
Decide: Knowledge-Based Version Incompatibility Detection in
Deep Learning Stacks

Zihan Zhou
The University of Hong Kong

Hong Kong, Hong Kong
zihan2@connect.hku.hk

Zhongkai Zhao
National University of Singapore

Singapore, Singapore
zhongkai.zhao@u.nus.edu

Bonan Kou
Purdue University
West Lafayette, USA
koub@purdue.edu

Tianyi Zhang
Purdue University
West Lafayette, USA
tianyi@purdue.edu

ABSTRACT

Version incompatibility issues are prevalent when reusing or repro-
ducing deep learning (DL) models and applications. Compared with
official API documentation, which is often incomplete or out-of-
date, Stack Overflow (SO) discussions possess a wealth of version
knowledge that has not been explored by previous approaches. To
bridge this gap, we present Decide, a web-based visualization of a
knowledge graph that contains 2,376 version knowledge extracted
from SO discussions. As an interactive tool, Decide allows users
to easily check whether two libraries are compatible and explore
compatibility knowledge of certain DL stack components with or
without the version specified. A video demonstrating the usage of
Decide is available at https://youtu.be/wqPxF2ZaZo0.

CCS CONCEPTS

• Software and its engineering→ Software organization and

properties.

KEYWORDS

Version Compatibility, Knowledge Graph, Deep Learning
ACM Reference Format:

Zihan Zhou, Zhongkai Zhao, Bonan Kou, and Tianyi Zhang. 2024. De-
cide: Knowledge-Based Version Incompatibility Detection in Deep Learning
Stacks. In Companion Proceedings of the 32nd ACM International Confer-
ence on the Foundations of Software Engineering (FSE Companion ’24), July
15–19, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3663529.3663796

1 INTRODUCTION

Deep learning (DL) has been widely applied in diverse domains,
such as computer vision [12], natural language processing [14], and
autonomous driving [8]. However, most DL applications are built
on a complex and heterogeneous DL stack [4], including libraries,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663796

runtime systems, drivers, operating systems, and hardware compo-
nents. The intricate dependencies among these components make
version issues hard to detect and resolve and a significant cause of
failed builds in DL projects [2].

Several techniques [3, 6, 9, 10, 13] have been proposed to detect
dependency issues. However, they primarily focus on detecting
dependency issues among Python packages, with limited consider-
ation for issues related to drivers, operating systems, and hardware
components [10]. Moreover, these techniques heavily rely on docu-
mented version constraints and dependencies specified in PyPI and
official API documentation [9], often overlooking undocumented
issues that developers encounter in practice. In contrast, Q&A plat-
forms such as Stack Overflow (SO) offer up-to-date and compre-
hensive information on dependency issues and their solutions in
real-world scenarios. This wealth of version knowledge has not
been explored by previous work.

In this paper, we present Decide, an interactive web tool that
visualizes a knowledge graph containing 2,376 version knowledge
extracted from SO discussions. Here, version knowledge refers to
(in)compatibility relationships between any two DL stack compo-
nents (e.g., Python 3.7 is compatible with TensorFlow 1.5.0).
These relationships are extracted from 355,000 SO posts that contain
version knowledge via UnifiedQA [5]. The extracted knowledge
was further consolidated into a knowledge graph among 48 popular
DL stack components in Decide. Our evaluation of 343 version
(in)compatibility relations shows relations in the knowledge graph
are highly accurate (83.7% of the sampled relations are correct).

Specifically, Decide provides three major functionalities:

(1) Visualization. Decide visualizes a knowledge graph with
(in)compatibility relations between DL components.

(2) Search Features. Decide utilizes the function calling abil-
ity of GPT-4 to parse natural language search queries of
the users, enabling smooth access to any components or
relations.

(3) Citations. Decide cites source SO posts, allowing users to
validate the extracted knowledge.

In our technical paper [15], we showed this knowledge graph
can be used to effectively detect version issues in DL projects. For
experiment results, the code of Decide, and more information on
our technical paper, please check https://github.com/LexieZhou/
Decide.

