Computer Vision and Image Understanding 239 (2024) 103886

Computer Vision and Image Understanding

Contents lists available at ScienceDirect

Computer Vision
and Image
Understanding

journal homepage: www.elsevier.com/locate/cviu

Multi-layered self-attention mechanism for weakly supervised semantic n

segmentation

Avinash Yaganapu, Mingon Kang *

Check for
updates

Department of Computer Science, University of Nevada Las Vegas, 4505 S. Maryland Pkwy. Las Vegas, NV 89154-4022, United States of America

ARTICLE INFO

Communicated by Ioannis Stamos

MSC:
68U10
68T45

Keywords:

Weakly supervised semantic segmentation
Segmentation

Self-attention

Image-level labels

ABSTRACT

Weakly Supervised Semantic Segmentation (WSSS) provides efficient solutions for semantic image segmen-
tation using image-level annotations. WSSS requires no pixel-level labeling that Fully Supervised Semantic
Segmentation (FSSS) does, which is time-consuming and label-intensive. Most WSSS approaches have leveraged
Class Activation Maps (CAM) or Self-Attention (SA) to generate pseudo pixel-level annotations to perform
semantic segmentation tasks coupled with fully supervised approaches (e.g., Fully Convolutional Network).
However, those approaches often provides incomplete supervision that mainly includes discriminative regions
from the last convolutional layer. They may fail to capture regions of low- or intermediate-level features
that may not be present in the last convolutional layer. To address the issue, we proposed a novel Multi-
layered Self-Attention (Multi-SA) method that applies a self-attention module to multiple convolutional layers,
and then stack feature maps from the self-attention layers to generate pseudo pixel-level annotations. We
demonstrated that integrated feature maps from multiple self-attention layers produce higher coverage in
semantic segmentation than using only the last convolutional layer through intensive experiments using
standard benchmark datasets.

1. Introduction

Semantic segmentation is one of the fundamental computer vision
tasks to predict pixel-level classification labels on images. Semantic
segmentation partitions an image into multiple image segments and
assigns corresponding class labels to pixels. Semantic segmentation
is mainly applied across various multimedia, including visual recog-
nition in images and videos (Zhu et al.,, Jun 2019; Garcia-Garcia
et al.,, 2018; Zhao et al., 2018). Applications of semantic segmenta-
tion include autonomous driving, robotic navigation, and Aerial image
analysis (Alonso et al., 2020; Liu et al., 2020; Wurm et al., 2019). It is
also widely used in medicine fields, such as biomedical imaging, cancer
detection, accurate diagnosis and surgical procedures (Wu et al., 2020;
Taghanaki et al., 2019; Miiller and Kramer, 2021).

Fully Supervised Semantic Segmentation (FSSS) has been considered
as a conventional solution for semantic segmentation (Pinheiro and Col-
lobert, 2014). FSSS trains models with pixel-level annotations in a su-
pervised manner and outputs a segmentation mask. Fully Convolutional
Networks (FCN) (Shelhamer et al., 2017) and U-Net (Ronneberger
et al., 2015) are the most representative methods in FSSS. FCN and
U-Net are comprised encoder—decoder layers. Encoder layers extract
semantic and contextual information as a downsampling path, whereas
decoder layers localize objects as an upsampling path. Furthermore,
Deep Convolutional Neural Networks (DCNN) extract semantic-aware
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features from deep layers, but loose spatial details due to pooling
and stride convolution operations (Xia et al., Dec 2013; Qiao et al.,
2017). DeepLabV3 explicitly controls the density of extracted fea-
tures using dilated convolutions and Conditional Random Field (CRF)
for the restoration of spatial information (Chen et al., 2017). How-
ever, FSSS requires a large number of pixel-level annotation, which is
time-consuming and labor-intensive.

Weakly Supervised Semantic Segmentation (WSSS) has proposed ef-
ficient and promising solutions in semantic segmentation using image-
level labels (e.g., weakly supervised data) (Ahn and Kwak, 2018;
Kolesnikov and Lampert, 2016; Oh et al., 2017; Oquab et al., 2014;
Pinheiro and Collobert, 2015). In WSSS, image-level labels indicate
only presence of objects on images without the information of object
location. WSSS identifies class-specific regions with weakly supervised
data by excluding potential false positive pixels, intrinsically generated
by the weak supervision, in an image. Typically, Class Activation
Maps (CAM) have been widely used to identify class-specific regions
in weakly supervised settings. CAM computes class-specific scores on
each pixel and segment them into pseudo pixel-level annotations. The
generated pseudo pixel-level annotations are used as supervision for
training a fully supervised segmentation network.

