

1 **Bridging length scales in organic mixed ionic-electronic conductors through internal strain**
2 **and mesoscale dynamics**

3
4 Ruiheng Wu¹, Dilara Meli², Joseph Strzalka³, Suresh Narayanan³, Qingteng Zhang³, Bryan D.
5 Paulsen⁴, Jonathan Rivnay^{2,4*}, Christopher J. Takacs^{5*}

6
7 ¹Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
8 ²Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208,
9 USA

10 ³X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA

11 ⁴Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA

12 ⁵Hard X-ray Material Science Division, Stanford Synchrotron Radiation Lightsource, SLAC
13 National Accelerator Laboratory, Menlo Park, CA, 94025, USA.

14 E-mail: jrivnay@northwestern.edu, ctakacs@slac.stanford.edu

15
16 **Abstract**
17 Understanding structural and dynamic properties of disordered systems at the mesoscale is crucial.
18 This is particularly important in organic mixed ionic-electronic conductors (OMIECs), which
19 undergo significant and complex structural changes when operated in electrolyte. In this study, we
20 investigate the mesoscale strain, reversibility, and dynamics of a model OMIEC material under
21 external electrochemical potential using operando X-ray photon correlation spectroscopy. Our
22 results reveal strain and structural hysteresis depend on the sample's cycling history, establishing
23 a comprehensive kinetic sequence bridging the macroscopic and microscopic behaviors of
24 OMIECs. Furthermore, we uncover equilibrium and non-equilibrium dynamics of charge carriers
25 and material doping states, highlighting the unexpected coupling between charge carrier dynamics
26 and mesoscale order. These findings advance our understanding of the structure-dynamics-

1 function relationships in OMIECs, opening pathways for designing and engineering materials with
2 improved performance and functionality in non-equilibrium states during device operation.

3 **Main**

4 Organic mixed ionic-electronic conductors (OMIECs) show promise in broad application areas,
5 including energy storage, generation, and power electronics¹, neuromorphic computing²⁻⁴, and
6 biosensors and bioelectronics⁵⁻⁷. Even with remarkable progress in materials, the underlying
7 structure-function relationships that promote efficient conduction of both ionic and electronic
8 charge species are poorly understood. Often operating in aqueous electrolytes, OMIEC materials
9 typically undergo large structural changes that depend on the electrochemical potential and device
10 history, but the lack of compatible operando structural techniques across the relevant length and
11 time scales has limited overall understanding of the physical processes of mixed conduction^{8,9}.
12 Recent work highlighted the unexpected and history-dependent molecular level structural changes
13 in operando along with the associated limitations of ex-situ characterization¹⁰⁻¹⁷; however, the
14 macroscopic film swelling/contraction^{18,19} do not directly translate to changes in the intermolecular
15 spacings in the crystalline domains^{13,20}. These works suggested the mesoscale plays an important
16 role in the functional properties^{12,13,15}. Bridging this gap between macroscale and microscale would
17 provide valuable insights into the fundamental properties, potential failure sites, and defects during
18 electrochemical cycling that could ultimately contribute to the optimization of molecular and
19 device design and long-term stability.

20 A widely used polymeric OMIEC material is poly(3,4-ethylenedioxythiophene) polystyrene
21 sulfonate (PEDOT:PSS). Under operational conditions in aqueous electrolytes, there are fixed
22 anionic species on the polyelectrolyte PSS, holes on the conjugated polymer PEDOT and extra
23 mobile salt ions to maintain charge neutrality. The compositional control and commercial
24 availability of PEDOT:PSS make it an ideal model system and a variety of methods exist to modify
25 the mesostructure and performance of PEDOT:PSS. Notably, PEDOT:PSS can be post-treated
26 with ethylene glycol (EG) to induce multi scale rearrangement^{21,22} and treatment with strong acids
27 will partially dissolve excess PSS and crystallize PEDOT to produce a highly conductive 3D fibral
28 network²³⁻²⁵, leading to a marked increase in electronic mobility and capacitance.

29 Here, we investigate the mesoscale structure-function relationships driving both equilibrium and
30 non-equilibrium properties of acid-treated PEDOT:PSS in aqueous electrolytes using operando X-

1 ray photon correlation spectroscopy (XPCS). XPCS uses coherent scattering patterns as a
2 fingerprint of the system microstate, allowing a direct and quantitative measure of how a system
3 evolves in both time and length scale^{26,27}. Using these data, the estimated strain, dynamics, and the
4 reversibility of devices during operation are combined with our previously reported multimodal
5 characterization and kinetic sequences. This kinetic model includes a fast response portion
6 associated with polarization, macroscale electronic charge transport, and slower mass
7 transport/rheology relaxation^{13,19}. By self-consistently combining these components, we
8 demonstrate the unexpected coupling of charge carrier dynamics with mesoscale order. Strain and
9 structural hysteresis are found to depend on the sample electrochemical cycling history under both
10 adiabatic and non-adiabatic cycling conditions. Additionally, we detail the unexpected equilibrium
11 and non-equilibrium self-dynamics of different charged states and charge carriers. The observed
12 mesoscale self-dynamics are hypothesized to be the consequence of moving structural distortions
13 of coupled electronic/ionic motions (e.g. polarons) diffusing in equilibrium. Under non-
14 equilibrium conditions, the rapid generation of multicharged species (e.g. bipolarons) upon fast
15 doping significantly modifies the time dynamics, resulting in a long-lived non-equilibrium process
16 of domain coarsening²⁸. These observations reveal new insights into the role of the mesoscale for
17 mixed conduction and address a key knowledge gap regarding the role of structure-dynamics-
18 function relationships of OMIEC materials and devices. Specifically, the results here provide a
19 new understanding into the interaction and evolution of charge carrier species and the coupling of
20 these features to the underlying mesoscale materials structure, solvation and device function both
21 near and far from equilibrium. Furthermore, this understanding suggests new materials design
22 rules and functionality through holistic control and engineering of non-equilibrium states during
23 device operation.

