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Abstract

Sexual dimorphism in prevalence, severity and genetic susceptibility exists for most common diseases. However, most genetic and
clinical outcome studies are designed in sex-combined framework considering sex as a covariate. Few sex-specific studies have
analyzed males and females separately, which failed to identify gene-by-sex interaction. Here, we propose a novel unified biologically
interpretable deep learning-based framework (named SPIN) for sexual dimorphism analysis. We demonstrate that SPIN significantly
improved the C-index up to 23.6% in TCGA cancer datasets, and it was further validated using asthma datasets. In addition, SPIN
identifies sex-specific and -shared risk loci that are often missed in previous sex-combined/-separate analysis.We also show that SPIN
is interpretable for explaining how biological pathways contribute to sexual dimorphism and improve risk prediction in an individual
level, which can result in the development of precision medicine tailored to a specific individual’s characteristics.

Keywords: Interpretable deep learning; SPIN; Sexual dimorphism analysis; Cancer; Asthma

INTRODUCTION

The prevalence, course and severity of several complex diseases,

including cancer, asthma, coronavirus and autoimmune disease,

differ by sex [1–4]. For instance, cancer incidence involving col-

orectal, stomach and liver is higher in males than in females;

bladder cancer and leukemia have been predominantly more

common in males than in females [3, 4]. Boys are also twice as

likely to develop asthma as compared with girls [5]. Although

differences in lifestyle and hormones have been put forward as

explanations for the sex bias in these diseases, the role of genetic

factors in sexual dimorphism is historically understudied. Most

genetics and clinical outcome studies have been mainly analyzed
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in sex-combined frameworks in which sex is often considered

as a covariate for secondary data analyses [6–8]. Although sex-

combined analysis frameworks may increase sample size and

power for identifying risk factors with similar effect directions

between the sexes, such practices may reduce the power to detect

the effects of opposite direction between males and females due

to a net canceling effect. Consequently, there are gaps in our

understanding of the biological differences and mechanisms that

underlie sex-associated disease prevalence and treatment.

Few studies have addressed sexual dimorphism using naïve

approaches that analyze genomic data (e.g. genome-wide

association studies, gene expression) of male and female groups

separately [7, 9, 10]. However, these studies performed the sex-

specific analysis onmales and females separately,which assumes

that males and females have independent biological mecha-

nisms. Consequently, it often does not identify the gene-by-sex

interaction (GxSex) that represents relationships among genes

between sexes. GxSex studies are critically needed to elucidate

patient stratification based on their individual genotypes and

expression signatures and to understand implications of sexual

dimorphism.Without conducting GxSex analysis, the current sex-

specific analysis frameworks fail to identify high-risk individuals

or vulnerable groups.

A wide range of potential approaches could help to address

the methodological challenges for sexual dimorphism analysis,

including a unified interpretable deep learning (DL) framework.

A unified DL framework has the following major advantages for

sexual dimorphism analysis. First, it accommodates a learning

process in which male and female samples are simultaneously

learned by a single joint model, where both sex-specific and -

shared biological mechanisms can be identified. Secondly, the

unified learning approach increases the sample size along with

the aggregation of male and female samples, which leads to

improving predictive power with robust interpretable DL models.

Lastly, the unified DL framework captures complex nonlinear

relationships among features. DL models learn multi-level repre-

sentations by composing multiple layers of functions that auto-

matically recognize optimal feature representations to capture

nonlinear relations between biological entities (i.e. genes/path-

ways) and clinical outcomes.

Interpretable DL models can identify significant biological fac-

tors for sexual dimorphism analysis, opposite to conventional

DL models of the black-box nature, which make the predictive

mechanism difficult to interpret. As an intrinsic interpretable

DL approach, a pathway-based DL model embeds relationships

between genes and pathways in a model architecture, which

enhance the DL interpretability and model robustness [11–15].

The interpretability of DL models could be further performed by

two approaches: global and local interpretations. Global inter-

pretation examines what significant factors are involved in a

biological/clinical disease at a population level, whereas local

interpretation analyzes how the significant factors affect predic-

tion at an individual level. To the best of our knowledge, there

has not yet been a unified interpretable DL framework for sexual

dimorphism analysis.

Here,we developed a novel unified biologically interpretable DL

framework, called Sex-specific and Pathway-based Interpretable

Neural Network (SPIN), for sexual dimorphism analysis (Figure 1).

