
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 16149±16166

December 6-10, 2023 ©2023 Association for Computational Linguistics

Interactive Text-to-SQL Generation via Editable Step-by-Step Explanations

Yuan Tian1, Zheng Zhang2, Zheng Ning2,

Toby Jia-Jun Li2, Jonathan K. Kummerfeld3, and Tianyi Zhang1

Purdue University1, University of Notre Dame2, The University of Sydney3

tian211@purdue.edu, zzhang37@nd.edu, zning@nd.edu,
toby.j.li@nd.edu, jonathan.kummerfeld@sydney.edu.au, tianyi@purdue.edu

Abstract

Relational databases play an important role in

business, science, and more. However, many

users cannot fully unleash the analytical power

of relational databases, because they are not

familiar with database languages such as SQL.

Many techniques have been proposed to auto-

matically generate SQL from natural language,

but they suffer from two issues: (1) they still

make many mistakes, particularly for complex

queries, and (2) they do not provide a flexi-

ble way for non-expert users to validate and

refine incorrect queries. To address these is-

sues, we introduce a new interaction mecha-

nism that allows users to directly edit a step-

by-step explanation of a query to fix errors.

Our experiments on multiple datasets, as well

as a user study with 24 participants, demon-

strate that our approach can achieve better

performance than multiple SOTA approaches.

Our code and datasets are available at https:

//github.com/magic-YuanTian/STEPS.

1 Introduction

Natural language interfaces significantly lower the

barrier to accessing databases and performing data

analytics tasks for users who are not familiar with

database query languages. Many approaches have

been proposed for generating SQL queries from nat-

ural language (Popescu et al., 2004; Giordani and

Moschitti, 2012; Rubin and Berant, 2021; Scholak

et al., 2021; Zhao et al., 2022). Using recent large

language models, systems have reached 86.6% ex-

ecution accuracy (Gao et al., 2023) on the Spider

benchmark (Yu et al., 2018).

However, the rate of improvement has slowed,

with a gain of only 10% since mid-2021. This is

partly due to the inherent ambiguity of natural lan-

guage and the complex structure of SQL queries

(e.g., nested or joined queries). Thus, it is challeng-

ing to generate a fully correct query in one step,

especially for complex tasks (Yao et al., 2019).

Figure 1: Refining a SQL query by directly editing a

step-by-step explanation.

There has been growing interest in develop-

ing ªhuman-in-the-loopº approaches that elicit

user feedback to guide SQL generation. How-

ever, most approaches only support feedback in

constrained forms, e.g., answering multiple-choice

questions (MISP, PIIA, DialSQL Yao et al., 2019;

Li et al., 2020; Gur et al., 2018), changing SQL ele-

ments in a drop-down menu (DIY, Narechania et al.,

2021), etc. Such constrained feedback is not suffi-

cient to fix many complex errors in real-world SQL

tasks. One exception is NL-EDIT (Elgohary et al.,

2021), which allows users to provide feedback as

new utterances. However, since the feedback is

open-ended, interpreting it can be just as hard as

processing the original request.

In this paper, we seek to strike a balance between

constrained feedback and open-ended feedback by

proposing a new interaction mechanism: editable

step-by-step explanations. Fig. 1 illustrates our

idea. This mechanism consists of three core compo-

nents: (a) a text-to-SQL model, (b) an explanation

generation method, and (c) a SQL correction model.

Our key insight is that using a step-by-step expla-

nation as the basis to suggest fixes allows users to

precisely specify where the error is and how to fix

it via direct edits. This not only saves users’ time
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but also makes it easier for the model to locate the

error and apply fixes.

Based on this idea, we implemented an interac-

tive SQL generation and refinement system called

STEPS. STEPS adopts a rule-based method to gen-

erate step-by-step explanations and uses a hybrid

rule/neural method to convert a user-corrected ex-

planation back to a SQL query.

An evaluation with a simulated user on Spi-

der (Yu et al., 2018) shows that STEPS can

achieve 97.9% exact set match accuracy, outper-

forming prior interactive text-to-SQL systemsÐ

MISP, DIY, and NL-EDITÐby 33.5%, 33.2%, and

31.3% respectively. We further evaluate STEPS

on other datasets, including Spider-DK (Gan et al.,

2021b), Spider-Syn (Gan et al., 2021a), and Wik-

iSQL (Zhong et al., 2017). STEPS consistently

achieves at least 96% exact set match accuracy and

execution accuracy across all datasets.

Finally, we conducted a within-subjects user

study with 24 real users. We found that within the

same amount of time, STEPS helped users complete

almost 2X and 4X more tasks correctly than DIY

and MISP respectively,1 with significantly higher

self-reported confidence and lower mental load.

This work makes the following contributions:

(1) we propose a new interaction mechanism for

the text-to-SQL task; (2) we develop an interactive

text-to-SQL system based on the new interaction

mechanism and a new training method for SQL cor-

rection; (3) we conduct a comprehensive evaluation

with both simulated and real users and demonstrate

its effectiveness over state-of-the-art interactive sys-

tems. Our dataset and code are publicly available.

2 Related Work

2.1 Text-to-SQL Generation

Natural language interfaces have long been recog-

nized as a way to expand access to databases (Hen-

drix et al., 1978).The construction of several large

text-to-SQL datasets, such as WikiSQL (Zhong

et al., 2017) and Spider (Yu et al., 2018), has en-

abled the adoption of deep learning models in this

task, achieving unprecedented performance in re-

cent years (Rubin and Berant, 2021; Wang et al.,

2020a; Scholak et al., 2021; Yu et al., 2020; Hwang

et al., 2019). Our technique is based on the re-

1We worked with the authors of NL-EDIT to include their
system in the user study, but were unable to get it working due
to missing code and other runtime errors. We use the accuracy
reported in the NL-EDIT paper for comparisons.

cent success of neural text-to-SQL models. Unlike

existing models that perform end-to-end SQL gen-

eration, we propose a new interaction mechanism

for users to validate and refine generated queries

through step-by-step explanations.

