Interactive Text-to-SQL Generation via Editable Step-by-Step Explanations

Yuan Tian!, Zheng Zhang®, Zheng Ning?,
Toby Jia-Jun Li2, Jonathan K. Kummerfeld®, and Tianyi Zhang'
Purdue University!, University of Notre Dame?, The University of Sydney?

tian211@purdue.edu,
toby.j.li@nd.edu,

Abstract

Relational databases play an important role in
business, science, and more. However, many
users cannot fully unleash the analytical power
of relational databases, because they are not
familiar with database languages such as SQL.
Many techniques have been proposed to auto-
matically generate SQL from natural language,
but they suffer from two issues: (1) they still
make many mistakes, particularly for complex
queries, and (2) they do not provide a flexi-
ble way for non-expert users to validate and
refine incorrect queries. To address these is-
sues, we introduce a new interaction mecha-
nism that allows users to directly edit a step-
by-step explanation of a query to fix errors.
Our experiments on multiple datasets, as well
as a user study with 24 participants, demon-
strate that our approach can achieve better
performance than multiple SOTA approaches.
Our code and datasets are available at https:
//github.com/magic-YuanTian/STEPS.

1 Introduction

Natural language interfaces significantly lower the
barrier to accessing databases and performing data
analytics tasks for users who are not familiar with
database query languages. Many approaches have
been proposed for generating SQL queries from nat-
ural language (Popescu et al., 2004; Giordani and
Moschitti, 2012; Rubin and Berant, 2021; Scholak
et al., 2021; Zhao et al., 2022). Using recent large
language models, systems have reached 86.6% ex-
ecution accuracy (Gao et al., 2023) on the Spider
benchmark (Yu et al., 2018).

However, the rate of improvement has slowed,
with a gain of only 10% since mid-2021. This is
partly due to the inherent ambiguity of natural lan-
guage and the complex structure of SQL queries
(e.g., nested or joined queries). Thus, it is challeng-
ing to generate a fully correct query in one step,
especially for complex tasks (Yao et al., 2019).

zzhang37@nd. edu,
jonathan.kummerfeld@sydney.edu.au,

zning@nd. edu,
tianyi@purdue.edu

Show me the student ID who has @
the best grade under the age of 18

P N

1 From table student.

C | SELECT name FROM |

2 ... age is greater than 18. <:| student WHERE age |
| i

1

3 Return the name. > 18

@ 1 From table student.
2 ... age is greaterthan less than 18.
|:> 3 Sort based on grade, return first
4 Return the rare id.

{ SELECT id FROM
|:| student WHERE
| age < 18 ORDER

{_BY grade ASCLIMIT1

Figure 1: Refining a SQL query by directly editing a
step-by-step explanation.

There has been growing interest in develop-
ing “human-in-the-loop” approaches that elicit
user feedback to guide SQL generation. How-
ever, most approaches only support feedback in
constrained forms, e.g., answering multiple-choice
questions (MISP, PITA, DialSQL Yao et al., 2019;
Liet al., 2020; Gur et al., 2018), changing SQL ele-
ments in a drop-down menu (DIY, Narechania et al.,
2021), etc. Such constrained feedback is not suffi-
cient to fix many complex errors in real-world SQL
tasks. One exception is NL-EDIT (Elgohary et al.,
2021), which allows users to provide feedback as
new utterances. However, since the feedback is
open-ended, interpreting it can be just as hard as
processing the original request.

In this paper, we seek to strike a balance between
constrained feedback and open-ended feedback by
proposing a new interaction mechanism: editable
step-by-step explanations. Fig. 1 illustrates our
idea. This mechanism consists of three core compo-
nents: (a) a text-to-SQL model, (b) an explanation
generation method, and (c) a SQL correction model.
Our key insight is that using a step-by-step expla-
nation as the basis to suggest fixes allows users to
precisely specify where the error is and how to fix
it via direct edits. This not only saves users’ time

16149

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 16149-16166
December 6-10, 2023 ©2023 Association for Computational Linguistics

but also makes it easier for the model to locate the
error and apply fixes.

Based on this idea, we implemented an interac-
tive SQL generation and refinement system called
STEPS. STEPS adopts a rule-based method to gen-
erate step-by-step explanations and uses a hybrid
rule/neural method to convert a user-corrected ex-
planation back to a SQL query.

An evaluation with a simulated user on Spi-
der (Yu et al.,, 2018) shows that STEPS can
achieve 97.9% exact set match accuracy, outper-
forming prior interactive text-to-SQL systems—
MISP, DIY, and NL-EDIT—by 33.5%, 33.2%, and
31.3% respectively. We further evaluate STEPS
on other datasets, including Spider-DK (Gan et al.,
2021b), Spider-Syn (Gan et al., 2021a), and Wik-
iSQL (Zhong et al., 2017). STEPS consistently
achieves at least 96% exact set match accuracy and
execution accuracy across all datasets.

Finally, we conducted a within-subjects user
study with 24 real users. We found that within the
same amount of time, STEPS helped users complete
almost 2X and 4X more tasks correctly than DIY
and MISP respectively,! with significantly higher
self-reported confidence and lower mental load.

This work makes the following contributions:
(1) we propose a new interaction mechanism for
the text-to-SQL task; (2) we develop an interactive
text-to-SQL system based on the new interaction
mechanism and a new training method for SQL cor-
rection; (3) we conduct a comprehensive evaluation
with both simulated and real users and demonstrate
its effectiveness over state-of-the-art interactive sys-
tems. Our dataset and code are publicly available.

2 Related Work

2.1 Text-to-SQL Generation

Natural language interfaces have long been recog-
nized as a way to expand access to databases (Hen-
drix et al., 1978).The construction of several large
text-to-SQL datasets, such as WikiSQL (Zhong
et al., 2017) and Spider (Yu et al., 2018), has en-
abled the adoption of deep learning models in this
task, achieving unprecedented performance in re-
cent years (Rubin and Berant, 2021; Wang et al.,
2020a; Scholak et al., 2021; Yu et al., 2020; Hwang
et al., 2019). Our technique is based on the re-

"We worked with the authors of NL-EDIT to include their
system in the user study, but were unable to get it working due
to missing code and other runtime errors. We use the accuracy
reported in the NL-EDIT paper for comparisons.

cent success of neural text-to-SQL models. Unlike
existing models that perform end-to-end SQL gen-
eration, we propose a new interaction mechanism
for users to validate and refine generated queries
through step-by-step explanations.

As the first step to demonstrate the feasibility of
our approach, we focus on single-turn SQL genera-
tion (Yu et al., 2018) in this work. There has also
been recent work that supports multi-turn SQL gen-
eration (Yu et al., 2019a,b; Guo et al., 2021), where
a sequence of interdependent queries are expressed
in multiple utterances in a dialog. Models designed
for multi-turn SQL generation typically need to
reason about the dialog context and effectively en-
code the historical queries (Wang et al., 2021; Hui
et al., 2021; Zhang et al., 2019; Cai and Wan, 2020;
Wang et al., 2020b). Our approach can be extended
to support multi-turn SQL generation by initiating
separate refinement sessions for individual queries
while incorporating the contextual information of
previous queries into explanation generation and
text-to-clause generation.

2.2 Interactive Semantic Parsing for SQL

Recently, there has been a growing interest in in-
teractive approaches that elicit user feedback to
guide SQL generation. lyer et al. (2017) proposed
to allow users to flag incorrect queries and contin-
uously retrain the model. Both DIY (Narechania
et al., 2021) and NaLIR (Li and Jagadish, 2014a,b)
enable users to select alternative values or subex-
pressions to fix an incorrect SQL query. PIIA (Li
et al., 2020), MISP (Yao et al., 2019), and Dial-
SQL (Gur et al., 2018) proactively ask for user
feedback via multiple-choice questions. A com-
mon limitation of these methods is that they only
solicit feedback in constrained forms, hindering
their flexibility and effectiveness in addressing the
variability of SQL errors. In contrast, our approach
allows more flexible feedback through direct edits
to the explanations generated by the model.