Most modern WSSS methods use the two approaches to improve
CAM-based pseudo pixel-level annotations: (1) Seeded Region Growing
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(c) Affinity learning
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Fig. 1. Semantic segmentation of our proposed Multi-SA. (a) An original image;
Segmentation results with (b) conventional CAM, (c) conventional CAM with affinity
learning (e.g., AffinityNet), (d) Puzzle-CAM, and (e) Multi-SA; (f) ground truth.

(SRG) and (2) affinity learning coupled with CAM. SRG initially uses
CAM to identify class-specific regions as initial seeds and then grows
the seeds towards homogeneous regions (Kolesnikov and Lampert,
2016; Adams and Bischof, 1994). Deep Seeded Region Growing (DSRG)
employs saliency maps to classify foreground from background (Huang
et al., 2018). Then, DSRG stacks the seeds from both foreground and
background into a single channel segmentation network and thereby
grows the seeds to adjacent pixels by following a region similarity
criteria. Mining Common Object Features (MCOF) localize objects from
superpixels and CAM (Wang et al., Jun 2018). Then, MCOF trains a
segmentation network with object regions as supervision to generate
pseudo pixel-level annotations.

Anti-adversarially CAM (AdvCAM) generates attribute maps that
progressively identify regions of a target object by using an anti-
adversarial technique.

AdvCAM allows non-discriminative regions to be involved in sub-
sequent classifications (Lee et al., 2022). Uncertainty estimation via
Response scaling for Noise mitigation (URN) reduces noisy pixels by
rescaling pseudo masks multiple times (Li et al., 2022b).

On the other hand, affinity learning-based approaches have im-
proved CAM-based identification of class-specific regions by computing
an affinity matrix that represents pairwise relationships between pix-
els (Maire et al., Jun 2016). AffinityNet creates a neighborhood graph
based on initial CAM and computes similarity scores (i.e., affinity
matrix) between pixels in the graph (Ahn and Kwak, 2018). Then, Affin-
ityNet multiplies the affinity matrix with CAM to propagate activations
in nearby semantically identical areas. Response Expansion by Trans-
ferring Semantic Affinity and Boundary (RETAB) learns both semantic
affinities and CAM from images, and then splits CAM into boundary and
non-boundary regions (Zhou et al., 2021). RETAB improves CAM using
an affinity-based propagation along with random walk on boundary
and non-boundary regions separately. Besides of the two approaches,
Puzzle-CAM improves initial CAM by dividing an image into multiple
patches and generating CAM on each patch (Jo and Yu, 2021). Then,
Puzzle-CAM merges the multiple patches’ CAM into a single CAM and
trains a classifier with a reconstruction regularization loss to minimize
the loss between CAM of the original image and the merged CAM.

Recently, self-attention mechanisms with CAM have shown signifi-
cant improvement in WSSS by computing attentions to pixels belonging
to objects in an image (Li et al., 2018; Wang et al., 2020; Liang
et al., 2021). Self-attention mechanism produces self-attention feature
maps from Convolutional Neural Networks (CNN), where the size of
a self-attention feature map is identical to the input size. Then, CAM
are generated from the self-attention feature maps, which are more
informative than without self-attention. For instance, Self-supervised
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Equivariant Attention Mechanism (SEAM) integrates a self-attention
mechanism into a pixel correlation module that captures contextual
information, using equivariant cross regularization loss to generate a
CAM with less over-activated and under-activated regions (Wang et al.,
2020). Saliency Guided Self-attention Network (SGAN) propagates ac-
tivations from discriminative regions to non-discriminative regions by
performing element-by-element multiplication of saliency and spatial
attention maps (Yao and Gong, 2020). SGAN captures contextual in-
formation from spatial and saliency attention maps to generate initial
CAM.

However, the current approaches with self-attention on CAM have
the two limitations: incomplete supervision and low resolution. In
WSSS, pseudo pixel-level annotations often miss non-discriminative
parts of objects. Most WSSS methods extract feature maps mainly from
the last convolution layer for initial CAM and rescale them to the
input size (Yao and Gong, 2020; Xiu et al., 2020). However, deeper
convolutional layers with multiple pooling layers produce feature maps
of lower resolution, limiting the ability of CAM to capture fine-grained
details of objects. Additionally, deeper convolutional layers tend to in-
clude more discriminative features to improve predictive performance
rather than segmentation. Thus, the final CAM are limited to capture
coarse regions of a object.