24

25 **Operando XPCS of OMIECs**

26 XPCS is the X-ray analogue of dynamic light scattering and is traditionally used to investigate
27 thermally-driven, time-dependent fluctuations of a system around an equilibrium state. By using a
28 coherent X-ray incident beam, the resulting scattering patterns have an added fine structure
29 resulting from the coherent interference of the scattered wavefronts known as speckles. These
30 speckles are not visible with conventional incoherent X-ray sources and they encode additional

1 information regarding the specific microstate of the system. The subsequent changes of these
2 speckles are often quantified as a series of autocorrelation functions that estimate the characteristic
3 time for the configurational change of a system at a particular length-scale^{27,29-32}. These methods
4 have been increasingly applied to study out-of-equilibrium process such as domain growth^{33,34} and
5 crosslinking³⁵⁻³⁷. Moreover, the development of analysis and experimental methods are enabling
6 new measurement modalities. For example, recent advances have involved combining XPCS with
7 *in situ* study of mechanical deformation in complex fluids to measure tiny strains under
8 macroscopic stress relaxation^{38,39}.

9 For the operando XPCS study of thin-film OMIECs, we used a grazing incidence geometry that
10 increased path-length through the sample and provided access to mesoscale structural information
11 through the small angle scattering. A schematic of the “cone cell” adapted for grazing incidence
12 XPCS (GIXPCS) is shown in **Fig. 1a**. This electrochemical cell features a cylindrical body with a
13 tapered knife edge seal and re-designs to meet the rigidity and stability requirements essential for
14 internal strain measurements. A representative GIXPCS scattering frame is shown in **Fig. 1b**.
15 Beam damage is a serious concern during these measurements and additional discussion is
16 presented in the **Methods section**.

17

18 **Chemical potential induced strain**

19 During operation, the device thickness varies with the applied chemical potential due to changes
20 in the polymer configuration and the associated solvent/ion uptake. As detailed in Sutton et. al.,
21 XPCS data are well suited to estimating sample expansion and contraction through a detailed
22 analysis (**Supplementary Note 1**) of the speckle displacements⁴⁰. Requiring few assumptions, this
23 strain analysis is applicable to many disordered, thick, rough, and heterogenous samples and offers
24 advantages over more widely known methods including quartz crystal microbalance (QCM)¹⁹,
25 ellipsometry, and electrochemical strain microscopy (ESM)⁴¹. For example, the potential driven
26 thickness change in OMIECs is commonly deduced from electrochemical quartz crystal
27 microbalance (EQCM); however, this method relies on assumptions of the viscoelastic properties
28 and mass transport rather than a direct thickness change. While the observed strains are quite subtle
29 for the materials studied herein, the movement of the speckles is important for all subsequent
30 analysis in this work. Furthermore, we note the estimated strains for all samples correspond to

1 changes in sample thickness only (i.e. uniaxial strain normal to the substrate), as expected for
2 rigidly adhered thin-films (**Supplementary Fig. 2**).

3 The operando strain and scattering intensity is shown in **Fig. 1c-j & 2a-d** (and **Supplementary**
4 **Fig. 4-5**) for acid treated PEDOT:PSS using both 100 mM NaCl and 100 mM RbBr electrolytes
5 and two different electrochemical cycling profiles. Both potential ranges extended across the
6 partly-dedoped (-0.6 V vs. Ag/AgCl), doped (0 V vs. Ag/AgCl), and overdoped (0.6 V vs.
7 Ag/AgCl) states. These electrolytes have similar electrochemical behavior¹⁹; however, the
8 increased electron density of Rb⁺ and Br⁻ ions provides additional X-ray contrast that aids in the
9 study of these systems. Generally, we observed minimal electrochemically induced strain when
10 using a series of 0.1 V steps designed to approximate a CV shape (**Fig. 1i**) and similar results were
11 observed for extended 0.1 V step experiments (**Supplementary Fig. 6**). However, the larger
12 potential steps of 0.6 V appear to produce more complex behavior (**Fig. 1d-f**) on both short and
13 long timescales. We will refer to the 0.1 V and 0.6 V step cycles hereafter as the adiabatic and
14 non-adiabatic pathways, respectively. The difference in step magnitude behavior suggests the
15 underlying processes depend on the magnitude of the excess chemical potential and not solely on
16 the applied chemical potential, a perspective that will be useful throughout this work.

