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Adversarial Robustness of Sparse Local Lipschitz Predictors*
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Abstract. This work studies the adversarial robustness of parametric functions composed of a linear predic-
tor and a nonlinear representation map. Our analysis relies on sparse local Lipschitzness (SLL),
an extension of local Lipschitz continuity that better captures the stability and reduced effective
dimensionality of predictors upon local perturbations. SLL functions preserve a certain degree of
structure, given by the sparsity pattern in the representation map, and include several popular hy-
pothesis classes, such as piecewise linear models, Lasso and its variants, and deep feedforward ReLLU
networks. Compared with traditional Lipschitz analysis, we provide a tighter robustness certificate
on the minimal energy of an adversarial example, as well as tighter data-dependent nonuniform
bounds on the robust generalization error of these predictors. We instantiate these results for the
case of deep neural networks and provide numerical evidence that supports our results, shedding
new insights into natural regularization strategies to increase the robustness of these models.
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1. Introduction. During the past decade, deep learning has proven a successful model for
a variety of real-world data-driven tasks, such as image classification [27], language modeling
[19], and more. Modern deep learning architectures compose a learned representation map
with a linear classifier, where the former can be feedforward, convolutional, recurrent, or
attention maps, sequentially combined with nonlinear activation functions. Despite the strong
empirical success of these models, a complete understanding of important properties, such as
generalization [29] and robustness [34], is lacking. Importantly, state-of-the-art deep learning
models are vulnerable to adversarially crafted small perturbations to input, called adversarial
examples [53]. This vulnerability limits the deployment of these models in safety-critical tasks
such as autonomous driving [12] and healthcare [30].

Adversarial examples are easy to generate, are hard to detect [26, 14|, are able to be
deployed in the physical world [21, 32|, and are often transferable across predictors for the
same task [33, 44]. This has led to significant empirical research to defend models against
attacks [16, 60] as well subsequent work on improving these attacks to compromise the
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performance of defended models [3, 10, 39]. Several works have explored strategies to either
improve or evaluate the robustness of modern deep learning models. For instance, adversar-
ial training improves robustness by injecting adversarial attacks during the training phase
[34, 46], while other works focus on certifying the level of corruption a model can withstand
[23, 28, 45, 50, 59, 62].

Amidst the rapidly evolving empirical insights, there has been concurrent research aimed
at providing theoretical guarantees on adversarial robustness for different hypothesis classes
[4, 5, 31, 61]. Some of these works study the computational and statistical limits of adversarial
attacks [11, 22, 35]. Others study trade-offs between robustness and natural (or benign)
performance [15, 56, 63], provable guarantees for adversarial training [2, 65], or the analysis
of optimal levels of provable adversarial defenses [17, 48].

In this work, we focus on two central questions of adversarial robustness: certified ro-
bustness and robust generalization. Our analysis for both of these questions will rely on the
sensitivity of the model to changes in both its input and its parameters, a quantity that is
naturally characterized by its Lipschitz constant. This view can be quite limited, however: for
general nonlinear functions, such sensitivity to perturbations can greatly vary across the in-
put space (for different samples) and across the hypothesis space (for different predictors). In
this work, we show that local measures of sensitivity that additionally account for structural
invariance in the outputs lead to tighter stability bounds and more informative results.

1.1. Outline. The paper is organized as follows. We elaborate on the formal task of
supervised learning and adversarial robustness in section 2. Our contributions are summarized
in section 3. The next two sections collect our main results, section 4 for certified robustness
and section 5 for robust generalization. Finally, we demonstrate experimental results in section
6 and conclude with future directions in section 7.

1.2. Notation. Throughout this work, scalar quantities are denoted by lower case or upper
case (not bold) letters, and vectors are denoted by bold lower case letters. Matrices are denoted
by upper case letters: W is a matrix with rows w;. The Frobenius and operator norms are
denoted by ||| and |||, respectively. For any matrix W € RP*? with rows w;, for u,v > 1,
the group (u,v) norm' is defined as W, = I wllys--s lwpll,) HU We informally refer
to the Euclidean norm of a vector as its energy. We denote by = the elementwise > operator
for vectors. Sets and spaces are denoted by capital (and often calligraphic) letters, with the
exception of the set [p] = {1,...,p}. For a Banach space W embedded with norm ||-||,,,, we
denote by BYY(w) a bounded ball centered around point w with radius 7. When describing
a composition of affine functions, such as deep neural networks, W¥ refers to the parameters
corresponding to layer k. More generally, outside of norms, superscripts indicate layer index.
We denote by P; the index selection operator that restricts an input to the coordinates
specified in the set I. For a vector x € R and I C [d], P;: R — Rl is defined as Pr(x) := x[1].
For a matrix W € RP*? and I C [p], P;(W) € RIIX4 restricts W to the rows specified by
I. For row and column index sets I C [p] and J C [d], P;.;(W) € RIXII restricts W to the
corresponding submatrix.

!Defined over rows rather than columns.
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2. Robust supervised learning. Consider the task of multiclass classification with a
bounded input space X = {x € R?| ||x||, < 1} and labels ¥ = {1,...,C} from an unknown
distribution Dz over Z := (X x )). We search for a hypothesis in H := {h : X — )’}
that is an accurate predictor of label y given input x. Note that ) and ) need not be the
same. In this work, we consider )’ = R® and consider the predicted label of the hypothesis
h as §(x) := argmax;[h(x)];.> Throughout this work, the quality of a predictor h € H at a
sampled data point z = (x,y) € Z is measured by a b-bounded Ljus-Lipschitz loss function
0:(H x Z)—[0,b]. With these elements, the population risk of a hypothesis R:H — [0,b] is
the expected loss it incurs on a randomly sampled data point, R(h) :=E,p_ [¢(h,z)]. The goal
of supervised learning is to obtain a hypothesis with low risk. While the true distribution Dz
is unknown, we assume access to a training set Sp = {z1,...,2,,} such that z; = (x;,v;) i Dz,
and we instead minimize the empirical risk, i.e., the average loss on the training sample S,
ie., R(h):= LS €(h, (x4,:)). We note two canonical choices of loss function for classifi-
cation tasks: the zero-one loss £I°/1 and the margin loss £7 with threshold v > 0 [38]. The
zero-one loss is 1 for incorrect prediction and zero otherwise. The margin loss ¢7 is based on

a margin operator M :Y' x Y =R, M(t,y) := [t], — max;,,[t];,’°

£ (nz) = min { Lo {01 - MRV

The margin loss is 0 only for correct prediction with sufficient margin M(h(x),y) > . The
margin loss with threshold v > 0 is %—Lipschitz w.r.t. change in predictor output [38].

The sensitivity of a predictor to changes in inputs or parameters is characterized by their
global Lipschitz constants. For a predictor h € H, we let Li,, denote the maximal change
in the output of the predictor h upon a change in its input. Similarly, for a suitable norm
defined on the hypothesis class H, we denote by L., the global Lipschitz constant measuring
the sensitivity of the output to changes in the parameters of the predictor. Formally, for all
xX,X € X and all iL,h € ‘H, we have that

1160 = RGOy < Linp % =Xl ||x) = )| < Lyar

B—h” .
H

2.1. Adversarial robustness. To evade test-time adversarial attacks, we seek predictors
that are robust to adversarial corruption in the bounded set By (0) := {§ € x| ||d], < v}.
The robust loss £ron(h,2) := maxsepx (o) £(h, (x + 8,y)) captures the quality of a predictor h
under an attack. We call the population (resp., empirical) risk evaluated on the robust loss
the robust population (resp., empirical) risk,

. 1 &
Rrob(h) = ZNEDZ |:£r0b(ha Z)} 5 Rrob(h) = E Z; Erob(ha Zi)-

In this case, the robust global Lipschitz constant Ly.r, measures parameter sensitivity on
corrupted inputs,

Vh,iZEH,VXGX, max
6eBX(0)

hx+6) = h(x + 8)|| < Lpars

B—hH.

2The argmax here breaks ties deterministically.
3The predicted label is correct if M(h(x),y) > 0.
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Note that since (x + §) might not be in the original input domain X, Ly, can differ from
Lpar-

In this work, we focus on two central problems: certified robustness, providing a guarantee
that a predictor h that correctly classifies an input x, will not be changed if contaminated with
an adversarial perturbation of bounded norm ||6]|, < 7(x); and robust generalization, seeking to
understand when a predictor h learned on a collection of samples S can generalize to corrupted
unseen data, i.e., when Ry (h) is low. Last, while we focus on the widely studied constraint
set of fo-bounded perturbations [53], most of the derived analysis is directly extendable to
general £, norms, and we will comment on these whenever relevant.

2.2. Representation-linear hypothesis class. In this work, we consider a class of struc-
tured hypotheses H 4 called representation-linear hypotheses, with parameters (A, W),
where classification weights A € A C RE*P act upon a learned representation map ®w : X —
RP with representation weights W € W,

Haw:={haw: X =R haw(x):=Adw(x)VAcAand WeW}.