We present a novel and effective approach in addressing the above
WSSS problems with multi-layered self-attention mechanisms. Our
method, Multi-layered Self-Attention (a.k.a. Multi-SA) includes a single
network that extracts feature maps at multi-levels of intermediate
convolutional layers as well as the last convolutional layer to accurately
capture whole object for semantic segmentation. The CAM generated
from multi-level feature maps contains various levels of object informa-
tion, which produces the finest complete object masks from an image.
Fig. 1 illustrates that pixel-level pseudo masks, by Multi-SA, localize
most whole objects compared to traditional CAM, CAM with affinity
learning, and Puzzle-CAM, which is one of the current best WSSS
models using affinity learning coupled with CAM. In summary, our
main contributions are:

» Multi-SA improves initial CAM with self-attention mechanisms on
multiple convolutional layers by incorporating intermediate fea-
tures in a network in weakly supervised semantic segmentation,
and

» Multi-SA is more capable of capturing complex patterns of objects
(e.g., person) through the multiple intermediate features than the
other existing benchmark models.

The rest of the paper is organized as follows. Section 2 describes
a typical WSSS framework and our proposed Multi-SA in detail. We
demonstrate experimental results for the performance comparison be-
tween Multi-SA and current state-of-the-arts methods in Section 3.

2. Methods
2.1. Overview of the typical WSSS framework

Most WSSS follows a framework to create pseudo pixel-level anno-
tations. The framework typically includes three steps: (1) generating
initial CAM from a backbone model (e.g., ResNet (He et al., 2015)),
(2) improvising the initial CAM using affinity learning to create pseudo
pixel-level annotations, and (3) training a fully supervised segmenta-
tion network with the pseudo pixel-level annotations. First, weighted
sum of feature maps (i.e. CAM) is generated from a pre-trained back-
bone model coupled with the Global Average Pooling (GAP) layer. CAM
identify class-specific regions by up-sampling CAM to the input size.
Second, the initial CAM are refined by affinity learning that learns
pixel-level affinities in random walk to propagate activation scores
of CAM (Lov’asz and Lov’asz, 1993). The improved CAM are then
used to synthesize pseudo pixel-level annotations. Lastly, the generated
pseudo pixel-level annotations are considered as supervision in a fully
supervised semantic segmentation model (e.g., DeepLabV3). In this
study, our proposed method focuses on the first step, which improves
initial CAM, in the framework (see Fig. 2).
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Fig. 2. The overall framework of proposed Multi-layered Self-Attention mechanism (Multi-SA).

2.2. Motivation

We hypothesize that self-attention mechanisms at multiple inter-
mediate layers of a network may retrieve class-specific features that
are not present in the last convolutional layer, and the combination
of feature maps from intermediate layers and the final convolutional
layers may provide richer features for semantic segmentation than with
only the last convolutional layer. Self-attention improves convolutional
feature maps by capturing dependency of context features with at-
tention mechanisms. However, most current state-of-the-art methods
applied self-attention mechanisms to the last convolutional layer only,
which mainly covers discriminative regions of objects (Wang et al.,
2020; Yao and Gong, 2020; Sun et al., 2020). In a network, the outputs
of intermediate layers have larger resolutions than of the last con-
volution layer. The intermediate layers include features representing
visual patterns of objects as well as discriminative features, whereas
the final convolutional layer mainly includes discriminative features.
For instance, VGG16, one of the most popular CNN models, comprises
13 convolutional and 5 pooling layers with an input image of size
224 x 224. The feature maps extracted from the 7th intermediate
convolutional layer has a output size of 56 x 56, whereas the feature
maps extracted from the last convolutional layer has a output size
of 14 x 14. The feature maps of the 7th convolutional layer include
visual patterns of objects, and the flattened feature maps in the last
convolutional layer are introduced to dense layers. The coarse flattened
feature maps are optimized for classification tasks.

2.3. Multi-layered self-attention mechanism

We propose a Multi-layered Self-Attention (Multi-SA) that improves
pseudo pixel-level annotations in a weakly supervised semantic seg-
mentation setting by integrating attention features of multiple con-
volutional layers. Multi-SA consists of the two components (see gray
boxes in Fig. 2): (1) multiple self-attention layers in a Multi-SA module
and (2) the integration of the multiple self-attention layers to improve
initial CAM. The Multi-SA module includes attention features from
multiple intermediate layers as well as the last convolution layer of a
network (e.g., ResNet) with a self-attention mechanism that produces
self-attention feature maps individually. Then, Multi-SA computes mul-
tiple self-attention maps and combine them with interpolation along
channel dimension in the stack layer. The stack layer creates an initial
CAM that accurately highlight class-specific regions of a whole object.