547

https://orcid.org/0009-0007-2817-3113
https://orcid.org/0000-0003-2365-9898
https://orcid.org/0000-0003-1407-8522
https://orcid.org/0000-0002-5468-9347
https://youtu.be/wqPxF2ZaZo0
https://doi.org/10.1145/3663529.3663796
https://doi.org/10.1145/3663529.3663796
https://github.com/LexieZhou/Decide
https://github.com/LexieZhou/Decide
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663529.3663796&domain=pdf&date_stamp=2024-07-10

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Zihan Zhou, Zhongkai Zhao, Bonan Kou and Tianyi Zhang

Figure 1: An overview of the knowledge graph construction and incompatibility detection process

Context: tensorflow 1.13 doesn’t work with cuda 10.1
because of the following: “ImportError: libcublas.so.10.0:
cannot open shared object file: No such file or directory”.
tensorflow is looking for libcublas.so.10.0 whereas
cuda provides libcublas.so.10.1.0.105.
Question: Does tensorflow 1.13 work with cuda 10.1?
Answer from UnifiedQA: No.

Figure 2: QA examples for version compatibility inference

Table 1: Version matching patterns

Regex Pattern Matched Examples
v{0,1}\d+(\.d+){1,2} 3.7, 2.4.3, v2.3, v1.13.5
v{0,1}\d+(\.\d+){0,1}(\.x){0,1} 3.x, 1.3.x, v1.x, v2.2.x
(COMPONENT)(-| |_)v{0,1}\d+ python v3, cuda-8, Windows 64

2 KNOWLEDGE GRAPH CONSTRUCTION

This section presents how Decide extracts version compatibility
knowledge from SO posts to build a knowledge graph. Figure 1
provides an overview of the approach. Please refer to our technical
paper [15] for more details.

2.1 Data Collection and Filtering

We downloaded the Stack Exchange Data Dump [1] with 53 million
Stack Overflow posts from July 31, 2008 to September 5, 2021. We
manually analyzed 798 popular SO tags to identify 46 DL-related
tags. 1 We filtered the SO posts to only retain posts tagged with
at least one of these tags. 4.9M posts remained after this step. Fur-
ther refinement using 22 linguistic patterns summarized from 150
posts with version incompatibility knowledge2 related to version
compatibility issues narrowed the selection to 549K posts. Finally,
we removed unaccepted answer posts to ensure the quality of our
dataset. After this step, 355K posts remain. A random sample of
384 posts (CI=95%) showed that 84.9% of them contain version
incompatibility knowledge.

2.2 DL Stack Component Recognition

Not all paragraphs in a version-related SO post mentioned version
compatibility information. We designed a filtering mechanism to
1The complete list of tags can be found at https://github.com/KKZ20/DECIDE/blob/
main/DECIDE/docs/SO_tags.json
2The complete list of linguistic patterns can be found in the supplementary material.

locate paragraphs containing version compatibility information to
improve knowledge extraction efficiency.Decide only selected para-
graphs that mention at least two different versioned components.
In the current implementation, Decide supports the recognition of
48 popular components3 across five DL stack layers. These compo-
nents were manually identified from all DL components appearing
in the 200 posts with the highest vote score (i.e., upvotes minus
downvotes). The authors also added synonyms or aliases for these
components to improve recognition accuracy.

Furthermore, we designed three regex patterns to identify ver-
sions mentioned in a paragraph, as shown in table 1. Finally, Decide
matches each component with the closest version in the dependency
tree of a sentence using a weighted stable matching algorithm [11].