SPIN incorporates a biological knowledge of the relationships

between genes and pathways in its architecture for the capability

of intrinsic biological interpretability and predicts clinical

outcomes, such as stages of a cancer, prognosis prediction

and survival analysis. SPIN not only achieves higher prediction

performance than the existing sex-combined and -specific

analysis models, but also identifies sex-specific and -shared

biomarkers leading to potential findings for prognosis and

treatment in complex diseases. Specifically, the SPIN’s global

interpretation identifies significant sex-specific and -shared

genes/pathways based on the distributions of entire samples.

On the other hand, the local interpretation analyzes processes of

how the model produces predictions on an individual sample

or subgroups of interest, rather than understanding general

mechanisms of the whole population. The SPIN framework

offers the following contributions: (1) it remarkably improves

its predictive performance compared with other benchmark

models, (2) it identifies sex-specific and -shared biological risk

factors nonlinearly associated with the clinical outcomes and (3)

it provides insight into further understanding of biological pro-

cesses for each individual. This study considers two case studies,

focusing on survival analysis (cancer) and risk score prediction

(asthma).

MATERIAL AND METHODS
SPIN design
SPIN is a hierarchically multi-layered network consisting of (1)

the gene layer, (2) the sex-specific pathway layers, (3) the hidden

layers and (4) the output layer. The architecture of SPIN represents

hierarchical biological entities and their interactions. In SPIN, gene

expression profiles (e.g. RNA-Seq) on male and female samples

are fed into the gene layer of the model, followed by sex-specific

pathway layers that represent a set of biological pathway enti-

ties as high-level representations of pathway’s activation. The

two pathway layers represent sex-specific processes of pathways

corresponding to male and female groups, which are capable

of identifying significant sex-specific and -shared risk factors.

The sex-specific pathway layers are sparsely connected to the

hidden layer in which each node encodes biological interactions

between pathways. The sparse connections are shared for both

male- and female-specific pathway layers toward the hidden

layer, constrained by the sparse coding. The output layer predicts

target outcomes associated with biological problems. SPIN is a

general framework for sexual dimorphism analysis due to its

flexible model design applicable to diverse biological problems.

The gene layer

The gene layer introduces gene expression data as the input to

SPIN. Let gene expression data be denoted as G ∈ R
n×q, where n

and q are the numbers of samples and genes, respectively. The

nodes in the gene layer represent values for a set of genes G =

{gi : ∀i ∈ 1, . . . , q}, gi ∼ N (0, 1).

The sex-specific pathway layers

The sex-specific pathway layers represent the activations of

male- and female-specific biological pathways (i.e. pathway

enrichment). The set of genes in the gene layer connects to the

sex-specific pathway layers for pathway-based interpretation and

sexual dimorphism analysis. The connections are constrained to

be sparse by the gene set annotation, such as KEGG. To implement

the sparse connections between the gene and the sex-specific

pathway layers,we generate amaskmatrix that reflects the gene–

pathway relationships. The mask matrix is a binary bi-adjacency

matrix, MG = {mij|1 ≤ i ≤ q, 1 ≤ j ≤ r}, where an element mij

is one if i-th gene belongs to j-th pathway; otherwise it is zero.

r is the number of pathways. To differentiate characteristics of

pathway enrichment onmales and females, SPIN incorporates the

sex-specific weights matrices, WM
G ∈ R

q×r for men and WF
G ∈ R

q×r

for women, while the male-/female-specific pathway layers
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Figure 1.Overview of our proposedmethod, SPIN’s neural network architecture and analyses. (A) The data to train SPIN for sexual dimorphism analysis:
gene expression and pathway database. (B) The graphical representation of our unified interpretable neural network based framework. SPIN has sex-
specific pathway layers: male-specific (in the blue box) and female-specific layers (red box). (C) The visualization of the SPIN’s outcomes. SPIN shows
discrepancy of clinical outcomes between the sexes (male and female symbols) as well as between diseases (in red) and control (in blue) samples. (D)
SPIN identifies statistically significant sex-specific and -shared genes/pathways at a population level. (E) SPIN is interpretable to understand biological
mechanisms of how the pathways have positive/negative effects on a prediction at an individual level.

share the same list of pathways. The sex-specific pathway layers

P ∈ R
n×r are computed as

P =

{

PM = φ(G(WM
G � MG) + bMG ) if male,

PF = φ(G(WF
G � MG) + bFG) otherwise,

(1)

where bMG ,b
F
G ∈ R

n×1 are sex-specific bias vectors, φ(·) is a nonlin-

ear activation function (i.e. ReLU in this study), and � stands for

an element-wise multiplication operator.