As the first step to demonstrate the feasibility of

our approach, we focus on single-turn SQL genera-

tion (Yu et al., 2018) in this work. There has also

been recent work that supports multi-turn SQL gen-

eration (Yu et al., 2019a,b; Guo et al., 2021), where

a sequence of interdependent queries are expressed

in multiple utterances in a dialog. Models designed

for multi-turn SQL generation typically need to

reason about the dialog context and effectively en-

code the historical queries (Wang et al., 2021; Hui

et al., 2021; Zhang et al., 2019; Cai and Wan, 2020;

Wang et al., 2020b). Our approach can be extended

to support multi-turn SQL generation by initiating

separate refinement sessions for individual queries

while incorporating the contextual information of

previous queries into explanation generation and

text-to-clause generation.

2.2 Interactive Semantic Parsing for SQL

Recently, there has been a growing interest in in-

teractive approaches that elicit user feedback to

guide SQL generation. Iyer et al. (2017) proposed

to allow users to flag incorrect queries and contin-

uously retrain the model. Both DIY (Narechania

et al., 2021) and NaLIR (Li and Jagadish, 2014a,b)

enable users to select alternative values or subex-

pressions to fix an incorrect SQL query. PIIA (Li

et al., 2020), MISP (Yao et al., 2019), and Dial-

SQL (Gur et al., 2018) proactively ask for user

feedback via multiple-choice questions. A com-

mon limitation of these methods is that they only

solicit feedback in constrained forms, hindering

their flexibility and effectiveness in addressing the

variability of SQL errors. In contrast, our approach

allows more flexible feedback through direct edits

to the explanations generated by the model.

The only work that supports open-ended user

feedback in SQL generation is NL-EDIT (Elgohary

et al., 2021). NL-EDIT is trained on SPLASH (El-

gohary et al., 2020), a dataset of SQL errors and

user feedback utterances. Given an incorrect query,

NL-EDIT allows users to provide a clarification

utterance. Based on the utterance, the model gen-

erates a sequence of edits to the SQL query. In-

corporating feedback expressed in a completely

free-text utterance is challenging for two reasons:
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Figure 2: An Overview of Interactive SQL Generation and Refinement with Editable Step-by-Step Explanations

(1) the model needs to infer which part of the SQL

query to fix; (2) the model needs to determine what

changes are being requested. In contrast, STEPS

asks users to directly edit an NL explanation and

make corrections to the explanation. Comparing

the initial explanation with the user-corrected ex-

planation makes it easier to locate the part of a

SQL query that needs to be changed and infer what

change to make.

The idea of SQL decomposition is similar to

recent work that decomposes a user question to

sub-questions on SPARQL (Mo et al., 2022). Their

approach requires a crowd-sourced dataset to train

a question decomposition model. In contrast, our

rule-based method generates step-by-step explana-

tions without the need for training a model. This

also allows our system to map each entity in the ex-

planation to the corresponding SQL element, mak-

ing it easier for SQL correction (Sec. 3.2).

2.3 Explaining SQL Queries in NL

Our approach is also related to prior work that gen-

erates NL explanations for SQL queries. Simitsis

and Ioannidis (2009) argued that databases should

ªtalk backº in human language so that users can

verify results. Kokkalis et al. (2012) and Koutrika

et al. (2010) used a graph-based SQL translation ap-

proach, where each query is represented as a graph

and the explanation is generated by traversing the

graph. Elgohary et al. (2021, 2020) employed a

template-based explanation approach, where they

manually curated 57 templates for explanation gen-

eration. These approaches have limited capability

to handle arbitrary SQL queries. To address this

limitation, we propose a rule-based method to first

explain terminal tokens (e.g., operators, keywords)

and gradually compose them into a complete ex-

planation based on the derivation rules in the SQL

grammar. Another key difference is that none of

the existing approaches supports editable explana-

tions for SQL correction, which is a key feature to

solicit user feedback in our approach.

3 Approach

Fig. 2 provides an overview of STEPS. Given a

natural language (NL) question, STEPS invokes a

text-to-SQL model to generate an initial SQL query.

Then, it decomposes the generated SQL query into

individual query clauses and re-orders them based

on their execution order. Each clause is then trans-

lated into an NL description of the underlying data

operation, which is then used to form a step-by-step

explanation. By reading the NL explanation along

with the query result, users can easily understand

the behavior of the generated query and locate any

errors, even if they are unfamiliar with SQL.

If one step is incorrect, users can directly edit its

explanation to specify the correct behavior. STEPS

will then regenerate the clause based on the user-

corrected explanation and update the SQL query,

rather than regenerate the entire query from scratch.

If multiple steps are incorrect, the user can add,

remove, and modify all steps as needed.

3.1 Rule-based SQL Explanation

To generate explanations for arbitrarily complex

SQL queries (e.g., a query with nested subqueries),

we design a rule-based method to first decompose a

query into individual clauses. Specifically, STEPS

first parses a SQL query to its Abstract Syntax Tree

(AST) based on the SQL grammar in Table 6. Then,

it traverses the AST to identify the subtree of each

clause while preserving their hierarchical relations.

Given the subtree of a clause, STEPS performs an

in-order traversal and translates each leaf node (i.e.,

a terminal token in the grammar) to the correspond-
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Figure 3: An example of the explanation generation process

ing NL description based on a set of translation

rules (see Table 7 in the appendices). For example,

SELECT is translated to ªReturnº, and Order By is

translated to ªSort the records based on.º STEPS

concatenates these descriptions to form a complete

sentence as the explanation of the clause.

Since SQL engines follow a specific order to

execute individual clauses in a query2, STEPS fur-

ther reorders the clause explanations to reflect their

execution order. We believe this is a more faithful

representation of the query behavior and thus can

help users better understand the underlying data

operations, compared with rendering them based

on the syntactic order of clauses. Fig. 3 shows an

example translation.

3.2 Text-to-Clause Generation

Users make edits to the explanation produced by

our system to make it consistent with their goal.

Given these edits, STEPS uses a hybrid method to

generate the corresponding SQL clause. For simple

edits, such as replacing a column name, STEPS

directly edits the original clause to fix the error

using three direct transformation rules (§ 3.2.1).

For more complex edits, STEPS uses a neural text-

to-clause model to generate the clause based on the

user-corrected explanation (§ 3.2.2).