2.3 Compatibility Inference via a Pre-trained

QA Model

Decide infers the compatibility relationship between components
based on the paragraph information. In this work, we propose a
novel approach to reframe the relationship classification task as
a Question-Answering (QA) task and use UnifiedQA [5] to infer
the compatibility between components. UnifiedQA is a large model
with 3 billion parameters pre-trained on eight datasets. It has been
demonstrated to understand deep semantics in natural language
and achieve state-of-the-art performance in multiple QA bench-
marks [5]. UnifiedQA takes two inputs—a question and a context
document from which the answer is extracted. Decide uses the
paragraph as a context document and asks UnifiedQA a yes-or-no
question to infer the compatibility between the two components.
Figure 2 illustrates a QA example from the real SO post—[Post
55028552]. Considering prompt design has a noticeable impact on
model performance [7], we experimented with eight question tem-
plates designed based on the 22 linguistic patterns identified in the
post-filtering procedure and found the best prompt4. If conflicts
exist among SO posts, Decide chooses the relationship supported
by the most posts.

To evaluate the accuracy, we randomly sampled 343 relations
from a total of 2,376. For each relation, two authors independently
verified whether the relation is true by searching online or perform-
ing experiments. Then, they compared their verification results
and resolved any disagreement. The Cohen’s Kappa score was 0.89.

3A complete list of 48 DL stack components can be found at https://github.com/KKZ20/
DECIDE/blob/main/DECIDE/docs/DL_Stack_Components.txt
4Both the prompts and our experiment results can be found at https://github.com/
KKZ20/DECIDE/blob/main/DECIDE/docs/DL_Stack_Components.txt

548

https://github.com/KKZ20/DECIDE/blob/main/DECIDE/docs/SO_tags.json
https://github.com/KKZ20/DECIDE/blob/main/DECIDE/docs/SO_tags.json
https://stackoverflow.com/questions/55028552
https://stackoverflow.com/questions/55028552
https://github.com/KKZ20/DECIDE/blob/main/DECIDE/docs/DL_Stack_Components.txt
https://github.com/KKZ20/DECIDE/blob/main/DECIDE/docs/DL_Stack_Components.txt
https://github.com/KKZ20/DECIDE/blob/main/DECIDE/docs/DL_Stack_Components.txt
https://github.com/KKZ20/DECIDE/blob/main/DECIDE/docs/DL_Stack_Components.txt

Decide: Knowledge-Based Version Incompatibility Detection in Deep Learning Stacks FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

After independent verification by two authors, 287 relations were
confirmed as correct, resulting in an overall accuracy of 83.7%.

3 KNOWLEDGE GRAPH VISUALIZATION

Decide is built with React.js for web application and Node.js
for server. Decide consists of four key components (Figure 3): (1)
the Compatibility Visualizer (A), (2) the Information Panel (B), (3)
the Search Bar (C), and (4) the Statistical Panel (D).

3.1 The Compatibility Visualizer

The Compatibility Visualizer (Figure 3 A) shows the knowledge
graph that visualizes 2,376 compatibility relationships between DL
components.

Knowledge Graph is defined as 𝐺 = ∐︀𝑁, 𝐿̃︀, where:

𝑁 = {𝑛𝑖 ⋃︀ 𝑖 ≥ 0,∀𝑛𝑖 ∈ {𝑙, 𝑟 ,𝑑, 𝑐,ℎ}}
𝐿 = {𝑙 𝑗 ⋃︀ 𝑗 ≥ 0,∀𝑙 𝑗 ∈ {𝑐𝑜𝑚𝑝, 𝑖𝑛𝑐𝑜𝑚𝑝}}

𝑁 is the set of nodes denoting DL components with their ver-
sion numbers. Decide supports the recognition of DL components
across five different DL stack layers [4]: (1) library layer (𝑙) that
contains the popular frameworks (e.g., PyTorch) and other libraries
(e.g., NumPy, SciPy), (2) runtime layer (𝑟) that contains the execu-
tion interpreters or virtual machines of programming languages
(e.g., JVM), (3) driver layer (𝑑) that includes hardware drivers and
accelerated SDKs (e.g., CUDA, cuDNN), (4) OS/container layer(𝑐)
that includes the operating systems and other containers or virtual
environments (e.g., Anaconda, Docker), (5) hardware layer (ℎ) that
includes the hardware and chips (e.g., CPU, GPU).