The hidden layers

The hidden layers represent the interaction effects of a set of

pathways, shared by sex. The sex-specific pathway layers infer

pathway enrichment that may differ by sex, whereas the hidden

layers capture common hierarchical biological mechanisms of

multiple pathways regardless of sex. The nodes in the hidden lay-

ers, H ∈ R
n×s (s is the number of hidden nodes), are computed by

H =

{

H1 = φ(P(WP � MP) + bP) if l = 1

Hl = φ(Hl−1(Wl−1 � Ml−1) + bl−1) otherwise
, (2)

where H1 is the first hidden layer,Hl is the l-th hidden layer (l ≥ 2),

WP ∈ R
r×s, MP ∈ {0, 1}n×1 and bP ∈ R

n×1 are a weight matrix, a

mask matrix and a bias vector, respectively. The mask matrices

are optimized by sparse coding to infer hierarchical interactions

among pathways, whereas the sparse connections between the

gene layer and the pathway layer are given by pathway databases.

The detail of the sparse coding algorithm is in the supplementary

document (S1. Sparse coding).

The output layer

The output layer produces predictions of target problems. SPIN

can be optimized for various biological problems, as a general

framework of sexual dimorphism analysis. For instance, the out-

put layer consists of a node for regression or binary classification

problems (e.g. survival analysis, binary classification for risk score

prediction), while it includes multiple nodes corresponding to the

class labels with the softmax activation in the output layer (e.g.

cancer stage classification or disease phenotype classification). In

this study,we included a node in the output layer for both survival

analysis and risk score prediction. For the survival analysis, SPIN

generates a Prognostic Index (PI), which is introduced to the Cox

Proportional Hazards regression model (Cox-PH). The outcome of

the survival analysis is obtained without a bias node according to

the Cox-PH model’s design by

Z = WHH, (3)
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where WH ∈ R
s×1 is a weight matrix. For the risk score prediction,

SPIN computes a posterior probability as a risk score as follows:

Z = sigmoid(WHH + bH), (4)

where bH is a bias vector, and the risk score prediction is computed

with a sigmoid activation function σ = 1
1+e−x . The output layer is

fully connected with the last hidden layer.

RESULTS
SPIN improves the predictive performance
compared with existing benchmark models
We assessed SPIN’s predictive performances in comparison with

current sex-combined and -specific analysis benchmark models

for the survival analysis and risk score prediction. In the sur-

vival analysis, we considered several cancers, indicating the top-

four rates of difference in the incidence of men and women,

which include liver, stomach, lung and brain cancers [4]. We used

the Cancer Genome Atlas (TCGA) gene expression datasets (i.e.

RNA-Seq) for those cancers: liver (LIHC), stomach (STAD), lung

(LUAD/LUSC) and brain (GBM and LGG). The detail of datasets

is provided in the supplementary document (S2. Datasets). GBM

and LGG datasets were combined into a dataset as pan-glioma

(GBM/LGG). We split each TCGA dataset into model development

(80%) and testing (20%) datasets with stratified random sam-

pling based on sex. The development dataset was further split

into training (80%) and validation (20%) datasets. Then, the data

normalization on each experiment was performed, and specifi-

cally, validation and testing sets were scaled with the mean and

standard deviation obtained from the training set. Benchmarks

included sex-combined and -specific analysismodels. For the sex-

combined analysis models, we used elastic net (Cox-EN), neural

network (Cox-NN),Cox-PASNet [12] coupledwith Cox Proportional

Hazards regression models (Cox-PH), DeepHisCoM [14] and CNN-

Cox [15]. For the sex-specific analysis model, Cox-EN was trained

separately for male and female groups (sex-specific Cox-EN). The

predictive performance for survival analysis was calculated using

the Concordance index (C-index), a non-parametric statistic that

evaluates concordance between actual survival and the predic-

tion. These experiments were repeated 10 times for the repro-

ducibility of the model performance. The details of the model

training and the hyper-parameter optimization are described in

the supplementary document (S3.Model training and evaluation).

In the experiment, SPIN significantly outperformed all

other benchmarks across the TCGA datasets (Figure 2A and

Supplementary Table 1). SPIN yielded the C-index of 0.76 ± 0.03

in LIHC, 0.73 ± 0.03 in STAD, 0.80 ± 0.03 in LUAD, 0.69 ± 0.04 in

LUSC and 0.92 ± 0.01 in GBM/LGG. These results demonstrate

that SPIN achieved a remarkable improvement of C-index by an

average of 9.7% for LIHC, 6.1% for STAD, 23.6% for LUAD, 19.6% for

LUSC and 7.5% for GBM/LGG, compared with the performances of

the second best benchmark model. The outperformance of SPIN

to the second best benchmark was statistically validated by the

Wilcoxon rank-sum test of C-index scores (p < 5 × 10−2) with all

cancer datasets other than LIHC. We observed that Cox-EN, as

either a sex-combined or -specific analysis model, produced the

lowest C-index scores in all of the cancer datasets. The result

implies that gene expression profiles of the cancer data are

nonlinearly intertwined such that nonlinear-based models could

be suitable for survival analysis.

