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Abstract

Sexual dimorphism in prevalence, severity and genetic susceptibility exists for most common diseases. However, most genetic and
clinical outcome studies are designed in sex-combined framework considering sex as a covariate. Few sex-specific studies have
analyzed males and females separately, which failed to identify gene-by-sex interaction. Here, we propose a novel unified biologically
interpretable deep learning-based framework (named SPIN) for sexual dimorphism analysis. We demonstrate that SPIN significantly
improved the C-index up to 23.6% in TCGA cancer datasets, and it was further validated using asthma datasets. In addition, SPIN
identifies sex-specific and -shared risk loci that are often missed in previous sex-combined/-separate analysis. We also show that SPIN
is interpretable for explaining how biological pathways contribute to sexual dimorphism and improve risk prediction in an individual
level, which can result in the development of precision medicine tailored to a specific individual’s characteristics.
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INTRODUCTION

common in males than in females [3, 4]. Boys are also twice as

The prevalence, course and severity of several complex diseases,
including cancer, asthma, coronavirus and autoimmune disease,
differ by sex [1-4]. For instance, cancer incidence involving col-
orectal, stomach and liver is higher in males than in females;
bladder cancer and leukemia have been predominantly more

likely to develop asthma as compared with girls [5]. Although
differences in lifestyle and hormones have been put forward as
explanations for the sex bias in these diseases, the role of genetic
factors in sexual dimorphism is historically understudied. Most
genetics and clinical outcome studies have been mainly analyzed
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in sex-combined frameworks in which sex is often considered
as a covariate for secondary data analyses [6-8]. Although sex-
combined analysis frameworks may increase sample size and
power for identifying risk factors with similar effect directions
between the sexes, such practices may reduce the power to detect
the effects of opposite direction between males and females due
to a net canceling effect. Consequently, there are gaps in our
understanding of the biological differences and mechanisms that
underlie sex-associated disease prevalence and treatment.

Few studies have addressed sexual dimorphism using naive
approaches that analyze genomic data (e.g. genome-wide
association studies, gene expression) of male and female groups
separately [7, 9, 10]. However, these studies performed the sex-
specific analysis on males and females separately, which assumes
that males and females have independent biological mecha-
nisms. Consequently, it often does not identify the gene-by-sex
interaction (GxSex) that represents relationships among genes
between sexes. GxSex studies are critically needed to elucidate
patient stratification based on their individual genotypes and
expression signatures and to understand implications of sexual
dimorphism. Without conducting GxSex analysis, the current sex-
specific analysis frameworks fail to identify high-risk individuals
or vulnerable groups.

A wide range of potential approaches could help to address
the methodological challenges for sexual dimorphism analysis,
including a unified interpretable deep learning (DL) framework.
A unified DL framework has the following major advantages for
sexual dimorphism analysis. First, it accommodates a learning
process in which male and female samples are simultaneously
learned by a single joint model, where both sex-specific and -
shared biological mechanisms can be identified. Secondly, the
unified learning approach increases the sample size along with
the aggregation of male and female samples, which leads to
improving predictive power with robust interpretable DL models.
Lastly, the unified DL framework captures complex nonlinear
relationships among features. DL models learn multi-level repre-
sentations by composing multiple layers of functions that auto-
matically recognize optimal feature representations to capture
nonlinear relations between biological entities (i.e. genes/path-
ways) and clinical outcomes.

Interpretable DL models can identify significant biological fac-
tors for sexual dimorphism analysis, opposite to conventional
DL models of the black-box nature, which make the predictive
mechanism difficult to interpret. As an intrinsic interpretable
DL approach, a pathway-based DL model embeds relationships
between genes and pathways in a model architecture, which
enhance the DL interpretability and model robustness [11-15].
The interpretability of DL models could be further performed by
two approaches: global and local interpretations. Global inter-
pretation examines what significant factors are involved in a
biological/clinical disease at a population level, whereas local
interpretation analyzes how the significant factors affect predic-
tion at an individual level. To the best of our knowledge, there
has not yet been a unified interpretable DL framework for sexual
dimorphism analysis.