The parameters of each hypothesis (A, W) are learned based on sample data S7. We assume
that the representation space (image of ®w) is embedded with the Euclidean norm |[|-||,.*
Naturally, each choice of a representation map ® results in a corresponding hypothesis class.
For the discussion in this paper, we assume a consistent choice of parameterizing functions in
H, and thus functions with different parameters are considered to be different. For the sake
of simplicity, we denote H =H 4w, h(x) =ha w(x), and ®(x) = Pw(x) when clear from the
context. We discuss common representation maps.

Linear representations. The simplest case is that of representation maps that are linear;
i.e., ®(x) = Wx for some W € W C RP*4, One could require additional structure, such as
taking p < d and taking W as the set of projection matrices, thus computing low dimensional
projections of the data. Linear low dimensional representations have proved to be beneficial
in the context of adversarial robustness [6].

Supervised sparse coding. Here, for a dictionary W € Wp,,” the representation map @
encodes input x as ®(x) € argmingcp,s |x — Wea3 + A|jel;, the solution to a LASSO
problem [54]. In this case, the representation ® is nonlinear and encourages sparsity. This
hypothesis class, denoted by Hgsc, is called task driven dictionary learning in [36], is frequently
used in computer vision [20], and is analyzed in the context of adversarial robustness in [52].

Feedforward neural networks. The representation map implemented by a depth-(K + 1)
neural network, ®¥1, is a sequence of K affine maps composed with a nonlinear activation
function. The most common choice for this activation is the rectifying linear unit, or ReLU,
o :R — R2% defined by o(x) = max{z,0}, acting entrywise in an input vector. Each layer®

*We assume that the norm ||| , is submultiplicative and consistent with the Euclidean vector norm ||-||,.

5Wrip is the oblique manifold of matrices with unit-norm columns satisfying the restricted isometry property.
A matrix W is RIP with constant 7 if this is the smallest value so that, for any s-sparse vector o € R? :
llallo = s, W is close to an isometry, i.e., (1 —ns)||a|2 < [|[WellZ < (1+75) [lell2.

SRecall that superscripts in parameters and variables for neural network classes index the layer.

©) 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 10/09/24 to 73.201.213.137 . Redistribution subject to CCBY license

924 RAMCHANDRAN MUTHUKUMAR AND JEREMIAS SULAM

has a weight W* € Wk ¢ RZ“*4"™" and bias b* € B* c R?". For this family of functions, the
representation map ® has parameters {Wk,bk}f:1 and is formally given by

(%) ::a(WKU (WKﬁl---a(Wlx—i—bl) ---—i—bK*l) -l—bK).

We denote the hypothesis class Hpnn gk with parameter space A x Hle(Wk x BF).

3. Contributions. In this work, we present results for robustness certificates and general-
ization guarantees based on a novel tool we call sparse local Lipschitzness (SLL). SLL measures
the local sensitivity of a predictor h while additionally requiring the preservation of sparsity
patterns in the representation ® within a sparse local radius. The additional structural con-
straint enables us to express any SLL predictor by an equivalent simpler function with fewer
active degrees of freedom or parameters. Importantly, our definition of SLL is flexible, allow-
ing for any degree of sparsity levels and for a controlled, “tunable” trade-off between sparsity
and local sensitivity, as measured by the sparse local radius. SLL predictors are a subclass of
local Lipschitz predictors and include common representation-linear hypothesis classes such
as the ones mentioned previously.

We present a certified radius for any SLL predictor w.r.t. input that improves stan-
dard local (and global) analysis (see Theorem 4.3 and Corollary 4.8). Compared to tradi-
tional Lipschitz analysis, we then demonstrate a tighter data-dependent nonuniform bound
on the robust generalization error for predictors that are (robust) SLL w.r.t. parameters
(see Theorem 5.2, Theorem SM1.7, Corollary 5.8). Our bounds depend mildly on the power
of the adversary: the adversarial energy v only impacts the fast term in the upper bound,
ie., O (%), an improvement from recent results [5, 61], which are O(ﬁ)

We instantiate these results for deep neural networks as a particular case. Figure 1 shows
that for a trained neural network, at any test input, the number of active neurons in each
layer is at most half the width. Here, as the corruption to inputs increases in energy, the
number of neurons that flip activation states increases. Our analysis quantifies the stability
of the strongly inactive neurons at each input to corruption in input and/or parameters. For
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Figure 1. Distribution of active neurons across validation data in each layer of a 2-layer feedforward net-
work trained on MNIST.
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both certified robustness and robust generalization, this highlights the reduced dimensionality
of the predictor to minor corruption. We show that the sparse local radius at each layer, for
either input or parameter sensitivity, depends on the alignment between the pre-activation
layer inputs and the rows of the layer weight matrix. For input sensitivity, we show that the
sparse local Lipschitz scale of a depth-(K + 1) network is the product of operator norms of
reduced linear maps at each layer, resulting in 2-3 fold improvement over the global Lipschitz
constant for typical settings (see section 6). In turn, for parameter sensitivity, we demonstrate
that the sparse local Lipschitz scale is given by an upper bound on the operator norms of any
reduced linear maps by incorporating a measure of coherence between rows. This sparse local
Lipschitz scale thus has a better dependence on depth than the global Lipschitz constant.
Finally, we note that while other neural network architectures are part of the representation-
linear hypothesis class, and can be shown to be sparse local Lipschitz functions (e.g., for
convolutional networks), we refrain from instantiating our results for these architectures in
this work and defer these interesting questions to future work.

4. Certified robustness. For a fixed predictor h (potentially data dependent), input x,
and perturbation 8, we denote by §(x) and y(x + ) the predicted labels before and after
corruption, respectively. A pointwise certified radius function ree : X — RZ0 is a guarantee
that for any bounded perturbation & the predicted label remains unchanged, that is,

165 < Teert(x) = J(x+6) = G(x).

We develop a pointwise certified radius that relies on the local sensitivity of the predictor h.

4.1. Sparse local Lipschitz w.r.t. inputs. We start by characterizing a class of functions
that preserve sparsity in their output for bounded perturbations to inputs. Throughout this
manuscript, we refer to sparsity as the number of zero entries of a vector. We say that a
vector t € R? is s-sparse if it has an inactive set I of size s, that is, if there exists I so that
Pr(t) =0 € R%. Naturally, t is s-sparse only when s <d — ||t]|o. With these elements, we are
now ready to define the sparse local Lipschitzness of a function.

Definition 4.1 (sparse local Lipschitzness w.r.t. input). Let x and ®(x) be Sin- and Sout-
sparse, respectively, and let s = (Sin, Sout). The representation map ® is s-sparse local Lipschitz
at x (w.r.t. inputs) if there exist an index set Loy of size Sout, a local radius r > 0, and a
Lipschitz scale | >0 such that for any perturbed input X € Byt (x) with a common inactive set
Lin, of size Si, i.e., Pr,, (X) =Py, (x) =0, one has that

[2(x) = @)y <llx = x|ly A Pr,, (2(%)) = Pr,,.(®(x)) = 0.

In words, ® is sparse local Lipschitz at x if, for points in a neighborhood of x that
preserve a certain input sparsity pattern, the function is local Lipschitz and preserves a certain
representation sparsity pattern. It is important to note that the sparse local sensitivity, i.e.,
the trio of index set Iyyt, radius r, and Lipschitz scale [, is dependent on the specific input x
as well as the sparsity levels s which can range through all possible sizes of index sets in the
inputs and in the representations, i.e., s € S :=[d] X [p]. However, ® will only be SLL at x for
s€{0,...,d—||x[jo} x{0,...,p—||®(x)||o}. More generally, for a fixed representation map P,

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 10/09/24 to 73.201.213.137 . Redistribution subject to CCBY license

926 RAMCHANDRAN MUTHUKUMAR AND JEREMIAS SULAM

we can define a local radius function 7, : & x & — R=Y and local Lipschitz scale functions,’
lpp: X xS — R=0, and extend our definition.

Definition 4.2 (sparse local Lipschitz function). We say that the representation map ® is
sparse local Lipschitz w.r.t. inputs if for any x € X, for all appropriate® sparsity levels s, ®
is an s-sparse local Lipschitz at x with associated radius rinp(X,s) and local Lipschitz scale
linp(X,S).

In this way, if ® is sparse locally Lipschitz w.r.t. inputs, for an appropriate X,
15 = Xlly < iy (x,8) — [B(R) — S(X) [l < lnp(x,8) 1K — .

Note that SLL representations ® are also local Lipschitz with radius 7inp(x,0) and local
Lipschitz scale linp(x,0). Additionally, if ri,p(x,0) = oo for all x € X', then the representation
is global Lipschitz with constant maxyxex linp(x,0). There could be multiple radius functions
Tinp and linp, that meet the requirements of Definitions 4.1 and 4.2. For each hypothesis class,
we assume a fixed choice of these functions. For representation-linear hypothesis classes H, it
is natural to couple this notion of sensitivity with the classification weight A. More precisely,
under appropriate conditions on X, we can have that

[(%) = h(x)[l, = | AD(X) — AR(x)|l; < [|Ally linp(x;8) - [[x = x[-

We are now ready to present our first result that develops a certified radius for SLL predictors.