Furthermore, we verified the robustness and reproducibility

of SPIN using an additional external dataset. We considered a

publicly available external dataset for cancer survival analy-

sis, including RNA-seq and clinical information of sex, survival

time and survival status in the Singapore Oncology Data Portal

(OncoSG) [16]. The OncoSG dataset includes 169 RNA-seq data of

east Asian patients with lung adenocarcinoma. We applied SPIN

and the other benchmark models, which were trained with the

TCGA LUADdataset, to the OncoSG dataset. The performancewas

shown as similar with the results in the experiments with TCGA

LUAD. The C-index of SPIN (0.80 ± 0.01) was still significantly the

highest compared with the benchmark, DeepHisCoM (0.62±0.02),

Cox-PASNet (0.54 ± 0.03), Cox-NN (0.54 ± 0.05), Cox-EN (0.54 ±

0.03), Sex-specific Cox-EN (0.53± 0.05) and CNN-Cox (0.48± 0.07)

(Supplementary Table 2).

For risk prediction, we evaluated our SPIN framework using

asthma datasets. Two publicly available asthma datasets

were downloaded from the Gene Expression Omnibus (GEO)

database (Accession ID: GSE8052 and GSE172367). Similarly, we

stratified the asthma datasets based on sex and disease status

(control/asthma) and normalized the datasets. For benchmarks,

we used sex-combined analysis methods, including logistic

regression (Logic), support vector machine (SVM), neural network

(NN) and a pathway-associated sparse neural network (PASNet)

[11]. For the sex-specific analysis, logistic regression (sex-specific

Logic) and random forest (sex-specific RF) models were applied

to separately train for males and females. The area under

the receiver operating characteristic (ROC) curve (AUC) and

disease ratios were computed to evaluate the performance

for risk score prediction. We repeated these experiments

10 times.

In the experimental results with asthma datasets, SPIN

produced the AUC of 0.62 ± 0.05 for GSE8052 and 0.95 ± 0.05

for GSE172367 (Figure 2B and Supplementary Table 3), which

is competitive performance with SVM with the linear kernel.

The competitive performance of GSE172367 is mainly due to the

small data size (N=190), and the SPIN’s predictive performance

will be empowered with larger training samples. Moreover, the

distinct predictive performances between GSE8052 (AUC=0.62)

and GSE172367 (AUC=0.95) were shown, since GSE172367 is from

primary or target tissue (airway epithelium cells) for asthma.

The target tissue/cell types have a well-known role in asthma

pathogenesis and remodeling [17], whereas GSE8052 is from

surrogate tissues (peripheral blood lymphocytes), which may not

truly reflect the disease pathogenesis.

Furthermore, we assessed the stratification of risk scores by

disease ratios with patient groups of similar severity. To stratify

the patients, the test dataset was sorted by the predicted risk

scores and divided into five groups. Each group estimated the

disease ratio of the actual asthma cases to the total group popula-

tions. The disease ratios of each model are depicted in Figure 2B,

where the first (or last) group reflects the highest (or lowest) risk

group. Then, we computed the mean squared prediction error

(MSPE) between the ideal and predicted disease ratios on the

five groups. The ideal disease ratios were calculated by counting

the total number of actual asthma cases to the five groups

(e.g. number of actual asthma/number of a group populations)

in consecutive order. The ideal disease ratios of GSE8052 are

1.0 (17/17), 1.0 (16/16), 1.0 (16/16), 0.31 (5/16) and 0.0 (0/16) in

each group. SPIN obtained the lowest MSPE of 0.15 and 0.01 in

GSE8052 and GSE172367, respectively, which reduced the error by

18.8% and 23.7% compared with the second lowest. Through this

assessment of the disease ratio, SPIN showed its enhanced power
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Figure 2. Performance evaluation for SPIN and other benchmark models with the TCGA and asthma datasets. (A) C-index comparison between SPIN
and other benchmark models for the survival analysis. SPIN (red) outperforms other benchmarks across cancer datasets. (B) The graphical illustration
of the performance comparisons with GSE8052 and GSE172367. For each dataset, we visualized the plots of the AUC (left) and disease ratio (right). In
the disease ratio plot, the first group represents the highest risk group, whereas the fifth group represents the lowest risk group.

to linearly stratify patients, as a risk score tool, compared with

other benchmark models.