The hybrid method is inspired by the findings

from our recent study (Ning et al., 2023). Specifi-

cally, a large portion of SQL generation errors are

simple errors (e.g., incorrect column names and op-

erators), which can be fixed with small edits. After

SQL decomposition by our approach, many larger

errors are further decomposed into a set of simpler

errors, contained within separate clauses. Thus, it

is not necessary to regenerate the entire clause to

fix such errors. Furthermore, compared to using

a large model, direct transformation is more com-

putationally efficient. Our experiment shows that

direct transformation is 22K times faster than the

text-to-clause model (Table 4).

2
https://sqlbolt.com/lesson/select_queries_

order_of_execution

Algorithm 1: Direct transformation

Input: The original explanation eo;
The new edited explanation en;
The original SQL clause s;
Output: the updated SQL clause

1 Co ← CHUNK(eo)
2 Cn ← CHUNK(en)
3 foreach (co, cn) in ALIGN(Co, Cn) do
4 // Replace ;
5 if BOTHCOLUMN(co, cn) or

6 BOTHTABLE(co, cn) or

7 BOTHLITERAL(co, cn) then
8 s← s.REPLACE(co, cn) ;
9 // Add ;

10 else if co is ∅ and ISCOLUMN(cn) then
11 if s.STARTWITH("Select") then
12 s← s.APPEND(cn)

13 // Remove ;
14 else if cn is ∅ and ISCOLUMN(co) then
15 s← s.REMOVE(co) ;

16 end
17 return

3.2.1 Direct Transformation

We define three types of atomic edits that can be

directly converted into SQL edits by STEPS: (1)

replacing a column name, a table name, or a literal

value (i.e., string, number), (2) adding a new col-

umn name in the explanation of a SELECT clause,

and (3) removing a column name.

Algorithm 1 describes our direct transformation

algorithm. After chunking the text (Lines 1-2),

STEPS aligns and compares the chunks in the origi-

nal explanation with those in the user-corrected ex-

planation, using the Needleman and Wunsch (1970)

algorithm (Line 3). This allows STEPS to detect

any replacements (Line 4), additions (Line 9), or

removals (Line 13) of database entities in the expla-

nation. Based on this information, STEPS automat-

ically edits the corresponding SQL clause without

calling a neural model (Lines 8, 12, 15). More de-

tails of this algorithm can be found in Appendix E.

3.2.2 Text-to-Clause Model

For more complex edits, we develop a text-to-

clause model. We adopt the model architecture

of SmBoP (Rubin and Berant, 2021) for this model.

SmBoP is a semi-autoregressive and bottom-up
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Figure 4: An example of SQL clause rewriting and composition

transformer-based semantic parser for SQL. It de-

codes subtrees first and then gradually combines

them to form a complete AST of the final SQL.

To train the model, we automatically created a

dataset with 83K text-clause pairs based on Spi-

der (Yu et al., 2018). For each SQL query in Spi-

der, we use the explanation generation method in

Section 3.1 to decompose the query into clauses

and generate an NL explanation of each clause.

To improve the diversity of NL explanations, we

paraphrase the original explanations in two ways.

First, we use a rule-based method to replace words

with their synonyms (details in Table 9 in the ap-

pendices). Second, we paraphrase the explanation

using an automatic paraphrasing tool: QuillBot3.

We train the text-to-clause model using Adam with

a learning rate of 1.8e−4 and a dropout rate of 0.1.

We perform 10-fold cross-validation and the exact

set match accuracy of our text-to-clause model is

90.6% (see Appendix D for details).

3.3 SQL Rewriting and Composition

After regenerating the clauses for all user-corrected

explanations, STEPS composes them together to

form a new query while avoiding syntactic errors

using three rewriting rules.

Simply combining SQL clauses may lead to syn-

tactic errors. As shown in Fig. 4, the regenerated

clause may reference another table that does not

exist in the previous query, e.g., info in the second

clause. Thus, we design three rewriting rules to

fix such errors. First, if a table is referenced but is

not the table in the FROM clause, STEPS rewrites the

FROM clause to join the existing table with the new

table based on the foreign key. Second, if multiple

SELECT, WHERE, or HAVING clauses are at the same

hierarchical level, STEPS merges them into a single

clause. Third, if there are multiple ORDER BY or

GROUP BY clauses, STEPS only keeps the first one.

Fig. 4 shows an example of the rewriting process.

3
https://quillbot.com

4 Experiment

To evaluate the performance of STEPS, we con-

ducted quantitative experiments on the Spider

benchmark (Yu et al., 2018) with three SOTA in-

teractive SQL generation approachesÐMISP (Yao

et al., 2019), DIY (Narechania et al., 2021), and

NL-EDIT (Elgohary et al., 2021). We also explored

the impact on STEPS of different text-to-SQL mod-

els, different task difficulties, and four different

benchmarks (Yu et al., 2018; Gan et al., 2021b,a;

Zhong et al., 2017). Finally, we conducted an abla-

tion study for our hybrid method.

4.1 Automated User Simulation & Setup

For our quantitative evaluation of STEPS, we devel-

oped an automated script to simulate user feedback

following the user simulation method of Yao et al.

(2019). This setup assumes we have a user who

perfectly identifies all errors and provides clear

corrections. The purpose of this experiment is to

measure the upper bound of system performance

without human errors.

We do this as follows. Given a generated query

and the ground-truth query, our script decomposes

both of them into clauses using the method de-

scribed in Section 3.1. Then, it compares the

clauses and checks their semantic equivalence us-

ing the component matching method of Yu et al.

(2018). For example, SELECT name, age is con-

sidered semantically equivalent to SELECT age,

name. The simulated user provides feedback when

a clause in the generated query is not semanti-

cally equivalent to the corresponding clause in the

ground truth (i.e., there is an error).

We simulated three types of mismatches. First,

if the generated query contains a clause that does

not exist in the ground truth, our script will delete

its explanation from the original explanation. Sec-

ond, if the generated query is missing a clause

from the ground truth, our script will generate the

explanation of this missing clause using the expla-

nation generation method described in Section 3.1,

paraphrase it using QuillBot, and insert it into the

corresponding location of the original explanation.
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Finally, if the generated query contains a clause

that is inconsistent with the ground truth, our script

will generate the explanation based on the correct

clause in the ground truth, paraphrase it using Quill-

Bot, and replace the explanation of the incorrect

clause with the paraphrased one.

