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Abstract

Despite the prominence of orbitals throughout the curriculum of undergraduate

chemistry, high-quality visualization of the atomic orbitals is out of reach for most

scientists. Rigorously visualizing the atomic orbitals even for simple hydrogen-like

atoms and ions is rather challenging due to the complex 3-D structure and geometric

variability of the orbitals across three distinct quantum numbers. In this article, a

graphical user interface (GUI)-based tool for visualizing 3-D volumetric density plots

of hydrogen atomic orbitals is introduced. This tool is written in Python, and a

Jupyter notebook version with explanatory blocks interspersed in the code is included

for pedagogical purposes. The user can manipulate a large number of features using

the GUI, which allows customization of the orbital illustrations. Because this visualizer

is capable of visualizing orbitals with any quantum numbers and showing their nodal

surfaces, it can serve as a supplement to students’ lecture and textbook education on

this topic.
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Introduction

In undergraduate chemistry courses, especially first-year general and upper-level physical

chemistry courses, students are introduced to the atomic orbitals for the hydrogen atom

in varying levels of detail.1–16 In first-year courses, students are told about the quantum

numbers n, l, and m (often called ml) used to label the wavefunctions and energy states of

the hydrogen atom.3–10 Students are then taught to associate distinct sets of the quantum

numbers with specific shapes of the electron orbitals.17 Students often, and even profes-

sional chemists occasionally, struggle to understand what is meant by an orbital due to the

inherent connection between the strange wave-particle duality of the electrons and the elec-

tron orbital geometry.17,18 This wave-particle duality manifests in the electrons spreading

throughout space in a wide array of different orbital geometries. Perfecting the mental im-

ages students associate with the orbitals is thus of critical pedagogical importance. To this

end, students are shown basic illustrations of the orbitals, typically represented as “shells” of

the wavefunction generated using iso-probability surfaces (sometimes called boundary sur-

faces).3–10 Many articles in this Journal have suggested a range of methods for representing

orbital iso-probability surfaces, contour plots, and occasionally density diagrams.19–26 No-

tably, more modern articles typically include more useful 3-D representations using random

points or density plots, but most still rely on the construction of surfaces rather than showing

the density of the orbital in space.17,24–26

The shortcomings of basic orbital pictures become clearer as the value of n is increased

for a given l and m. For instance, consider the series of pz orbitals with n = 2, 3, 4 shown in

Figure 1. It is immediately clear that if the 3-D features of the orbitals are not adequately
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captured, students may miss crucial aspects of the orbitals’ structure, such as the presence of

radial nodes and the diffuse spread of the electrons throughout space. The latter is especially

important, since isoprobability surfaces are incapable of expressing how the orbital amplitude

is lower in regions far from the nucleus and how the corresponding probability density is

higher. This structure is important when students begin their study of molecular orbital

theory since the orbital overlap is related to bonding strength.11 Moreover, the typical 2-D

representations of orbitals do not help students reason about the orbitals’ spatial alignment.

While some textbooks do effectively show the radial nodes and orbital alignment using iso-

probability surfaces,1–10 several erroneously illustrate the orbitals with corresponding l and

m quantum numbers and increasing principal quantum number n as simply larger versions

of the previous orbitals.27–29 It is also noteworthy that many textbooks that include some

3-D depiction of the wavefunctions have only one figure illustrating the 3-D radial structure

of the wavefunction, and only for s orbitals.3–10 While this is not an indictment of the quality

of any of these texts, it does suggest that the use of interactive simulation tools capable of

plotting as many distinct orbitals as students need can help students significantly enhance

their understanding and intuition. This is further supported by the popularity of online

resources like the Orbitron, which contains several solid cutaway versions of the hydrogen

atomic orbitals wavefunctions.30

While general chemistry students are exposed to the shapes of the orbitals, they are less

commonly exposed to the relationships between the quantum numbers and the radial and

angular nodes of the wavefunction at the general chemistry level. This is unfortunate, since

reasoning about the spatial orientations and geometric structure of orbitals is critical to even

a qualitative treatment of molecular orbital theory in upper-division courses. The lack of

both rigorously correct visualizations of the atomic orbitals and the lack of association of

the quantum numbers with nodal structure and geometry of the orbitals likely contributes

to students’ well-documented difficulties with molecular orbital theory.31 This work aims

to somewhat alleviate this problem by presenting an open-source graphical user interface
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(GUI)-based tool developed using undergraduate physical chemistry concepts. The program

allows students to easily modify 3-D representations of the orbitals and their nodal surfaces

to discover and understand the relationships between quantum numbers and geometry. This

tool can easily be integrated into a general chemistry course to aid in visualization of orbitals

during units on introductory quantum mechanics. But to assist students with effective orbital

visualizations, the nature of the orbitals being plotted must be addressed.