Here, we developed a novel unified biologically interpretable DL
framework, called Sex-specific and Pathway-based Interpretable
Neural Network (SPIN), for sexual dimorphism analysis (Figure 1).
SPIN incorporates a biological knowledge of the relationships
between genes and pathways in its architecture for the capability
of intrinsic biological interpretability and predicts clinical
outcomes, such as stages of a cancer, prognosis prediction
and survival analysis. SPIN not only achieves higher prediction
performance than the existing sex-combined and -specific

analysis models, but also identifies sex-specific and -shared
biomarkers leading to potential findings for prognosis and
treatment in complex diseases. Specifically, the SPIN’s global
interpretation identifies significant sex-specific and -shared
genes/pathways based on the distributions of entire samples.
On the other hand, the local interpretation analyzes processes of
how the model produces predictions on an individual sample
or subgroups of interest, rather than understanding general
mechanisms of the whole population. The SPIN framework
offers the following contributions: (1) it remarkably improves
its predictive performance compared with other benchmark
models, (2) it identifies sex-specific and -shared biological risk
factors nonlinearly associated with the clinical outcomes and (3)
it provides insight into further understanding of biological pro-
cesses for each individual. This study considers two case studies,
focusing on survival analysis (cancer) and risk score prediction
(asthma).

MATERIAL AND METHODS
SPIN design

SPIN is a hierarchically multi-layered network consisting of (1)
the gene layer, (2) the sex-specific pathway layers, (3) the hidden
layers and (4) the output layer. The architecture of SPIN represents
hierarchical biological entities and their interactions. In SPIN, gene
expression profiles (e.g. RNA-Seq) on male and female samples
are fed into the gene layer of the model, followed by sex-specific
pathway layers that represent a set of biological pathway enti-
ties as high-level representations of pathway’s activation. The
two pathway layers represent sex-specific processes of pathways
corresponding to male and female groups, which are capable
of identifying significant sex-specific and -shared risk factors.
The sex-specific pathway layers are sparsely connected to the
hidden layer in which each node encodes biological interactions
between pathways. The sparse connections are shared for both
male- and female-specific pathway layers toward the hidden
layer, constrained by the sparse coding. The output layer predicts
target outcomes associated with biological problems. SPIN is a
general framework for sexual dimorphism analysis due to its
flexible model design applicable to diverse biological problems.

The gene layer

The gene layer introduces gene expression data as the input to
SPIN. Let gene expression data be denoted as G € R"™*4, where n
and q are the numbers of samples and genes, respectively. The
nodes in the gene layer represent values for a set of genes G =
{g;:Viel,...,q} g~ N(©O1).

The sex-specific pathway layers

The sex-specific pathway layers represent the activations of
male- and female-specific biological pathways (i.e. pathway
enrichment). The set of genes in the gene layer connects to the
sex-specific pathway layers for pathway-based interpretation and
sexual dimorphism analysis. The connections are constrained to
be sparse by the gene set annotation, such as KEGG. To implement
the sparse connections between the gene and the sex-specific
pathway layers, we generate a mask matrix that reflects the gene-
pathway relationships. The mask matrix is a binary bi-adjacency
matrix, Mg = {my|1 < 1 <q,1<j <r}, where an element mj
is one if i-th gene belongs to j-th pathway; otherwise it is zero.
r is the number of pathways. To differentiate characteristics of
pathway enrichment on males and females, SPIN incorporates the
sex-specific weights matrices, WY e R?" for men and Wf, e R%*"
for women, while the male-/female-specific pathway layers
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Figure 1. Overview of our proposed method, SPIN’s neural network architecture and analyses. (A) The data to train SPIN for sexual dimorphism analysis:
gene expression and pathway database. (B) The graphical representation of our unified interpretable neural network based framework. SPIN has sex-
specific pathway layers: male-specific (in the blue box) and female-specific layers (red box). (C) The visualization of the SPIN’s outcomes. SPIN shows
discrepancy of clinical outcomes between the sexes (male and female symbols) as well as between diseases (in red) and control (in blue) samples. (D)
SPIN identifies statistically significant sex-specific and -shared genes/pathways at a population level. (E) SPIN is interpretable to understand biological
mechanisms of how the pathways have positive/negative effects on a prediction at an individual level.

share the same list of pathways. The sex-specific pathway layers
P € R™ are computed as

if male,
otherwise,

_ [PM = $(GWY © M) +bY) Q

PF = ¢ (G(WE, © Mg) + bf)

where b’g, bg e R™! are sex-specific bias vectors, ¢(-) is a nonlin-
ear activation function (i.e. ReLU in this study), and ® stands for
an element-wise multiplication operator.