2.3.1. Multiple self-attention layers in a multi-SA module

Given training set of n number of samples, D = {(X;,y;)},, where X;
is the ith input image, and y; € {0,1}” is an one-hot encoding image
label associated with the p number of semantic objects (i.e., ground
truth). Let a multi-class classification network of a backbone model
includes m number of convolutional layers. In Multi-SA, we consider
k number of convolutional layers to integrate among the m layers in
a network (k < m). The k number of convolutional layers can be any
intermediate or last convolutional layers in a network. For instance,
last k consecutive layers in AlexNet or last layers of k ResNet blocks in
ResNet can be considered.

Feature maps from the /th convolution layer (1 </ < k) are denoted
as F, € Rhxwxe where h, and w, are the height and the width of
the feature map respectively, and ¢, is the number of feature maps in
the convolutional layer. Three 1 x 1 convolutions are applied on F;
to create feature maps, f|, f, and f3 to calculate attentions on pixels
towards the class objects (see Fig. 3). The feature maps of f, f, and
f3 are represented as:

fr=W.F,  r={123}, (€]

where W, € Re*% is a weight matrix of 1 x 1 convolutions. Then,
dot product between f; and f, is computed to obtain a pixel-pairwise
similarity score, .S, as:

S, =1 fa (2)

Then, softmax is applied to S, for generating an attention map. The
attention map, A,;, contains attention scores of pairs of pixels. A high
attention score indicates that two pixels belong to the same class. The
attention map, 4,, is represented as:

A; = Softmax(S)), 3

where A, € RUwxwoxhxw) - Gelf-attention feature maps, O,, are ob-
tained by multiplying A4, with f; for retaining the shape of the original
input:

0, =Af], 4

where 0, € Rxwixer,

2.3.2. Integration of the multiple self-attention layers
Self-attention feature maps, O, (1 < [/ < k), are obtained from

the k number of self-attention layers. The self-attention feature maps
are added with a adaptive trainable weight, g;, on the original feature
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Fig. 3. The architecture of self-attention.

maps, Fj, to create enhanced feature maps. The enhanced feature maps
V; are represented as:

Vi=80,+F, (%)

where ¥, € Riuxwixe,

Then, V, (2 <1 < k) is resized to the same shape of ¥, by a bi-linear
interpolation (¢) in the interpolation layer, since V; is the feature maps
of the highest resolution. The bi-linear interpolated feature maps are
stacked along the channel dimension to create a stacked features maps,
Z, that are computed as:

Vi

7= ¢(}’2) ’ ®)

(Vi)

where Z € R"¥“1%<" and ¢* = ¥¥ ;.

Then, the final feature maps, ©, are computed through a 1 x 1
convolution layer on the stacked feature maps, Z, to capture relevant
feature maps for localizing whole objects. The final features maps, O,
are computed by:

o=wz', @)

where © € RMXWix< and W € KX is the weight matrix of 1 x 1
convolution. Finally, © is followed by a GAP and classifier layers. The
CAM extracted from © are used as an input for affinity learning to
generate a pseudo segmentation mask.

2.4. CAM and loss function

In a WSSS framework (Fig. 2), CAM is utilized to extract class-
specific features. After training Multi-SA, we extract CAM (M,) for each
class by projecting the weights of classifier on convolution feature maps

(©) of Multi-SA:
M,=W'e, 1<i<p (8)

where W, are classifier weights for the ith class. M; is further normal-
ized with a maximum value of M; as:
M; = M,;/max(M,). )

Thus, the value range of M; is between zero and one. Background
and foreground objects can be separated by the optimal threshold
maximizing mloU with validation data.