4.2 Comparison Systems

We compared STEPS to three state-of-the-art inter-

active SQL generation methods:

Among tools that allow users to give feedback

by answering multiple-choice questions (Gur et al.,

2018; Li et al., 2020; Yao et al., 2019), we select

MISP (Yao et al., 2019) to compare with because

it has the best performance in simulation. During

the interaction, MISP asks users to clarify whether

a column should be considered in the query, and

the user can answer yes or no. The user’s answer

is used to constrain the decoding process by adjust-

ing the probability of code tokens induced by the

answer. We used the original implementation of

MISP from their GitHub repository. Furthermore,

since their GitHub repository provides a user simu-

lation script, we reuse it for the user simulation in

our experiments.

DIY (Narechania et al., 2021) enables users to

refine a generated SQL query by showing the table

names, column names, operators, and aggregate

functions that correspond to words in the NL ques-

tion and allowing the user to select alternatives

from drop-down menus. We reimplemented DIY

since no open-source implementation is available.

We cannot directly compare with the user perfor-

mance from the DIY paper because they did not

report any objective measures, such as task com-

pletion rates and time (Narechania et al., 2021).

To construct the word-entity mapping in DIY, we

calculate word embedding semantic similarity. In

the user simulation, we align the generated SQL

with the ground truth SQL. If an entity in the gen-

erated SQL is not present in the ground truth SQL,

which indicates an error, and it has been mapped

to the NL question, which means users can give

feedback via a drop-down menu, we replace it with

the corresponding ground truth entity.

NL-EDIT (Elgohary et al., 2021) enables users

to correct errors by giving feedback in natural lan-

guage. User feedback is parsed into a set of simple

edits (e.g., add, remove) that are applied to the

SQL query. We worked with the NL-EDIT authors

to run their system, but were unable to resolve is-

Accset

EditSQL (Zhang et al., 2019) 0.576

Human-in-the-Loop Methods

+ MISP (Yao et al., 2019) 0.644

+ DIY (Narechania et al., 2021) 0.647

+ NL-EDIT (Elgohary et al., 2021) 0.666

+ STEPS (Ours) 0.979

AI-Only Methods

Graphix-3B + PICARD (Li et al., 2023b) 0.771

SHiP + PICARD (Zhao et al., 2022) 0.772

RESDSQL-3B + NatSQL (Li et al., 2023a) 0.805

Table 1: Exact Set Matching Accuracy Comparison.

Note, these results are on the dev set as we are unable

to use the hidden test set in the human experiments.

sues due to missing code and other run-time errors.

We report results for NL-EDIT using the accuracy

numbers from the NL-EDIT paper.

4.3 Results

Comparison with the Three SOTA Interactive

Approaches. Table 1 shows the exact set match

accuracy of STEPS, MISP, DIY, and NL-EDIT. Fol-

lowing the experimental design of MISP and NL-

EDIT, we use EditSQL (Zhang et al., 2019) as the

base SQL generation model and exact set matching

accuracy (Yu et al., 2018) as the evaluation metric.

STEPS achieves 97.9% accuracy, outperforming all

three previous approaches by at least 31%.

Comparison with Strong Text-to-SQL Mod-

els. Table 1 also shows the exact set match accu-

racy of three high-performing text-to-SQL mod-

els (Li et al., 2023b; Zhao et al., 2022; Li et al.,

2023a).4 Compared with these models, STEPS

achieved 17%-20% accuracy improvement by so-

liciting user feedback. This indicates that allowing

users to edit step-by-step explanations can produce

results that are far better than the best pure-AI mod-

els while also providing users with confidence that

the query is doing what they want.

Evaluation with Different Base Models &

Task Difficulty Levels. To demonstrate STEPS’s

performance is generalizable to other base models,

we also evaluate STEPS on another model called

SmBoP (Rubin and Berant, 2021). SmBoP is one

of the best models on the Spider leaderboard with

74.5% exact set matching accuracy. Table 2 shows

STEPS’s exact set matching accuracy with SmBoP

as the base model in comparison to EditSQL. We

4As the test set of Spider is not released, we selected the
top three models based on their exact set match accuracy on
the development set at the time of our experiments.
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Accset Accexec

Easy Medium Hard Extra hard All Easy Medium Hard Extra hard All

EditSQL 0.681 0.632 0.456 0.395 0.576 - - - - -
+ STEPS 0.991 1.000 0.976 0.912 0.979 0.991 0.995 0.939 0.912 0.971

SmBoP 0.883 0.791 0.655 0.512 0.745 0.718 0.669 0.672 0.518 0.657
+ STEPS 0.992 1.000 0.977 0.916 0.981 0.992 0.995 0.943 0.916 0.973

Table 2: STEPS’s Accuracy on SQL Tasks with Different Levels of Difficulty

Accset Accexec

SmBoP + STEPS SmBoP + STEPS

WikiSQL 0.862 0.983 0.895 0.980
Spider 0.745 0.981 0.657 0.973
Spider-DK 0.534 0.987 0.537 0.976
Spider-Syn 0.572 0.969 0.600 0.972

Table 3: Evaluation on different datasets

Accset Accexec Time (ms)

Direct transform only 0.788 0.745 0.0042
Text-to-clause only 0.981 0.973 95.53
Hybrid 0.981 0.973 57.24

Table 4: Ablation Study of the Hybrid Method

also report execution accuracy, another popular

metric that compares the query results between

the generated query and the ground truth. Note

that since EditSQL does not predict any value in

SQL conditions, the queries generated by EditSQL

are not runnable. Thus, we cannot measure the

execution accuracy of EditSQL. The result shows

that STEPS consistently improves the accuracy of

both models on SQL tasks with various levels of

difficulty.5 Specifically, STEPS can almost solve

all easy and medium tasks and also achieves more

than 90% accuracy for the hard and extra hard tasks.

For hard and extra hard tasks, the generated SQL

queries often include more errors. It can be chal-

lenging for other approaches to fix all of them at

once. In our case, decomposing the original task

into smaller steps makes fixing multiple errors as

easy as fixing one.

Generalizability to Different Datasets. To fur-

ther demonstrate the generalizability of STEPS, we

evaluate STEPS on three other datasetsÐÐSpider-

DK (Gan et al., 2021b), Spider-Syn (Gan et al.,

2021a), and WikiSQL (Zhong et al., 2017). Note

that since STEPS is trained on Spider, its models are

out-of-domain when applying to different datasets.