The hidden layers

The hidden layers represent the interaction effects of a set of
pathways, shared by sex. The sex-specific pathway layers infer
pathway enrichment that may differ by sex, whereas the hidden
layers capture common hierarchical biological mechanisms of
multiple pathways regardless of sex. The nodes in the hidden lay-
ers, H € R" (s is the number of hidden nodes), are computed by

g |Hi=9¢@WrOMp)+ bp) ifl=1
= . 2)
H = ¢H_1(Wi_1 O©M_1) +b_1) otherwise

where H; is the first hidden layer, H; is the I-th hidden layer (I > 2),
Wr € RS, Mp € {0,1)™! and bp € R™! are a weight matrix, a

mask matrix and a bias vector, respectively. The mask matrices
are optimized by sparse coding to infer hierarchical interactions
among pathways, whereas the sparse connections between the
gene layer and the pathway layer are given by pathway databases.
The detail of the sparse coding algorithm is in the supplementary
document (S1. Sparse coding).

The output layer

The output layer produces predictions of target problems. SPIN
can be optimized for various biological problems, as a general
framework of sexual dimorphism analysis. For instance, the out-
put layer consists of a node for regression or binary classification
problems (e.g. survival analysis, binary classification for risk score
prediction), while it includes multiple nodes corresponding to the
class labels with the softmax activation in the output layer (e.g.
cancer stage classification or disease phenotype classification). In
this study, we included a node in the output layer for both survival
analysis and risk score prediction. For the survival analysis, SPIN
generates a Prognostic Index (PI), which is introduced to the Cox
Proportional Hazards regression model (Cox-PH). The outcome of
the survival analysis is obtained without a bias node according to
the Cox-PH model’s design by

Z =WgH, (3)
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where Wy € RS is a weight matrix. For the risk score prediction,
SPIN computes a posterior probability as a risk score as follows:

Z = sigmoid(WyH + by), 4)

where by is a bias vector, and the risk score prediction is computed
with a sigmoid activation function o = 1= The output layer is
fully connected with the last hidden layer.

RESULTS

SPIN improves the predictive performance
compared with existing benchmark models

We assessed SPIN’s predictive performances in comparison with
current sex-combined and -specific analysis benchmark models
for the survival analysis and risk score prediction. In the sur-
vival analysis, we considered several cancers, indicating the top-
four rates of difference in the incidence of men and women,
which include liver, stomach, lung and brain cancers [4]. We used
the Cancer Genome Atlas (TCGA) gene expression datasets (i.e.
RNA-Seq) for those cancers: liver (LIHC), stomach (STAD), lung
(LUAD/LUSC) and brain (GBM and LGG). The detail of datasets
is provided in the supplementary document (S2. Datasets). GBM
and LGG datasets were combined into a dataset as pan-glioma
(GBM/LGG). We split each TCGA dataset into model development
(80%) and testing (20%) datasets with stratified random sam-
pling based on sex. The development dataset was further split
into training (80%) and validation (20%) datasets. Then, the data
normalization on each experiment was performed, and specifi-
cally, validation and testing sets were scaled with the mean and
standard deviation obtained from the training set. Benchmarks
included sex-combined and -specific analysis models. For the sex-
combined analysis models, we used elastic net (Cox-EN), neural
network (Cox-NN), Cox-PASNet [12] coupled with Cox Proportional
Hazards regression models (Cox-PH), DeepHisCoM [14] and CNN-
Cox [15]. For the sex-specific analysis model, Cox-EN was trained
separately for male and female groups (sex-specific Cox-EN). The
predictive performance for survival analysis was calculated using
the Concordance index (C-index), a non-parametric statistic that
evaluates concordance between actual survival and the predic-
tion. These experiments were repeated 10 times for the repro-
ducibility of the model performance. The details of the model
training and the hyper-parameter optimization are described in
the supplementary document (S3. Model training and evaluation).

In the experiment, SPIN significantly outperformed all
other benchmarks across the TCGA datasets (Figure 2A and
Supplementary Table 1). SPIN yielded the C-index of 0.76 &+ 0.03
in LIHC, 0.73 £ 0.03 in STAD, 0.80 £ 0.03 in LUAD, 0.69 + 0.04 in
LUSC and 0.92 + 0.01 in GBM/LGG. These results demonstrate
that SPIN achieved a remarkable improvement of C-index by an
average of 9.7% for LIHC, 6.1% for STAD, 23.6% for LUAD, 19.6% for
LUSC and 7.5% for GBM/LGG, compared with the performances of
the second best benchmark model. The outperformance of SPIN
to the second best benchmark was statistically validated by the
Wilcoxon rank-sum test of C-index scores (p < 5 x 1072) with all
cancer datasets other than LIHC. We observed that Cox-EN, as
either a sex-combined or -specific analysis model, produced the
lowest C-index scores in all of the cancer datasets. The result
implies that gene expression profiles of the cancer data are
nonlinearly intertwined such that nonlinear-based models could
be suitable for survival analysis.