2.5. Loss function

We used a multi-label soft margin loss function, #(X, y), for a multi-
label classification network. In the network setting of backbone model,
the classification loss is computed as:

p—1
-1 1
/Xy = —2 Y ylog ( — L
X, ) p—1i§y’°g<1+exp(—x,-)>+

exp(-X,) )

1 + exp(=X;) an

(1-=y;)log <

The overall procedure of Multi-SA is explained in Algorithm 1.
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Algorithm 1: An algorithm for Multi-SA

Data: Training data, D, and k number of convolutional layers
Result: Multi-SA-based CAM, M;
for 1</<kdo

fr =W F (1<r<3);

Sp < 11 f2

A < Softmax(S)) ;

(R TAN

Vi < B0 + F;

Z=V;
for 2</<k do
| Stack ¢(V;) on Z along channels dimension
end
0-WZT;
for 1<i<pdo
M; « we;
end

3. Experiments
3.1. Dataset

We evaluated the performance of Multi-SA using the PASCAL VOC
2012 and MS COCO 2014 data, which are the most popular benchmark
datasets in WSSS. PASCAL VOC 2012 consists of three datasets of
1,464 (PASCAL-I), 1,449 (PASCAL-II), and 1,456 (PASCAL-III) images,
where PASCAL-I and PASCAL-II contain pixel-level annotations of 21
classes (20 foreground objects and background). PASCAL-III includes
only images, where pixel-level annotations are not available in the
public. The model performance is evaluated with PASCAL-III in the
PASCAL VOC evaluation server. Note that PASCAL I-III refer to train-
ing, validation, and test data in the PASCAL VOC 2012, respectively.
We also considered additional 10,582 images (a.k.a. SBD) from the
Semantic Boundary Dataset (Hariharan et al., 2011), which is originally
derived from the training data of PASCAL VOC 2012 but includes only
image-level labels rather than pixel-level annotations. We randomly re-
scaled SBD images in the range between 320 and 640, and then cropped
to 512 x 512 pixel images for the input of the network.

The MS COCO 2014 dataset consists of 123,287 images, which
comprises 82,783 training images and 40,504 validation images. MS
COCO includes 81 classes (80 foreground objects and background).
We excluded training samples that lack image-level labels in the ex-
periment. The images were re-scaled to fit the networks. It is worth
noting that PASCAL VOC has been considered as the primary bench-
mark dataset that includes meticulous pixel-level annotations for the
WSSS problem. Whereas, the MS COCO dataset often includes small-
scale partial objects, and its annotations are mainly limited to instance
outlines. Thus, MS COCO is more suitable for object detection or
instance segmentation, although it has also been used as supplementary
benchmark data.

In the experiments with PASCAL VOC 2012, we trained our model
using SBD images and generated initial CAM. We used only image-
level labels without pixel-level annotations in a weakly supervised
learning manner. PASCAL-I was with tuning and ablation study, and
PASCAL-II and PASCAL-III were for the performance comparison with
the current state-of-the-art methods. Similarly, we trained the model
with MS COCO training images in the experiments with MS COCO
2014. Then, the MS COCO validation data was used for the comparison
of mIoU with current state of the art methods.

3.2. Backbone models

For the experiments, we adopted ResNet (50 and 101 layers) and
ResNeSt (101 layers) architectures as back-bone networks with pre-
trained ImageNet weights. We integrated the Multi-SA module to the
backbone network to extract the feature maps from the multiple layers,
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(e) Final-CAM

(d) CAM-SA3 (f) Normal-CAM

Fig. 4. Comparison of CAM at multiple levels of Multi-SA. (a) Original images of person and bottle, CAM extracted at the last convolutional layers of the last three consecutive
blocks, (b) SA1, (c) SA2, (d) SA3, in ResNeSt-101 network, (e) the final CAM by Multi-SA network, and (f) conventional CAM extracted from the last convolutional layer of a

traditional classification network without Multi-SA module.

Table 1
Comparison of multi-SA with various numbers of self-attention mechanisms using
ResNet-50 as backbone network.

CAM w/o SA 1SA 2SAs 3SAs
mloU 46.30 47.60 47.01 47.93

and applied self-attention mechanisms to generate self-attention feature
maps. Then, all self-attention feature maps are combined along the
channel dimension. Specifically, ResNet consists of five blocks in the ar-
chitecture, where each block includes multiple convolutional layers. We
considered the last convolutional layers of the three blocks (i.e., block
3-5) for the multiple self-attention mechanisms and extracted self-
attention feature maps. The initial CAM are generated from the last
1 x 1 convolutional layer in the Multi-SA module. PolyOptimizer loss
function with momentum of 0.9 and batch size of 8 were used for
training backbone network.

3.3. Tuning of Multi-SA

We empirically optimized the hyper-parameter of the number of
self-attention mechanisms (i.e., k). We trained Multi-SA with SBD
images varying a number of self-attention mechanisms, and computed
mean Intersection over Union (mloU) with PASCAL-I images. Initial
CAM from the models were converted into segmentation masks by
the optimal threshold that maximizes mloU. We compared mloU of
Multi-SA with various self-attention mechanisms as well as with a
conventional CAM without self-attention mechanism. The highest mIoU
(47.93%) was shown with three self-attention mechanisms (see Ta-
ble 1). The further experiments were conducted with the three self-
attention mechanisms in the paper.