17 For the non-adiabatic transient experiments, the short timescale (i.e., on the order of the current
18 transient) XPCS strain and intensity data appear closely associated with the optical spectroscopy
19 and the expected ionic redistribution between crystalline and amorphous regions. The XPCS data
20 were normalized by the device RC time constant and compared to our previously reported
21 operando measurements as shown in **Fig. 2e-f & Supplementary Fig. 7**. From our previous
22 EQCM report¹⁹, the mass of the acid treated PEDOT:PSS film increased during the dedoping
23 process with a net cation influx, while the film mass decreased during the redoping process with a
24 net cation outflux. Surprisingly, the estimated strain and intensity from XPCS were not matched
25 to these mass transients¹⁹. Instead, the estimated strain showed a short, immediate contraction of
26 the film for both dedoping and redoping process. Detailed analysis suggests this is not due to a
27 distribution of strain or a salt gradient through the film thickness (**Supplementary Fig. 8**). This
28 strain feature instead followed the polaron absorption trends¹³, implying that the initial strain was
29 associated with changes in the polymer conformation and solvation of the charge carriers generated
30 during fast polarization (**Fig. 2g-h**) and the subsequent crystalline lamella spacing change. The

1 increase in scattered intensity was believed to follow the ions migrating into the crystalline fibers.
2 In the dedoping process, the film strain reflected conformational changes facilitating the hole
3 transfer at the same rate as ion migration into the crystalline fibers (**Fig. 2h-i, Table S1 &**
4 **Supplementary Note 2**). In the redoping process, the cations migrated out of the crystalline fibers
5 and directly into the electrolyte as inferred by the bulk mass change. This migration led to a similar
6 intermediate state as dedoping process (as discussed in **Supplementary Note 2**) and was then
7 followed by a moderately slower hole transfer (**Supplementary Fig. 9**). These structural insights
8 from the transient XPCS strain data combined with this complementary characterization highlight
9 the complex interplay of electronic, ionic, and mass transport even at relatively short timescales.

10 Selected control experiments from ethylene glycol (EG) mixed PEDOT:PSS (**Supplementary Fig.**
11 **11**) and poly(benzimidazobenzo-phenanthroline) (BBL, **Supplementary Fig. 12**) have been
12 included and illustrate how morphology modifies this strain behavior. Short timescale strain
13 transients were not observed in either material. After an extended period, EG mixed PEDOT:PSS
14 showed a gradual strain develop although BBL remained unchanged. These results suggest that
15 high-performance homopolymers, such as poly(2-(3,3'-bis(2-(2-methoxyethoxy)-
16 ethoxy)ethoxy)-[2,2'-bithiophen]-5-yl)thieno[3,2-b]thiophene) (pg2T-TT), may similarly
17 lack the initial strain spike during the fast polarization, but the details may depend on the system
18 properties. In the case of aqueous NaCl, operando studies of pg2T-TT have shown small changes
19 of the lamellar spacing and some degree of structural hysteresis between the doping and redoping
20 process likely analogous to acid-crystallized PEDOT¹⁵. However, in an ionic liquid, the structural
21 hysteresis of pg2T-TT is largely absent and may be attributed to a redistribution of the ionic species
22 within the ordered structures¹⁷.

23

24 **Quantifying state reversibility at the mesoscale**

25 The reversibility of the mesoscale structure can be assessed through relative changes of the
26 speckles. Here, we calculate a correlation matrix C as a metric that estimates the degree of
27 **similarity of the system to itself** at two different points in time. For the purposes herein, a suitable
28 definition of the correlation matrix C is:

$$1 \quad C(\mathbf{q}, t_1, t_2) = \frac{\langle I(\mathbf{q}, t_1)I(\mathbf{q}, t_2) \rangle_q}{\langle I(\mathbf{q}, t_1) \rangle_q \langle I(\mathbf{q}, t_2) \rangle_q} \quad (1)$$

2 Where \mathbf{q} is the scattering wave vector of a pixel in the scattering pattern, and I is the scattering
 3 intensity. The bracket $\langle \dots \rangle_q$ describes an average of correlations within a narrow \mathbf{q} range with
 4 similar statistical properties. The correlation matrix C can be plotted as a 2D map - denoted as a
 5 “C map” - and is particularly useful for understanding equilibrium and non-equilibrium processes.
 6 Values of C greater than 1 imply that states are positively correlated, i.e. morphologically similar
 7 in detail at different times and a value equal to 1 indicates that the states are uncorrelated. These
 8 C maps can be influenced by strain⁴⁰, which tends to lower the degree of correlation. We further
 9 modified the C map definition to create “strain-corrected” C maps through shifting of relevant
 10 detector pixels where applicable, numerically correcting for the film expansion and contraction.
 11 For comparison, uncorrected C maps have been included in **Supplementary Fig. 13**, and a
 12 comparison of alignment methods have been included in **Supplementary Fig. 14**.

13 The strain-corrected C maps and electrochemical profiles demonstrate both applied
 14 electrochemical potential and history couple to structural self-similarity at the mesoscale (**Fig. 3**).
 15 The strain-corrected C map for adiabatic steps (**Fig. 3a**) appears coarsely divided into two regions
 16 and we labelled these states q and p for convenience. Correlations were highest within subregions
 17 qQ and pP of the C map and suggest a series of small changes of chemical potential within each
 18 state result in morphologies with a higher degree of self-similarity. Crossing the state transition
 19 boundary from q→p or p→q appears to introduce a measurable and reversible change in the
 20 structural self-similarity as indicated by the reduced C values in subregion qP. In contrast, the non-
 21 adiabatic process (**Fig. 3b & Supplementary Fig. 15**) showed a path dependent structural
 22 hysteresis. Here, we use o, r and h to represent the doped (or oxidized), partly dedoped (or reduced)
 23 and high doped states, respectively. Within each state of fixed chemical potential (subregions oO,
 24 rR, o`O', hH, o``O``), we observed the highest degree of self-similarity; however, this similarity
 25 decreased between states, e.g. for o→r, subregion oR is reduced. Remarkably, the structural
 26 similarity of the system after going through the full electrochemical hysteresis cycle, pathway o→
 27 r→o`→h→o`` (subregion oO``), was higher than both partial cycles, pathway o→r→o` (subregion
 28 oO') and o`→h→o`` (subregion o`O``). Thus, while the starting and ending chemical potentials
 29 are the same, the reversibility of the system state depends on its history.