Furthermore, we verified the robustness and reproducibility
of SPIN using an additional external dataset. We considered a
publicly available external dataset for cancer survival analy-
sis, including RNA-seq and clinical information of sex, survival
time and survival status in the Singapore Oncology Data Portal
(OncoSG) [16]. The OncoSG dataset includes 169 RNA-seq data of
east Asian patients with lung adenocarcinoma. We applied SPIN
and the other benchmark models, which were trained with the
TCGA LUAD dataset, to the OncoSG dataset. The performance was
shown as similar with the results in the experiments with TCGA
LUAD. The C-index of SPIN (0.80 + 0.01) was still significantly the
highest compared with the benchmark, DeepHisCoM (0.62 +0.02),
Cox-PASNet (0.54 + 0.03), Cox-NN (0.54 = 0.05), Cox-EN (0.54 +
0.03), Sex-specific Cox-EN (0.53 & 0.05) and CNN-Cox (0.48 +0.07)
(Supplementary Table 2).

For risk prediction, we evaluated our SPIN framework using
asthma datasets. Two publicly available asthma datasets
were downloaded from the Gene Expression Omnibus (GEO)
database (Accession ID: GSE8052 and GSE172367). Similarly, we
stratified the asthma datasets based on sex and disease status
(control/asthma) and normalized the datasets. For benchmarks,
we used sex-combined analysis methods, including logistic
regression (Logic), support vector machine (SVM), neural network
(NN) and a pathway-associated sparse neural network (PASNet)
[11]. For the sex-specific analysis, logistic regression (sex-specific
Logic) and random forest (sex-specific RF) models were applied
to separately train for males and females. The area under
the receiver operating characteristic (ROC) curve (AUC) and
disease ratios were computed to evaluate the performance
for risk score prediction. We repeated these experiments
10 times.

In the experimental results with asthma datasets, SPIN
produced the AUC of 0.62 + 0.05 for GSE8052 and 0.95 + 0.05
for GSE172367 (Figure 2B and Supplementary Table 3), which
is competitive performance with SVM with the linear kernel.
The competitive performance of GSE172367 is mainly due to the
small data size (N=190), and the SPIN’s predictive performance
will be empowered with larger training samples. Moreover, the
distinct predictive performances between GSE8052 (AUC=0.62)
and GSE172367 (AUC=0.95) were shown, since GSE172367 is from
primary or target tissue (airway epithelium cells) for asthma.
The target tissue/cell types have a well-known role in asthma
pathogenesis and remodeling [17], whereas GSE8052 is from
surrogate tissues (peripheral blood lymphocytes), which may not
truly reflect the disease pathogenesis.

Furthermore, we assessed the stratification of risk scores by
disease ratios with patient groups of similar severity. To stratify
the patients, the test dataset was sorted by the predicted risk
scores and divided into five groups. Each group estimated the
disease ratio of the actual asthma cases to the total group popula-
tions. The disease ratios of each model are depicted in Figure 2B,
where the first (or last) group reflects the highest (or lowest) risk
group. Then, we computed the mean squared prediction error
(MSPE) between the ideal and predicted disease ratios on the
five groups. The ideal disease ratios were calculated by counting
the total number of actual asthma cases to the five groups
(e.g. number of actual asthma/number of a group populations)
in consecutive order. The ideal disease ratios of GSE8052 are
1.0 (17/17), 1.0 (16/16), 1.0 (16/16), 0.31 (5/16) and 0.0 (0/16) in
each group. SPIN obtained the lowest MSPE of 0.15 and 0.01 in
GSE8052 and GSE172367, respectively, which reduced the error by
18.8% and 23.7% compared with the second lowest. Through this
assessment of the disease ratio, SPIN showed its enhanced power
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Figure 2. Performance evaluation for SPIN and other benchmark models with the TCGA and asthma datasets. (A) C-index comparison between SPIN
and other benchmark models for the survival analysis. SPIN (red) outperforms other benchmarks across cancer datasets. (B) The graphical illustration
of the performance comparisons with GSE8052 and GSE172367. For each dataset, we visualized the plots of the AUC (left) and disease ratio (right). In
the disease ratio plot, the first group represents the highest risk group, whereas the fifth group represents the lowest risk group.

to linearly stratify patients, as a risk score tool, compared with
other benchmark models.

