[43]. To accomplish this, each input image is replicated stride
times and translated across every dimension, producing slight
shifts of the original for each replica. As a result, a single image
transforms into a set of stride” slightly offset variations. These
shifted versions of the input are then processed collectively

by the network, resulting in intermediate (shifted) denoised
versions of the same input image. Finally, these intermediate
denoised output images are shifted back and averaged to yield
the final reconstructed output image. This process is visualized
in Fig. 5 for a one-dimensional (1D) signal. For more details,
see [43].

The datasets and preprocessing procedures are adopted from
[43]. Specifically, we use clean training images from the Wa-
terloo Exploration dataset [44], and a validation set consisting
of 432 images from BSD [45]. Noisy images are generated by
adding white Gaussian noise with a constant standard devia-
tion o = 15. In each iteration, we randomly crop a patch of
size 1282 from an image and obtain a random realization of
the noise.

In this setting, we replace the linear layers with convolution
and deconvolution layers, respectively. Concurrently, the soft-
thresholding operator is substituted by ReLU as the proximal
operator. The models learn 175 filters of dimensions 11 x 11
and a stride of 8. We utilize the AdamW optimizer with a
learning rate of 2 - 10~2, which is reduced by a factor of 0.7
after every 50 epochs. Additionally, the optimizer’s € parameter
is set to 1073 to ensure stability. The models are trained for 300
epochs, minimizing the MSE loss.

To evaluate the performance of the models, we use the
BSD68 dataset, which is distinct from the validation set. The
experimental results, as shown in Table I, allow us to compare
the performance of each model on the test dataset at varying
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noise levels. We can see that the proposed Algorithm 2 layer
outperforms the ReL U activation function for virtually all noise
levels, and the performance gap widens as the noise level de-
viates further from the trained noise level.

VI. CONCLUSION

In this work, we proposed a novel sparse auto-encoder
architecture as an alternative to traditional auto-encoder ar-
chitectures. We offer a novel activation function, called Self
Normalizing ReLU (NeLU), which is the solution of a square
root lasso problem under a transform learning formulation.
Importantly, as we showed in Section III, the bias parameter
of our proposed NeLU layer is pivotal (i.e., invariant) to the
noise level in the input signal. This feature leads to an activation
function that is significantly more robust to varying noise levels
in terms of signal recovery and denoising, both on synthetic
data as well as in real imaging settings. Our research show-
cases how theoretical understanding of neural networks can give
rise to improved algorithms, derived from theoretical insights
and analysis.

Several open questions present opportunities for future di-
rections. While our paper focuses on establishing foundational
theory, future efforts might apply these insights on a larger
scale to develop a state-of-the-art network. A potential direction
would be to extrapolate the model to a multilayer architecture,
building upon the work reported in [46]. The multilayer expan-
sion strategy proposed by [47] also offers an attractive option.
Incorporating additional layers into the model, and possibly
broadening the analysis to convolutional neural network (CNN)
architectures, could result in improved theoretical bounds and
performance.

APPENDIX A
LEMMAS

Lemma 1: Consider a Gaussian vector & ~ A (0,0%1) and a
deterministic matrix W with normalized rows, where s,,;, and
Smax denote the minimum and maximum singular values of W,
respectively. Then,

1) Let C; = {ﬁHWﬁHm < } Take A =aoy/*2¢ and
a > 2+/2, then:

P(Cy) > 1—2d /8
D Let G2 { LIWel <3} Take A=ay/2oxd
and a > 2+/2, then:

P(Cy) > 1 — 24~ /8.

3) LetCs 2 {5“‘“17 < HVI//gHz < 2smaxa}, then:

P(C3) =1 — (1 +e%)e /24,

3209

4) Let
[WE]oo A }
an{lmels
||W€||2 2Smin
o _ [[WEl2
min ~ — 2 max )
N {5 2 < Jn < 28max0
then:

P(A) > 1 - B(C5) - B(C5).