𝐿 is the set of links representing the compatible (𝑐𝑜𝑚𝑝) or incom-
patible (𝑖𝑛𝑐𝑜𝑚𝑝) relationship between two components, denoted by
the symbols↔ ande respectively. For a pair of versioned compo-
nents, let #Compatible represent the number of posts that Decide
infers a compatible relationship between them, and #Incompatible
denote the number of posts that Decide infers an incompatible
relationship. We define the confidence score of the relationship
between two versioned components as follows: confidence score =
#Compatible−#Incompatible
#Compatible+#Incompatible . If the confidence score is a positive number,
it implies a compatible relationship. Otherwise, it implies an incom-
patible relationship. Relationships with a neutral confidence score
(confidence score = 0) are discarded.

Once we had acquired version knowledge from SO posts, we
restructured the version knowledge data into node data (𝑁) and
link data (𝐿) and utilized the JavaScript library D3.js 5to construct
the knowledge graph in the Compatibility Visualizer.

3.2 The Information Panel

The Information Panel (Figure 3 B) displays detailed information re-
garding theDL components themselves aswell as the (in)compatibility
relationships between them.

3.2.1 DL Library Statistics. We extracted all the statistics about
DL libraries from Libraries.io, a website that provides compre-
hensive library information. This retrieved information 6 includes

5Details about D3.js can be found at https://d3js.org/
6The retrieved stats data can be found at https://github.com/LexieZhou/Decide/blob/
main/stats/stats.json

details such as keywords, licenses, and dependencies. When a node
is clicked, Decide retrieves the corresponding component. If the
component is a DL library, Decide will display detailed information
using the extracted statistics.

3.2.2 Relationship Details. When a link is clicked, the information
panel will show details of the (in)compatibility relationship between
the two DL components. Upon clicking, Decide retrieves the link
data and displays their predicted (in)compatibility, the confidence
score, all the relevant SO posts, and votes of posts. Additionally, we
utilize the post IDs stored in the link data to associate the post title
and URL further. This allows users to obtain an overview of the
posts and access the original SO discussions for further exploration.

3.3 The Search Bar

The search bar (Figure 3 C) provides users three query options
to interact with the knowledge graph. When a query is received,
Decide applies filters to the node data and link data, resulting in a
smaller dataset that includes relevant nodes and links. The filtered
data is then used to generate a focused and concise knowledge
graph for exploration.

The first query option allows users to quickly check the compati-
bility between two different DL components using natural language
queries. For example, a user can inquire, “Does Python 3.6.8 work
with Ubuntu 16.04.6?”. To facilitate this process, Decide employs
the function calling ability of GPT-4 or regular expression pattern
matching (Table 1) to identify the two versioned components. De-
cide then filters the node data and link data. Subsequently, the
knowledge graph shows only the mentioned components and their
(in)compatibility relationships.

Second, users can search for a versioned DL component to see
all the associated version knowledge. Using keyword matching,
Decide identifies the versioned component in the search query.
Subsequently, Decide searches through the available node data to
gather all possible versioned nodes matching the search criteria,
which are then presented in the search results, allowing users to
select. Once users confirm their search selection, Decide further
filters the knowledge graph to include the selected component,
its connected DL components, and their respective (in)compatible
relationships. By doing so, Decide provides users with a compre-
hensive view of the version knowledge surrounding the chosen
component. For example, searching for Python 3.5 will display
Python 3.5 and its related (in)compatible DL components.

Third, users can search for a DL stack component without a
specified version. Decide will show all versions of that compo-
nent and their version knowledge. Similarly, Decide uses keyword
matching to identify the mentioned component and further queries
the knowledge graph.

3.4 The Statistical Panel

To provide easy access, Decide also includes the Statistical Panel
(Figure 3 D), which displays the five most popular components with
common version issues from each DL stack layer. We calculated the
number of version knowledge for each component and identified
the top five most discussed components in each DL stack layer.
Since version issues about these components are very common, we
create shortcuts for these components in the statistical panel.