Theorem 4.3. Consider a predictor h with classification weight A, sparse local Lipschitz
representation map ®, and fized sparsity level s = (0,S0ut). Let h classify an input x as
label §(x) with classification margin M(h(x),9(x)) > 0. Upon bounded perturbations &, the
predicted label of the classifier remains unchanged, i.e., §(x + 8) = y(x) when the energy of
the perturbation is below the certificate, ||0]]y < Tcert(X,s), where

M(h(x),9(x)) }
2[[Ally - linp(x,8) |-

Teert (X, 8) := min {rinp (x,8),

Proof. Observe that the predicted labels remain unchanged when M(h(x + §),9(x)) >
0. Since the margin operator M(-,j) is 2-Lipschitz in ), thus M(h(x),3(x)) — M(h(x +
9),9(x)) <2|/h(x+d) — h(x)[[,- On the other hand, note that for s = (0, sout) there are no
sparsity constraints on the perturbed input. Hence,

1]z <7inp(x,8) == [[h(x + ) = h(x)[ly < [|All; - linp(%,8) [|0]]5 -

As a result, M(h(x),9(x)) — M(h(x+0),9(x)) <2||All; - linp(x,8) ||6]], - [ ]

The first constraint on the certificate ensures that the perturbation is within the local
radius. The second constraint, on the other hand, ensures that the effect of the perturbation

"For any input x and a choice of sparsity levels s = (Sin,S0ut) € S such that sin > d — [|x][|, or
Sout > P — ||®(x)||y, for simplicity we let the corresponding radius rinp(x,s) := 0 and the local Lipschitz scale
linp (%, 8) 1= o0.

8Valid sparsity levels are in {0,...,d — ||x[jo} x {0,...,p — [|®(x)]lo}.
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does not exceed the classification margin in the representation space. In the second constraint,
the distance between the original and perturbed representation is bounded using the local
Lipschitz scale. The input sparsity level s;, is naturally fixed to 0 to ensure that all £2 bounded
perturbations are covered in the certified radius guarantee. This theorem encompasses local
or global Lipschitz representations as the special case when s = 0 (thus, it is more flexible
than global analyses), and it is a generalization of the result in [57, Proposition 1].

4.1.1. Composition of sparse local Lipschitz functions. Useful representation maps can
often be obtained as the composition of several intermediate maps, as in the case of feedforward
neural networks and multilayered sparse coding [51]. More generally, consider K intermediate
layer representation maps ®®*) : :RYT 5 RY for 1 < k < K, which are then composed to
obtain ®X7,

(4.1) olKl(x) ;=0 o KD o... 0 W (x).

Let (s, s',...,5%) denote an appropriate choice of sparsity level for each intermediate rep-
resentation from x to ®! (x).” By defining the layerwise input-output sparsity levels stk) .=
(s#=1,s%) and the cumulative input-output sparsity levels skl .= (s, s,...,5"), we now show
that one can compose sparse local Lipschitz functions to obtain a function of the same class.

Lemma 4.4. Assume that each ®%) in (4.1) is SLL w.r.t. inputs with local radius functions
) and local Lipschit le 1V
inp pschitz scale Iy .

w.r.t. inputs with local radius functions r;

Then the composed representation maps ®* are also SLL
(k] %]

inp inp

and local Lipschitz scale ;" given by

riap (217 60), s
)= R )T )
inp ’

Proof sketch. For the base case k = 1, by definition, ri[lll]p(x, s[l]) rl(il))(x, s(l)) and

I (x, sl) = l(l)( s()). Consider the case when k =2, ®P(x) := &) o & (x). Consider

inp
a perturbatlon (5 in the initial input. By the definition of SLL, if ||6]]2 < 7y, 1] b(x sll]), then

@M (x 4 &) — oM (x)|]2 < li[rllp(x, sl11)[16]|2. Note that the perturbation in the first layer out-
puts @ (x+5) — ®l1(x) is a perturbation in the second layer inputs to the map ®®). Hence,
if |90 (x + 8) — @1 (x)[}2 < riz) (21 (x), 52), then

o
o 010 < (000, 9) o0
ggx¢m@xwﬂ o (. s0) 181l

=160 (. 52 18]l

One can similarly extend this logic to the case k > 2. If each of the intermediate representation
maps is SLL w.r.t. inputs, then by appropriately weaving the sparsity levels at each layer we

9That is, one where s* < d* — ||®F(x)]o.
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can show that the composed representation map is also SLL. The complete detailed proof by
induction can be found in subsection SM1.2. |

As before, local Lipschitz and global Lipschitz compositions are special cases of the result
above. One can readily use this local Lipschitz scale function li[flﬂ to obtain a certified radius
as per Theorem 4.3 for functions that are compositions of sparse-local Lipschitz functions.

4.1.2. Optimal certified radius. For any sparse local Lipschitz predictors, the certified
radius in Theorem 4.3 at the trivial choice of sparsity rcert(x,0) is computed using li[flﬂ (x,0),
the global Lipschitz constant for ®51. Increasing the sparsity vector s entrywise can result
in a smaller local Lipschitz scale li[fg (x,s) at the expense of a smaller local radius ri[ﬂ (x,8).
Hence, for a given input x, the best robustness certificate r*(x) is generated by a specific choice

of sparsity level s*(x) that achieves a low Lipschitz scale in a sufficiently large neighborhood,

(4.2) s*(x) := argmax reert (X,8),  77(X) := reert (X, 87 (x)).
S

The complexity of this optimization problem will depend on the specific hypothesis class and
on the function reet. For a composition of SLL predictors, the number of feasible sparsity
levels in (4.2) is O(Hiil d*), exponential in the number of intermediate maps K. Thus, rather
than search for the optimal sparsity vector s*(x), we propose to approximate this solution
(sometimes exactly) by a binary search over the space of the certified radius instead. More
precisely, it is easy to see that r*(x) € [0, ||x||2]. Thus, if one has access to an algorithm
A(x,v) that can return, for any given input and energy level v, an appropriate sparsity vector

(K]

§ so that v < 7y J(x,8), one can implement a binary search over v € [0,[x||2] by checking

whether

M(h(x),9(x))

—_— K ~ .
2||A ], - 11 (x,8)

(4.3)

If this is satisfied, such a level of sparsity is safe. This allows us to carry out a binary
refinement over v until a tolerance level, tol, is satisfied, reducing the complexity of this search
to O(logd%)).w Naturally, the quality of this solution depends on the algorithm A(x,v).
We will see that for functions that satisfy a notion of monotonicity, such an algorithm can be

easily instantiated and can be, in a specific sense, optimal.

Definition 4.5 (monotone ordering). A sparse local Lipschitz representation map ® with
radius function rinp, and Lipschitz scale linp is said to have monotone ordering if the following
hold:

(4.4)  Lipschitz condition: (si",s%"%) < (si*, s5") — linp (%, (s s9ut)) < linp (%, (st s9u1),
(4.5)  radius condition 1: s} < 55"V 5 € [d°™], Tinp(X, (57", 5)) < Pinp(X, (5", 5)),

(4.6)  radius condition 2: s9"* < 5"V s € [d™], Tinp (X, (8, 5")) > rinp (X, (5, 55™)).

ONote that we suppress the complexity of the algorithm A(x,v), which will depend on the specific hypoth-
esis class and refer simply to the search complexity.
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Algorithm 4.1. A(x,v) to generate valid sparse vector § for ®K] = ®(K) o... 0 @),
Require : Input x and perturbation energy level v.

Require : Intermediate sparse local radius Tl(rlf; and local Lipschitz scale ll(n;)> Vke[K].

Ensure : Sparsity vector § such that v < rl[np] (x,8).

Initialize : §:={0,...,0} € RE+L,

Initialize : Perturbation level, 70 :=v.

for k=1 to K do
8 « maximum s such that P¥~! < r(k) (@lF—1(x), {s*71,s}).
ok pk-1 l( ) ( Ple— 1]( ) {S 1’Ak}).

end for

Return : §={0,5',...,55)}.

Algorithm 4.1 implements the rule A(x,v) described above. This algorithm is correct, as
we now make precise.

Lemma 4.6. The sparsity vector 8§ generated by Algorithm 4.1 is correct, i.e. rl[np]( S)>wv.
If ®E] s such that each intermediate map ®*) has monotone ordering as per Definition 4.5,
then Algorithm 4.1 is maximal; i.e., for any sparsity vector s, v < ri[ig (x,8) = s < 8.
Additionally, under monotone ordering, if v is deemed unsafe, i.e., (4.3) is not satisfied, then

there exists no sparsity vector s such that v < reer(X,S).