SPIN identifies statistically significant
sex-specific and -shared genes and pathways

Our global interpretation analysis reveals significant sex-specific
and -shared biomarkers (genes/pathways) nonlinearly associated
with clinical outcomes at a population level. Sex-specific impor-
tance scores of each gene/pathway are computed to approxi-
mate their relative importance on the predictive mechanisms.
We determine statistically significant sex-shared factors if the
results of statistical tests are significant in both sexes, and sex-
specific factors if the statistical significance is indicated with only
one between the sex groups (P < 10~° after FDR correction). The
detailed algorithm is provided in S4; global interpretation analysis
in the supplementary document. For the sake of simplicity, our
global interpretation analysis was conducted with the TCGA data
(GBM/LGG,) for survival analysis and the asthma data (GSE172367)
for risk score prediction using the optimal model that yielded the
best predictive performance in Results.

In GBM/LGG, we identified 2923 sex-shared, 502 male-
specific and 704 female-specific genes as significant factors
(Supplementary Figure 1). Among them, we explored the 10 top-
ranked genes from each group (i.e. sex-shared, male-specific
and female-specific groups), based on their highest importance
scores. The top-ranked genes are illustrated and listed with
their chromosome numbers, importance scores, P-values and
related literature (Figure 3A (left) and Supplementary Table 4).
For instance, MAPK8 and AKT3 appeared as sex-shared genes;
MAP3K1 and IFNG were shown as significant only in males,

whereas NRAS, PLCG1 and TSC2 were significant only in females.
The highly ranked genes are mostly reported as well-known
biomarkers of pan-glioma in the biological literature. For instance,
MAPK8 [18] and AKT3 [19] appeared as sex-shared genes; MAP3K1
[20] and IFNG [21] were shown as significant only in males,
whereas NRAS [22], PLCG1 [23] and TSC2 [24] were significant only
in females. We also identified significant sex-specific and -shared
biological pathways in GBM/LGG. We discovered 146 pathways
enriched in both males and females, 11 significant pathways
enriched in males and 15 pathways enriched in females. The top-
10 pathways, ranked by their importance scores on each group,
are shown in Figure 3A (right), such as MAPK signaling pathway [25]
and p53 signaling pathway [26] as the sex-shared pathways; Notch
signaling pathway [27] as a male-enriched pathway; and Spliceosome
[28] as a pathway enriched in females (Supplementary Table 5).
In the asthma data, SPIN identified 1504 sex-shared, 423
male-specific and 282 female-specific genes (Supplementary
Figure 2). Figure 3B (left) visualizes the 10 top-ranked genes
of sex-shared, male-specific and female-specific groups. Sex-
shared genes include PIK3R1 [29], HLA-G [30, 31] and IKBKB
[32]. Male-specific genes include TGFB1 [33, 34], MAPK1 [35]
and IL1B [36, 37]; on the other hand, female-specific genes
include ALDH3A1 [38] and ITGB4 [39] (Supplementary Table
6). For the pathway analysis with the asthma data, we iden-
tified 132 sex-shared, 5 male-enriched and 6 female-enriched
pathways. Top-ranked sex-shared and -specific pathways are
listed with the related literature, including JAK-STAT signaling
pathway [40, 41] and Arginine and proline metabolism pathway
[42] as the sex-shared pathways; Apoptosis [43] as a pathway
enriched in males; and Ubiquitin mediated proteolysis [44, 45] as
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Figure 3. The barplot visualizations of the top-ranked genes (left) and biological pathways (right) (A) The most significant sex-specific and -shared
biological risk factors from male (blue bars on upper side) and female (red bars on lower side) groups with GBM/LGG. (B) with GSE172367. In both (A)
and (B), the bars shown in only one of the sex groups represent the sex-specific factors, whereas those shown in both male and female groups represent

the sex-shared factors.

a female-enriched pathway (Figure 3B [right] and Supplementary
Table 7).

Interestingly, conventional linear-based Cox-PH and statistical
logistic regression models identified no genes (P < 102 after FDR
correction over all genes) as statistically significant for the gene-
sex interaction (Material and Methods, Supplementary Table 4
and 6). This result implies that SPIN can identify biologically
significant sex-specific and -shared genes that could be missed
in conventional methods.