Table 3 demonstrates that STEPSachieves compara-

ble performance across datasets.

Ablation Study for the Hybrid Method. Ta-

5Spider categorizes their SQL tasks into four difficulty
levelsÐeasy, medium, hard, and extra hard.

ble 4 shows the ablation results of the hybrid

method of STEPS. Regarding SQL generation ac-

curacy, STEPS achieves comparable accuracy when

using text-to-clause alone, while experiencing a

significant accuracy degradation when using direct

transformation alone. This makes sense since the

direct transformation method is only designed to

fix a subset of the possible error types. However,

for the types for which it is intended, the direct

transformation approach is very accurate. As a re-

sult, using it as part of the hybrid system increases

efficiency without decreasing accuracy.

5 User Study

To evaluate the usability and accuracy of STEPS

when interacting with real users, we conducted a

within-subjects user study with 24 participants.6

5.1 Participants

We recruited 24 participants (22M, 2F) through

mailing lists at Purdue University. In the recruit-

ment email, we shared a consent form that included

detailed information about the study procedure, po-

tential risks, data usage, and confidentiality. We

obtained consent from each user before proceeding

with the study. All collected data were anonymized

and de-identified. Each participant received a $25

gift card as compensation for their time.

To investigate how user expertise affects the

performance of STEPS, participants were selected

based on their familiarity with SQL. Specifically,

10 of them had never heard about or used SQL

before (end-user); 10 knew the basics of SQL but

had to search online to recall the syntactic details

when writing a SQL query (novice); 4 could flu-

ently write SQL queries (expert).

5.2 Comparison Systems

We used MISP (Yao et al., 2019) and DIY (Narecha-

nia et al., 2021) as comparison systems. As ex-

plained in Section 4.2, we did not use NL-EDIT,

since we were unable to reproduce it. To ensure a

6Our study was approved by Purdue University’s IRB.
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fair comparison, we developed user interfaces with

the same visual style for STEPS, MISP (Yao et al.,

2019), and DIY (Narechania et al., 2021). User

interface screenshots are provided in Appendix G.

5.3 SQL Tasks & Procedures

Each study includes 3 sessions, one for each tool.

In each session, participants were asked to use the

assigned tool to complete 8 SQL tasks in 10 min-

utes. The time limit was decided by 4 pilot studies,

allowing sufficient time to complete multiple tasks.

To select the tasks, we first performed stratified ran-

dom sampling on Spider to create a task pool of 24

SQL tasks, including 6 easy tasks, 6 medium tasks,

6 hard tasks, and 6 extra hard tasks. Before each

session, we selected 2 tasks from each difficulty

level in the task pool, which constitutes a total of

8 tasks to be solved in the session. To mitigate

learning effects, the orders of both task assignment

and tool assignment order were counterbalanced

across participants.

Each session started with participants watching a

tutorial video of the assigned tool (6 min for STEPS,

3 min for MISP, and 2 min for DIY). The STEPS

video was longer simply because STEPS had more

features. During all tutorials, we allowed users to

pause the video and ask questions. Participants

were then given 5 minutes to practice and get fa-

miliar with the tool before working on real tasks.

For each task, participants were asked to read the

description of the task and then ask an initial NL

question to the assigned tool. After receiving the

generated query and results, participants could val-

idate and repair the generated query using the tool.

Participants were allowed to skip a task if they

found it too hard to solve. Participants could view

the produced SQL, but were not given the ability

to edit the SQL directly.

At the end of each session, participants were

asked to complete a post-task survey to rate their

confidence about the final SQL query, how success-

ful they perceived themselves in completing the

tasks, and the mental effort to complete the tasks

on a 7-point Likert scale. After all three sessions,

participants completed a final survey, in which they

directly compared the three tools. We recorded

each study with the permission of the participants.

Each study took an average of 79 minutes.

5.4 Results

Task Completion Rate Analysis. Table 5 shows

the average number of completed tasks, correct

Complete Correct Acc. Skipped

MISP 3.0 1.7 0.57 1.4

DIY 5.4 3.5 0.68 0.8

STEPS 6.7↑ 5.7↑ 0.86↑ 0.3↓

Table 5: User Performance (best results in bold). For all

metrics, an ANOVA test indicated statistically signifi-

cant mean differences across 3 tools (p-value < 0.01).

Figure 5: User Perception.

completions, task completion accuracy (#correct /

#completed), and skipped tasks. We found that par-

ticipants using STEPS completed more tasks com-

pared to those using MISP and DIY. Furthermore,

participants using STEPS completed significantly

more tasks correctly than DIY and MISP, achieving

the highest accuracy (85.81%) in SQL generation.

Participants using STEPS barely skipped a task, im-

plying that STEPS provided sufficient support for

users to tackle challenging tasks so that users did

not give up quickly. The ANOVA test indicates that

the mean differences in Table 5 are statistically sig-

nificant among all three conditions (p-value < 0.01).

These results indicate that STEPS can help users

complete SQL tasks more efficiently and correctly

than prior methods.

The Impact of SQL Expertise. We further in-

vestigated whether the SQL expertise of users has

an impact on user performance. We found that

all three user groups performed similarly in each

condition. This implies that SQL expertise does

not have a significant impact on user performance
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when interacting with STEPS. For a visualization

of the results, see Fig. 6 in the appendices.

User Perception. In the post-study survey, all

participants ranked STEPS as the most usable and

useful tool. As shown in Figure 5, participants felt

the most confident and successful while experienc-

ing the least mental load when using STEPS.

6 Analysis of Post-study Survey

Responses

We analyzed the post-task survey responses and in-

terview recordings to understand why participants

performed much better when using STEPS com-

pared with using MISP and DIY. 17 participants

strongly agreed that seeing the natural language ex-

planation helped them understand the SQL query,

and 22 participants explicitly wrote that they highly

appreciated the step-by-step explanations provided

by STEPS, since these explanations made SQL

queries more understandable, editable, and learn-

able. P12 wrote, ªI liked that it shows the steps in

human language so if there is a mistake I can edit

it easily. Also, it was nice to see the generated SQL

code I believe I could learn SQL using this tool

also.º In contrast, 14 of 24 participants reported it

was hard to understand and validate the generated

SQL queries when using MISP or DIY. P1 wrote,

ªSometimes it generates very complex SQL that is

difficult to read and check.º P9 wrote, ªSometimes

it gives the wrong answer. As I’m no expert in SQL,

I couldn’t tell instantly if the queries were wrong,

so I had to go back to the data and check manually.º

12 participants reported that the feedback elicita-

tion mechanism in MISP was not very efficient.