Proof: Ttem 1: Since ¢ is isotropic, the law of d'¢ is the
same for all vectors d € R™ of the same norm. In particular,
W;&, where W; is the ith row of W, and &; have the same law.

d
£ < ZP(\Wiﬁl >V/n\/2)
<dP ([&1] = vn)/2)

)\2
< 2dexp <Z2)
o

<od— & ()\ ~ Ao

(IWill2 = 1)

(Hoeftding’s Inequality)

log d
|

Item 2 is a direct consequence of Item 1.
Item 3: Giraud [48] controls the event

(e % <(-5))

with probability (1 + e?)e~"/24, Therefore, we can control our
event by

I€llz _ [WE]I2 €12
Smin —7— f \/7 < Smax—— \/’ﬁ .

Proof of Item 4 is done using items 2 and 3. Indeed we have

o |[WEl2
AD{ mln\/§< NG < 28max0

el e
VNP
Hence P(A) > 1 — P(CS) — P(CS). O
Remark 2: The bounds and probabilities presented in this
analysis can be further refined through a more rigorous exami-
nation. Nevertheless, these bounds are sufficient for our primary
objective, which is to demonstrate the pivotalness of A in the
Gaussian scenario.

}Cg NCs.

APPENDIX B
EXTENSION TO SYNTHESIS MODEL

Note that if we define D =W,
7=D"Dz".
Then the problem (3) can be rewritten as

minf|z —gl[z + Allz]1,
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where § = D"y =z + e. This is identical to the square root
lasso when the dictionary is the identity matrix. Therefore, it
can be solved for z using all the tools available for the square
root lasso, as previously studied in [15], [32]. We extend the
previous results of the paper to obtain bounds for the synthesis
model.

Theorem 4: Following the assumptions defined in Theorem 1,
we have

7 = 2"[loc A2 +n)e+ pu(D)[2"[lco,
=max;,; |D] D;|. Moreover, if

Y

where p = ||2*||o and p(D)

min 5] > 202+ n)e + 2p (D) 27|,
J

then the estimated support
S={jeld: [z > 2+ ne+ppD)|z"|l=}

recovers the true sparsity pattern correctly, i.e., S=8.
Proof of Theorem 4: Using Theorem 1 and the sparsity of
z*, we have

12— Zlloo + 12 — 2*[|oo
2+ n)e+||(I — D'D)2"||o
247 e+max|(I—DTD)3z§\i

12 2l <
<

A
—A2+7)
<A@+ n)e + max (I~ DTD)sill "
<A@+ n)e + p (D)} .

This proves the bound on ||Z — z*||. Then, the support recov-
ery property easily follows as in Theorem 1. O

Corollary 1: From the condition (11), we can derive a bound
on the sparsity of the signal for correct support recovery:

|25in| > 2A(2 +n)e + 2p (D) 25 0x ),

e Ll Gt
20(D) 2hhax] (D)ol
where |2, | and |2} . | are the minimum and maximum abso-

min max

lute values of the entries of z*, respectively. This bound closely
resembles the optimality condition of the thresholding lasso
algorithm [46].

Theorem 5: Following the assumptions defined in Theorem 2,
then, we get

(2+n)e + u(D)Vd|| "1

17— 2"z <
Proof of Theorem 5: Using Theorem 2 and the sparsity of

z*, we have:

~

17 = 2ll2 + 112 = 272
(2 +n)e+[I(1 = DTD)z"|2

12 = 2"l <
<

(D)?]|=*[13

<2+ n)e+ p(D)Vd|z"1.
O
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Fig. 6. The fo, estimation error of each algorithm in the experiment
presented in Fig. 2. The theoretical NeLU achieves a comparatively lower
l~ error because the oracle algorithms were optimized using the {2 error.
The standard errors are less than 0.02 and are thus barely noticeable.

APPENDIX C
ILLUSTRATION OF EXPERIMENT IN SECTION V-C

In the real-data experiment described in Section V-C, we
follow the approach of Simon and Elad for deploying the Con-
volutional Sparse Coding (CSC) model [1]. The process of this
experiment is illustrated in Fig. 5.