SPIN provides an insight into the understanding
of individual level biological process

Our local interpretation analysis explains pathway-based predic-
tive processes at an individual level compared with the global
interpretation analysis that identifies general biomarkers of the
whole population (S5. Local interpretation analysis). Through the
local interpretation, we (1) unveil individual processes of the
biological pathways that have positive/negative impacts on a
prediction, (2) identify discriminative mechanisms on subgroups
of interest by extending the sample-based local interpretation, (3)
analyze the predictive process of individual mechanisms on sam-
ples of interest for reliable prediction and (4) explore sexual dimor-
phism in the predictive mechanisms of individuals. The pathway-
based local interpretation analysis identifies biological functions
involved in a target biological system in a robust manner rather
than gene-based interpretation. In this study, for simplicity, we
focused on an asthma dataset (GSE172367) that produced the
highest predictive performances, as the importance of the local
features is explained with respect to the model prediction.

First, we examined the pathway-based predictive processes of
the asthma patients individually. The pathway effects on each

individual prediction were estimated using the shapley additive
explanations (SHAP) [46]. The SHAP explanation model assigns
SHAP values to reflect the magnitudes and directions of the
pathway effects on the prediction produced by SPIN. Then, the
SHAP values and the relationships with the pathways’ enrichment
were analyzed for the local interpretation. For instance, the local
interpretations for two female patients with asthma are shown
in Figure 4A. In the SHAP waterfall plots of Figure 4A, the top-
ranked 15 pathways of the patients, as well as the aggregate of
SHAP values for 158 other pathways, are listed in descending order
of the absolute SHAP values. The SHAP waterfall plots illustrate
how an individual risk score is computed from the inferred path-
way values in a linear manner. The sum of the SHAP values of
the pathways from a base value is equivalent to the risk score
prediction: f(x) = E[f(X)] + > ¢;, where f(x) is the risk score of
1

given gene expression data (x), E[f(x)] is an expected value of the
predictions for the other samples (i.e. the base value) and ¢; is
the SHAP value for the i-th pathway. For the first patient on the
left side in Figure 4A, the directions of the pathway effects on
the risk score prediction (f(x) = 0.86) were all positive, indicating
that the pathways of the patient are likely to increase the risk
of asthma. Specifically, the local analysis shows that the enrich-
ment of Huntington’s disease increases asthma risk by +0.0145
on the patient. On the other hand, the depletion of Chemokine
signaling pathway increases the risk of asthma by +0.0064, which
may imply that the enrichment of Chemokine signaling pathway
is essential to control the asthma risk. Another female patient
with asthma (Figure 4A [right]) shows that the enrichment of
Chemokine signaling pathway, in contrast, results in a negative SHAP
value (¢; = —0.0083), which decreases the asthma risk. This
finding is aligned with the literature in which the dysfunction in
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Figure 4. (A) SHAP waterfall plots of two individuals in asthma females. In the SHAP waterfall plots, the top-ranked 15 pathways of the patients, as
well as the aggregate of SHAP values for 158 other pathways, are listed in descending order of the absolute SHAP values. For each local explanation,
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Chemokine signaling pathway is correlated with the asthma severity
[47]. Another negative SHAP value of Renal cell carcinoma along with
Chemokine signaling pathway in the second patient also reduces the
asthma risk score (f(x) = 0.69).

Secondly, we extended the individual local interpretation anal-
ysis to subgroups of interest to explore their broad distinctions
of the pathway effects. We categorized the individuals into four
groups: Control male, Control female, Asthma male and Asthma
female. To determine what/how pathways cause differences
between the subgroups, we analyzed the SHAP summary plots of
the four subgroups, mainly considering the top-ranked sex-shared
and -specific pathways identified in our global interpretation
analysis (Figure 4B). The summary plots visualize the distribution
on the individuals’ SHAP values in the four subgroups with
their pathway values. The individual pathway values are colored
in ranging between red (enriched) and blue (depleted). For
instance, the SHAP values of Insulin signaling pathway (a sex-
shared pathway) appeared negative in most males and females

of the control group, whereas the asthma group showed positive
values. The control group relatively exhibited high pathway values
(enriched), but low pathway values in the asthma group, which
implies that the enrichment of Insulin signaling pathway reduces
the susceptibility to asthma, aligned with the literature [48].
By contrast, it is shown that the enrichment of another sex-
shared pathway, Hypertrophic cardiomyopathy (HCM), causes the
development of asthma, but the depletion of the pathway has
negative impacts on the risk score prediction. Furthermore, the
male-enriched pathway, Apoptosis, is enriched in males more than
females, which may increase asthma risk.