1

2 **Self-dynamics in equilibrium and non-equilibrium conditions**

3 The enhanced contrast from the 100 mM RbBr electrolyte reveals both the equilibrium and non-
4 equilibrium self-dynamics and their unexpected dependence on electrochemical potential changes.
5 Strain corrected C maps from doped-to-partly-dedoped (o→r) and partly-dedoped-to-redoped (r
6 →o') voltage steps are shown in **Fig. 4a&d**. The behavior of these voltage steps revealed
7 significant differences in the underlying physical processes.

8 The r→o` state transition showed the evolution of a long-lived and complex non-equilibrium state
9 (**Fig. 4a**) that is well described by a coarsening process following phase separation of a mixture.
10 After the voltage step and current transient, a small induction subregion with fast dynamics was
11 observed. This induction subregion was followed by a fan-like subregion of progressively slowing
12 fluctuations where the correlation functions are well described by a theoretical model⁴²⁻⁴⁴ for time
13 evolution of phase separating mixtures (**Fig. 4b&c**). Physically, this model gives a method of
14 scaling the dynamic evolution of domain sizes $R(t)$ (with an initial domain size kC) in non-
15 equilibrium based on the time t from the initial state change:

16
$$R(t) = k \left(t^{\frac{1}{n}} + C \right) \quad (2)$$

17 Additional details of the model derivation and fitting methods are provided in the **Supplementary**
18 **Note 3**. The fan-like subregion showed power-law scaling of the correlation times with an
19 extracted order parameter of $n = 3$ (**Fig. 4f**). This value of the order parameter corresponds to the
20 “Langevin Model B” system which describes phase separating mixtures with a conserved order
21 parameter²⁸. In the context of this OMIEC, this model suggests mesoscale dynamics are driven by
22 the interaction of two distinct types of (potentially) mobile domains. The total volume of each
23 domain type is fixed, and the average domain volume increases linearly with time.

24 In the case of an o→r transition, the system dynamics within the partly-dedoped state appeared to
25 reach an equilibrium behavior on the timescale of the current transient (**Fig. 4d**). This equilibrium
26 is characterized by the correlation time within the rR subregion being a function only of the time
27 difference $\delta t = t_2 - t_1$. The strain corrected C map within the partly-dedoped region were fit to

1 the previous model for comparison (simulated C map shown in **Fig. 4e**), giving a time constant of
2 ~500s (**Fig. 4f**, details in **Supplementary Note 4**).

3

4 **The origin of the long-term equilibrium and non-equilibrium evolution**

5 The origin of the scattering appears connected to several aspects of the mixed conduction processes
6 at the mesoscale. At the simplest level, the mesoscale structure is a dynamic mixture of quasi-
7 permanent paracrystalline and amorphous material. The material undergoes large structural
8 changes that appear to be mostly reversible under electrochemical cycling as charges move through
9 and transform the internal structure. These results are themselves remarkable; however, the
10 additional observations of path dependent, and long-lived non-equilibrium states begin to suggest
11 a more profound and critical connection to the underlying charge carrier species existence.
12 Beginning with the fluctuations of the partly-dedoped state shown in the previous section, we
13 hypothesize that these dynamics relate to the moving structural distortions of diffusing charge
14 carrier species. The doped state is known to contain both polaron and bipolaron species while the
15 partly-dedoped state primarily consists of neutral and polaron species. This assignment of the
16 dynamics to the charge carriers - primarily polarons in the partly-dedoped state - implies
17 coordinated motion of solvation shells, ions, and electrons occurring in equilibrium.

18 We anticipate that the equilibrium motion of charge carriers will rely on the local ionic mobility,
19 the relative energetic barriers for both ionic and electronic species' motion, and the requisite
20 solvation shells. These coordinated motions may have origins in local free volume fluctuations
21 activating transport and we believe such fluctuations may be inferred through temperature-
22 dependent measurements. These measurements are beyond the scope of this initial work, but the
23 results here suggest this is likely to be a productive future research direction.

24 The asymmetry in the dedoping transition ($o \rightarrow r$) and the exceptionally long non-equilibrium
25 period after redoping ($r \rightarrow o'$) suggests bipolaron dynamics are far from trivial. Bipolarons may
26 require significant local rearrangements of the counterion structure and solvation environment to
27 accommodate the local charge. We note the colloquial use of the term bipolarons here to simply
28 denote a multiply charged species - the identity and structures are unknown. Moreover, the
29 underlying interactions between charge carrier species is entirely unknown. The fast equilibration