The only work that supports open-ended user
feedback in SQL generation is NL-EDIT (Elgohary
et al., 2021). NL-EDIT is trained on SPLASH (El-
gohary et al., 2020), a dataset of SQL errors and
user feedback utterances. Given an incorrect query,
NL-EDIT allows users to provide a clarification
utterance. Based on the utterance, the model gen-
erates a sequence of edits to the SQL query. In-
corporating feedback expressed in a completely
free-text utterance is challenging for two reasons:

16150

@ Ask @ Understand

“Whatis the student ID
who has the best grade

saL . ___ o ______

© Repair

saL

1
1
1

under the age of 18"

‘___________________1_____
l [Explanation generator]

Explanation l
Database

Text-to-SQL
model

SELECT name, id | Tom s

’
.
{ FROM student !

L]
Query result

User

From table student

Return name and id Atomic ediE?
name id ‘ Explanation I
SQL ____ ¥ ________ lorden 3 Edit From table student

Direct Text-to-clause
transformation model

Keep ... age is less than 18

[Step 3| Return nameand-id

Figure 2: An Overview of Interactive SQL Generation and Refinement with Editable Step-by-Step Explanations

(1) the model needs to infer which part of the SQL
query to fix; (2) the model needs to determine what
changes are being requested. In contrast, STEPS
asks users to directly edit an NL explanation and
make corrections to the explanation. Comparing
the initial explanation with the user-corrected ex-
planation makes it easier to locate the part of a
SQL query that needs to be changed and infer what
change to make.

The idea of SQL decomposition is similar to
recent work that decomposes a user question to
sub-questions on SPARQL (Mo et al., 2022). Their
approach requires a crowd-sourced dataset to train
a question decomposition model. In contrast, our
rule-based method generates step-by-step explana-
tions without the need for training a model. This
also allows our system to map each entity in the ex-
planation to the corresponding SQL element, mak-
ing it easier for SQL correction (Sec. 3.2).

2.3 Explaining SQL Queries in NL

Our approach is also related to prior work that gen-
erates NL explanations for SQL queries. Simitsis
and Ioannidis (2009) argued that databases should
“talk back” in human language so that users can
verify results. Kokkalis et al. (2012) and Koutrika
etal. (2010) used a graph-based SQL translation ap-
proach, where each query is represented as a graph
and the explanation is generated by traversing the
graph. Elgohary et al. (2021, 2020) employed a
template-based explanation approach, where they
manually curated 57 templates for explanation gen-
eration. These approaches have limited capability
to handle arbitrary SQL queries. To address this
limitation, we propose a rule-based method to first
explain terminal tokens (e.g., operators, keywords)
and gradually compose them into a complete ex-
planation based on the derivation rules in the SQL

grammar. Another key difference is that none of
the existing approaches supports editable explana-
tions for SQL correction, which is a key feature to
solicit user feedback in our approach.

3 Approach

Fig. 2 provides an overview of STEPS. Given a
natural language (NL) question, STEPS invokes a
text-to-SQL model to generate an initial SQL query.
Then, it decomposes the generated SQL query into
individual query clauses and re-orders them based
on their execution order. Each clause is then trans-
lated into an NL description of the underlying data
operation, which is then used to form a step-by-step
explanation. By reading the NL explanation along
with the query result, users can easily understand
the behavior of the generated query and locate any
errors, even if they are unfamiliar with SQL.

If one step is incorrect, users can directly edit its
explanation to specify the correct behavior. STEPS
will then regenerate the clause based on the user-
corrected explanation and update the SQL query,
rather than regenerate the entire query from scratch.
If multiple steps are incorrect, the user can add,
remove, and modify all steps as needed.

3.1 Rule-based SQL Explanation

To generate explanations for arbitrarily complex
SQL queries (e.g., a query with nested subqueries),
we design a rule-based method to first decompose a
query into individual clauses. Specifically, STEPS
first parses a SQL query to its Abstract Syntax Tree
(AST) based on the SQL grammar in Table 6. Then,
it traverses the AST to identify the subtree of each
clause while preserving their hierarchical relations.

Given the subtree of a clause, STEPS performs an
in-order traversal and translates each leaf node (i.e.,
a terminal token in the grammar) to the correspond-

16151

1

Sort the records 98¢
based on

Intable student in ascending order

Keep the age islessthan 18 Return id and name

records where

Figure 3: An example of the explanation generation process

ing NL description based on a set of translation
rules (see Table 7 in the appendices). For example,
SELECT is translated to “Return”, and Order By is
translated to “Sort the records based on.” STEPS
concatenates these descriptions to form a complete
sentence as the explanation of the clause.

Since SQL engines follow a specific order to
execute individual clauses in a query?, STEPS fur-
ther reorders the clause explanations to reflect their
execution order. We believe this is a more faithful
representation of the query behavior and thus can
help users better understand the underlying data
operations, compared with rendering them based
on the syntactic order of clauses. Fig. 3 shows an
example translation.

3.2 Text-to-Clause Generation

Users make edits to the explanation produced by
our system to make it consistent with their goal.
Given these edits, STEPS uses a hybrid method to
generate the corresponding SQL clause. For simple
edits, such as replacing a column name, STEPS
directly edits the original clause to fix the error
using three direct transformation rules (§ 3.2.1).
For more complex edits, STEPS uses a neural text-
to-clause model to generate the clause based on the
user-corrected explanation (§ 3.2.2).

The hybrid method is inspired by the findings
from our recent study (Ning et al., 2023). Specifi-
cally, a large portion of SQL generation errors are
simple errors (e.g., incorrect column names and op-
erators), which can be fixed with small edits. After
SQL decomposition by our approach, many larger
errors are further decomposed into a set of simpler
errors, contained within separate clauses. Thus, it
is not necessary to regenerate the entire clause to
fix such errors. Furthermore, compared to using
a large model, direct transformation is more com-
putationally efficient. Our experiment shows that
direct transformation is 22K times faster than the
text-to-clause model (Table 4).

2https://sqlbolt.com/lesson/select_queries_
order_of_execution

Algorithm 1: Direct transformation

Input: The original explanation e;
The new edited explanation ey,;
The original SQL clause s;
Output: the updated SQL clause
1 C, + CHUNK(e,)
2 C, < CHUNK(ey)
3 foreach (c,, ¢,) in ALIGN(C,, C},) do

4 // Replace ;

5 if BOTHCOLUMN(c,, ¢y) or

6 BOTHTABLE(c,, ¢yn) or

7 BOTHLITERAL(c,, ¢,) then

8 | s < s.REPLACE(C,, Cn) ;

9 // Add ;

10 else if ¢, is @ and 1ISCOLUMN(c,,) then
11 if . STARTWITH("Select”) then
12 s < S.APPEND(cy)

13 // Remove ;

14 else if ¢, is @ and 1ISCOLUMN(c,) then
15 | s+ s.REMOVE(c,) ;

16 end

17 return

3.2.1 Direct Transformation

We define three types of atomic edits that can be
directly converted into SQL edits by STEPS: (1)
replacing a column name, a table name, or a literal
value (i.e., string, number), (2) adding a new col-
umn name in the explanation of a SELECT clause,
and (3) removing a column name.