P'roof Define § and % = v - IF (x,8) as in Algorithm 4.1. For each layer k, the choice

inp
k=1 [k—1] g1 .. k1 [] a1 sk :

of 8% ensures that PF~! = v - lmp (x,{0,5",. }) < rigp(x,{0,87,...,8"}), thus ensuring

correctness. Consider any sparsity vector s such that v < r[ p](x §), and let 7% := ll[n]p( S).

We aim to show that 8 <8 necessarily. For k=1, v < r[ ] (. {0, 5'}), and by construction,

5! :=maxs such that v < r ( ,{0,s}).

Hence, 5' < 3'. Furthermore, by the monotone ordering assumption,

(7) ot Lt 8 (el (1 52) € 2 (a0, 51,52

In the above statement, (a) follows from monotone ordering of the Lipschitz scale, (b) follows
from assumption on 8, and (c) follows from monotone ordering of the radius w.r.t. the input
sparsity level. Further, §% is defined as the maximum sparsity level such that

—~
=

§% :=max s such that 7' < rl(np ( l(x),{3" }) .
From (4.7), 52 is also feasible for the above optimization, and hence 32 < 82, One can repeat

these arguments until layer K to show that s <§. Hence, Algorithm 4.1 chooses the maximal
sparsity vector. Now consider the set of sparsity vectors Sgooq such that v < Ti[rlg (x,s). If
there exists a witness vector s such that rcer(x,s) > v, then certainly s € Sgo0q. We have just
shown that for all s € Syp04, Wwe have s <8, and hence by the monotone ordering property,
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li[ﬁ (x,8) < li[flﬂ (x,8), and thus reert(X,s) < reert(X,8). Therefore, if ree(x,8) < v, then for all
S € Sgood We necessarily have reert(x,s) < v and the conclusion follows. [ |

In what follows, we will study a classes of functions that have monotone ordering.

4.2. Certified robustness for feedforward neural networks. For the remainder of this
section, we will refer to feedforward neural networks exclusively as the representation map
@K given by the composition of K piecewise affine maps ®*)(t) := o(W¥*t +b*). The
presence of the ReLLU activation in each feedforward map naturally encourages some degree
of sparsity at each layer. For each feedforward map ®*), we denote the inactive set of
the representation at any intermediate input t € R* ™" by ZF(t) := {j € [d"] ]w;?t + b? <
0}, while its complement contains the support of layer k, ie., J%(t) = Supp(®¥)(t)) =
[d*]\Z*(t). In what follows, we define index sets I* as subsets of the full inactive set Z¥(t),
i.e., I* C ZF(t), and the corresponding index set J*¥ = (I¥)C as supersets of the support
set, i.e., J¥ D J¥(t)."" Figure 2(a) illustrates these sets for a given layer ®*)(t). Later,
in section 6, we will demonstrate typical levels of sparsity achieved by common feedforward
models.

Since ®*) is an affine map composed with a ReLU operator, the map ®*) is Lipschitz
with constant ||[W*||o. In the following lemma, we move beyond this global characterization
and define its sparse local radius as the maximum energy of a perturbation ~ € R under
which there exists at least one common inactive index set I* of size s* for both ®*)(t) and
®*)(t ++). Along with the local radius function, we also define a specific inactive set in the
output that is guaranteed to withstand any input perturbation.

Lemma 4.7. Let s®) = (skil,sk) denote the input-output sparsity levels for ®K*) 50 that
sP=L < dF1 — |It]|o and s* < d¥ — || @R (t)||o. The representation map ®*) is SLL w.r.t. its

1.0
T (t)
J* I¥ wht +bf s
N TR AT Y
- - N W, oo -
5 v (t)
-0.5 A
e 3/
Y
T*(t) TF(t) o
-1.5
0 2|0 4|0 - 6|O 8|0 100

]

(a) (b)

Figure 2. (a) Illustration of the sets J*(t), T*(t), as well as I* and J*, for a given intermediate input

o(WFt +bF). Colored squares represent nonzero elements, ordered here without loss of generality. (b) Illus-

tration of the radius 7"1(

pre-activations.

:}z(t,s(w) for a one layer neural network, given the (sorted) values of the normalized

HFor ease of notation, in the following discussion we denote J° := [d°].
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(k)

inp’ and sparse local

input with stable inactive index set I*, sparse local radius function r.

Lipschitz scale function lin[)) defined as

‘W?t—‘rbﬂ (k) ‘Wkt—‘rbk‘

I*(t,s®)):= argmax min o (t,s™)) ;= min

rezr, n=s i€ [lwill, T iert will,
1) (g, %) e (W)
IHP( S ) TE=1CTh- 11(1{;1)a}‘(1k =gkt Py o ( ) 9’

where J* = (I*(t,s0))e, Jk=1 = (I*1)¢ are index sets of sizes (d* — s*) and (d¥~1 — sF~1).
Further, the feedforward map has monotone ordering.

Proof. Fix any layer input t and sparsity level s*). The set I* defined above is inactive
for the representation ®*)(t). Further, by the deﬁmtlon of the local radius function r", for

mnp?
each inactive index i € I*, wkt +bF < — Hwk’H2 )(t s(?)). Let t be a perturbed input that

inp

is within the sparse local radius ||t — t||z < rl(ng(t s(*)) and further shares a Sparsity pattern

Pre-1(t) = Ppe-1(t) = 0 for some I*~1. We shall show that the set I* of size s* is also inactive
for the perturbed representation ®*(t) for any i € I*:

) (t, s(

wht+bf = (Wit + b ) + wiE—t) < — |wi| -+

 e=tl,=o.

Thus, we have shown the existence of a common inactive set for both the original and the
perturbed representations. To bound the distance between the representations, note that

Hcp('f)(iz) - <I>(k)(t)H _ Ha (WHE+b) — o (Whe +b¥) H2 < HPJk,JH(W’f) (E—t) H .

2 2

The second inequality above stems from ignoring common inactive sets. To see that the riy,
and liyp have monotone ordering, for input sparsity levels 31_1 < sg_l and any fixed output
sparsity level s € [d¥], we have, T*(t, (sF™!,5)) = I*(t, (s5 ', 5)) by definition, and hence

Tinp (t, (Slf_la S)) - Tinp (t, (sg_la 8)) ) linp (t, (3}16_17 3)) Z linp (t, (Slf_lv 8)) .
Similarly, for a fixed s € [d*~1], and s¥ < sk, note that I*(t, (s,s¥)) C I*(t, (s, s5)), and hence

rinp(t (s, 31)> >r1np<t,(s,s§)>, linp<t (s, sl)) >lmp< (s, slf)) u
(k)

inp
diate feedforward layer ®*). An analogous exgressmn for this quantity can be obtained by

considering the (normalized) vector g*(t) :=[% t:r”b ]%" | of pre-activations,

It is worthwhile to stress the implications of the local radius function 7.’ for the interme-

l[w
(4.8) I*(t,5®) .= Top-x(—g"(t),s°), +*(t,5®)=ReLU (som(—qk(t),sk)) .
Here, for a vector t and index j, ToP-K(t, j) is the index set of the top j entries and SORT(t, 7)

is the jth largest entry in t. The above expression also reveals that the computation of
the sparse local radius can be easily incorporated into the forward pass of neural networks
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(with an additional normalization and sort operation). The radius quantifies the minimal
distance of a neuron in the “most inactive set” I* (of size s*) for becoming active. As
illustrated in Figure 2(b), ri(rlfr))(t, s(¥)) is a decreasing function of s*. While Lemma 4.7 studies
sensitivity to £ perturbations, one can easily extend this to any £,-norm perturbation. To do
so, it suffices to compute the vector g*(t) by normalizing with an {g-norm (with 1/¢+1/p=1).
The corresponding Lipschitz scale is then HP gk ge-1(W Hp_> We now present the robustness

certificate that combines Theorem 4.3 and Lemmas 4.4 and 4.7.

Corollary 4.8. Consider a trained depth-K feedforward neural network h € Hrnn k. Let s
be a fized choice of sparsity levels at each layer so that s* < dF —||®®) (t)|, and let s™%) be the
corresponding layerwise input-output sparsity levels. The cumulative sparse local radius r
and local Lipschitz scale ) are defined as

(K] . ReLU (sort(—¢"(@lF1l(x)),s")), K] (¢
T (X, 8) == min L.

e Isk<K Hﬁzl H’PJn,Jn—l(Wn)HQ ’ mp H Hpjk s )HQ

The predicted label remains unchanged, i.e., §(x + 0) = y(x), whenever ||0||y < Tcert(X,s):

M(h(x).5(x)) }

2[| A, - 11 (x,5)

Teert (X, 8) 1= min {rl[np]( ,S),

The proof can be found in subsection SM1.4. Since feedforward networks have monotone
ordering, for each v > 0, Algorithm 4.1 provides optimal sparsity vector § for certification.