1 upon dedoping ($o \rightarrow r$) suggests the bipolaron species are easy to convert to evenly distributed
2 polarons and neutral species.¹³ On redoping ($r \rightarrow o'$) with a large potential step, the overall
3 concentrations of both species also reach a steady state quickly;¹³ however, both polarons and
4 bipolarons are likely created at a wide distribution of sites within the heterogenous film due to the
5 applied overpotential. A schematic of the slow migration and coarsening of the bipolaron domains
6 is shown in **Fig. 5**, which explains the ubiquitous slower turn-on (redoping) speed of devices
7 compared to their turn-off (dedoping) speed and is important for understanding transient device
8 behavior in circuits^{19,45,46}. This final uneven bipolaron aggregation might originate from a higher
9 preference of bipolarons towards either the more crystalline or amorphous subdomains⁴⁷. To the
10 authors' knowledge, Bazant et. al., describes the most relevant electrochemical theory under these
11 non-equilibrium conditions⁴⁸. Essentially, the spatial distribution of carriers does not necessarily
12 reflect regions with the lowest activation energies or where they may be generated under adiabatic
13 operation observed in the stepped CV experiments. The observed bipolaron spatial distribution
14 may also be present in homopolymers (such as BBL and pg2T-TT) despite the current results
15 where small-angle scattering signals of these materials are too weak for quantitative analysis.
16 Consequently, harnessing these long-lived non-equilibrium states to create novel devices and
17 functionality remains an intriguing and open question. For example, one may envision
18 electrochemical pulsing schemes that leverage the spatial heterogeneities for temporary memory,
19 logical operations, and state machines in macroscopic devices. If the scale and degree of spatial
20 fluctuations can be tuned, these local modulations in conductance may also be useful for
21 modulating weights in neuromorphic crossbar devices. Moreover, non-equilibrium functionality
22 may be significantly enhanced by adding greater diversity to the number and character of
23 interacting charge carrier species, opening new synthetic design space for multifunctional
24 materials along with the use of multivalent ions, ionic mixtures, and ionic liquids.

25

26 **Acknowledgements**

27 J.R. gratefully acknowledges funding support from the Alfred P. Sloan Foundation (award no. FG-
28 2019-12046). R.W., B.D.P., and J.R. acknowledge support from the National Science Foundation
29 (grant no. NSF DMR-1751308). This work is also funded by Northwestern's MRSEC program

1 (NSF DMR-1720139). This work utilized the SPID facility of Northwestern University's
2 NUANCE Center, which is partially supported by the Soft and Hybrid Nanotechnology
3 Experimental (SHyNE) Resource (NSF ECCS-1542205), the Materials Research Science and
4 Engineering Center (NSF DMR-1720139), the State of Illinois, and Northwestern University. This
5 research used resources of the Advanced Photon Source operated by Argonne National Laboratory
6 supported by the U.S. Department of Energy (DOE), Office of Science (Contract No. DE-AC02-
7 06CH11357). Use of the Stanford Synchrotron Radiation Lightsource at SLAC National
8 Accelerator Laboratory is supported by the U.S. DOE, Office of Science, Office of Basic Energy
9 Sciences (Contract No. DE-AC02-76SF00515). We extend our special thanks to Dr. Gajendra S.
10 Shekhawat, Hyeonseon Choi and Prof. Lincoln J. Lauhon (Northwestern) for the attempt of in situ
11 AFM and related discussions.

12

13 Contributions

14 R.W., D.M. and C.J.T. designed, tested the operando cell, and conducted the experiments. J.S.,
15 S.N. and Q.Z. supported the operando GIXPCS measurements in APS. C.J.T., J.R. and B.D.P
16 conceived and directed the study. R.W. analyzed the data and conducted the model simulation
17 under the supervision of C.J.T. R.W., J.R., and C.J.T. wrote the manuscript with discussion and
18 input from all authors.

19

20 Competing interests

21 The authors declare no competing interests.

22

23 Figure Legends

24 **Fig. 1 Operando GIXPCS to monitor chemical potential induced strain in adiabatic and non-**
25 **adiabatic processes.** **a**, operando grazing incidence small angle XPCS setup; **b**, example XPCS
26 pattern of acid treated PEDOT:PSS exposed in 100 mM RbBr. **c**, Application of 0.6 V potential
27 steps (non-adiabatic) with operando GIXPCS in 100 mM NaCl and the resulting **d**, charging
28 current, **e**, strain in z direction, where the positive value corresponds to increasing film thickness,

1 and **f**, the overall scattering intensity change. **g**, Application of 0.1 V potential steps (adiabatic)
2 with operando GIXPCS and the resulting **h**, charging current, **i**, strain in z direction, **j**, the overall
3 scattering intensity change.

4 **Fig. 2 Sequence of strain, phase contrast and charge kinetics.** 0.6 V potential step with
5 operando GIXPCS of acid treated PEDOT:PSS cycled in 100 mM RbBr: **a**, the voltage profile
6 (black); **b**, charging current (grey); **c**, strain in z direction (orange), where the positive value is the
7 vertical upward strain (away from substrate); **d**, the overall scattering intensity change (navy blue);
8 RC-normalized curves between $0\tau_{RC}$ and $3\tau_{RC}$ for **e**, dedoping process and **f**, redoping process to
9 show the order of polaron population kinetics (red), and mesoscale domain strain (orange), phase
10 contrast (navy blue) and charge transport (grey) transients; the cartoon for vertical strain in
11 dedoping process: **g**, the initial state; **h**, the first negative strain spike; **i**, the strain relaxation in the
12 opposite direction. The vertical strain is marked with orange arrows.

13 **Fig. 3 Mesoscale state reversibility in adiabatic and non-adiabatic processes.** Strain-corrected
14 C maps for **a**, small and **b**, large potential steps in 100 mM NaCl electrolyte. The voltage profiles
15 along with labels have been added along with dotted lines to demark regions and transitions of
16 interest. For the large potential steps, the first potential step was applied at 30 sec.