SPIN identifies statistically significant
sex-specific and -shared genes and pathways
Our global interpretation analysis reveals significant sex-specific

and -shared biomarkers (genes/pathways) nonlinearly associated

with clinical outcomes at a population level. Sex-specific impor-

tance scores of each gene/pathway are computed to approxi-

mate their relative importance on the predictive mechanisms.

We determine statistically significant sex-shared factors if the

results of statistical tests are significant in both sexes, and sex-

specific factors if the statistical significance is indicated with only

one between the sex groups (P < 10−5 after FDR correction). The

detailed algorithm is provided in S4; global interpretation analysis

in the supplementary document. For the sake of simplicity, our

global interpretation analysis was conducted with the TCGA data

(GBM/LGG) for survival analysis and the asthma data (GSE172367)

for risk score prediction using the optimal model that yielded the

best predictive performance in Results.

In GBM/LGG, we identified 2923 sex-shared, 502 male-

specific and 704 female-specific genes as significant factors

(Supplementary Figure 1). Among them, we explored the 10 top-

ranked genes from each group (i.e. sex-shared, male-specific

and female-specific groups), based on their highest importance

scores. The top-ranked genes are illustrated and listed with

their chromosome numbers, importance scores, P-values and

related literature (Figure 3A (left) and Supplementary Table 4).

For instance, MAPK8 and AKT3 appeared as sex-shared genes;

MAP3K1 and IFNG were shown as significant only in males,

whereas NRAS, PLCG1 and TSC2 were significant only in females.

The highly ranked genes are mostly reported as well-known

biomarkers of pan-glioma in the biological literature. For instance,

MAPK8 [18] and AKT3 [19] appeared as sex-shared genes;MAP3K1

[20] and IFNG [21] were shown as significant only in males,

whereas NRAS [22], PLCG1 [23] and TSC2 [24] were significant only

in females.We also identified significant sex-specific and -shared

biological pathways in GBM/LGG. We discovered 146 pathways

enriched in both males and females, 11 significant pathways

enriched in males and 15 pathways enriched in females. The top-

10 pathways, ranked by their importance scores on each group,

are shown in Figure 3A (right), such asMAPK signaling pathway [25]

and p53 signaling pathway [26] as the sex-shared pathways; Notch

signaling pathway [27] as amale-enriched pathway; and Spliceosome

[28] as a pathway enriched in females (Supplementary Table 5).

In the asthma data, SPIN identified 1504 sex-shared, 423

male-specific and 282 female-specific genes (Supplementary

Figure 2). Figure 3B (left) visualizes the 10 top-ranked genes

of sex-shared, male-specific and female-specific groups. Sex-

shared genes include PIK3R1 [29], HLA-G [30, 31] and IKBKB

[32]. Male-specific genes include TGFB1 [33, 34], MAPK1 [35]

and IL1B [36, 37]; on the other hand, female-specific genes

include ALDH3A1 [38] and ITGB4 [39] (Supplementary Table

6). For the pathway analysis with the asthma data, we iden-

tified 132 sex-shared, 5 male-enriched and 6 female-enriched

pathways. Top-ranked sex-shared and -specific pathways are

listed with the related literature, including JAK-STAT signaling

pathway [40, 41] and Arginine and proline metabolism pathway

[42] as the sex-shared pathways; Apoptosis [43] as a pathway

enriched in males; and Ubiquitin mediated proteolysis [44, 45] as
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Figure 3. The barplot visualizations of the top-ranked genes (left) and biological pathways (right) (A) The most significant sex-specific and -shared
biological risk factors from male (blue bars on upper side) and female (red bars on lower side) groups with GBM/LGG. (B) with GSE172367. In both (A)
and (B), the bars shown in only one of the sex groups represent the sex-specific factors, whereas those shown in both male and female groups represent
the sex-shared factors.

a female-enriched pathway (Figure 3B [right] and Supplementary

Table 7).

Interestingly, conventional linear-based Cox-PH and statistical

logistic regression models identified no genes (P < 10−2 after FDR

correction over all genes) as statistically significant for the gene-

sex interaction (Material and Methods, Supplementary Table 4

and 6). This result implies that SPIN can identify biologically

significant sex-specific and -shared genes that could be missed

in conventional methods.