4.3. Discussion. For each input X( the inactive index sets I* of size s* in Lemma 4.7 are
k)

inp
off between the sparsity of the representations at each intermediate layer s* (via the reduced

operator norms) and M (h(x),§(x)), the classification margin in feature space. Before moving
on, we summarize a few key remarks about our approach.
Reduced model perspective. At each input x, for sparsity levels s* and their chosen index

chosen to maximize the local radius r. ” (x). The certificate in Corollary 4.8 reflects a trade-

sets J* of size d¥ — s*, we can define a reduced neural network @][ri(d] ‘R RdK*SK,
K
(49) ¢1[*ec% (X) (Wred o (ergd L. "0 (ered PJO (X) + brled) bfgd 1) + bred)

where erd € R =s")x(@""=s""") 4re defined as the submatrices of the parameters of ®*)
at specific active sets, i.e., erd = Pk gr (W*), and similarly for the biases. Corollary 4.8
essentially shows that, at each input x, the feedforward neural network @] is equivalent to
a particular reduced feedforward neural network f1> in a local neighborhood around input
x. That is, for all perturbations é such that ||d]], < ?np , the following holds:

(4.10) ol (x 4 6) = o"l(x + §).

The reduction of the active weights in the network locally can be seen as a form of input-specific
pruning of the neural network. Importantly, this observation goes beyond the statement that
a feedforward neural network is locally linear in a neighborhood of x. Making this observation
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would be too stringent, as the size of this neighborhood could be arbitrarily small. Instead, the
equivalence in (4.10) holds for the nonlinear function @Eﬁ. Within the specified neighborhood,
the activation patterns might change but only in the complement of the sets I¥. The definition
of these sets provides a controllable knob via the sparsity requirements.

Comparison to related work. These observations are related to the analysis based on max-
affine operators in [7], providing a partitioning of the input space X based on successive
feedforward layers. That work shows an effective way to compute the distance to the partition
boundary, and this can be seen as a version of the local radius function we have defined only
when the sparsity level is set to the exact number of inactive neurons |Z¥(x)| for each input in
each layer. When there exists a row wé-“ that is nearly active, i.e., = < w}“(I)[k*” (x)+ bé? <0
for small £ ~ 0, the distance from x to the input partition is near zero. In this case, the
flexibility for different levels of sparsity in our analysis is crucial, allowing us to expand the
active set and increase the allowable radius.

The work in [16] makes the empirical observation that Parseval networks—Iloosely speak-
ing, those with operator norms close to 1—result in better robustness. Our results show
that, in fact, this is not necessary as long as the operator norms of the reduced matrices
are close to one. In particular, increasing depth can have a dramatic impact on the local
Lipschitz scale [, if the reduced linear map is contractive while the original map is not,
ie., [Py yi-1(WF)|| <1< |[WP¥||o. More generally, our results expose an inefficiency in ap-
proaches that directly compute the Lipschitz constant of the full feedforward network. Our
measure of sensitivity that accounts for locality and sparsity are at least as good as global
measures (and potentially much tighter). Note that one could use any algorithm for estimat-
ing the Lipschitz constant of a neural network [18, 23, 25, 47, 59, 62] applied to the reduced
model, @Eﬁ, in order to estimate li[flg (x, S[K]) efficiently. Last, the authors of [37, 52] study the
case of supervised sparse coding, performing a similar sensitivity analysis for the hypothesis
class Hggc focusing on a local radius threshold (or encoder gap) that preserves the support,
or sparsity level, of the representation obtained under corruption. The robustness certificate
developed in [52, Theorem 5.1] is equivalent to the application of Theorem 4.3 for the class
Hssc (see Lemma SM1.1 for full details). Thus, our work generalizes results in [52].

Dependence on input. The results presented above are input-specific and require the com-
putation of the operator norms of the reduced submatrices. In many settings, it might be
more relevant to have a similar notion for a set of inputs instead. For each layer, this can be
done by searching for the worst case submatrix of W* of size (d* — s*,d*~! — s¥71) via an
extension of the well-studied notion of babel function [55].

Definition 4.9 (reduced babel function). For any matriv W € R%*4% we define the reduced
babel function at row sparsity level sy € {0,...,d; — 1} and column sparsity level so € {0, ...,
dy —1} as

)

m
JiCldi], JEL J2Cldo] HPJQ(WZ')HZHPJQ(WJ')”Q

P P AVA
IU’ShSQ(W) = max max Z | 7 (Wl) J2(W]) |
|Ji|=d1—s1 Zgé‘]jl’ |J2|=d2—s2
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the mazimum cumulative mutual coherence between a reference row in Ji of size (dy — s1),
and any other row in Jy, each restricted to any subset of columns Jo of size'? (dy — s2).

The reduced babel function is computationally tractable,'? albeit more expensive to com-
pute than the babel function. The additional flexibility is showcased in the following result.

Lemma 4.10. For any matric W € R4 %% the operator norm of any nontrivial'* submatriz

indexed by sets Ji C [d1] of sizes (d1 — s1) and Ja C [da] of size (da — s2) can be bounded as
1P (W) lly </ pas, 50 (W) - [Wl5 o -

Proof. By the Gerschgorin disk theorem, for any eigenvalue A of Py, ;,(W), there exists
index j such that \; lies in the Gerschgorin disks centered at (P, (w;), P, (w;)) with radius
>i2i{Pr(w;), Py, (w;)). The conclusion follows by bounding the radius using the reduced
babel function f, s,(W). For a complete proof, see subsection SM1.6. [ |

A key feature of the above lemma is the bound on the operator norm of a submatrix that
only depends on the size of the chosen index sets. For nontrivial sparsity levels, the proposed
bound often improves on the naive bound [Py, 7,(W)||, < |[W||,. Similar notions have been
proposed in [1]. The upper bounds from Lemma 4.10 can be computed offline and used in
place of HP gk e ( (WF) H2 for quick certification for a new sample with appropriate sparsity.

5. Robust generalization. In this section, we move beyond deterministic robustness cer-
tificates and provide a generalization bound for the robust risk of SLL hypotheses that only
has a mild dependence on the energy of the adversary. We do so by studying the sensitivity
of a predictor to simultaneous changes in input and parameters.

Recall that a representation-linear hypothesis class H contains predictors of the form
h(-) = A®w(:), where the parameters (A,W) € A x W. Until further instantiated, we
assume that the parameter sets A and WV are bounded with respect to embedded norms, such
that ||All, <My4 and HWHVY < Myy. We define the norm of a representatmn linear predictor

h to be [|h],, := max {”AH2, ”W} For any pair predictors h and h with weights (A, W) and

(A,W), we let ® and & be thelr corresponding representation maps. The distance between
predictors is measured by the induced distance metric.'” For a (globally) Lipschitz predictor
h, one can obtain a uniform bound (see subsection SM1.8) on the generalization error that

i O(\/ln(/\/(i,jz))ﬂn(i) + Lﬁ), with probability 1 — «, and N(e,H) is the proper covering

number of ‘H w.r.t. induced distance metric at resolution €. In the analysis that follows, we
refine the second term by exploiting data-dependent properties of a trained predictor.

5.1. Sparse local Lipschitz w.r.t. parameters. We start by characterizing a class of func-
tions that preserve sparsity in the representations.

Definition 5.1. Let h be a representation-linear hypothesis such that ®(x) is s-sparse at x.
The hypothesis h is s-sparse local Lipschitz w.r.t. parameters at x if there exist an inactive

2When s; =di — 1,|J1| = 1, we simply define ps, ,s,) (W) :=0.

"*Replacing the ||P;(w;)||, in the denominators of the definition with |[W]||, __ vastly reduces the complexity
of evaluating the reduced babel function, and all subsequent lemmas still hold.

MThat is, 0<s1<d; —1and 0<s2<d2— 1.
Al W Wil

15The induced distance metric is || — hl|3 := max{ 1A W
M4 w

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 10/09/24 to 73.201.213.137 . Redistribution subject to CCBY license

ROBUSTNESS OF SPARSE LOCAL LIPSCHITZ PREDICTORS 935

index set I of size s, a local radius r > 0, and a local Lipschitz scale | > 0 such that, for any
perturbed predictor h € BI*(h),

Pr®(x) =P (B(x)) =0 A Hﬁ(x) _ h(x)H2 <l Hh _ hHH

Furthermore, h is sparse local Lipschitz w.r.t. parameters if for every x € X and all appropriate
sparsity levels s, h is s-sparse local Lipschitz (w.r.t. parameters) at x, with corresponding local
radius rpar(X,s) and local Lipschitz scale lpar(X,s).

As before, the local neighborhood is defined both in terms of a norm radius and a sparsity
level, and both r(x,s) and I(x,s) decrease with increasing s. Importantly, for Lipschitz
hypotheses h, there always exist s so that h is s-sparse local Lipschitz. As the reader can
likely foresee, the utility of Definition 5.1 is that, when rpar(x,s) > 0, the sparsity level s
indicates the existence of a stable inactive set of indices I of size s, so that one can restrict
the analysis to the (extended) active set J = [d]\] in such a way that

7 = Rl < rpar(x,8) = h(x) = Ad(x) = Ple 1 (A) Py((x)).