3.4. Segmentation with affinity learning

The initial CAM were improved with affinity learning to generate
pseudo segmentation masks, which were used as a supervision for seg-
mentation network. CAM were extracted from Multi-SA and improved
with AffinityNet by learning semantic affinities between pair of pixels
(affinity matrix) in an image. Initial CAM with SBD images were used
to create affinity labels. AffinityNet was trained using affinity labels
as supervision to generate a affinity matrix and multiplied it over the
initial CAM. Then, it was diffused by Random Walk (RW) for improving
the initial CAM. Since the resolution of CAM were smaller than the
input image, they were resized with dense Conditional Random Field
(dCRF).

The improved initial CAM were converted into pseudo pixel-level
annotations by the optimal threshold that maximizes mloU. We used
DeepLabV3+ using the pseudo pixel-level annotations in an supervised
manner for the final semantic segmentation.

3.5. Self-attention feature maps from multiple intermediate convolutional
layers in Multi-SA

Multi-SA improves the WSSS task using the self-attention feature
maps from multiple convolutional layers. We visualize the CAMs from
multiple self-attention feature maps of Multi-SA with images of person
and bottle (see Fig. 4). Self-attention feature maps at intermediate con-
volutional layers capture various levels of visual patterns of an object.
Let the self-attention-based CAMs from the last convolutional layers
of the last three blocks in ResNeSt-101 network be CAM-SA1, CAM-
SA2, and CAM-SA3 in Fig. 4. CAM-SA1 produced the higher output
resolution than CAM-SA2 and CAM-SA3. CAM-SA1 mainly captured
the boundary of objects, whereas CAM-SA2 separated the foreground
objects (person and bottle). CAM-SA3 highlighted discriminative pixels
in an image, as it only contains the low spatial information from
the last convolution layer of backbone network. The combination of
the multiple self-attention-based CAM localize whole object areas and
provide accurate boundaries of objects, than normal CAM.

Multi-SA optimizes adaptive trainable weights (8, in Eq. (5)) for
the combination of multiple intermediate layers to generate accurate
CAM. The adaptive integration with trainable weights reduces false pos-
itives and captures fine-grained object parts, comparing to the similar
methods that use multiple intermediate layers for object localization,
including LayerCAM and Shallow feature-aware Pseudo supervised Ob-
ject Localization (SPOL) (Jiang et al., 2021; Wei et al., 2021). Those
localization methods have limitations, such as image occlusion. Multi-
SA overcomes the limitation by utilizing a self-attention mechanism
on individual intermediate layer feature maps and integrate the most
relevant ones with trainable adaptive weights. For the optimal model,
we obtained the optimal betas of 0.034, 0.142, and —0.351 for CAM-
SA1 to CAM-SA3, respectively. The negative beta value of CAM-SA3
in the final layer appears little contribution towards the self-attention
mechanism on the feature maps, since the final layer in the back-
bone model is optimized for classification rather than segmentation.
The positive beta values in CAM-SA1 and CAM-SA2 show that the
intermediary layers emphasize self-attention and contribute more to
segmentation as intermediate information of the objects. Addition-
ally, Multi-SA enhances the features maps from intermediate layers
preserving its original dimension. Moreover, Multi-SA assigns higher
weights to the important features of objects and suppresses the impact
of irrelevant background noise.
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(f) Pseudo labels
by Multi-SA

(h) Ground truth
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Fig. 5. The comparison of CAM and pseudo labels from different stages of WSSS. Top-row and bottom-row illustrates the results of Multi-SA and Puzzle-CAM. (a) Original Image.
CAM generated by (b) Multi-SA and (c) Puzzle-CAM. (d) Multi-SA CAM and (e) Puzzle-CAM generated from the AffinityNet with RW (AF-RW) as post processing method. Pseudo
labels generated by (f) Multi-SA and (g) Puzzle-CAM from CAMs of AF-RW without dCRF. (h) Ground truth.