Algorithm 1 describes our direct transformation
algorithm. After chunking the text (Lines 1-2),
STEPS aligns and compares the chunks in the origi-
nal explanation with those in the user-corrected ex-
planation, using the Needleman and Wunsch (1970)
algorithm (Line 3). This allows STEPS to detect
any replacements (Line 4), additions (Line 9), or
removals (Line 13) of database entities in the expla-
nation. Based on this information, STEPS automat-
ically edits the corresponding SQL clause without
calling a neural model (Lines 8, 12, 15). More de-
tails of this algorithm can be found in Appendix E.

3.2.2 Text-to-Clause Model

For more complex edits, we develop a text-to-
clause model. We adopt the model architecture
of SmBoP (Rubin and Berant, 2021) for this model.
SmBoP is a semi-autoregressive and bottom-up

16152

1. FROM student JOIN info ON = ,-==-=====-==-====-=---- ~

1. From student student.id=info.id :’ SELECT name, age FROM ‘:
2. WHERE info.age > 18 Rewrite 2. WHERE info.age > 18 AND Compose! student JOIN info ON
3. WHERE name!=Jordan student.name != “Jordan” student.id = info.id !
4. SELECT student.name 3 WHERE namel=Jordan ! WHERE info.age > 18 |
5. SELECT info.age 4. SELECT student.name,info.age ! AND student.name != |

5. SELECT info-age \ “Jordan” .

Figure 4: An example of SQL clause rewriting and composition

transformer-based semantic parser for SQL. It de-
codes subtrees first and then gradually combines
them to form a complete AST of the final SQL.
To train the model, we automatically created a
dataset with 83K text-clause pairs based on Spi-
der (Yu et al., 2018). For each SQL query in Spi-
der, we use the explanation generation method in
Section 3.1 to decompose the query into clauses
and generate an NL explanation of each clause.
To improve the diversity of NL explanations, we
paraphrase the original explanations in two ways.
First, we use a rule-based method to replace words
with their synonyms (details in Table 9 in the ap-
pendices). Second, we paraphrase the explanation
using an automatic paraphrasing tool: QuillBot>.
We train the text-to-clause model using Adam with
a learning rate of 1.8e — 4 and a dropout rate of 0.1.
We perform 10-fold cross-validation and the exact
set match accuracy of our text-to-clause model is
90.6% (see Appendix D for details).

3.3 SQL Rewriting and Composition

After regenerating the clauses for all user-corrected
explanations, STEPS composes them together to
form a new query while avoiding syntactic errors
using three rewriting rules.

Simply combining SQL clauses may lead to syn-
tactic errors. As shown in Fig. 4, the regenerated
clause may reference another table that does not
exist in the previous query, e.g., info in the second
clause. Thus, we design three rewriting rules to
fix such errors. First, if a table is referenced but is
not the table in the FROM clause, STEPS rewrites the
FROM clause to join the existing table with the new
table based on the foreign key. Second, if multiple
SELECT, WHERE, or HAVING clauses are at the same
hierarchical level, STEPS merges them into a single
clause. Third, if there are multiple ORDER BY or
GROUP BY clauses, STEPS only keeps the first one.
Fig. 4 shows an example of the rewriting process.

3https://quillbot.com

4 Experiment

To evaluate the performance of STEPS, we con-
ducted quantitative experiments on the Spider
benchmark (Yu et al., 2018) with three SOTA in-
teractive SQL generation approaches—MISP (Yao
et al., 2019), DIY (Narechania et al., 2021), and
NL-EDIT (Elgohary et al., 2021). We also explored
the impact on STEPS of different text-to-SQL mod-
els, different task difficulties, and four different
benchmarks (Yu et al., 2018; Gan et al., 2021b,a;
Zhong et al., 2017). Finally, we conducted an abla-
tion study for our hybrid method.

4.1 Automated User Simulation & Setup

For our quantitative evaluation of STEPS, we devel-
oped an automated script to simulate user feedback
following the user simulation method of Yao et al.
(2019). This setup assumes we have a user who
perfectly identifies all errors and provides clear
corrections. The purpose of this experiment is to
measure the upper bound of system performance
without human errors.

We do this as follows. Given a generated query
and the ground-truth query, our script decomposes
both of them into clauses using the method de-
scribed in Section 3.1. Then, it compares the
clauses and checks their semantic equivalence us-
ing the component matching method of Yu et al.
(2018). For example, SELECT name, age is con-
sidered semantically equivalent to SELECT age,
name. The simulated user provides feedback when
a clause in the generated query is not semanti-
cally equivalent to the corresponding clause in the
ground truth (i.e., there is an error).

We simulated three types of mismatches. First,
if the generated query contains a clause that does
not exist in the ground truth, our script will delete
its explanation from the original explanation. Sec-
ond, if the generated query is missing a clause
from the ground truth, our script will generate the
explanation of this missing clause using the expla-
nation generation method described in Section 3.1,
paraphrase it using QuillBot, and insert it into the
corresponding location of the original explanation.

16153

Finally, if the generated query contains a clause
that is inconsistent with the ground truth, our script
will generate the explanation based on the correct
clause in the ground truth, paraphrase it using Quill-
Bot, and replace the explanation of the incorrect
clause with the paraphrased one.

4.2 Comparison Systems

We compared STEPS to three state-of-the-art inter-
active SQL generation methods:

Among tools that allow users to give feedback
by answering multiple-choice questions (Gur et al.,
2018; Li et al., 2020; Yao et al., 2019), we select
MISP (Yao et al., 2019) to compare with because
it has the best performance in simulation. During
the interaction, MISP asks users to clarify whether
a column should be considered in the query, and
the user can answer yes or no. The user’s answer
is used to constrain the decoding process by adjust-
ing the probability of code tokens induced by the
answer. We used the original implementation of
MISP from their GitHub repository. Furthermore,
since their GitHub repository provides a user simu-
lation script, we reuse it for the user simulation in
our experiments.

DIY (Narechania et al., 2021) enables users to
refine a generated SQL query by showing the table
names, column names, operators, and aggregate
functions that correspond to words in the NL ques-
tion and allowing the user to select alternatives
from drop-down menus. We reimplemented DIY
since no open-source implementation is available.
We cannot directly compare with the user perfor-
mance from the DIY paper because they did not
report any objective measures, such as task com-
pletion rates and time (Narechania et al., 2021).
To construct the word-entity mapping in DIY, we
calculate word embedding semantic similarity. In
the user simulation, we align the generated SQL
with the ground truth SQL. If an entity in the gen-
erated SQL is not present in the ground truth SQL,
which indicates an error, and it has been mapped
to the NL question, which means users can give
feedback via a drop-down menu, we replace it with
the corresponding ground truth entity.

NL-EDIT (Elgohary et al., 2021) enables users
to correct errors by giving feedback in natural lan-
guage. User feedback is parsed into a set of simple
edits (e.g., add, remove) that are applied to the
SQL query. We worked with the NL-EDIT authors
to run their system, but were unable to resolve is-

AccCy
EditSQL (Zhang et al., 2019) 0.576
Human-in-the-Loop Methods
+ MISP (Yao et al., 2019) 0.644
+ DIY (Narechania et al., 2021) 0.647
+ NL-EDIT (Elgohary et al., 2021) 0.666
+ STEPS (Ours) 0.979
AI-Only Methods
Graphix-3B + PICARD (Li et al., 2023b) 0.771
SHiP + PICARD (Zhao et al., 2022) 0.772
RESDSQL-3B + NatSQL (Li et al., 2023a) 0.805

Table 1: Exact Set Matching Accuracy Comparison.
Note, these results are on the dev set as we are unable
to use the hidden test set in the human experiments.

sues due to missing code and other run-time errors.
We report results for NL-EDIT using the accuracy
numbers from the NL-EDIT paper.