SPIN provides an insight into the understanding
of individual level biological process
Our local interpretation analysis explains pathway-based predic-

tive processes at an individual level compared with the global

interpretation analysis that identifies general biomarkers of the

whole population (S5. Local interpretation analysis). Through the

local interpretation, we (1) unveil individual processes of the

biological pathways that have positive/negative impacts on a

prediction, (2) identify discriminative mechanisms on subgroups

of interest by extending the sample-based local interpretation, (3)

analyze the predictive process of individual mechanisms on sam-

ples of interest for reliable prediction and (4) explore sexual dimor-

phism in the predictive mechanisms of individuals. The pathway-

based local interpretation analysis identifies biological functions

involved in a target biological system in a robust manner rather

than gene-based interpretation. In this study, for simplicity, we

focused on an asthma dataset (GSE172367) that produced the

highest predictive performances, as the importance of the local

features is explained with respect to the model prediction.

First, we examined the pathway-based predictive processes of

the asthma patients individually. The pathway effects on each

individual prediction were estimated using the shapley additive

explanations (SHAP) [46]. The SHAP explanation model assigns

SHAP values to reflect the magnitudes and directions of the

pathway effects on the prediction produced by SPIN. Then, the

SHAP values and the relationshipswith the pathways’ enrichment

were analyzed for the local interpretation. For instance, the local

interpretations for two female patients with asthma are shown

in Figure 4A. In the SHAP waterfall plots of Figure 4A, the top-

ranked 15 pathways of the patients, as well as the aggregate of

SHAP values for 158 other pathways, are listed in descending order

of the absolute SHAP values. The SHAP waterfall plots illustrate

how an individual risk score is computed from the inferred path-

way values in a linear manner. The sum of the SHAP values of

the pathways from a base value is equivalent to the risk score

prediction: f (x) = E[f (x)] +
∑

i

φi, where f (x) is the risk score of

given gene expression data (x), E[f (x)] is an expected value of the

predictions for the other samples (i.e. the base value) and φi is

the SHAP value for the i-th pathway. For the first patient on the

left side in Figure 4A, the directions of the pathway effects on

the risk score prediction (f (x) = 0.86) were all positive, indicating

that the pathways of the patient are likely to increase the risk

of asthma. Specifically, the local analysis shows that the enrich-

ment of Huntington’s disease increases asthma risk by +0.0145

on the patient. On the other hand, the depletion of Chemokine

signaling pathway increases the risk of asthma by +0.0064, which

may imply that the enrichment of Chemokine signaling pathway

is essential to control the asthma risk. Another female patient

with asthma (Figure 4A [right]) shows that the enrichment of

Chemokine signaling pathway, in contrast, results in a negative SHAP

value (φi = −0.0083), which decreases the asthma risk. This

finding is aligned with the literature in which the dysfunction in
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Interpretable deep learning for sexual dimorphism analysis | 7

Figure 4. (A) SHAP waterfall plots of two individuals in asthma females. In the SHAP waterfall plots, the top-ranked 15 pathways of the patients, as
well as the aggregate of SHAP values for 158 other pathways, are listed in descending order of the absolute SHAP values. For each local explanation,
the base value at the bottom represents the expected value of the model output over the training dataset, and all SHAP values are summed up to the
prediction. The relative enrichment of the pathways depicts the upward (enrichment) and downward (depletion) arrows. (B) SHAP summary plots of the
top-ranked significant pathways from sex-shared, male-specific, and female-specific groups. An individual sample was represented by each dot on the
visualization colored by its relative enrichment of the biological pathways. The data points were horizontally distributed based on their SHAP values.

Chemokine signaling pathway is correlated with the asthma severity

[47]. Another negative SHAP value of Renal cell carcinoma alongwith

Chemokine signaling pathway in the second patient also reduces the

asthma risk score (f (x) = 0.69).

Secondly, we extended the individual local interpretation anal-

ysis to subgroups of interest to explore their broad distinctions

of the pathway effects. We categorized the individuals into four

groups: Control male, Control female, Asthma male and Asthma

female. To determine what/how pathways cause differences

between the subgroups, we analyzed the SHAP summary plots of

the four subgroups,mainly considering the top-ranked sex-shared

and -specific pathways identified in our global interpretation

analysis (Figure 4B). The summary plots visualize the distribution

on the individuals’ SHAP values in the four subgroups with

their pathway values. The individual pathway values are colored

in ranging between red (enriched) and blue (depleted). For

instance, the SHAP values of Insulin signaling pathway (a sex-

shared pathway) appeared negative in most males and females

of the control group, whereas the asthma group showed positive

values.The control group relatively exhibited high pathway values

(enriched), but low pathway values in the asthma group, which

implies that the enrichment of Insulin signaling pathway reduces

the susceptibility to asthma, aligned with the literature [48].

By contrast, it is shown that the enrichment of another sex-

shared pathway, Hypertrophic cardiomyopathy (HCM), causes the

development of asthma, but the depletion of the pathway has

negative impacts on the risk score prediction. Furthermore, the

male-enriched pathway,Apoptosis, is enriched inmales more than

females, which may increase asthma risk.