3.6. Ablation studies

We conducted ablation study to verify the effectiveness of Multi-SA
on mloU. First, we trained a backbone network without the Multi-
SA module (baseline) using SBD images and computed initial CAM. A
mloU with the initial CAM was calculated using PASCAL-I images. The
baseline model achieved the mIoU of 50.64%. Second, we incorporated
the Multi-SA module into the backbone network and trained it using
SBD images to generate Multi-SA-based initial CAM. The mIoU on the
PASCAL-I images was 51.49% with Multi-SA. The Multi-SA-based initial
CAM was further significantly improved with AffinityNet and RW. The
CAM was rescaled to original image size by using dCRF. We achieved
the mIoU of 67.54% by using Multi-SA with RW, and 68.07% by using
Multi-SA with both RW and dCRF (see Table 2).

The integration of Multi-SA with AffinityNet and RW resulted in a
notable improvement of 16% in mIoU. This enhancement was achieved
with Multi-SA’s significantly improved initial CAM by incorporating
high-resolution boundary information and discriminative features de-
rived from the intermediate convolutional layers. We visualize how
Multi-SA improves the WSSS task coupled with AffinityNet and RW
by comparing with Puzzle-CAM. Fig. 5 shows the final CAMs that
Puzzle-CAM and Multi-SA generated as well as the original image
and the ground truth. It demonstrates that Multi-SA CAM shows the
complete coverage of the person, and its object boundaries are closer
to the ground truth segmentation mask compared to Puzzle-CAM. The
object boundary information was mainly captured from the interme-
diate layers of the backbone network in Multi-SA, which was not
captured in Puzzle-CAM, since they primarily focus only on the last
convolutional layer of backbone network. The CAMs of Multi-SA and
Puzzle-CAM were further enhanced by AffinityNet and RW by diffusing
the activation scores along the semantic boundary of an object (see
Figs. 5d & 5e). RW diffuses the highest activation scores to every object
parts consistently in Multi-SA with the accurate boundary information,
whereas Puzzle-CAM’s highest activation scores were only limited to
the discriminative regions. Pseudo labels were generated from the
CAMs for both Multi-SA and Puzzle-CAM.

Furthermore, the Multi-SA CAM were slightly enhanced by dCRF.
dCRF enforces label consistency between pixels by considering the
neighboring features of the Multi-SA CAM to determine the final labels

Table 2
Ablation study of Multi-SA using ResNeSt-101 as the backbone on PASCAL-I data.
AF-RW: AffinityNet with random walk, dCRF: dense conditional random field.

CAM w/o SA Multi-SA AF-RW dCRF mloU
v 50.64
v v 51.49
v v v 67.54
v v v v 68.07

and improve CAM predictions. Multi-SA and the post-processing tech-
niques led to a significant increase in mloU, reaching 68.07% on the
PASCAL-I dataset. The improved CAM were then converted into pseudo
segmentation labels with a threshold and provided as fully-supervised
data for segmentation network.

3.7. Comparison with existing state-of-the-art methods

We compared the performance of the pseudo pixel-level annota-
tions generated from Multi-SA and existing state-of-the-art methods
in WSSS. In the experiments, we employed AffinityNet as a common
network for affinity learning. The pseudo pixel-level annotations gen-
erated from AffinityNet were used as a supervision for segmentation
network. DeepLab networks (e.g., DeepLabV1, DeepLabv2, DeepLabv3
and DeepLabv3+) were used as common segmentation networks to
perform the final segmentation tasks. For the fair comparison, we
excluded CLIP (Lin et al., Jun 2023), MARS (Jo et al., 2023), and
SANCE (Li et al., 2022a) that incorporate extra supervision (e.g., text),
although they are highly ranked in terms of performance. For instance,
CLIP employed additional text data that specifies visual concepts of
the classes as a supervision (Lin et al.,, Jun 2023). MARS utilizes
an additional unsupervised semantic segmentation pre-trained model
(USS) (Jo et al., 2023). SANCE used extra data of contour detection
networks (Li et al., 2022a).

Table 3 shows the mIoU of the 21 classes for the proposed method
(Multi-SA) on the PASCAL-II images, comparing to the state-of-the-
art methods. Multi-SA produced the highest overall mIoU of 69.7%,
showing significant improvement on the classes of aeroplane, bike,
boat, cow, table, person, sheep, and sofa. It is worth noting that Multi-
SA achieved the highest mloU of 79.6% in the class of person in
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Table 3