4.3 Results

Comparison with the Three SOTA Interactive
Approaches. Table 1 shows the exact set match
accuracy of STEPS, MISP, DIY, and NL-EDIT. Fol-
lowing the experimental design of MISP and NL-
EDIT, we use EditSQL (Zhang et al., 2019) as the
base SQL generation model and exact set matching
accuracy (Yu et al., 2018) as the evaluation metric.
STEPS achieves 97.9% accuracy, outperforming all
three previous approaches by at least 31%.

Comparison with Strong Text-to-SQL Mod-
els. Table 1 also shows the exact set match accu-
racy of three high-performing text-to-SQL mod-
els (Li et al., 2023b; Zhao et al., 2022; Li et al.,
2023a).* Compared with these models, STEPS
achieved 17%-20% accuracy improvement by so-
liciting user feedback. This indicates that allowing
users to edit step-by-step explanations can produce
results that are far better than the best pure-Al mod-
els while also providing users with confidence that
the query is doing what they want.

Evaluation with Different Base Models &
Task Difficulty Levels. To demonstrate STEPS’s
performance is generalizable to other base models,
we also evaluate STEPS on another model called
SmBoP (Rubin and Berant, 2021). SmBoP is one
of the best models on the Spider leaderboard with
74.5% exact set matching accuracy. Table 2 shows
STEPS’s exact set matching accuracy with SmBoP
as the base model in comparison to EditSQL. We

“As the test set of Spider is not released, we selected the
top three models based on their exact set match accuracy on
the development set at the time of our experiments.

16154

Accget
Easy

Extra hard All ‘ Easy

Accexec

Medium Hard Medium Hard Extrahard All
EditSQL | 0.681 0.632 0.456 0.395 0.576 - - - - -
+ STEPS | 0.991 1.000 0.976 0.912 0.979 | 0.991 0.995 0.939 0.912 0.971
SmBoP | 0.883 0.791 0.655 0.512 0.745 | 0.718 0.669 0.672 0.518 0.657
+ STEPS | 0.992 1.000 0.977 0.916 0.981 | 0.992 0.995 0.943 0.916 0.973
Table 2: STEPS’s Accuracy on SQL Tasks with Different Levels of Difficulty
AcCget AcCexec ble 4 shows the ablation results of the hybrid
SmBoP + STEPS SmBoP + STEPS method of STEPS. Regarding SQL generation ac-
WikiSQL 0862 0983 0895 0.980 curacy, STEPS achieves comparable accuracy when
Spider 0.745 0981 0657 0.973 using text-to-clause alone, while experiencing a
Spider-DK 0.534 0987 0537 0.976 significant accuracy degradation when using direct
Spider-Syn 0.572 0.969 0.600 0.972

Table 3: Evaluation on different datasets

Accget Accexec Time (ms)
Direct transform only 0.788 0.745 0.0042
Text-to-clause only 0.981 0.973 95.53
Hybrid 0981 0.973 57.24

Table 4: Ablation Study of the Hybrid Method

also report execution accuracy, another popular
metric that compares the query results between
the generated query and the ground truth. Note
that since EditSQL does not predict any value in
SQL conditions, the queries generated by EditSQL
are not runnable. Thus, we cannot measure the
execution accuracy of EditSQL. The result shows
that STEPS consistently improves the accuracy of
both models on SQL tasks with various levels of
difficulty.’ Specifically, STEPS can almost solve
all easy and medium tasks and also achieves more
than 90% accuracy for the hard and extra hard tasks.
For hard and extra hard tasks, the generated SQL
queries often include more errors. It can be chal-
lenging for other approaches to fix all of them at
once. In our case, decomposing the original task
into smaller steps makes fixing multiple errors as
easy as fixing one.

Generalizability to Different Datasets. To fur-
ther demonstrate the generalizability of STEPS, we
evaluate STEPS on three other datasets——Spider-
DK (Gan et al., 2021b), Spider-Syn (Gan et al.,
2021a), and WikiSQL (Zhong et al., 2017). Note
that since STEPS is trained on Spider, its models are
out-of-domain when applying to different datasets.
Table 3 demonstrates that STEPSachieves compara-
ble performance across datasets.

Ablation Study for the Hybrid Method. Ta-

3Spider categorizes their SQL tasks into four difficulty
levels—easy, medium, hard, and extra hard.

transformation alone. This makes sense since the
direct transformation method is only designed to
fix a subset of the possible error types. However,
for the types for which it is intended, the direct
transformation approach is very accurate. As a re-
sult, using it as part of the hybrid system increases
efficiency without decreasing accuracy.

5 User Study

To evaluate the usability and accuracy of STEPS
when interacting with real users, we conducted a
within-subjects user study with 24 participants.®

5.1 Participants

We recruited 24 participants (22M, 2F) through
mailing lists at Purdue University. In the recruit-
ment email, we shared a consent form that included
detailed information about the study procedure, po-
tential risks, data usage, and confidentiality. We
obtained consent from each user before proceeding
with the study. All collected data were anonymized
and de-identified. Each participant received a $25
gift card as compensation for their time.

To investigate how user expertise affects the
performance of STEPS, participants were selected
based on their familiarity with SQL. Specifically,
10 of them had never heard about or used SQL
before (end-user); 10 knew the basics of SQL but
had to search online to recall the syntactic details
when writing a SQL query (novice); 4 could flu-
ently write SQL queries (expert).

5.2 Comparison Systems

We used MISP (Yao et al., 2019) and DIY (Narecha-
nia et al., 2021) as comparison systems. As ex-
plained in Section 4.2, we did not use NL-EDIT,
since we were unable to reproduce it. To ensure a

Qur study was approved by Purdue University’s IRB.

16155

fair comparison, we developed user interfaces with
the same visual style for STEPS, MISP (Yao et al.,
2019), and DIY (Narechania et al., 2021). User
interface screenshots are provided in Appendix G.

5.3 SQL Tasks & Procedures

Each study includes 3 sessions, one for each tool.
In each session, participants were asked to use the
assigned tool to complete 8 SQL tasks in 10 min-
utes. The time limit was decided by 4 pilot studies,
allowing sufficient time to complete multiple tasks.
To select the tasks, we first performed stratified ran-
dom sampling on Spider to create a task pool of 24
SQL tasks, including 6 easy tasks, 6 medium tasks,
6 hard tasks, and 6 extra hard tasks. Before each
session, we selected 2 tasks from each difficulty
level in the task pool, which constitutes a total of
8 tasks to be solved in the session. To mitigate
learning effects, the orders of both task assignment
and tool assignment order were counterbalanced
across participants.

Each session started with participants watching a
tutorial video of the assigned tool (6 min for STEPS,
3 min for MISP, and 2 min for DIY). The STEPS
video was longer simply because STEPS had more
features. During all tutorials, we allowed users to
pause the video and ask questions. Participants
were then given 5 minutes to practice and get fa-
miliar with the tool before working on real tasks.
For each task, participants were asked to read the
description of the task and then ask an initial NL
question to the assigned tool. After receiving the
generated query and results, participants could val-
idate and repair the generated query using the tool.
Participants were allowed to skip a task if they
found it too hard to solve. Participants could view
the produced SQL, but were not given the ability
to edit the SQL directly.

At the end of each session, participants were
asked to complete a post-task survey to rate their
confidence about the final SQL query, how success-
ful they perceived themselves in completing the
tasks, and the mental effort to complete the tasks
on a 7-point Likert scale. After all three sessions,
participants completed a final survey, in which they
directly compared the three tools. We recorded
each study with the permission of the participants.
Each study took an average of 79 minutes.

5.4 Results

Task Completion Rate Analysis. Table 5 shows
the average number of completed tasks, correct

Complete Correct Acc. Skipped
MISP 3.0 1.7 0.57 1.4
DIY 54 35 0.68 0.8
STEPS 6.77 5.7t 0.867 0.3)

Table 5: User Performance (best results in bold). For all
metrics, an ANOVA test indicated statistically signifi-
cant mean differences across 3 tools (p-value < 0.01).