P16 wrote, ªI have to keep answering yes or no

questions when using MISP.º 11 of them reported

the drop-down menus provided by DIY limited

their ability to make changes. P3 said, ª[It is] hard

to know how to make changes / resolve issues that

were not covered by the drop-down menus.º

7 Discussion

Both the quantitative experiments and the user

study demonstrate STEPS can significantly improve

the accuracy of SQL generation. This is largely

attributed to the interaction design, which allows

users to precisely pinpoint which part of the SQL

is wrong and only regenerates the incorrect clauses

rather than the entire SQL query. In contrast, ex-

isting approaches do not support expressive ease

or error isolation. Users either cannot regenerate

new content (e.g., DIY), or can only regenerate the

entire query rather than just the erroneous part (e.g.,

MISP). Ning et al. (2023) showed that this lack of

error isolation often introduces new errors, which

frustrates users and makes errors hard to fix.

Error Analysis. While simple errors are preva-

lent in SQL generation, our ablation study (Table 4)

shows that only fixing simple errors is insufficient,

which motivates the design of our hybrid method.

Our hybrid method can handle a broad range of

errors because users can flexibly correct entities

or clauses in a query. This ability helps reduce

the difficulty of tasks by dividing complex errors

into simpler ones, allowing users to solve them

separately.

In our automated user simulation, STEPS failed

in a few cases when the text-to-clause model pre-

dicted the wrong clause type. For example, the

paraphrased ground truth explanation of one step

was: ªEnsure that all categories where the total

cost of therapy exceeds 1000 are included.º The

text-to-clause model predicted a WHERE clause in-

stead of a HAVING clause.

In the user study, one common challenge arose

when multiple tables in the database had the same

column name. If users did not look carefully at

the database schema, they may have not explicitly

indicated the table to be used. That creates an

ambiguity for the model.

Other Datasets and Domains. Our system

should work for any SQL dataset, as our approach

is domain-agnostic and covers general SQL struc-

tures. For other forms of code, such as WebAPI

(Su et al., 2017) and SPARQL (Ngonga Ngomo

et al., 2013; Mo et al., 2022), the general idea is

applicable, but new models would be needed for (a)

code generation, (b) explanation generation, and

(c) code correction.

8 Conclusion

This work presents STEPS, a new interactive ap-

proach for text-to-SQL generation. STEPS decom-

poses a text-to-SQL task into smaller text-to-clause

tasks and enables users to validate and refine a

generated query via editable explanations. Ex-

periments on four benchmarks and a user study

show STEPS can significantly boost the accuracy

of end-to-end models by incorporating user feed-

back. STEPS significantly outperforms three state-

of-the-art approaches for interactive SQL genera-

tion across all metrics considered.
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9 Limitations

Our automated user simulation is an optimistic ex-

periment that does not account for user errors, such

as not being able to identify mistakes in the explana-

tion. The simulation was designed to test a scenario

in which a user can perfectly identify which step of

the explanation is wrong and accurately describe

a corrected version in natural language. Creating

such a perfect user required the use of the ground

truth, both for the identification step and to gener-

ate the natural language correction. This simulation

is not representative of real-world use. That lim-

itaton was the motivation for our study with real

users, in which we had actual people use different

tools without information about correct answers.

As shown in Table 5, the accuracy of the user study

is lower than the simulation, but STEPS is still very

effective and outperforms other tools. We choose

to include the simulation study because it shows

the potential for STEPS to make corrections if there

is no human error.

In this paper, we only evaluate STEPS on single-

turn SQL generation. In future work, our approach

can be extended to multi-turn SQL generation by

incorporating contextual information when editing

the natural language explanation.

While our approach is designed to be general for

SQL generation and potentially other code gen-

eration tasks, the current version only supports

SQL keywords that appear in the Spider dataset.

Like other text-to-SQL datasets, Spider only cov-

ers query operations (e.g., SELECT) and does not

cover update operations (e.g., INSERT) for evalua-

tion convenience. But it would be straightforward

to cover unsupported operations by adding new

translation rules.

10 Ethical Consideration

The interactive text-to-SQL system proposed by

this work poses minimal risks to human users and

society. Instead, it will significantly lower the bar-

rier of querying database systems and empower a

great number of people, especially those without

technical backgrounds, to access and analyze data.

To evaluate the usability of our system, we con-

ducted a human-subject study with real users. To

minimize the risks to human subjects, we strictly

followed the community standards with the ap-

proval from the Purdue University IRB office. In

the recruitment email, we shared a consent form

that includes detailed information about the study

procedure, potential risks, data usage, and confiden-

tiality. We obtained consent from each user before

proceeding with the study. All collected data were

anonymized and de-identified to protect the privacy

of users.
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A SQL Grammar and Translation Rules

⟨ sql ⟩ := SELECT ⟨ nouns ⟩ ⟨ sub ⟩
| ⟨ sql ⟩ INTERSECT ⟨ sql ⟩
| ⟨ sql ⟩ UNION ⟨ sql ⟩
| ⟨ sql ⟩ EXCEPT ⟨ sql ⟩

⟨ sub ⟩ := ϵ

| FROM ⟨ noun ⟩ ⟨ sub ⟩
| WHERE ⟨ condition ⟩ ⟨ sub ⟩
| JOIN ⟨ noun ⟩ ON ⟨ condition ⟩ ⟨ sub ⟩
| GROUP BY ⟨ noun ⟩ ⟨ sub ⟩
| HAVING ⟨ condition ⟩ ⟨ sub ⟩
| ORDER BY ⟨ noun ⟩ ⟨ sorting ⟩ ⟨ sub ⟩
| LIMIT NUM