The range of sparsity levels for each input is in {0,...,p—[|®(x)||,}, and this recovers Lipschitz
functions at the trivial choice of sparsity level s =0 with 7par(x,0) =00 and lpar(x,0) := Lpar.

In order to study generalization, one must extend this property over a finite set of sam-
ples ¥V C X. For a certain radius threshold € > 0, among all feasible sparsity levels, we
choose the optimal s that minimizes the worst-case local Lipschitz scale across the set V while
guaranteeing a sufficiently large local radius, that is,
(5.1) s"(V,€) ;== argminmax lpar(X,s) s.t. € <minrpar(x,s).

s xeV x€eY

Note that s = 0 is always feasible for the optimization problem defined. We can now define
the sparse regularity of a predictor h w.r.t. reference set V and a fixed radius threshold € as

L(h,V,e€) = max lpar (x,5%(V, €)) s.t. € <rpar (%, 5°(V,€)) .
Xe

This sparse regularity measures the worst-case local Lipschitz scale at any input in A with
a sufficiently large local radius at the reference sparsity level s*(V,e). In the unfavorable
(not sparse) case s*(V,€) =0, the corresponding sparse regularity £(h,V,€) = Lpar, the global
Lipschitz constant. Thus, a generalization bound that relies on L(h,V,¢€) is, at worst, de-
pendent on the global Lipschitz constant L., but potentially much tighter. We now present
our generalization bound for SLL predictors, which makes use of unlabeled samples, Sy, in
addition to the training set S7, both with m samples. The former will be used to inform the
sparse regularity of the predictor, while the latter is used to fit the parameters of the models.

Theorem 5.2. With probability at least (1 — «) over the choice of i.i.d. training sample St
and unlabeled data Sy each of size m, for any predictor h € H with parameters (A, W), the
generalization error, with a b-bounded and Liss-Lipschitz loss, is bounded by

(52)  R(h)<R(h)+O bwnW(%ﬂ))Hn(i)+Lloss-£<h,sTusU,2}n>

2m m
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This result follows from standard arguments by constructing an e cover of the hypoth-
esis space and bounding the stability of the function’s outputs on this cover, and it can be
considered a generalization of the bound presented in [52]. The complete proof can be found
in subsection SM1.9. Note that to compute the sparse regularity of h, rp,, must be easy to
compute at each input, and [, must be regular enough to optimize over. The requirement
of additional unlabeled data can be seen as a limitation; however, this dependence is mild, as
it incurs in a linear increase in the number of training samples.

5.2. Robust sparse local Lipschitz. To extend Theorem 5.2 to the robust setting, one
needs to characterize the parameter sensitivity of the predictor under corrupted inputs. Let
v >0 be the adversarial energy, and recall that Ly, , is the global Lipschitz constant,

Yh,h,x, max
8€BX(0)

b+ 8) = hix+8)| < Lyars

h—hH .
H

Based on this, a uniform generalization bound, analogous to Theorem SM1.5 but for the
robust risk Ry (h), can be readily established with a dependence of O(Lpar,/m). To move
beyond the global analysis, we extend the sparse local Lipschitz property.

Definition 5.3. Let h be a representation-linear hypothesis so that ®(x) is s-sparse atx. The
hypothesis h is robust s-sparse local Lipschitz w.r.t. parameters at x if there exist an inactive
index set I of size s, a local radius r > 0, and a local Lipschitz scale I >0, such that, for any
perturbed predictor h € BH(h) and any corruption 8 € B (0), the index set I remains inactive
after input and parameter perturbations, and the distance between the predictor outputs is
bounded, that is,

Pi(b(x+6) =Pr(®(x+6)=0 A |h(x+8)~hex+8)| <ifh-n] .

Additionally, the hypothesis h is robust sparse local Lipschitz w.r.t. parameters if h is
sparse local Lipschitz (w.r.t. parameters) for every x € X and any appropriate sparsity level s,
with corresponding local radius rpar,, (X, s) and local Lipschitz scale lpar (X, S).

For a robust sparse local Lipschitz h, at any input x and sparsity level s where the predictor
has a nontrivial robust local radius (i.e., rpar,(x,s) > 0), there exists an inactive index set
I of size s for the representation ®(x) that withstands simultaneous perturbations to inputs
and parameters. Note that the chief difference between this and Definition 5.1 is that here
the sensitivity is evaluated at the point (x + &) while being a property of h at x. Indeed, a
sparse local Lipschitz predictor is also robust sparse local Lipschitz,

Tpar,w (X, ) = 5612}1(10) Tpar(X+0,5),  lparp(Xx,8) = 561%%)50) lpar(x+ 0, 5).
At the trivial sparsity level s =0, we simply let rpar,,(x,0) = 0o and the lpar 1 (%,0) = Lpar
for any Lipschitz h. Leveraging the controllable trade-off between sparsity levels and the local

sensitivity, we define the robust optimal level s? , (V,€) and robust sparse regularity,
(5.3) Syop(V, €) := argminmax lpar (X, s) s.t. € <minrpa; »(X,s),
s xeV ’ xeV ’

Lyon(h,V,€) = mea/%clpar,,,(x, Srop(V,€)) s.t. € <tpary (X, 570, (Vs €)) .
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Using these ideas, the result in Theorem 5.2 can be extended to the robust setting
(see Theorem SM1.7). We omit this and move on to our analysis for feedforward neural
networks.

5.3. Robust generalization for feedforward neural networks. For simplicity, we only
consider networks with zero bias (as in [9, 40, 41, 43]).'° We consider depth-(K +1) feedforward
neural networks where the representation map ® has layer weights {W¥ }szl. For notational
convenience, we denote the classification weight in the final linear layer as WX+ (in lieu of
A). For the reminder of this section, we consider a fixed set of constants {M¥ ,{M’;}}szﬁl
that defines a hypothesis space HX+! with parameters in Hi:“ll WE_ where

Wk .= {W e R¥" xd"!

Wk < My V(55 550), s (W) <M,

while WK+ .= [W ¢ RdKXC‘ Wiy < MR VB, g o(W) < MEF} The final
classification weight space!” accounts for the sparsity in the representation output, as op-
posed to the output of the predictor. In this manner, a predictor h € HE*! is defined as
h(x) = (WEHHTo[K](x), where the representation map ® is the composition of K feed-
forward maps, so that ®¥l(x) = ¢(WXo(WE-1...5(W'x))). While the weight spaces are
constrained in the group norm, we define the following scaled norm ||-||,yx fit to the purpose
of measuring parameter perturbations ||[W/|| ), := Mg‘éj “[[Wll o, such that HWkHWk < VdF for

any W* € WF. Based on the scaled norms, we define the norm of any feedforward network,
|Allsgxss = maxi<p<g+1 [WP|ywe. Additionally, the predictors in HX+1 are constrained by
the reduced babel function'® at each layer for all appropriate sparsity levels. As before, at each
layer 1 <k < K, TF(x) := {j € [d*] :w?(I)[k*” (x) <0} and 5(x) := |Z¥(x)| denote the index
set of all inactive rows and their sizes, respectively. We further let §(x) := {5%(x),...,5%(x)}.
Although Definition 5.3 only requires a scalar sparsity level corresponding to the representa-
tion output, ®(x), for the case of multilayered neural networks, we will refine this definition by
a vector of layerwise sparsity levels s = {s% s!,..., sk } that achieve the same goal of sparsity
in each layer representation at the level s*. Note that for a representation at a given point,
®(x), this latter vector denotes potential sparsity levels, whereas the previous s(x) denotes
the maximal possible sparsity; i.e., s* < 5%(x) for all k.

The intermediate sparsity levels can improve the robust properties further. To quantify
this phenomenon, for any sparsity vector s, we define ¢°(s) := 1 and for 1 < k < K + 1,
CF(s) = HZ:l M7, /1 + M¢.. Indeed, as per Lemma 4.10, ¢*(s) provides an upper bound on
the product of operator norms of reduced linear maps, i.e.,

(5.4)
k k
Ck(s) > H sup HW"”QOO \/1 + pgn gn—1 (Wn) > H sup HPJH’JV,H(WH)HT
nle"EW” n=1 U“Tgwn’
n|=dn—sn,

IJn—1|:dn—1_Sn—1

'Results for networks with nonzero bias can also be derived from our analysis.

"For convenience, WX 1! has been defined as a subset of RZ“*C rather than RE*"

¥Naturally, we only consider constraints that match the properties of the reduced babel function: since by
definition, ,u(dk_lys)(W) = 0, we require M];Ll =0 for all layers. Furthermore, for any a,b: a > b, we require
M¥ < M¥ to mirror the fact that pq,s(W*) < up s(WF).
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For any § = s >= 0, ¢*(8) < ¢¥(s) < ¢*(0), where ¢¥(0) is an upper bound on the product of
operator norms of the full linear maps W¥. For the induced distance metric'” corresponding
to ||-|l;, we note the following robust (global) Lipschitz of a neural network.