Confidence (1)
MISP -
DIY -
STEPS -
——
Success (1)
MISP -

DIY -

STEPS -
i .
Mental Load (/)

MISP -
DIY -

STEPS -

Score 1 2 3 4 5 6 7

Figure 5: User Perception.

completions, task completion accuracy (#correct /
#completed), and skipped tasks. We found that par-
ticipants using STEPS completed more tasks com-
pared to those using MISP and DIY. Furthermore,
participants using STEPS completed significantly
more tasks correctly than DIY and MISP, achieving
the highest accuracy (85.81%) in SQL generation.
Participants using STEPS barely skipped a task, im-
plying that STEPS provided sufficient support for
users to tackle challenging tasks so that users did
not give up quickly. The ANOVA test indicates that
the mean differences in Table 5 are statistically sig-
nificant among all three conditions (p-value < 0.01).
These results indicate that STEPS can help users
complete SQL tasks more efficiently and correctly
than prior methods.

The Impact of SQL Expertise. We further in-
vestigated whether the SQL expertise of users has
an impact on user performance. We found that
all three user groups performed similarly in each
condition. This implies that SQL expertise does
not have a significant impact on user performance

16156

when interacting with STEPS. For a visualization
of the results, see Fig. 6 in the appendices.

User Perception. In the post-study survey, all
participants ranked STEPS as the most usable and
useful tool. As shown in Figure 5, participants felt
the most confident and successful while experienc-
ing the least mental load when using STEPS.

6 Analysis of Post-study Survey
Responses

We analyzed the post-task survey responses and in-
terview recordings to understand why participants
performed much better when using STEPS com-
pared with using MISP and DIY. 17 participants
strongly agreed that seeing the natural language ex-
planation helped them understand the SQL query,
and 22 participants explicitly wrote that they highly
appreciated the step-by-step explanations provided
by STEPS, since these explanations made SQL
queries more understandable, editable, and learn-
able. P12 wrote, “I liked that it shows the steps in
human language so if there is a mistake I can edit
it easily. Also, it was nice to see the generated SQL
code I believe I could learn SQL using this tool
also.” In contrast, 14 of 24 participants reported it
was hard to understand and validate the generated
SQL queries when using MISP or DIY. P1 wrote,
“Sometimes it generates very complex SQL that is
difficult to read and check.” P9 wrote, “Sometimes
it gives the wrong answer. As I'm no expert in SQL,
I couldn’t tell instantly if the queries were wrong,
so I had to go back to the data and check manually.”
12 participants reported that the feedback elicita-
tion mechanism in MISP was not very efficient.
P16 wrote, “I have to keep answering yes or no
questions when using MISP.” 11 of them reported
the drop-down menus provided by DIY limited
their ability to make changes. P3 said, “[1It is] hard
to know how to make changes / resolve issues that
were not covered by the drop-down menus.”

7 Discussion

Both the quantitative experiments and the user
study demonstrate STEPS can significantly improve
the accuracy of SQL generation. This is largely
attributed to the interaction design, which allows
users to precisely pinpoint which part of the SQL
is wrong and only regenerates the incorrect clauses
rather than the entire SQL query. In contrast, ex-
isting approaches do not support expressive ease
or error isolation. Users either cannot regenerate

new content (e.g., DIY), or can only regenerate the
entire query rather than just the erroneous part (e.g.,
MISP). Ning et al. (2023) showed that this lack of
error isolation often introduces new errors, which
frustrates users and makes errors hard to fix.

Error Analysis. While simple errors are preva-
lent in SQL generation, our ablation study (Table 4)
shows that only fixing simple errors is insufficient,
which motivates the design of our hybrid method.
Our hybrid method can handle a broad range of
errors because users can flexibly correct entities
or clauses in a query. This ability helps reduce
the difficulty of tasks by dividing complex errors
into simpler ones, allowing users to solve them
separately.

In our automated user simulation, STEPS failed
in a few cases when the text-to-clause model pre-
dicted the wrong clause type. For example, the
paraphrased ground truth explanation of one step
was: “Ensure that all categories where the total
cost of therapy exceeds 1000 are included.” The
text-to-clause model predicted a WHERE clause in-
stead of a HAVING clause.

In the user study, one common challenge arose
when multiple tables in the database had the same
column name. If users did not look carefully at
the database schema, they may have not explicitly
indicated the table to be used. That creates an
ambiguity for the model.

Other Datasets and Domains. Our system
should work for any SQL dataset, as our approach
is domain-agnostic and covers general SQL struc-
tures. For other forms of code, such as WebAPI
(Su et al., 2017) and SPARQL (Ngonga Ngomo
et al., 2013; Mo et al., 2022), the general idea is
applicable, but new models would be needed for (a)
code generation, (b) explanation generation, and
(c) code correction.

8 Conclusion

This work presents STEPS, a new interactive ap-
proach for text-to-SQL generation. STEPS decom-
poses a text-to-SQL task into smaller text-to-clause
tasks and enables users to validate and refine a
generated query via editable explanations. Ex-
periments on four benchmarks and a user study
show STEPS can significantly boost the accuracy
of end-to-end models by incorporating user feed-
back. STEPS significantly outperforms three state-
of-the-art approaches for interactive SQL genera-
tion across all metrics considered.

16157

9 Limitations

Our automated user simulation is an optimistic ex-
periment that does not account for user errors, such
as not being able to identify mistakes in the explana-
tion. The simulation was designed to test a scenario
in which a user can perfectly identify which step of
the explanation is wrong and accurately describe
a corrected version in natural language. Creating
such a perfect user required the use of the ground
truth, both for the identification step and to gener-
ate the natural language correction. This simulation
is not representative of real-world use. That lim-
itaton was the motivation for our study with real
users, in which we had actual people use different
tools without information about correct answers.
As shown in Table 5, the accuracy of the user study
is lower than the simulation, but STEPS is still very
effective and outperforms other tools. We choose
to include the simulation study because it shows
the potential for STEPS to make corrections if there
is no human error.

In this paper, we only evaluate STEPS on single-
turn SQL generation. In future work, our approach
can be extended to multi-turn SQL generation by
incorporating contextual information when editing
the natural language explanation.

While our approach is designed to be general for
SQL generation and potentially other code gen-
eration tasks, the current version only supports
SQL keywords that appear in the Spider dataset.
Like other text-to-SQL datasets, Spider only cov-
ers query operations (e.g., SELECT) and does not
cover update operations (e.g., INSERT) for evalua-
tion convenience. But it would be straightforward
to cover unsupported operations by adding new
translation rules.

10 Ethical Consideration

The interactive text-to-SQL system proposed by
this work poses minimal risks to human users and
society. Instead, it will significantly lower the bar-
rier of querying database systems and empower a
great number of people, especially those without
technical backgrounds, to access and analyze data.
To evaluate the usability of our system, we con-
ducted a human-subject study with real users. To
minimize the risks to human subjects, we strictly
followed the community standards with the ap-
proval from the Purdue University IRB office. In
the recruitment email, we shared a consent form
that includes detailed information about the study

procedure, potential risks, data usage, and confiden-
tiality. We obtained consent from each user before
proceeding with the study. All collected data were
anonymized and de-identified to protect the privacy
of users.

Acknowledgments

This material is based in part on work sup-
ported by an Amazon Research Award, the Aus-
tralian Research Council through a Discovery
Early Career Researcher Award and by the De-
fense Advanced Research Projects Agency (grant
#HRO00112290056).