Thirdly, we further investigated the predictive process of indi-

vidual samples of interest to provide the reliability for the SPIN’s

predictions. We focused on three individuals whose clinical out-

comes are opposite to the adjacent samples, which are pre-

sumably outliers (Figure 5A). The subject ID of 551b_49fb_1A

(Number 1 in the circle on the top-right corner of Figure 5A) is

a female patient of the asthma group mostly neighboring the
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Figure 5. (A) The t-SNE plot of SPIN’s sex-specific pathway layers colored by asthma status (control/asthma). Each sample is with a male or female
symbol. (B) The SHAP waterfall plot and summary plot for the numbered samples (1, 2, 3 and 4) in the circle of the top-right corner in Figure 5A. (C) The
SHAP water plot of two control females. In the SHAP waterfall plots, the upward (enrichment) and downward (depletion) arrows represent the relative
enrichment of the pathways.

control females (Numbers 2, 3 and 4). Most pathways in the SHAP

local explanation of 551b_49fb_1A, including B cell receptor signal-

ing pathway (φi = +0.0166), Wnt signaling pathway (φi = +0.0117),

Type I diabetes mellitus (φi = +0.0109), Calcium signaling pathway

(φi = +0.0102) and Autoimmune thyroid disease (φi = +0.0102),

are associated with the susceptibility of asthma, which results

in SPIN’s high risk score prediction (f (x) = 0.94) (the top of

Figure 5B, the SHAP waterfall plot). Specifically, the enrichment

of B cell receptor signaling pathway, Type I diabetes mellitus and

Autoimmune thyroid disease in 551b_49fb_1A are associated with

the risk of asthma. The depletion of Wnt signaling pathway and

Calcium signaling pathway in the 551b_49fb_1A shows the high

impact on the risk score. Our analysis shows that the effects of

the pathways in 551b_49fb_1A (Number 1 and star symbol) reflect

higher impacts on the risk score than the other control individuals

(the bottom of Figure 5B, the SHAP summary plot), although the

samples neighbor each other in the t-SNE plot, whereas the other

three control females show negative effects on most pathways,

which leads to the low risk score predictions (f (x) = 0.20, 0.32 and

0.27). B cell receptor signaling pathway demonstrated depletion

in the two control females (Number 2 with circle symbol and

Number 3 with triangle symbol), indicating a negative impact on

their risk scores.Calcium signaling pathway in three control females

mitigates the asthma risk, and the depletion ofAutoimmune thyroid

disease in the other three control individuals leads to the lower

impacts on the risk scores than in 551b_49fb_1A.

Similarly, we explored two females of the control group,

fa59_4849_2A and fa59_4849_1A, adjacent to the female patients

of the asthma group. In the SHAP local explanation of fa59_

4849_2A, most pathways, including Axon guidance (φi = −0.0074),

Alzheimer’s disease (φi = −0.0072), Cell adhesion molecules (CAMs)

(φi = −0.0067) and Chronic myeloid leukemia (φi = −0.0063),

alleviate the risk of asthma, contributing to the low risk score

(f (x) = 0.31) (the left SHAP waterfall plot of Figure 5C). However,

most pathways of fa59_4849_1A show susceptibility to asthma

(e.g. Oocyte meiosis (φi = +0.0095), Cytokine–cytokine receptor

interaction (φi = +0.0086), Insulin signaling pathway (φi = +0.0079)

and Selenoamino acid metabolism (φi = +0.0065)), which cause the

risk score to be on the borderline (f (x) = 0.58) (the right SHAP

waterfall plot of Figure 5C). It may imply that the subject of

fa59_4849_1A has a high chance to develop asthma, although

she is currently in asthma control.
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Figure 6. (A) The overview of the comparison of the pathway-based predictivemechanisms betweenmales and females.We denote the SHAP explanation
model and its estimated SHAP value as fM(.) and φfM for males and fF(.) and φfF for females, respectively. (B-D) SHAP cohort bar plots of the previous
female samples depicted in Figure 5. For the pathways in each plot, their effects of an original (female) and the opposite (male) mechanisms represent
the solid (upper) and hatched (lower) colors, respectively.