APPENDIX D

DETAILS OF THE ANALYTICAL TRANSFORM
EXPERIMENT - /,, ERROR

In this section, we delve deeper into the performance of the
algorithms from the main experiment, focusing on the /. esti-
mation error. This analysis complements our earlier discussion
centered around the /5 error, as shown in Fig. 2.

As observed in Fig. 6, the theoretical NeLU outperforms
other methods, yielding a lower ¢, error. This performance can
be attributed to the fact that the oracle algorithms, in the primary
experiment, were fine-tuned using the ¢ error criterion. A
parallel behaviour is observed for the /5 error when optimizing
with respect to the ¢/, error.

APPENDIX E
QUALITATIVE ANALYSIS

This appendix provides a visual representation of the out-
comes from the experiments detailed in Section V-C. The em-
phasis here is on a qualitative assessment of images processed
using the networks specified in our study. Such an analysis aids
comprehending the practical efficacy of the applied denoising
methods.

Fig. 7 showcases a comprehensive comparison, juxtaposing
the original images with their noisy counterparts and the subse-
quent denoised versions. This layout facilitates a direct visual
evaluation of the noise reduction capabilities of the networks.
For each image displayed, a specific patch has been chosen
for detailed analysis. Specifically, for each image, the selection
includes the original image marked with the patch location,
the unaltered patch, the corresponding noisy patch (the original
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Qualitative analysis of denoising networks from Section V-C. For each image, a selected patch is displayed in three states: the original, the version

with Gaussian noise (o = 25 for the first image, o = 50 for the second and third), and the denoised output from each evaluated network. Additionally,
heatmaps depict the residual errors, with warmer colors indicating larger absolute errors in those pixels. The Peak Signal-to-Noise Ratio (PSNR) values are
also reported below each network’s output to quantitatively assess the denoising performance.

with added Gaussian noise), and the denoised version processed
by each network. Additionally, a heatmap of the residual error
is presented, enabling a more precise and detailed comparison.

The residual error visualized in the figure highlights the
enhancements our algorithm achieved, particularly in han-
dling previously unseen noise levels. This visual representation
serves not only as a validation of the algorithm’s effectiveness
but also offers insights into its potential limitations and areas
for future improvement.

APPENDIX F
EMPIRICAL VALIDATION OF THEOREM 2

In this appendix, we extend our investigation to empiri-
cally validate the theoretical estimation error bound introduced
within our theoretical framework. To accomplish this, we repli-
cate the experimental setup delineated in Section V-A. Herein,
we evaluate the performance of our proposed algorithm (3)
in juxtaposition with the theoretical threshold. Employing the
iterative process specified in Algorithm 1, and considering a
given transformation, we subject the algorithm to rigorous eval-
uation across a range of noise levels. For each noise level, the
experiment encompasses 20 independent trials, incorporating
diverse instances of signal and noise, with \ set to ””ee”j

The outcomes of these experiments are illustrated in Fig. 8.
These experiments corroborate the assertion that the recon-
struction error adheres to the bounds established in Theo-
rem 2, thereby reinforcing the theoretical underpinnings of
our methodology. Despite being conservative, the framework
provides a reliable method for ensuring model robustness across
different noise levels.

Further investigation into the exact optimal value of A, con-
sidering factors such as the sparsity level of the signals, presents

L0~ % Error by theoretical A ol
. 4
---=Theoretical error bound "
0.8 -~
4
R /,
2.6 al
NN (), ’
B ~
| e
(2 0.4 s
& -
-
.
0.2 —s
- ] ]
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0.0---"””'
0.1 0.2 0.3 0.4 0.5 0.6
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Fig. 8.  Empirical validation of the theoretical estimation error bound. The
figure showcases the MSE of the /2 estimation error as a function of the
noise level o. For each noise level, 20 independent trials were conducted

with distinct combinations of signal and noise, with A = HHZ%

a promising avenue for future research. It is our hope that
these insights will contribute to a deeper understanding of the
interplay between theoretical analysis and empirical application
in the domain of sparse autoencoders.
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