References

Yitao Cai and Xiaojun Wan. 2020. IGSQL: Database
schema interaction graph based neural model for
context-dependent text-to-SQL generation. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 6903-6912, Online. Association for Computa-
tional Linguistics.

Ahmed Elgohary, Saghar Hosseini, and Ahmed Has-
san Awadallah. 2020. Speak to your parser: Interac-
tive text-to-SQL with natural language feedback. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2065—
2077, Online. Association for Computational Lin-
guistics.

Ahmed Elgohary, Christopher Meek, Matthew
Richardson, Adam Fourney, Gonzalo Ramos,
and Ahmed Hassan Awadallah. 2021. NL-EDIT:
Correcting semantic parse errors through natural
language interaction. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5599-5610, Online.
Association for Computational Linguistics.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R. Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-
to-SQL models against synonym substitution. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2505—
2515, Online. Association for Computational Lin-
guistics.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-SQL generalization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 89268931, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

16158

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. arXiv.

language. In 2010 IEEE 26th International Con-
ference on Data Engineering (ICDE 2010), pages
333-344.

Fei Li and H. V. Jagadish. 2014a. Constructing an

Alessandra Giordani and Alessandro Moschitti. 2012.
Translating questions to SQL queries with generative
parsers discriminatively reranked. In Proceedings of
COLING 2012: Posters, pages 401-410, Mumbai,
India. The COLING 2012 Organizing Committee.

Jiaqi Guo, Ziliang Si, Yu Wang, Qian Liu, Ming Fan,
Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2021.
Chase: A large-scale and pragmatic Chinese dataset
for cross-database context-dependent text-to-SQL.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2316-2331, Online. Association for Computational
Linguistics.

Izzeddin Gur, Semih Yavuz, Yu Su, and Xifeng Yan.
2018. DialSQL: Dialogue based structured query
generation. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics

interactive natural language interface for relational
databases. Proc. VLDB Endow., 8(1):73-84.

Fei Li and Hosagrahar V Jagadish. 2014b. Nalir: An

interactive natural language interface for querying re-
lational databases. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’14, page 709-712, New York,
NY, USA. Association for Computing Machinery.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.

2023a. RESDSQL: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings
of the Thirty-Seventh AAAI Conference on Artifi-
cial Intelligence and Thirty-Fifth Conference on In-
novative Applications of Artificial Intelligence and
Thirteenth Symposium on Educational Advances in
Artificial Intelligence, AAAT'23/TAAT’23/EAAT’23.
AAALI Press.

(Volume 1: Long Papers), pages 1339-1349, Mel- Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,

bourne, Australia. Association for Computational
Linguistics.

Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz,
and Jonathan Slocum. 1978. Developing a natural
language interface to complex data. ACM Trans.
Database Syst., 3(2):105-147.

Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li,
Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei

Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing
pre-trained transformers with graph-aware layers for
text-to-sql parsing. In Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence
and Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence and Thirteenth Sympo-
sium on Educational Advances in Artificial Intelli-
gence, AAAT'23/TAAT'23/EAAT’23. AAAI Press.

Zhu, and Xiaodan Zhu. 2021. Dynamic hybrid re- Yuntao Li, Bei Chen, Qian Liu, Yan Gao, Jian-Guang

lation network for cross-domain context-dependent
semantic parsing. CoRR, abs/2101.01686.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
In KR2ML Workshop at NeurIPS.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963-973, Vancouver, Canada.
Association for Computational Linguistics.

Lou, Yan Zhang, and Dongmei Zhang. 2020. “what
do you mean by that?” a parser-independent interac-
tive approach for enhancing text-to-SQL. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6913-6922, Online. Association for Computational
Linguistics.

Lingbo Mo, Ashley Lewis, Huan Sun, and Michael

White. 2022. Towards transparent interactive seman-
tic parsing via step-by-step correction. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 322-342, Dublin, Ireland. Association
for Computational Linguistics.

Andreas Kokkalis, Panagiotis Vagenas, Alexandros Zer- Arpit Narechania, Adam Fourney, Bongshin Lee, and

vakis, Alkis Simitsis, Georgia Koutrika, and Yannis
Ioannidis. 2012. Logos: A system for translating
queries into narratives. In Proceedings of the 2012
ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 12, page 673-676, New
York, NY, USA. Association for Computing Machin-

Gonzalo Ramos. 2021. Diy: Assessing the correct-
ness of natural language to sql systems. In 26th
International Conference on Intelligent User Inter-
faces, IUI *21, page 597-607, New York, NY, USA.
Association for Computing Machinery.

ery. Saul B. Needleman and Christian D. Wunsch. 1970.

Georgia Koutrika, Alkis Simitsis, and Yannis E. Ioan-
nidis. 2010. Explaining structured queries in natural

16159

A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443-453.

Axel-Cyrille Ngonga Ngomo, Lorenz Biihmann,
Christina Unger, Jens Lehmann, and Daniel Gerber.
2013. Sparql2nl: Verbalizing sparql queries. In
Proceedings of the 22nd International Conference
on World Wide Web, WWW 13 Companion, page
329-332, New York, NY, USA. Association for Com-
puting Machinery.

Zheng Ning, Zheng Zhang, Tianyi Sun, Yuan Tian,
Tianyi Zhang, and Toby Jia-Jun Li. 2023. An empir-
ical study of model errors and user error discovery
and repair strategies in natural language database
queries. In Proceedings of the 28th International
Conference on Intelligent User Interfaces, IUI °23,
page 633-649, New York, NY, USA. Association for
Computing Machinery.

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates. 2004. Modern nat-
ural language interfaces to databases: Composing
statistical parsing with semantic tractability. In COL-
ING 2004: Proceedings of the 20th International
Conference on Computational Linguistics, pages 141—
147, Geneva, Switzerland. COLING.

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-

autoregressive bottom-up semantic parsing. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
311-324, Online. Association for Computational Lin-
guistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Alkis Simitsis and Yannis Ioannidis. 2009. Dbmss

should talk back too. In 10.48550/ARXIV.0909.1786.
arXiv.

Yu Su, Ahmed Hassan Awadallah, Madian Khabsa,

Patrick Pantel, Michael Gamon, and Mark Encar-
nacion. 2017. Building natural language interfaces to
web apis. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management,
CIKM ’17, page 177-186, New York, NY, USA. As-
sociation for Computing Machinery.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020a. RAT-
SQL: Relation-aware schema encoding and linking
for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 75677578, Online. Association
for Computational Linguistics.

Runze Wang, Zhen-Hua Ling, Jingbo Zhou, and Yu Hu.

2020b. Tracking interaction states for multi-turn text-
to-sql semantic parsing. CoRR, abs/2012.04995.

16160

Xiaxia Wang, Sai Wu, Lidan Shou, and Ke Chen. 2021.

An interactive nl2sql approach with reuse strategy. In
Database Systems for Advanced Applications: 26th
International Conference, DASFAA 2021, Taipei, Tai-
wan, April 11-14, 2021, Proceedings, Part II, page
280-288, Berlin, Heidelberg. Springer-Verlag.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019.

Model-based interactive semantic parsing: A unified
framework and a text-to-SQL case study. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 5447-5458, Hong
Kong, China. Association for Computational Linguis-
tics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang,

Yi Chern Tan, Xinyi Yang, Dragomir R. Radeyv,
Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic
parsing. CoRR, abs/2009.13845.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,

Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-1IJCNLP), pages 1962—
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,

Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern

Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511-4523, Florence, Italy.
Association for Computational Linguistics.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric

Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong,
Richard Socher, and Dragomir Radev. 2019. Editing-
based SQL query generation for cross-domain
context-dependent questions. In Proceedings of the

2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 5338-5349, Hong Kong,
China. Association for Computational Linguistics.