Lemma 5.4. For a fully connected neural network with K layers, ®U] (x), its robust global
Lipschitz constant can be upper bounded by Lpay, < (K + 1)¢ETH(0) - (1 +v).

Proof sketch. The proof is a simple application of the definitions above and operator
norm inequalities. Given predictors h,h € HET! with weights {W*} and {W*}  we note

that for 1 < k < K, for any layer weight matrix W* € WF, HW”“H2 <\ /1+ M- M{“,V, and

further, ||[W* — W¥||, < M{“/VHE — h||gx+1. Similar inequalities hold for K + 1. We then show
that, at any layer k£ < K, the distance between the perturbed representations is bounded:
| & (x 4 8) — & (x 4 8)|| < kCF(0) - (14 v) - ||h — h||px+1. The final proof follows by em-
ploying the upper bound to the operator norms, given by ¢*, and this latter bound of the
representations at every layer. The full proof can be found in subsection SM1.11. |

Note that Lpar,, is exponential in the network’s depth and captures the worst-case interac-
tion between layer matrices, inputs, and adversarial perturbations. Frequently, generalization
bounds measure the sensitivity of a hypothesis class using Lp,,,, and hence ¢¥(0) [9, 41]. To
instead measure sensitivity using ¢¥(s), we need to characterize the inactive set at each layer,
and hence we identify a critical angle between the rows of w* and the layer input.

Definition 5.5 (critical angular distance). Let Myy and My be domain hyperparameters.
Consider a matric W € W C RP*? such that |W||y ., < Mw and a vector t € T CR? such
that ||t||, < M7. The angular distance™ between the matriz W and vector t is defined to be
the vector function B: W x T —[0,1]7,

1 .t
[B(W,t)]; := — - arccos (W) Vi€ [pl.
The critical angular distance 0 : W x T x [p] = [0,1] at sparsity level s is the sth-largest entry,
0(W,t,s) :=sorrt (5(W,t),s).

Each component of 5(W,t) quantifies the angular distance between a row w, and t.2!
In turn, the critical angular distance (W, t,s) represents the sth-largest angular distance

YFor any two networks h and h with weights {W*}X_| and {WHFHEHL respectively,

h—h

max
k

W —W’“H .
<K+1 Wk

HHKH i<

20The term “distance” here is an abuse of notation. More precisely, the vector S(W,t) contains a distance
value in each component.

21Note that, naturally, (w;,t) = MyyM7 cos (7[3(W,t)];). Furthermore, our definition represents a scaled
version of the true angular distance since

<Wi7t>
MM

(Wiv t)

[will, [It]l

<
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Figure 3. Illustration of the critical angular distance for layer matric W* and input t. Green weights are
active, while grey and orange ones are inactive. The critical angle, w-0%(t), is denoted by the black dashed line.

formed by any row of matrix W with the input t. A larger critical angular distance indicates
that some set of s inactive indices in o(Wt) is resilient to bounded perturbations in the input
t or weight vectors W, as illustrated in Figure 3.

For the case of multilayered neural networks, a layerwise angular distance and critical
angular distance can be evaluated at each layer with domain hyperparameters M{‘jv and
¢F=1(0), which we denote by 8*(x) := B(WF ®lF=1(x)) and 6*(x,s) := sorr(B*(x), s*). As-
sociated with the critical angular distance Qk(x,s), at layer k, there is an index set I* =
Tor-k(BF(x), s*) such that, for each i € I*,

wholk—1l(x

m = cos <7r . Bk(x)i> < cos <7r 0% (x, s))

Therefore, if cos (70 (x,s)) <0 (i.e., if 0%(x,s) > 1), then the set I* is inactive for ®[l(x).>
Thus, critical angular distance can capture the existence of a stable inactive index sets.

Lemma 5.6. A feedforward neural network h € HET! is s-robust sparse local Lipschitz
w.r.t. parameters with scale lyar ,(%,8) := (K + 1)¢5F(s) - (1 4+ v) and radius

. u(s) + max {0, — cos(m6*(x,s) — v}
Tpar,y(X,8) := min .
1<k<K E(1+v)

Here 1(+) is the extended indicator’”® function of the positive orthant ]Rf.

Proof sketch. In a nutshell, this result can be shown by noting that for the defined radius
Tparv(X,8), the critical angular distance ©F(x,s) at each layer is sufficiently large so that rows
corresponding to strongly inactive set I* remain inactive upon perturbations to the model

22In the presence of appropriately scaled and nonzero bias b®, the lower bound here becomes

0" (x) > 1 arccos ;bf
iy M3, ¢R=1(0) )

ZTor all s = 0, 1(s) =0 and at the trivial choice sparsity levels, :(0) = oco.
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weights (by no more than 7par,(x,s)). One can then notice that since the strongly inactive
sets at each layer are maintained, one can follow logic similar to Lemma 5.4 to obtain a
Lipschitz scale dependent on the operator norms of the reduced weights at each layer. The
scaling factor k- (1 4+ v) stems from requiring larger critical angle distance in the last few
layers to withstand the multiplicative effect of perturbation in composed predictors such as
@K1 The proof is simple, albeit somewhat long, and so we defer the full version to subsection
SM1.12. [ |

To interpret Lemma 5.6, consider a fixed parameter radius e. If the angular distances
of the farthest s* vectors at each layer k is sufficiently large—i.e., if the s* vectors have a
sufficiently negative correlation with the input—then they can withstand input perturbation
of magnitude v, and parameter perturbation of magnitude €, to still remain inactive. If at
input x the robust local radius 7par(x,s) < € for all nontrivial sparsity levels s > 0, then one
cannot guarantee the preservation of a (nontrivial) inactive set at any layer. In this case, the
distance between predictors outputs is bounded by Lpar,y = lpar,v (X, 0).

Reduced model perspective. If the robust sparse local radius rpar,(x,s) > 0, Lemma 5.6
establishes the existence of stable inactivity of index sets I* = Tor—k(3(x), s*) at each layer.
In such an event, the effect of h € HE+! with perturbed parameters (within the radius) on
any perturbed input x + & can be reduced to a predictor ﬁred(x + &) using only the reduced
weight matrices erd =P gi (Wk) € R(@ —s")x (@~ =s*71),

h(x +8) = (WEIH T (de g (W}ed (x + 5)) . ) = hrea(x + ).

As in subsection 4.3, the reduced predictor is still nonlinear and the index sets J* = (I*)¢ are
determined by the input x and unperturbed predictor h. The above reduction is of course
also true for the original predictor. At a fixed sparsity vector s, although the index sets
vary across inputs, we can analyze and bound the Lipschitz constant of such a worst-case
reduction. This explains the independence of the robust local Lipschitz scale on a specific
input and the utilization of (/¥ *1(s), an upper bound on the worst-case product of operator
norms of reduced weights.

As per (5.1), let the robust optimal sparsity level be s := s}, (V, ‘le'),24 and the robust
sparse regularity for a feedforward network predictor h is

1

5.5 Liob| 7V,

> = lpary(x,8) = (K + 1)¢"H(s) - (1 +v).

This quantifies the worst-case local Lipschitz scale of the predictor h at any input x where it
has a sufficiently large local radius, is a data-dependent norm-based regularity measure that
can be much smaller than l,a . (x,0), depending on the set V, and scales linearly with the
adversarial energy v. We are finally ready to present the main result bounding the robust
generalization error of feedforward networks.

Theorem 5.7. With probability at least (1 — «) over the choice of i.i.d. training sample St
and unlabeled data Sy, each of size m, for any feedforward network predictor h € HX+1,

24Note here that the sparsity levels are vectors, and Srob(V, €) searches over layerwise sparsity levels.
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SN(Hym) + ln(%) I Lioss * ['rob(hy St U8y, ﬁ)
2m m(K +1) ’

Rrob (h) < Rrob (h) +0 b\/

where Exr(H,m) = ln(N(meKH)) is the log of the covering number.

The robust sparse regularity Lo, (h,S7USy, %) for a feedforward neural network is solely
determined by the sparsity levels s via ¢*(s), the worst-case operator norm of any reduced
layer weight in WW*. One can tune this result to be dependent on a specific trained predictor
(see Theorem SM1.11). We state a specific instance of such an improved result.

Corollary 5.8. With probability at least (1 — «) over the choice of training data Sy and
unlabeled data Sy each of size m, for any soft-margin threshold v > 0, for any feedforward
neural network h € HE1, there exist layerwise sparsity levels s = [st, ..., s%] dependent on

data ST U Sy so that the probability of robust misclassification is bounded:

K+1
ROy < i (h)+@(\/&v(?{,m)+ln(§) n (1+v) H HWkH2 \/1+M5k,5k—1(Wk‘)>7
k=1 >

T0b T0b m ym

where RL%”(h) denotes the robust risk for the zero-one loss (/Y (i.e., probability of robust

misclassification at any input)””, and Rzob(h) is the robust empirical risk for the margin
loss 07.