17 **Fig. 4 Mesoscale domain self-dynamics.** **a**, the strain corrected C map of the $r \rightarrow o'$ transition
18 (redoping process); the fan-like subregion is marked with black dashed lines and the fitting area is
19 inside the purple box. For illustrative purposes, a dashed white line denotes a diagonal line cut
20 used in the model fitting process ($\bar{t} = 200s$). Note that the voltage step happens at $t = 0s$. **b**,
21 Simulated C map from the theoretical model of the $r \rightarrow o'$ transition; **c**, model fitting of diagonal
22 line cuts with experimental data (hollow points) and the least-square fitting results (solid lines) of
23 the $r \rightarrow o'$ transition for $\bar{t} = \frac{t_1+t_2}{2}$ of 75s, 100s, 125s, 150s, 175s and 200s; **d**, the strain corrected C
24 map of the $o \rightarrow r$ transition (dedoping process); the invariant-time decorrelation is marked with
25 black dash lines. **e**, Simulated C map from the theoretical model of the $o \rightarrow r$ transition; **f**, the
26 predicted time extracted from the line cut fitting, assuming the order parameter of $n = 3$ (in
27 **Formula 2**). Data are presented as fitting values with error bars representing the 95% confidence
28 interval.

1 **Fig. 5 Domain coarsening of the “Langevin Model B” system and an associated schematic of**
2 **the polymer morphology undergoing this process.** Polymer backbones (middle schematics) are
3 represented as colored lines on a black background. Bipolaron domains (together with the counter
4 ions and their solvation shell) are denoted by dark orange and polaron domains are colored yellow.
5 The voltage and current profiles are plotted on the right. A simulated C map of this system is
6 shown in **Supplementary Fig. 25.**

7

8 **Reference**

- 9 1. Moia, D. *et al.* Design and evaluation of conjugated polymers with polar side chains as electrode
10 materials for electrochemical energy storage in aqueous electrolytes. *Energy Environ. Sci.* **12**,
11 1349-1357 (2019).
- 12 2. Ji, X. D. *et al.* Mimicking associative learning using an ion-trapping non-volatile synaptic
13 organic electrochemical transistor. *Nat. Commun.* **12**, 2480 (2021).
- 14 3. Harikesh, P. C. *et al.* Organic electrochemical neurons and synapses with ion mediated spiking.
15 *Nat. Commun.* **13**, 901 (2022).
- 16 4. Shim, H. *et al.* An elastic and reconfigurable synaptic transistor based on a stretchable bilayer
17 semiconductor. *Nat. Electron.* **5**, 660-671 (2022).
- 18 5. Rashid, R. B., Ji, X. D. & Rivnay, J. Organic electrochemical transistors in bioelectronic circuits.
19 *Biosens. Bioelectron.* **190**, 113461 (2021).
- 20 6. Simon, D. T., Gabrielsson, E. O., Tybrandt, K. & Berggren, M. Organic Bioelectronics:
21 Bridging the Signaling Gap between Biology and Technology. *Chem. Rev.* **116**, 13009-13041
22 (2016).
- 23 7. Kukhta, N. A., Marks, A. & Luscombe, C. K. Molecular Design Strategies toward Improvement
24 of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for
25 Organic Electrochemical Transistors. *Chem. Rev.* **122**, 4325-4355 (2022).
- 26 8. Wu, R. H., Matta, M., Paulsen, B. D. & Rivnay, J. Operando Characterization of Organic Mixed
27 Ionic/Electronic Conducting Materials. *Chem. Rev.* **122**, 4493-4551 (2022).
- 28 9. Paulsen, B. D., Tybrandt, K., Stavriniidou, E. & Rivnay, J. Organic mixed ionic-electronic
29 conductors. *Nat. Mater.* **19**, 13-26 (2020).

1 10. Palumbiny, C. M. *et al.* The Crystallization of PEDOT:PSS Polymeric Electrodes Probed In
2 Situ during Printing. *Adv. Mater.* **27**, 3391-3397 (2015).

3 11. Manley, E. F. *et al.* In Situ GIWAXS Analysis of Solvent and Additive Effects on PTB7 Thin
4 Film Microstructure Evolution during Spin Coating. *Adv. Mater.* **29**, 1703933, (2017).

5 12. Bischak, C. G. *et al.* A Reversible Structural Phase Transition by Electrochemically-Driven
6 Ion Injection into a Conjugated Polymer. *J. Am. Chem. Soc.* **142**, 7434-7442, (2020).

7 13. Paulsen, B. D. *et al.* Time-Resolved Structural Kinetics of an Organic Mixed Ionic-Electronic
8 Conductor. *Adv. Mater.* **32**, 2003404 (2020).

9 14. Richter, L. J., DeLongchamp, D. M. & Amassian, A. Morphology Development in Solution-
10 Processed Functional Organic Blend Films: An In Situ Viewpoint. *Chem. Rev.* **117**, 6332-6366
11 (2017).

12 15. Paulsen, B. D. *et al.* Electrochemistry of Thin Films with In Situ/Operando Grazing Incidence
13 X-Ray Scattering: Bypassing Electrolyte Scattering for High Fidelity Time Resolved Studies.
14 *Small* **17**, 2103213 (2021).

15 16. Guo, J. J. *et al.* Hydration of a Side-Chain-Free n-Type Semiconducting Ladder Polymer
16 Driven by Electrochemical Doping. *J. Am. Chem. Soc.* **145**, 1866-1876 (2023).

17 17. Quill, T. J. *et al.* An ordered, self-assembled nanocomposite with efficient electronic and ionic
18 transport. *Nat. Mater.* **22**, 362-368 (2023).