Yiyun Zhao, Jiarong Jiang, Yiqun Hu, Wuwei Lan,
Henry Zhu, Anuj Chauhan, Alexander Li, Lin Pan,
Jun Wang, Chung-Wei Hang, Sheng Zhang, Marvin
Dong, Joe Lilien, Patrick Ng, Zhiguo Wang, Vitto-
rio Castelli, and Bing Xiang. 2022. Importance of
synthesizing high-quality data for text-to-sql parsing.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. In
arxiv preprint, arxiv/1709.00103. arXiv.

A SQL Grammar and Translation Rules

('sql) := SELECT (nouns) { sub)
I ('sql) INTERSECT (sql)
I (sql) UNION (sql)
I (sql) EXCEPT (sql)
(sub):= €
| FROM (noun) { sub)
| WHERE (condition) { sub)
[JOIN (noun) ON (condition) (sub)
| GROUP BY { noun) (sub)
| HAVING (condition) (sub)
| ORDER BY { noun) (sorting) (sub)
| LIMIT NUM
(nouns) := DISTINCT (nouns)
| (noun),(nouns)
| (noun)
| (func) ((noun))
(condition) := (noun) (op) NUM
| (noun) (op) (noun)
| {noun) (op) (sql)
| BETWEEN (noun) AND (noun)
| { condition) AND (condition)
| { condition) OR { condition)
I NOT (condition)
sorting) := ASC | DESC | €
func) := COUNT | AVG | MAX | MIN | SUM
op)i=>=l<=1>I<l=|l=
noun) := STRING | STRING.STRING | *

o~~~ ~

Table 6: A Simplified SQL Grammar

Table 6 shows a simplified version of the SQL
grammar. In this grammar, italicized text with
angle brackets, such as (sql), represents non-
terminals which can be further expanded based
on derivation rules. Text without brackets, such
as the SELECT keyword, represents terminals that
cannot be further expanded. Using the derivation
rules in Table 6, STEPS decomposes a SQL query
into 6 types of SQL clauses: (1) FROM-JOIN-ON,

(2) WHERE, (3) GROUP BY, (4) HAVING, (5) ORDER
BY, (6) SELECT. We do not separate the JOIN clause
from the FROM clause, since it is easier to translate
them together. For nested queries with INTERSECT,
UNION, EXCEPT, NOT IN keywords, STEPS first de-
composes them into subqueries and then decom-
pose each subquery to the 6 types of clauses above.

STEPS translates each SQL clause to a natural
language explanation based on translation rules
and templates in Table 7 and Table 8. Table 7
shows the translation rules for individual SQL to-
kens, e.g., keywords, operators, built-in functions,
etc. Specifically, {col} and {T} mean translating
a column or table name to a more readable name.
We pre-defined mapping between each table and
column in a database to a more readable name.
Such a mapping can be easily defined based on
the database schema and only needs to be defined
once. If no such mapping is available, STEPS will
reuse the same column/table name as defined in
the database schema. Table 8 shows the transla-
tion templates for nested queries. The TRANSLATE
function means recursively invoking the explana-
tion generation method on the subquery.

B Synonym Substitution Rules for
Paraphrasing

To increase the NL explanation diversity in our
training dataset, we paraphrase each machine-
generated explanation by randomly replacing the
NL explanation template words with substitute syn-
onyms listed in Table 9. For example, the machine-
generated explanation “return name’ can be para-
phrased to “find name” by replacing “return” with
“find”.

C Experiment Setup & Hyperparameters

We run our experiment on a server with Ubuntu
20.04, 2 NVIDIA Tesla T4 GPUs (16 GB), Intel
Core 17-11700K GPU, and 64 GB memory.

For the text-to-clause model, we follow the same
architecture of SmBoP (Rubin and Berant, 2021).
Specifically, our model consists of 24 transformer
layers, followed by another 8 RAT-SQL (Wang
et al., 2020a) layers. Each transformer has 1 feed-
forward layer, 8 attention heads, and 256 dimen-
sions. For each user-given NL question, it is en-
coded together with the database schema using
GRAPPA (Yu et al., 2020).

We finetuned the text-to-clause model and se-
lected the best-performing model with the follow-

16161

SQL Elements Translation

SELECT Return

FROM In table

JOIN and table

WHERE Keep the records where
GROUP BY Group the records based on
HAVING Keep the groups where
ORDER BY Sort the records based on
LIMIT 1 return the first record
LIMIT num return the top num records
* all the records

colq, cols the {col; } and the {coly}
C1CoCsy the {cy }, the {c,} and the {c3}
T.col {col} of {T}

COUNT (col) the number of {col}
COUNT (*) the number of records
AVG(col) the average value of {col}
MAX(col) the maximum value of {col}
MIN(col) the minimum value of {col?}
SUM(col) the sum value of {col}
ASC in ascending order

DESC in descending order

= is

1= is not

> is greater than

>= is greater than or equal to

< is less than

<= is less than or equal to

IN is in

NOT IN is not in

BETWEEN is between

LIKE is in the form of

NOT LIKE is not in the form of

Table 7: Translation rules for SQL elements

ing hyperparameters: optimizer = Adam, learning
rate = 1.8e — 4, dropout rate = 0.1, beam size = 26,
epoch = 240, batch size = 12.

D The Impact of Paraphrasing on Model
Performance

To investigate the impact of paraphrasing on model
performance, we trained and tested the text-to-
clause models under 3 conditions: (1) the explana-
tion is generated by STEPS and not paraphrased, (2)
the machine-generated explanation is paraphrased
by the replacement rules in Table 9, and (3) the
machine-generated explanation is paraphrased by
QuillBot. Then we evaluate the exact set matching
match accuracy of generated clauses in Table 10.
Furthermore, we evaluate the end-to-end SQL gen-
eration accuracy in our user simulation experiment
under 3 conditions, as shown in Table 11. Overall,
paraphrasing does not greatly impact the perfor-
mance of text-to-clause SQL.

SQL compound Translation

Start the first query:
TRANSLATE(q1);

Start the second query;
TRANSLATE(q2);

Return the intersection of them;

a1 INTERSECT go

Start the first query q;:
TRANSLATE(q1);

Start the second query:
TRANSLATE(q2);

Return the union of them.

g1 UNION g2

Start the first query:
TRANSLATE(q1);

Start the second query:
TRANSLATE(q2);

Return the records in q; but not in qs.

q1 EXCEPT q2

Start the first query:
TRANSLATE(q1);
... col IN/NOT IN q; Start the second query:
TRANSLATE(...);
Keep the records where {col} in/not in q;.

Table 8: NL explanation translation rules for SQL com-
pound

E Direct Transformation Algorithm

As mentioned in Sec. 3.2.1, we define three types
of atomic edits. While one can always design new
transformation rules to support other simple edits,
here we focus on these three basic edit types in
order to demonstrate the benefits of direct transfor-
mation.

Algorithm 1 describes the direct transformation
algorithm. First, STEPS performs chunking on
the original explanation e, and the user-corrected
explanation e,, (Line 1-2). We choose to split
an explanation into phrases rather than individual
words in order to recognize column names and ta-
ble names that are represented as compound nouns
in an explanation. Then, the chunks are aligned us-
ing the Needleman and Wunsch (1970) algorithm.
If a chunk from the original explanation is aligned
with a chunk in the new explanation and both of
them can be mapped to a column name, a table
name, or a literal value, then STEPS replaces the
corresponding name/value from the original clause
with the new name/value (Line 5-8). If a chunk
from the new explanation is aligned with nothing,
the chunk can be mapped to a column name, and
the original clause is a SELECT clause, then STEPS
directly appends the corresponding column name
to the clause after a comma (Line 9-12). If a chunk
from the old explanation is aligned with nothing
and the chunk can be mapped to a column name,
then STEPS directly removes the corresponding
column name from the clause (Line 13-15).