In the above theorem, O(g) denotes complexity that suppresses log factors?® [9]. We have
thus characterized the robust generalization ability of predictors that are SLL w.r.t. parame-
ters.

Comparison to related work. Unlike prior work in robust generalization [61, 5], our bound
has a milder dependence on the adversarial energy, O(%), rather than (’)(ﬁ) The full proof
found in subsection SM1.14 employs logic akin to structural risk minimization inspired from
[9]. The second term in the bound is a predictor-dependent instantiation of the robust sparse
regularity normalized by margin threshold, bearing resemblance to other spectrally normalized
margin bounds [5, 9, 24, 31, 42, 43, 61]. The reduced babel function captures the coherence
between any row and a subset of other rows (with an additional column restriction). Coupled
with the group norms, as per Lemma 4.10, the second term in the above bound scales as the
product of operator norms of reduced-linear maps, rather than the full weight matrices W¥.
The sparsity level s above is determined by the training sample S7 and the unlabeled data
Su, as s = sk (St U Sy, ﬁ) Only for a worst-case choice of data distribution and trained
network are the sparsity levels trivial (s = 0), in which case one recovers a result that only
depends on the global Lipschitz constants.

Our analysis studies robust generalization using both the favorable properties of a training
data and the local sensitivity of a trained predictor and is closest in spirit to results on standard
(benign) generalization [8, 40, 49, 58]. We note that the bounds in [8, 40, 58] do not have

#Formally, RE?;{)H (h) =Ex,y)~pz [Maxsepx x) 1 {y# argmax h(x + 8)}].
26For functions f and g with the same arguments, f = O(g) if there exists a constant C' such that for any

sequence of arguments {t/} ;>0 such that t/ — co we have that lim SUp;_, o0 W <C.
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explicit dependence on the number of parameters. In contrast, a bound on the covering number
term N (——— K FE ,HE+1Y in Corollary 5.8 can be obtained by parameter counting (see Lemma

SM1.17), i.e., Exr(HETL, m) oc O(log(m) + ZkKH d*d*=1). This renders our result vacuous in
the overparameterlzed regime when Zk Ldkd*=1 > m. We believe this is a limitation of the
current proof technique, rather than 1ntr1n51c to our sensitivity analysis, and conjecture that
combining SLL as per Lemma 5.6 with the other learning-theoretic approaches could remove
this dependence on dimensions. We leave this extension to future work.

Similar to our analysis, the authors of [40] capture a reduced dimensionality of neural net-
works and bound the generalization error of the original deterministic network by derandom-
izing the standard PAC-Bayesian bound. Their analysis weakens the exponential dependence
on depth (i.e., the global Lipschitz constant) and does not require an additional unlabeled
dataset. However, their bound depends inversely on the minimum absolute pre-activation
level in each layer—which can be arbitrarily small in practice. The sensitivity of the predictor
is quantified assuming that the original active sets ZF(x) at each layer remain unchanged
upon a Gaussian perturbation (equivalent to requiring rpar(x,8(x)) > 0 in our notation). This
presents a rather strong condition, and our analysis moves past this limitation. Additionally,
our results also hold for the robust adversarial setting. The analysis in [58], on the other hand,
links the parameter sensitivity of predictors to generalization using an augmented loss func-
tion that encourages favorable data-dependent properties, such as low Jacobian norms. Their
bound also avoids exponential dependence on depth but is restricted to smooth activations
(and the benign, nonadversarial setting). The work in [8] presents an alternative approach by
studying the curvature of the loss as given by the Hessian. While their bound avoids explicit
dependencies on the global Lipschitz constant, it is unclear whether all dependence on the
latter is avoided in their characterization of the failure probability.

6. Experimental results. In this section, we showcase the potential benefits of sparse
local Lipschitz analysis. We compute as sparse the certified radius and sparse regularity
for feedforward neural networks trained for classification on MNIST and SVHN datasets.
For more complex tasks, such as ImageNet, one needs additional architectural choices like
convolution and pooling, which we regard as future extensions to our work.

Tra/n/ng setup. We train feedforward networks h with weights {Wk}kKﬁl, where W* ¢
R xd" using the cross-entropy loss with stochastic gradient descent (SGD) with default
hyperparameter settings in PyTorch for 2,000 steps with a batch size of 100. Each network
is trained with orthogonal frame regularization, a measure suggested in [16] for improving ro-
bustness that encourages normalized layer weights to be near orthogonal. All trained models®’
hy, are described as follows:

K+1

k k
e s 3 (0 00) + g S - wHw
Here W¥ has normalized rows v~vk = WSH . We study models trained with four different

lw

choices of 7 € {0,0.001,0.01,0.1}. For both MNIST and SVHN datasets, the official training

2"The extra regularization term does not increase the computational cost of training.
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Figure 4. Security curves for feedforward neural networks with layer widths [500,500].

sets are randomly split into train and validation data (55,000:5,000 for MNIST, 61,257:12,000
for SVHN). The models are optimized on the training data, and the resulting measures are
computed on validation data.

Certified radius. For any network, at each input x there exists a true robust radius 7(x)—
the minimal energy required for a successful adversarial perturbation. The naive lower bound
for the certified radius, rgiobal(X) := reert (%, 0), is computed from Corollary 4.8 at the trivial
choice of sparsity. The SLL certificate, 7sparse(X), is obtained by binary search (with tolerance
107%), and using the optimal sparsity, s is computed by Algorithm 4.1. The SLL certificate
relies on the product of operator norms of specific reduced linear maps. These estimates pro-
vide a lower bound 7giobal (%) < Tsparse(x) < 7(x). While the value of 7(x) is not computable,”®
one can obtain a surrogate upper bound 7,4y(x) > 7(x) by measuring the minimal size of
an adversarial example found via an ensemble of popular (and effective) adversarial attack
strategies, such as PGD [34], Carlini and Wagner [13], etc.

Benchmark via security curves. Using a certified radius, one can compute the certified
accuracy of a collection of inputs, measured as the fraction of samples that are certified
to predict faithfully against a specified size of corruption. The robustness of the trained
networks (with two hidden layers of dimension 500) on both MNIST and SVHN datasets are
shown in Figures 4(a) and 4(b) via security curves, which plot the obtained certified accuracy

28Indeed, this is NP hard, as it involves the optimization of a non-convex loss.
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MNIST: Time taken (in seconds) SVHN: Time taken (in seconds)
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Figure 5. Time taken (y-axis) for certification on batch of 100 inputs for models with layer dimensions
[100] * (K + 1) with varying depth K (z-azis).

for increasing size of adversarial perturbations. We compare our “SparseLip” certification
based on 7gparse With other state-of-the-art certification algorithms that are based on Lipschitz
constant estimation: FastLip [59] and RecurJac [64]. Both methods upper bound the Jacobian
norm using entrywise bound propagation.

The results in Figures 4(a) and 4(b) demonstrate that orthogonal frame regularization
gives improved robustness, as seen via the certified accuracy and the robust accuracy un-
der attack. RecurJac provides the best certification for models trained without regulariza-
tion, while SparseLip is comparable to FastLip for the same setting. For regularized mod-
els, SparseLip provides the best certified accuracy for MNIST and is among the best for
SVHN. The performance of both RecurJac and FastLip drops significantly for regularized
models. Finally, Figure 5 depicts the considerable computational benefit of our approach,
SparseLip.

Sparse local Lipschitzness w.r.t. parameter. We finally study how SLL analysis can aid
the study of generalization by considering a 1-hidden layer feedforward network of different
widths trained via SGD without regularization. Across varying adversarial energy levels v,
Figures 6 and 7 plot the robust sparse regularity L,o5(h, V), €) and robust optimal sparsity level
st p(h,V,€) w.r.t. validation data V as defined in (5.3) at e = m We note that for large
enough v the SLL sensitivity is equivalent to global Lipschitz analysis (and correspondingly the
optimal sparsity level approaches 0), but for moderate values of v the robust sparse regularity
can be significantly better. Figures 6 and 7 demonstrate the observation in networks with large
widths and the ability of SLL analysis to capture the reduced local sensitivity. Importantly,
the wider the network, the more significant the reduction in the equivalent Lipschitz scale of
the model.

7. Conclusions. In this work, we study adversarial robustness via the lens of sparse local
Lipschitzness (SLL). We show that feedforward neural networks are SLL and equivalent to a
reduced monlinear mapping with decreased sensitivity in a local neighborhood around each
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Ratio of Parameter local Lipschitz constant for MNIST Ratio of Parameter local Lipschitz constant for SVHN
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input. In using Lipschitzness properties locally rather than globally, and benefiting from sparse
structures, our approach provides an improved certified radius at any input and bounds on
the robust generalization error with only a mild dependence on the adversarial corruption.
Our work is a step towards producing data-dependent nonuniform bounds that leverage the
favorable properties of a trained predictor on a sample datum. We believe that the ideas
presented here are extensible to other hypothesis classes that encourage other structural priors,
such as convolutional, attention, or graph neural networks. The identification of the particular
reduced models for each class presents an intriguing topic of future research.
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