19 18. Savva, A., Wustoni, S. & Inal, S. Ionic-to-electronic coupling efficiency in PEDOT:PSS films
20 operated in aqueous electrolytes. *J. Mater. Chem. C* **6**, 12023-12030, (2018).

21 19. Wu, R. H., Paulsen, B. D., Ma, Q. & Rivnay, J. Mass and Charge Transport Kinetics in an
22 Organic Mixed Ionic-Electronic Conductor. *Chem. Mater.* **34**, 9699–9710 (2022).

23 20. Tropp, J. *et al.* Revealing the Impact of Molecular Weight on Mixed Conduction in Glycolated
24 Polythiophenes through Electrolyte Choice. *ACS Mater. Lett.* **5**, 1367-1375 (2023).

25 21. Ouyang, L. Q., Musumeci, C., Jafari, M. J., Ederth, T. & Inganäs, O. Imaging the Phase
26 Separation Between PEDOT and Polyelectrolytes During Processing of Highly Conductive
27 PEDOT:PSS Films. *ACS Appl. Mater. Interfaces* **7**, 19764-19773 (2015).

28 22. Rivnay, J. *et al.* Structural control of mixed ionic and electronic transport in conducting
29 polymers. *Nat. Commun.* **7**, 11287 (2016).

30 23. Kim, N. *et al.* Highly Conductive PEDOT: PSS Nanofibrils Induced by Solution-Processed
31 Crystallization. *Adv. Mater.* **26**, 2268-2272 (2014).

1 24. Yeon, C., Yun, S. J., Kim, J. & Lim, J. W. PEDOT:PSS Films with Greatly Enhanced
2 Conductivity via Nitric Acid Treatment at Room Temperature and Their Application as Pt/TCO-
3 Free Counter Electrodes in Dye-Sensitized Solar Cells. *Adv. Electron. Mater.* **1**, 1500121 (2015).

4 25. Kim, T., Park, S., Seo, J., Lee, C. W. & Kim, J. M. Highly conductive PEDOT:PSS with
5 enhanced chemical stability. *Org. Electron.* **74**, 77-81 (2019).

6 26. Jiang, N. S., Endoh, M. K. & Koga, T. 'Marker' grazing-incidence X-ray photon correlation
7 spectroscopy: a new tool to peer into the interfaces of nanoconfined polymer thin films. *Polym. J.*
8 **45**, 26-33 (2013).

9 27. Sinha, S. K., Jiang, Z. & Lurio, L. B. X-ray Photon Correlation Spectroscopy Studies of
10 Surfaces and Thin Films. *Adv. Mater.* **26**, 7764-7785 (2014).

11 28. Desai, R. C. & Kapral, R. *Dynamics of Self-Organized and Self-Assembled Structures* 38-49
12 (Cambridge, 2009).

13 29. Shpyrko, O. G. X-ray photon correlation spectroscopy. *J. Synchrotron Radiat.* **21**, 1057-1064
14 (2014).

15 30. Malik, A. *et al.* Coherent X-ray study of fluctuations during domain coarsening. *Phys. Rev.*
16 *Lett.* **81**, 5832-5835 (1998).

17 31. Madsen, A., Leheny, R. L., Guo, H. Y., Sprung, M. & Czakkel, O. Beyond simple exponential
18 correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy. *New J.*
19 *Phys.* **12**, 055001 (2010).

20 32. Steinruck, H. G. *et al.* Concentration and velocity profiles in a polymeric lithium-ion battery
21 electrolyte. *Energy Environ. Sci.* **13**, 4312-4321 (2020).

22 33. Ju, G. X. *et al.* Coherent X-ray spectroscopy reveals the persistence of island arrangements
23 during layer-by-layer growth. *Nat. Phys.* **15**, 589-594 (2019).

24 34. Lal, J. *et al.* Universal dynamics of coarsening during polymer-polymer thin-film spinodal
25 dewetting kinetics. *Phys. Rev. E* **102**, 032802 (2020).

26 35. Yavitt, B. M. *et al.* Structural Dynamics in UV Curable Resins Resolved by In Situ 3D Printing
27 X-ray Photon Correlation Spectroscopy. *ACS Appl. Polym. Mater.* **2**, 4096-4108 (2020).

28 36. Johnson, K. J. *et al.* In Operando Monitoring of Dynamic Recovery in 3D-Printed Thermoset
29 Nanocomposites by XPCS. *Langmuir* **35**, 8758-8768 (2019).

1 37. Amadei, F. *et al.* Ion-Mediated Cross-linking of Biopolymers Confined at Liquid/Liquid
2 Interfaces Probed by In Situ High-Energy Grazing Incidence X-ray Photon Correlation
3 Spectroscopy. *J. Phys. Chem. B* **124**, 8937-8942 (2020).

4 38. Song, J. *et al.* Microscopic dynamics underlying the stress relaxation of arrested soft materials.
5 *P. Natl. Acad. Sci. USA* **119**, 2201566119 (2022).

6 39. Donley, G. J. *et al.* Investigation of the yielding transition in concentrated colloidal systems
7 via rheo-XPCS. *P. Natl. Acad. Sci. USA* **120**, 2215517120 (2023).

8 40. Sutton, M., Lhermitte, J. R. M., Ehrburger-Dolle, F. & Livet, F. High resolution strain
9 measurements in highly disordered materials. *Phys. Rev. Res.* **3**, 013119 (2021).