Thirdly, we further investigated the predictive process of indi-
vidual samples of interest to provide the reliability for the SPIN’s
predictions. We focused on three individuals whose clinical out-
comes are opposite to the adjacent samples, which are pre-
sumably outliers (Figure 5A). The subject ID of 551b_49fb_1A
(Number 1 in the circle on the top-right corner of Figure 5A) is
a female patient of the asthma group mostly neighboring the
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enrichment of the pathways.

control females (Numbers 2, 3 and 4). Most pathways in the SHAP
local explanation of 551b_49fb_1A, including B cell receptor signal-
ing pathway (¢; = +0.0166), Wnt signaling pathway (¢; = +0.0117),
Type I diabetes mellitus (¢; = +0.0109), Calcium signaling pathway
(¢i = +0.0102) and Autoimmune thyroid disease (¢; = +0.0102),
are associated with the susceptibility of asthma, which results
in SPIN’s high risk score prediction (f(x) = 0.94) (the top of
Figure 5B, the SHAP waterfall plot). Specifically, the enrichment
of B cell receptor signaling pathway, Type I diabetes mellitus and
Autoimmune thyroid disease in 551b_49fb_1A are associated with
the risk of asthma. The depletion of Wnt signaling pathway and
Calcium signaling pathway in the 551b_49fb_1A shows the high
impact on the risk score. Our analysis shows that the effects of
the pathways in 551b_49fb_1A (Number 1 and star symbol) reflect
higher impacts on the risk score than the other control individuals
(the bottom of Figure 5B, the SHAP summary plot), although the
samples neighbor each other in the t-SNE plot, whereas the other
three control females show negative effects on most pathways,
which leads to the low risk score predictions (f(x) = 0.20, 0.32 and
0.27). B cell receptor signaling pathway demonstrated depletion
in the two control females (Number 2 with circle symbol and

Number 3 with triangle symbol), indicating a negative impact on
their risk scores. Calcium signaling pathway in three control females
mitigates the asthma risk, and the depletion of Autoimmune thyroid
disease in the other three control individuals leads to the lower
impacts on the risk scores than in 551b_49fb_1A.

Similarly, we explored two females of the control group,
fa59_4849_2A and fa59_4849_1A, adjacent to the female patients
of the asthma group. In the SHAP local explanation of fa59_
4849_2A, most pathways, including Axon guidance (¢; = —0.0074),
Alzheimer’s disease (¢; = —0.0072), Cell adhesion molecules (CAMs)
(¢i = —0.0067) and Chronic myeloid leukemia (¢; = —0.0063),
alleviate the risk of asthma, contributing to the low risk score
(fx) = 0.31) (the left SHAP waterfall plot of Figure 5C). However,
most pathways of fa59_4849_1A show susceptibility to asthma
(e.g. Oocyte meiosis (¢i = +0.0095), Cytokine-cytokine receptor
interaction (¢; = +0.0086), Insulin signaling pathway (¢; = +0.0079)
and Selenoamino acid metabolism (¢; = 4+0.0065)), which cause the
risk score to be on the borderline (f(x) = 0.58) (the right SHAP
waterfall plot of Figure 5C). It may imply that the subject of
fa59_4849_1A has a high chance to develop asthma, although
she is currently in asthma control.
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Figure 6. (A) The overview of the comparison of the pathway-based predictive mechanisms between males and females. We denote the SHAP explanation
model and its estimated SHAP value as fy(.) and ¢/ for males and fr()) and ¢F for females, respectively. (B-D) SHAP cohort bar plots of the previous
female samples depicted in Figure 5. For the pathways in each plot, their effects of an original (female) and the opposite (male) mechanisms represent

the solid (upper) and hatched (lower) colors, respectively.