Lastly, we analyzed how sexual dimorphism affects an

individual’s predictive mechanism. In particular, we compared

the effects of sex-specific pathways contributing to the risk

score predictions, as SPIN generates the sex-specific pathway

representations of a given gene expression profile depending

on the sex. We denote the SHAP explanation model and its

estimated SHAP value as fM(.) and φfM for males and fF(.) and φfF

for females, respectively. Figure 6A illustrates an example of the

SPIN’s interpretation processes depending on sex. In the example,

the sex-specific pathway effects result in the different risk score

predictions (fM(x) = 0.1, fF(x) = 0.9). In particular, the Calcium

signaling pathway of 551b_49fb_1A (asthma female) produces a

high-positive effect (φfF = +0.0102) to increase risk scores on the

female-specific process, but it shows a high-negative effect (φfM =

−0.0157) if the individual is male with the same gene expression

profile (Figure 6B). The effect of the B cell receptor signaling pathway,

a significant female-enriched pathway in the previous summary

plot of Figure 4B, presents a relatively high impact in females but

a low impact in males. Furthermore, CAMs in both control female

samples (fa59_4849_1A and fa59_4849_2A) have negative impacts

on their risk scores (fa59_4849_1A: φfF = −0.0063, fa59_4849_2A:

φfF = −0.0067), whereas the pathway effect on the male-specific

process shows a positive impact on the prediction (fa59_4849_1A:

φfM = +0.0121, fa59_4849_2A: φfM = +0.0094) (Figure 6C, D). Not

only do Calcium signaling pathway and CAMs have an opposite

direction between the male and female mechanisms, but other

pathways (e.g. Type I diabetes mellitus, Autoimmune thyroid disease,

Axon guidance, Alzheimer’s disease, Chronic myeloid leukemia) also

demonstrate such sex disparities. These findings indicate that the

biological mechanisms between males and females are distinct,

suggesting the net canceling effects that particularly have the

opposite directions between sexes occurs in the sex-combined

analysis frameworks.

DISCUSSION

In this study, we introduced SPIN, a novel unified biologically

interpretable DL framework for sexual dimorphism analysis. SPIN

predicts sexual dimorphic outcomes of the disease with the gene

expression profiles of males and females simultaneously and

offers advanced interpretability with statistical significance tests

by incorporating prior biological knowledge. As a result, SPIN out-

performed other sex-combined or sex-specific benchmarkmodels

across several publicly available cancer datasets. Moreover, SPIN

captures complex and nonlinear hierarchical feature representa-

tionswhich are oftenmissed by existing approaches. By leveraging

the complex relationships in SPIN with sexual dimorphic data,

we not only identify statistically significant sex-specific and -

shared risk factors (i.e. genes/pathways) at a population level,

but also analyze how the biological pathways lead to predictions

at an individual level. To the best of our knowledge, SPIN is

the first unified DL framework for sexual dimorphism analysis

to discover potential sex-specific/-shared biomarkers in complex

human diseases.

SPIN is biologically interpretable, inherently relying on path-

way databases for the architecture design. The sparse connec-

tions between genes and pathway layers in SPIN are constrained

by biological pathways, which consequently make the model

dependent on the quality of the annotations. Incorporating mul-

tiple pathway databases (e.g. Reactome) or ontologies (e.g. GO)

will provide robust analyses without bias to a specific database.

Moreover, SPIN’s pathway-based architecture design allows only
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genes belonging to the pathways in the model, which excludes

a number of genes that have not been annotated for pathways.

However, rapid advancement and development of larger pathway

databases will include more genes in SPIN for the pathway-based

analysis.

SPIN could provide potential novel sex-specific biomarkers for

prognosis and genetic susceptibility in complex human diseases.

We validated several statistically significant sex-shared genes/

pathways. For example, MAPK8 [18], AKT3 [19], MAPK signaling

pathway [25] and p53 signaling pathway [26] are known biomarkers

in brain tumors, while PIK3R1 [29], HLA-G [31], IKBKB [32], JAK-

STAT signaling pathway [40] and Arginine and proline metabolism

pathway [42] are known for asthma. Although we identified sex-

specific genes/pathways, we acknowledge that there is limited

sexual dimorphism related literature, so we cannot validate all

our findings.

Altogether, we showed that DL approaches applied to sexual

dimorphism complex disease are highly accurate at predicting

sex-specific and shared risk loci and pathways, providing proof

of concept that this approach may lead to a mechanistic under-

standing of a sex differences precision medicine approach.

Key Points

• SPIN is a general unified framework that analyzes

sexual dimorphism using omics data with multiple

applications.

• SPIN improves predictive power compared with existing

sex-combined/-specific analysis models.

• SPIN identifies sex-specific and -shared genes and path-

ways nonlinearly associated with clinical outcomes.

• SPIN characterizes biological processes on each indi-

vidual sample, leading to the development of precision

medicine tailored to a specific individual’s characteris-

tics.
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