10 41. Giridharagopal, R. *et al.* Electrochemical Strain Microscopy Probes Morphology-Induced
11 Variations in Ion Uptake and Performance in Organic Electrochemical Transistors. *Nat. Mater.* **16**,
12 737–742 (2017).

13 42. Yeung, C. & Jasnow, D. Two-time correlations, self-averaging, and an analytically solvable
14 model of phase-ordering dynamics. *Phys. Rev. B* **42**, 10523-10535 (1990).

15 43. Brown, G., Rikvold, P. A., Sutton, M. & Grant, M. Speckle from phase-ordering systems. *Phys.*
16 *Rev. E* **56**, 6601-6612 (1997).

17 44. Fluerasu, A., Sutton, M. & Dufresne, E. M. X-ray intensity fluctuation spectroscopy studies
18 on phase-ordering systems. *Phys. Rev. Lett.* **94**, 055501 (2005).

19 45. Ersman, P. A. *et al.* Screen printed digital circuits based on vertical organic electrochemical
20 transistors. *Flex. Print Electron.* **2**, 045008 (2017).

21 46. Guo, J. *et al.* Why accumulation mode organic electrochemical transistors turn off much faster
22 than they turn on. *arXiv preprint arXiv:2305.01179* (2023).

23 47. Cavassin, P. *et al.* Electrochemical Doping in Ordered and Disordered Domains of Organic
24 Mixed Ionic-Electronic Conductors. *Adv. Mater.* 202300308 (2023).

25 48. Bazant, M. Z. Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium
26 Thermodynamics. *Accounts Chem. Res.* **46**, 1144-1160 (2013).

27

28 **Method**

29 **Sample preparation:** PEDOT/PSS (Clevios PH-1000) from Heraeus Holding GmbH was filtered
30 through 0.45 μm poly(ether sulfone) (PES) filters to remove large particles. The filtrate was drop-
31 casted on a 100nm gold deposited p-type Boron-doped Si wafer (0-100 ohm cm^{-1}) (University

1 Wafer) at 70 °C. The wafer had been successively sonicated in acetone and isopropyl alcohol and
2 exposed to UV-ozone prior to drop-casting. The drop-casted films were dried at 120 °C for 20 min
3 to remove excess water inside. After cooling down, the samples were treated with 95% H₂SO₄ for
4 3h. After rinsing in DI water, the samples were first heated at 60 °C for 30 min and then at 120 °C
5 for 30 min in ambient to form homogeneous metallic purple films. The substrate before OMIEC
6 drop cast was characterized with atomic force microscopy (AFM, **Supplementary Fig. 23**), giving
7 a vertical roughness of 1.2-1.4 nm with a horizontal grain size of ~60nm. The AFM images were
8 collected at the NUANCE center in Northwestern University in tapping mode. The images were
9 subject to standard image processing (image flattening and contrast enhancement) using the
10 NanoScope software.

11 **Operando GIXPCS:** Grazing-incidence XPCS experiments were performed at beamline 8-ID-I
12 (Advanced Photon Source, Argonne National Laboratory) with an X-ray energy of 10.92 keV and
13 2 μm×20 μm beam size. The coherent X-rays in grazing incidence were directed through knife-
14 edge seal of the cone cell as shown in **Fig. 1a**, passing through the electrolyte and OMIEC film.
15 In the experiments, x-ray flux was empirically determined to minimize damage: a low attenuation
16 for short transients (denoted 'att1') and a higher attenuation (denoted as 'att4' and equivalent to
17 1/12 of att1) for the longer experiments. All the measurements were performed after several
18 electrochemical cycles for reversible state changes. The incident beam was aligned in the middle
19 of the cone cell to minimize the external strain. The scattering patterns were collected with a
20 detector reading frequency of 10Hz. The data analysis was performed using a series of Python and
21 Matlab scripts with detailed method and theory presented in the **Supplementary Information**. To
22 maximize the scattering signal strength, acid-treated PEDOT:PSS was selected as the model
23 OMIEC system, including its well-textured structure and clear mesoscale domain boundary. While
24 NaCl was initially chosen as the electrolyte due to its relevance in typical OMIEC applications,
25 the weak scattering limited quantitative analysis. Consequently, we also employed RbBr (high
26 electron density) as the electrolyte to increase the scattering of mesoscale features for our
27 quantitative kinetic analysis and model fitting.

28 **Cell description:** As previously reported for complementary GIWAXS measurements,¹³ the cone
29 cell uses a cylindrical body with a tapered, knife edge pressed against the supported thin film. The
30 knife edge deforms slightly to seal, providing a rigid, X-ray transparent window for both the

1 incident and scattered beams to interact with the electrolyte and sample. The substrate is fully
2 supported using a combination of a flattened, polished screw and a thin epoxy film; this support
3 provides the mechanical stability during electrochemical cycling and minimizes deformation of
4 the silicon due to the pressure of the knife edge seal. We note that the electrochemical cell has
5 minimal parasitic currents and satisfies the strict requirements for rigidity and stability required
6 for GIXPCS.

7

8 **Data Availability**

9 The original data underlying the figures in the main text are publicly available from the
10 Northwestern University repository (Dryad) at DOI: 10.5061/dryad.4b8gthtkq. The datasets
11 generated and/or analysed during this current study are available from the corresponding author
12 upon request.

13

14 **Code availability**

15 Both Python and Matlab code is available publicly from the Northwestern University repository
16 (Dryad) at DOI: 10.5061/dryad.4b8gthtkq.

17