⟨ nouns ⟩ := DISTINCT ⟨ nouns ⟩
| ⟨ noun ⟩,⟨ nouns ⟩
| ⟨ noun ⟩
| ⟨ func ⟩ ( ⟨ noun ⟩ )

⟨ condition ⟩ := ⟨ noun ⟩ ⟨ op ⟩ NUM
| ⟨ noun ⟩ ⟨ op ⟩ ⟨ noun ⟩
| ⟨ noun ⟩ ⟨ op ⟩ ⟨ sql ⟩
| BETWEEN ⟨ noun ⟩ AND ⟨ noun ⟩
| ⟨ condition ⟩ AND ⟨ condition ⟩
| ⟨ condition ⟩ OR ⟨ condition ⟩
| NOT ⟨ condition ⟩

⟨ sorting ⟩ := ASC | DESC | ϵ

⟨ func ⟩ := COUNT | AVG | MAX | MIN | SUM

⟨ op ⟩ := >= | <= | > | < | = | !=

⟨ noun ⟩ := STRING | STRING.STRING | *

Table 6: A Simplified SQL Grammar

Table 6 shows a simplified version of the SQL

grammar. In this grammar, italicized text with

angle brackets, such as ⟨sql⟩, represents non-

terminals which can be further expanded based

on derivation rules. Text without brackets, such

as the SELECT keyword, represents terminals that

cannot be further expanded. Using the derivation

rules in Table 6, STEPS decomposes a SQL query

into 6 types of SQL clauses: (1) FROM-JOIN-ON,

(2) WHERE, (3) GROUP BY, (4) HAVING, (5) ORDER

BY, (6) SELECT. We do not separate the JOIN clause

from the FROM clause, since it is easier to translate

them together. For nested queries with INTERSECT,

UNION, EXCEPT, NOT IN keywords, STEPS first de-

composes them into subqueries and then decom-

pose each subquery to the 6 types of clauses above.

STEPS translates each SQL clause to a natural

language explanation based on translation rules

and templates in Table 7 and Table 8. Table 7

shows the translation rules for individual SQL to-

kens, e.g., keywords, operators, built-in functions,

etc. Specifically, {col} and {T} mean translating

a column or table name to a more readable name.

We pre-defined mapping between each table and

column in a database to a more readable name.

Such a mapping can be easily defined based on

the database schema and only needs to be defined

once. If no such mapping is available, STEPS will

reuse the same column/table name as defined in

the database schema. Table 8 shows the transla-

tion templates for nested queries. The TRANSLATE

function means recursively invoking the explana-

tion generation method on the subquery.

B Synonym Substitution Rules for

Paraphrasing

To increase the NL explanation diversity in our

training dataset, we paraphrase each machine-

generated explanation by randomly replacing the

NL explanation template words with substitute syn-

onyms listed in Table 9. For example, the machine-

generated explanation ªreturn nameº can be para-

phrased to ªfind nameº by replacing ªreturnº with

ªfindº.

C Experiment Setup & Hyperparameters

We run our experiment on a server with Ubuntu

20.04, 2 NVIDIA Tesla T4 GPUs (16 GB), Intel

Core i7-11700K GPU, and 64 GB memory.

For the text-to-clause model, we follow the same

architecture of SmBoP (Rubin and Berant, 2021).

Specifically, our model consists of 24 transformer

layers, followed by another 8 RAT-SQL (Wang

et al., 2020a) layers. Each transformer has 1 feed-

forward layer, 8 attention heads, and 256 dimen-

sions. For each user-given NL question, it is en-

coded together with the database schema using

GRAPPA (Yu et al., 2020).

We finetuned the text-to-clause model and se-

lected the best-performing model with the follow-
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SQL Elements Translation

SELECT Return

FROM In table

JOIN and table

WHERE Keep the records where

GROUP BY Group the records based on

HAVING Keep the groups where

ORDER BY Sort the records based on

LIMIT 1 return the first record

LIMIT num return the top num records

* all the records

col1, col2 the {col1} and the {col2}

c1 c2 c3 the {c1}, the {c2} and the {c3}

T.col {col} of {T}

COUNT(col) the number of {col}

COUNT(*) the number of records

AVG(col) the average value of {col}

MAX(col) the maximum value of {col}

MIN(col) the minimum value of {col}

SUM(col) the sum value of {col}

ASC in ascending order

DESC in descending order

= is

!= is not

> is greater than

>= is greater than or equal to

< is less than

<= is less than or equal to

IN is in

NOT IN is not in

BETWEEN is between

LIKE is in the form of

NOT LIKE is not in the form of

Table 7: Translation rules for SQL elements

ing hyperparameters: optimizer = Adam, learning

rate = 1.8e− 4, dropout rate = 0.1, beam size = 26,

epoch = 240, batch size = 12.

D The Impact of Paraphrasing on Model

Performance

To investigate the impact of paraphrasing on model

performance, we trained and tested the text-to-

clause models under 3 conditions: (1) the explana-

tion is generated by STEPS and not paraphrased, (2)

the machine-generated explanation is paraphrased

by the replacement rules in Table 9, and (3) the

machine-generated explanation is paraphrased by

QuillBot. Then we evaluate the exact set matching

match accuracy of generated clauses in Table 10.

Furthermore, we evaluate the end-to-end SQL gen-

eration accuracy in our user simulation experiment

under 3 conditions, as shown in Table 11. Overall,

paraphrasing does not greatly impact the perfor-

mance of text-to-clause SQL.

SQL compound Translation

q1 INTERSECT q2

Start the first query:

TRANSLATE(q1);

Start the second query;

TRANSLATE(q2);

Return the intersection of them;

q1 UNION q2

Start the first query q1:

TRANSLATE(q1);

Start the second query:

TRANSLATE(q2);

Return the union of them.

q1 EXCEPT q2

Start the first query:

TRANSLATE(q1);

Start the second query:

TRANSLATE(q2);

Return the records in q1 but not in q2.

... col IN/NOT IN q1

Start the first query:

TRANSLATE(q1);

Start the second query:

TRANSLATE(...);

Keep the records where {col} in/not in q1.

Table 8: NL explanation translation rules for SQL com-

pound

E Direct Transformation Algorithm

As mentioned in Sec. 3.2.1, we define three types

of atomic edits. While one can always design new

transformation rules to support other simple edits,

here we focus on these three basic edit types in

order to demonstrate the benefits of direct transfor-

mation.