549

https://d3js.org/
https://github.com/LexieZhou/Decide/blob/main/stats/stats.json
https://github.com/LexieZhou/Decide/blob/main/stats/stats.json

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Zihan Zhou, Zhongkai Zhao, Bonan Kou and Tianyi Zhang

Figure 3: Decide, an interactive knowledge-based tool for detecting and identifying version (in)compatibility in deep learning

stacks. (A) The Compatibility Visualizer. (B) The Information Panel. (C) The Search Bar. (D) The Statistical Panel.

Table 2: Accuracy of version incompatibility detection

Precision Recall F1 Score

Watchman [10] 16.7% 5.9% 8.7%

PyEGo [13] 33.3% 29.4% 31.2%

Decide 91.7% 64.7% 75.9%

4 EVALUATION

Our technical research paper [15] shows Decide can be used to
detect version issues in real DL projects by creating a benchmark
consisting of 10 popular projects from GitHub. We first searched
for DL projects on GitHub with at least 100 stars and a require-
ments.txt file. We manually reproduced them on our local machine
until we found ten projects with at least one version issue on our
local machine. 7 For each experiment, we manually resolved the
incompatibility issue. Among the total 17 issues, 4 issues involved
components at the same layer, while 13 issues involved components
between different DL stack layers.

We compared Decide against two state-of-the-art approaches,
PyEGo [13] and Watchman [10]. Table 2 shows the precison, recall,
and F1 score of Decide, Watchman, and PyEGo. Overall, Decide
achieves 91.7% precision and 64.7% recall, significantly outperform-
ing Watchman and PyEgo. The comparison method detail can be
found in our technical paper [15].

7The 10 benchmark project statistics can be found at https://github.com/LexieZhou/
Decide/blob/main/stats/RQ1/project_statistics.md

5 DISCUSSION

Threats to validity. The DL component recognition algorithm
employed in our research introduces potential identification errors
into our dataset. Additionally, the performance of Decide is de-
pendent on the accuracy and limitations of UnifiedQA. Another
potential threat arises from the relatively small benchmark that we
used to evaluate Decide. Due to the large volume of SO posts, it
was not feasible to manually validate each post for accuracy. In-
stead, we inspected random samples, which may lead to imprecise
estimations.
Limitations. Decide only extracted knowledge from a limited
scope from SO, which may limit its effectiveness to only those
scenarios and incompatibilities discussed on SO without adapt-
ing to new updates. Also, the current version of Decide focuses
only on version issues of 48 Python-based DL components. Future
research endeavors can expand the knowledge graph by incorpo-
rating knowledge from other online documents or apply it to other
tasks by adding more diverse SO posts.

6 CONCLUSION

Deep learning has found applications in diverse domains, but ver-
sion incompatibility issues often lead to build failures in DL projects.
In this paper, we introduced Decide, an interactive web-based visu-
alization of a knowledge graph containing 2,376 version knowledge
extracted from Stack Overflow discussions. Decide empowers users
to confidently reuse or deploy deep learning projects on their local
machines, minimizing the likelihood of version-related failures.

550

https://github.com/LexieZhou/Decide/blob/main/stats/RQ1/project_statistics.md
https://github.com/LexieZhou/Decide/blob/main/stats/RQ1/project_statistics.md

Decide: Knowledge-Based Version Incompatibility Detection in Deep Learning Stacks FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES

[1] 2022. Stack Exchange Data Dump. Accessed on June 09, 2022. https://archive.
org/details/stackexchange

[2] Junxiao Han, Shuiguang Deng, David Lo, Chen Zhi, Jianwei Yin, and Xin Xia.
2020. An empirical study of the dependency networks of deep learning libraries.
In 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 868–878. https://doi.org/10.1109/ICSME46990.2020.00116

[3] Eric Horton and Chris Parnin. 2019. DockerizeMe: automatic inference of en-
vironment dependencies for python code snippets. In Proceedings of the 41st
International Conference on Software Engineering (Montreal, Quebec, Canada)
(ICSE ’19). IEEE Press, 328–338. https://doi.org/10.1109/ICSE.2019.00047