16162

Template word Substitute synonyms

get, find, find out, discover, show, show me, determine,
return demonstrate, give me, obtain, select, choose, search,
choose, search, display, list, acquire, gain

keep the records where make, make sure, where, filter the records where

more than, exceed, no less than, over, above,

reater than .
& larger than, beyond, in excess of, transcend, surpass

lower than, no more than, below, lesser, under,

less than
underneath, not so much as, beneath
. increasing, ascendant, growing, rising,
ascending asIng, ase growing &
soaring, climbing, mounting
. decreasing, descendant, falling, declining,
descending . . S
dropping, lessening, diminishing
. max, maximum, utmost, greatest,
maximum . .
most, topmost, highest, top, largest, biggest
.. lowest, smallest, least, min, minimal,
minimum
bottom, bottommost, lowermost
number of amount of, quantity of, total of
in the form of appearing as, with the appearance of, in the shape of
that has associated with, connected to
according to, in terms of, specified by,
based on) & . P L. Y .
built on, established on, considering, regarding
.. different, disparate, distinctive,
distinct
particular, diverse, dissimilar, unique
all each, every, any, whole, entire, total

batch, organize, categorize, classify, arrange, separate,
group label, tag, mark, pack, collect, assemble, distribute,
gather, merge, put together, index, concentrate, combine

Sort order, rank, sequence

Table 9: Replacement rules for paraphrasing NL explanation

ACCqet

1 1 novice
No paraphrasing 0.922 1 expert
Paraphrasing with synonym substitution 0.915 6 1 end-user %
Paraphrasing with QuillBot 0.906 5]

Table 10: The exact set matching accuracy of the text-to-
clause model when trained with three different datasets.

Correct Tasks
o

! L1
Accset Accezec
SmBoP+STEPS™™e 0981 0.973
SmBoP+STEPS®*ustitute 0975 0.973 o L LA RN TV0) [3SOGRES60| 570 [l 560
SmBoP+STEPS?litet 0975 0.971 MISP o STERS

Figure 6: Tasks correctly completed by users with dif-

Table 11: The end-to-end SQL generation accuracy of ferent levels of SQL expertise

STEPS when using the text-to-clause model trained on
different datasets.

F Impact of SQL Expertise

Figure 6 shows a performance breakdown in our ~ mance, with consistent performance on all tools by
user study based on participants’ SQL expertise. all groups. The means for MISP do differ, but the
We observe that expertise does not impact perfor- distributions of scores overlap substantially.

16163

STEPS

DataBase Table

DataBase fighz ~ aiports ~
airportcode airportname city country cour
APG Phillips AAF Aberdeen United States us
ABR Municipal Aberdeen United States us
DYS Dyess AFB Abilene United States us

1-3 of 100 >

Query Result

airportname

Colorado Plains Regional Airport

1-10f1

Duie! FigasE CHEUK diiu HHUUNY UIE EXPIaiiauoll DEIuw

What is the airport name for airport AKO?

Surel Please check and madifv the exnlanation helow

Query Explanation
° In table airports
o Keep the records where the airportcode of airports
is "AKO"

o Return the airportname of airports)

SELECT airports.airportname

SELECT airports.airportname FROM airports WHERE airports.airportcode = "AKO"

(m]

@® showsaL

PREVIOUS
GENERATE <
EDIT

Figure 7: The UI of STEPS

G User Interfaces of STEPS and Baselines

This section describes the user interface (UI) of
STEPS, DIY, and MISP used in our user study. As
shown in Fig. 7, the UI of STEPS has 4 views.

Upper Left View This allows users to select a
database and inspect the data records in each table.
Users are allowed to search, rank, and filter data
records in the table. This view helps users explore
the database and manually validate the query result
based on the original data.

Upper Right View This provides a dialog box
for users to ask questions in natural language. For
each question, STEPS automatically generates a
SQL query.

Lower Left View This shows the results of run-
ning a generated SQL query. Users can inspect
the query result to validate whether the generated
query is correct or not.

Lower Right View This renders the core func-
tionality of STEPS: an editable step-by-step expla-
nation for the generated SQL query. Users can
easily read the explanation and identify whether
there are any errors or missing steps in the query.
If users find an error in a step, they can directly

edit the explanation of that step. Users can also
add or remove a step via the UI without needing to
manually assign a step number. If a user clicks the
ADD button next to a step, an empty text field will
appear right below the step and the user can write
the description for the new step. If a user clicks the
REMOVE button next to a step, the step will be
removed. We expect users to edit the steps in the
correct location for reading clarity, but STEPS can
also help rectify any errors or misoperations using
the heuristics mentioned in Sec. 3.3. As shown
in Fig. 4, if the user adds a new explanation “re-
turn age” that is parsed into “SELECT info.age”,
STEPS will automatically merge it with the existing
SELECT clause and complete the FROM clause.

Users can check the intermediate query result
of a step by clicking the circled step number icon.
For example, if users click the green number (D),
STEPS just returns all the data in the AIRPORT ta-
ble. Additionally, users can undo and redo previous
edits using the stepper below.

As shown in Fig. 8, the MISP Ul is very simi-
lar to STEPS. MISP also allows users to select a
database, inspect data in a table, and view the query
result. The main difference is that MISP will ren-
der a generated query in the dialog and ask users
to confirm whether the generated SQL is correct

16164

or not. If the user says the generated query is not
correct, it will predict which part of the SQL is
wrong and ask users to select alternative genera-
tions to fix the error. MISP does not provide an
NL explanation of the generated SQL. Users have
to read and inspect the generated SQL, which is
difficult for end-users who do not understand the
syntax and semantics of SQL.

Fig. 9 shows the Ul of DIY. To reduce the in-
formation overload of inspecting a large database,
DIY only samples a small amount of data from a
user-selected database. Users can type in a natural
language question and then DIY generates a SQL
query by invoking an SQL generation model. DI'Y
automatically matches tokens in the NL question
with tokens in the generated SQL. Each matched
NL token is augmented with a dropdown menu
with alternative SQL tokens predicted by the base
model. If the prediction of a token is wrong, users
can click on the dropdown menu and select an alter-
native token to fix it. Users can examine the query
result, as well as the execution steps, in the bottom
right view.

16165

MISP

DataBase Table
DataBase aircraft pilot -
Show me the names of pilot who are over 25 years old.
age name pilot_id
My prediction is:
23 Prof. Zackery Collins 1
select Name from pilot where Age < 25
20 Katheryn Gorczany IV 2
Do you think it is the correct one?
23 Mr. Cristian Halvorson Il 3
25 Ayana Spencer 4
Well... | guess the wrong word is ' <"
1-40f12 >
A A Am | correct?
Yes
Query Result
Here are some alternatives of this word
Name
Please choose one.
Prof. Zackery Collins S
Al
Katheryn Gorczany IV B: Name
C:pilot
Mr. Cristian Halvorson Il D:25
> SEND
1-30f3 \ y
N v
Figure 8: The UI of MISP
DIY

Generated SQL query : SELECT book title , book.issues FROM book

DataBase
book_2

Please enter natural language question

Input your question

Show me the title and issues

Show me
Sample Data Set
PUBLICATION BOOK
[J Bock_ID Title
D 1 The Black Lamb
O e Bloody Mary
0 =3 Bloody Mary : Lady...

the

Issues

4

4

book.Book_ID
book.Issues
book.Title
book.Writer

book.title

publicatiopublisher—

O Tite
[[] The Black Lamb
[] Bloody Mary

Figure 9: The UI of DIY

16166

GENERATE

book.issues «

book.issues

Execution steps

@ (2] >

SQL: SELECT * FROM book

Issues