Algorithm 1 describes the direct transformation

algorithm. First, STEPS performs chunking on

the original explanation eo and the user-corrected

explanation en (Line 1-2). We choose to split

an explanation into phrases rather than individual

words in order to recognize column names and ta-

ble names that are represented as compound nouns

in an explanation. Then, the chunks are aligned us-

ing the Needleman and Wunsch (1970) algorithm.

If a chunk from the original explanation is aligned

with a chunk in the new explanation and both of

them can be mapped to a column name, a table

name, or a literal value, then STEPS replaces the

corresponding name/value from the original clause

with the new name/value (Line 5-8). If a chunk

from the new explanation is aligned with nothing,

the chunk can be mapped to a column name, and

the original clause is a SELECT clause, then STEPS

directly appends the corresponding column name

to the clause after a comma (Line 9-12). If a chunk

from the old explanation is aligned with nothing

and the chunk can be mapped to a column name,

then STEPS directly removes the corresponding

column name from the clause (Line 13-15).
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Template word Substitute synonyms

return

get, find, find out, discover, show, show me, determine,

demonstrate, give me, obtain, select, choose, search,

choose, search, display, list, acquire, gain

keep the records where make, make sure, where, filter the records where

greater than
more than, exceed, no less than, over, above,

larger than, beyond, in excess of, transcend, surpass

less than
lower than, no more than, below, lesser, under,

underneath, not so much as, beneath

ascending
increasing, ascendant, growing, rising,

soaring, climbing, mounting

descending
decreasing, descendant, falling, declining,

dropping, lessening, diminishing

maximum
max, maximum, utmost, greatest,

most, topmost, highest, top, largest, biggest

minimum
lowest, smallest, least, min, minimal,

bottom, bottommost, lowermost

number of amount of, quantity of, total of

in the form of appearing as, with the appearance of, in the shape of

that has associated with, connected to

based on
according to, in terms of, specified by,

built on, established on, considering, regarding

distinct
different, disparate, distinctive,

particular, diverse, dissimilar, unique

all each, every, any, whole, entire, total

group

batch, organize, categorize, classify, arrange, separate,

label, tag, mark, pack, collect, assemble, distribute,

gather, merge, put together, index, concentrate, combine

Sort order, rank, sequence

Table 9: Replacement rules for paraphrasing NL explanation

Accset

No paraphrasing 0.922

Paraphrasing with synonym substitution 0.915

Paraphrasing with QuillBot 0.906

Table 10: The exact set matching accuracy of the text-to-

clause model when trained with three different datasets.

Accset Accexec

SmBoP+STEPSunpara 0.981 0.973

SmBoP+STEPSsubstitute 0.975 0.973

SmBoP+STEPSquillbot 0.975 0.971

Table 11: The end-to-end SQL generation accuracy of

STEPS when using the text-to-clause model trained on

different datasets.

F Impact of SQL Expertise

Figure 6 shows a performance breakdown in our

user study based on participants’ SQL expertise.

We observe that expertise does not impact perfor-

Figure 6: Tasks correctly completed by users with dif-

ferent levels of SQL expertise.

mance, with consistent performance on all tools by

all groups. The means for MISP do differ, but the

distributions of scores overlap substantially.
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Figure 7: The UI of STEPS

G User Interfaces of STEPS and Baselines

This section describes the user interface (UI) of

STEPS, DIY, and MISP used in our user study. As

shown in Fig. 7, the UI of STEPS has 4 views.

Upper Left View This allows users to select a

database and inspect the data records in each table.

Users are allowed to search, rank, and filter data

records in the table. This view helps users explore

the database and manually validate the query result

based on the original data.

Upper Right View This provides a dialog box

for users to ask questions in natural language. For

each question, STEPS automatically generates a

SQL query.

Lower Left View This shows the results of run-

ning a generated SQL query. Users can inspect

the query result to validate whether the generated

query is correct or not.

Lower Right View This renders the core func-

tionality of STEPS: an editable step-by-step expla-

nation for the generated SQL query. Users can

easily read the explanation and identify whether

there are any errors or missing steps in the query.

If users find an error in a step, they can directly

edit the explanation of that step. Users can also

add or remove a step via the UI without needing to

manually assign a step number. If a user clicks the

ADD button next to a step, an empty text field will

appear right below the step and the user can write

the description for the new step. If a user clicks the

REMOVE button next to a step, the step will be

removed. We expect users to edit the steps in the

correct location for reading clarity, but STEPS can

also help rectify any errors or misoperations using

the heuristics mentioned in Sec. 3.3. As shown

in Fig. 4, if the user adds a new explanation ªre-

turn ageº that is parsed into ªSELECT info.ageº,

STEPS will automatically merge it with the existing

SELECT clause and complete the FROM clause.

Users can check the intermediate query result

of a step by clicking the circled step number icon.

For example, if users click the green number 1⃝,

STEPS just returns all the data in the AIRPORT ta-

ble. Additionally, users can undo and redo previous

edits using the stepper below.

As shown in Fig. 8, the MISP UI is very simi-

lar to STEPS. MISP also allows users to select a

database, inspect data in a table, and view the query

result. The main difference is that MISP will ren-

der a generated query in the dialog and ask users

to confirm whether the generated SQL is correct
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or not. If the user says the generated query is not

correct, it will predict which part of the SQL is

wrong and ask users to select alternative genera-

tions to fix the error. MISP does not provide an

NL explanation of the generated SQL. Users have

to read and inspect the generated SQL, which is

difficult for end-users who do not understand the

syntax and semantics of SQL.

Fig. 9 shows the UI of DIY. To reduce the in-

formation overload of inspecting a large database,

DIY only samples a small amount of data from a

user-selected database. Users can type in a natural

language question and then DIY generates a SQL

query by invoking an SQL generation model. DIY

automatically matches tokens in the NL question

with tokens in the generated SQL. Each matched

NL token is augmented with a dropdown menu

with alternative SQL tokens predicted by the base

model. If the prediction of a token is wrong, users

can click on the dropdown menu and select an alter-

native token to fix it. Users can examine the query

result, as well as the execution steps, in the bottom

right view.
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Figure 8: The UI of MISP

Figure 9: The UI of DIY
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