[4] Kaifeng Huang, Bihuan Chen, Susheng Wu, Junmin Cao, Lei Ma, and Xin Peng.
2022. Demystifying dependency bugs in deep learning stack. arXiv preprint
arXiv:2207.10347 (2022). https://doi.org/10.48550/arXiv.2207.10347

[5] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord,
Peter Clark, and Hannaneh Hajishirzi. 2020. UnifiedQA: Crossing Format Bound-
aries With a Single QA System. https://doi.org/10.48550/arXiv.2005.00700
arXiv:2005.00700 [cs.CL]

[6] Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021. Fixing
dependency errors for Python build reproducibility. In Proceedings of the 30th
ACM SIGSOFT international symposium on software testing and analysis. 439–451.
https://doi.org/10.1145/3460319.3464797

[7] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning. PMLR, 8748–8763. https:
//doi.org/10.48550/arXiv.2103.00020

[8] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the

40th international conference on software engineering. 303–314. https://doi.org/
10.1145/3180155.3180220

[9] JiaweiWang, Li Li, and Andreas Zeller. 2021. Restoring execution environments of
jupyter notebooks. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). https://doi.org/10.48550/arXiv.2103.02959

[10] Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang,
Hai Yu, Shing-Chi Cheung, Chang Xu, and Zhiliang Zhu. 2020. Watchman:
Monitoring dependency conflicts for python library ecosystem. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 125–135.
https://doi.org/10.1145/3377811.3380426

[11] Wikipedia contributors. 2023. Stable marriage problem. Accessed on January 10,
2024. https://en.wikipedia.org/wiki/Stable_marriage_problem

[12] Qing Wu, Yungang Liu, Qiang Li, Shaoli Jin, and Fengzhong Li. 2017. The
application of deep learning in computer vision. In 2017 Chinese Automation
Congress (CAC). IEEE, 6522–6527. https://doi.org/10.1109/CAC.2017.8243952

[13] Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu, and Jun Wei. 2022.
Knowledge-based environment dependency inference for Python programs. In
Proceedings of the 44th International Conference on Software Engineering. 1245–
1256. https://doi.org/10.1145/3510003.3510127

[14] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018.
Recent trends in deep learning based natural language processing. ieee Compu-
tational intelligenCe magazine 13, 3 (2018), 55–75. https://doi.org/10.1109/MCI.
2018.2840738

[15] Zhongkai Zhao, Bonan Kou, Mohamed Yilmaz Ibrahim, Muhao Chen, and Tianyi
Zhang. 2023. Knowledge-Based Version Incompatibility Detection for Deep
Learning. arXiv preprint arXiv:2308.13276 (2023). https://doi.org/10.1145/3611643.
3616364

Received 2024-01-29; accepted 2024-04-15

551

https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://doi.org/10.1109/ICSME46990.2020.00116
https://doi.org/10.1109/ICSE.2019.00047
https://doi.org/10.48550/arXiv.2207.10347
https://doi.org/10.48550/arXiv.2005.00700
https://arxiv.org/abs/2005.00700
https://doi.org/10.1145/3460319.3464797
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.48550/arXiv.2103.02959
https://doi.org/10.1145/3377811.3380426
https://en.wikipedia.org/wiki/Stable_marriage_problem
https://doi.org/10.1109/CAC.2017.8243952
https://doi.org/10.1145/3510003.3510127
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1145/3611643.3616364
https://doi.org/10.1145/3611643.3616364

	Abstract
	1 Introduction
	2 Knowledge Graph Construction
	2.1 Data Collection and Filtering
	2.2 DL Stack Component Recognition
	2.3 Compatibility Inference via a Pre-trained QA Model

	3 Knowledge Graph Visualization
	3.1 The Compatibility Visualizer
	3.2 The Information Panel
	3.3 The Search Bar
	3.4 The Statistical Panel

	4 Evaluation
	5 Discussion
	6 Conclusion
	References