Category performance comparisons on PASCAL-II data with image-level supervision.
Model bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mloU
AffinityNet (cvpr18) 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 751 29.0 66.0 40.2 80.4 620 70.4 73.7 42,5 70.7 426 68.1 51.6 617
SEAM (CVPR20) 88.8 68.5 33.3 857 404 67.3 789 763 819 291 755 481 799 738 714 752 489 79.8 409 58.2 53.0 645
FickleNet (CVPR’19) 89.5 76.6 326 746 515 71.1 83.4 744 836 241 734 474 782 740 68.8 732 47.8 799 37.0 57.3 64.6 649
SC-CAM (CVPR’20) 88.8 51.6 30.3 829 530 758 886 748 86.6 324 799 538 823 785 704 712 40.2 783 429 66.8 588 66.1
Puzzle-CAM UCIP2) g0 5 g9 0 350 87.0 63.5 754 87.3 77.4 932 284 866 28.4 892 828 785 322 57.0 845 37.9 690 414 66.9
(ResNeSt-101)
AdvCAM (PAMI22) 90.0 79.8 341 82.6 63.3 705 89.4 76.0 87.3 31.4 81.3 331 825 808 740 729 50.3 823 422 741 529 68.1
Multi-SA

89.6 83.1 35.5 84.2 69.0 59.1 86.1 80.9 884 30.0 87.1 58.5 809 821 79.2 79.6 54.7 86.0 53.6 55.8 41.0 69.7

(ResNeSt-101)

Person Horse & Person

(d) Multi-SA  (c) Puzzle-CAM (b) SEAM (a) Original

(e) Ground truth

Dog & Sofa

Person & Cow

Fig. 6. Comparison of segmentation results on the PASCAL VOC 2012 val set. (a) Original images, Segmentation results of (b) SEAM with ResNet-38, (c) Puzzle-CAM with

ResNeSt-101, and (d) Multi-SA, and (e) ground truth.

the PASCAL VOC dataset, which improved 4.1% mloU comparing to
the second best. This significant improvement broadens the scope of
Multi-SA’s potential uses in a number of applications, including face
recognition, human behavior research, and augmented reality, where
segmentation of person holds substantially importance.

We noticed that Puzzle-CAM’s mloU results are inconsistent across
majority (person) and minority (plant) classes of PASCAL VOC data
(see Table 3). On the other hand, Multi-SA produced consistent results
across all classes of PASCAL VOC data and achieved higher mloU
overall.

Furthermore, we compared the performance with a number of state-
of-the-art methods on PASCAL-II and PASCAL-III images. Multi-SA
showed the highest mIoU of 69.7% and 70.1% on PASCAL-II (valida-
tion) and PASCAL-III (test), respectively (see Table 4).

Additionally, we evaluated the performance of Multi-SA by using
the MS COCO dataset (see Table 4). Multi-SA showed competitive
performance to the benchmark models, obtaining the total mIoU of
40.9% with MS COCO.

We illustrated pixel-level annotation results of Multi-SA comparing
to SEAM and Puzzle-CAM as well as ground truth on several images
of PASCAL-II (Fig. 6). The segmentation results of Multi-SA localized
objects of interest on the images with single and multi-labels. Multi-
SA detected smooth and accurate boundaries of the objects that were
close to ground truth. Compared with SEAM and Puzzle-CAM, Multi-SA
localized both small and large objects with highest coverage area.

4. Conclusion

In this paper, we propose the Multi-SA module to capture whole
object in an image using only image-level labels in an weakly su-
pervised setting. Our method Multi-SA employs multiple self-attention
mechanism, which improves initial CAM by integrating intermediate
features that represents visual pattern of an object. The generated
CAM are further refined with affinity learning, which generates pseudo
pixel-level annotations. The segmentation network is trained with the
supervision of pseudo pixel-level annotations. The Multi-SA method can
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Table 4
Comparison of Multi-SA and existing state-of-the-art methods on the PASCAL-II,
PASCAL-III and COCO 2014 images with only image-level labels as a supervision.

Methods Backbone PASCAL-II PASCAL-III  COCO 2014
(Validation) (Test) (Validation)

AffinityNet (CVPR’18) ResNet-38 61.7 63.7 -

IRNet (CVPR’19) ResNet-50 63.5 64.8 -

ICD (cvPRr20) ResNet-101 64.1 64.3 -

SEAM (CVPR20) ResNet-38 64.5 65.7 31.9

SC-CAM (CVPR’20) ResNet-101 66.1 65.9 -

Puzzle-CAM (1CIp21) ResNeSt-101 66.9 67.7 -

AdvCAM (PAMI'22) ResNet-101 68.1 68.0 -

URN (AAAr22) ResNet-101 69.5 69.7 40.7

Ours (Multi-SA) ResNeSt-101 69.7 70.1 40.9

be applied to any convolutional neural network architecture, such as
VGG, inception networks, and general adversarial networks.
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