Lastly, we analyzed how sexual dimorphism affects an
individual’s predictive mechanism. In particular, we compared
the effects of sex-specific pathways contributing to the risk
score predictions, as SPIN generates the sex-specific pathway
representations of a given gene expression profile depending
on the sex. We denote the SHAP explanation model and its
estimated SHAP value as fy(.) and ¢ for males and fr(.) and ¢
for females, respectively. Figure 6A illustrates an example of the
SPIN’s interpretation processes depending on sex. In the example,
the sex-specific pathway effects result in the different risk score
predictions (fu(x) = 0.1, fr(x) = 0.9). In particular, the Calcium
signaling pathway of 551b_49fb_1A (asthma female) produces a
high-positive effect (¢f = +0.0102) to increase risk scores on the
female-specific process, but it shows a high-negative effect (¢ =
—0.0157) if the individual is male with the same gene expression
profile (Figure 6B). The effect of the B cell receptor signaling pathway,
a significant female-enriched pathway in the previous summary
plot of Figure 4B, presents a relatively high impact in females but
a low impact in males. Furthermore, CAMs in both control female
samples (fa59_4849_1A and fa59_4849_2A) have negative impacts
on their risk scores (fa59_4849_1A: ¢fr = —0.0063, fa59_4849_2A:
¢ = —0.0067), whereas the pathway effect on the male-specific
process shows a positive impact on the prediction (fa59_4849_1A:

M = 40.0121, fa59_4849_2A: ¢/ = +0.0094) (Figure 6C, D). Not
only do Calcium signaling pathway and CAMs have an opposite
direction between the male and female mechanisms, but other
pathways (e.g. Type I diabetes mellitus, Autoimmune thyroid disease,
Axon guidance, Alzheimer’s disease, Chronic myeloid leukemia) also
demonstrate such sex disparities. These findings indicate that the
biological mechanisms between males and females are distinct,
suggesting the net canceling effects that particularly have the

opposite directions between sexes occurs in the sex-combined
analysis frameworks.

DISCUSSION

In this study, we introduced SPIN, a novel unified biologically
interpretable DL framework for sexual dimorphism analysis. SPIN
predicts sexual dimorphic outcomes of the disease with the gene
expression profiles of males and females simultaneously and
offers advanced interpretability with statistical significance tests
by incorporating prior biological knowledge. As a result, SPIN out-
performed other sex-combined or sex-specific benchmark models
across several publicly available cancer datasets. Moreover, SPIN
captures complex and nonlinear hierarchical feature representa-
tions which are often missed by existing approaches. By leveraging
the complex relationships in SPIN with sexual dimorphic data,
we not only identify statistically significant sex-specific and -
shared risk factors (i.e. genes/pathways) at a population level,
but also analyze how the biological pathways lead to predictions
at an individual level. To the best of our knowledge, SPIN is
the first unified DL framework for sexual dimorphism analysis
to discover potential sex-specific/-shared biomarkers in complex
human diseases.

SPIN is biologically interpretable, inherently relying on path-
way databases for the architecture design. The sparse connec-
tions between genes and pathway layers in SPIN are constrained
by biological pathways, which consequently make the model
dependent on the quality of the annotations. Incorporating mul-
tiple pathway databases (e.g. Reactome) or ontologies (e.g. GO)
will provide robust analyses without bias to a specific database.
Moreover, SPIN’s pathway-based architecture design allows only
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genes belonging to the pathways in the model, which excludes
a number of genes that have not been annotated for pathways.
However, rapid advancement and development of larger pathway
databases will include more genes in SPIN for the pathway-based
analysis.

SPIN could provide potential novel sex-specific biomarkers for
prognosis and genetic susceptibility in complex human diseases.
We validated several statistically significant sex-shared genes/
pathways. For example, MAPKS8 [18], AKT3 [19], MAPK signaling
pathway [25] and p53 signaling pathway [26] are known biomarkers
in brain tumors, while PIK3R1 [29], HLA-G [31], IKBKB [32], JAK-
STAT signaling pathway [40] and Arginine and proline metabolism
pathway [42] are known for asthma. Although we identified sex-
specific genes/pathways, we acknowledge that there is limited
sexual dimorphism related literature, so we cannot validate all
our findings.

Altogether, we showed that DL approaches applied to sexual
dimorphism complex disease are highly accurate at predicting
sex-specific and shared risk loci and pathways, providing proof
of concept that this approach may lead to a mechanistic under-
standing of a sex differences precision medicine approach.

Key Points

e SPIN is a general unified framework that analyzes
sexual dimorphism using omics data with multiple
applications.

e SPIN improves predictive power compared with existing
sex-combined/-specific analysis models.

e SPIN identifies sex-specific and -shared genes and path-
ways nonlinearly associated with clinical outcomes.

e SPIN characterizes biological processes on each indi-
vidual sample, leading to the development of precision
medicine tailored to a specific individual’s characteris-
tics.
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