Quantum Theory and the Hydrogen Atom

Once students learn how to solve the time-independent Schrödinger equation in physical

chemistry, they are exposed to some of the mathematical details of the wavefunctions for the

hydrogen atom.11–15 Students are then taught that what they have called atomic orbitals

throughout their chemistry careers are nothing more than the wavefunction solutions to the

time-independent Schrödinger equation for the hydrogen atom. The probability of finding

an electron at some location in space is then related to the square modulus of the wavefunc-

tion.11,12 It should be emphasized to students that the wavefunction is not observable, but

its square modulus that describes the spatial electron density is observable.11 What students

recognize as orbitals in multi-electron atoms and molecules is an “orbital approximation” to

the wavefunction for that system.17 Written in abstract form in spherical coordinates, the

time-independent Schrödinger equation and its solutions for the hydrogen atom have the

form,11

Ĥψn,l,m(r, θ, ϕ) = Enψn,l,m(r, θ, ϕ) (1)

En = −
RH

n2
(2)

ψn,l,m(r, θ, ϕ) = Rn,l(r)Y
m
l (θ, ϕ) (3)

In equations (1)-(3), Ĥ is the Hamiltonian (total energy) operator with energy eigenvalues

En, ψn,l,m is one of the hydrogen wavefunctions, RH is the Rydberg constant, Rn,l(r) is
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Figure 1: Illustration of ϕn,1,0, also known as pz orbitals, for n = 2, 3, 4. This demonstrates
how the number of radial nodes varies with the quantum number n.
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the radial wavefunction, and Y m
l (θ, ϕ) is a spherical harmonic function, the angular part

of the wavefunction.32 Depending on the emphasis of the course, students are often shown

how to find these solutions with differential equations techniques or ladder operators.11,33

It is Y m
l (θ, ϕ) that gives rise to the “shapes” (sphere, dumbbell, clover, etc.) of the atomic

orbitals. The quantum numbers n, l, and m are the usual principal, angular momentum, and

magnetic quantum numbers for the hydrogen atom orbitals with the same limits taught to

general chemistry students,1–16

n ∈ N (n = 1, 2, 3, . . .) (4)

l ∈ [0, n− 1] ⊂ Z (l = 0, 1, 2, . . . , n− 1) (5)

m ∈ [−l, l] ⊂ Z (m = −l,−l + 1, . . . , 0, . . . , l − 1, l) (6)

where ∈ denotes set inclusion, ⊂ denotes a subset, N is the set of natural numbers, and Z is

the set of integers.32 The radial and angular wavefunctions can be expressed using orthogonal

polynomials,11,32,34

Rn,l(r) = Cn,le
− r

na0

(

2r

na0

)l

L
(2l+1)
n−l−1

(

2r

na0

)

(7)

Y m
l (θ, ϕ) = Nl,mP

m
l (cos(θ))eimϕ (8)

In equations (7) and (8), a0 is the Bohr radius, L
(2l+1)
n−l−1 is an associated Laguerre polynomial,

and Pm
l is an associated Legendre polynomial. These polynomials are defined via recursion

relationships or the Rodrigues formulas,32,34

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (9)

Pm
l (x) = (−1)m(1− x2)

m

2

dm

dxm
Pl(x) (10)

L(α)
n (x) =

x−αex

n!

dn

dxn
(e−xxn+α) (11)
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The normalization constants Cn,l and Nl,m are given by,11

Cn,l =

√

(

2

na0

)3
(n− l − 1)!

2n(n+ l)!
(12)

Nl,m =

√

(2l + 1)(l −m)!

4π(l +m)!
(13)

With the mathematical form of the wavefunctions in hand, a connection between the

mathematics of quantum mechanics and general chemistry intuition finally seems to be in

reach. For curious students that consider the mathematical form of the wavefunctions,

however, a somewhat surprising issue arises. For orbitals with m ̸= 0, the wavefunction

is intrinsically complex due to the term eimϕ. Thus, rationalizing a picture of the orbitals

becomes more complicated. If students do plot the 3-D form of the real and imaginary

parts of a wavefunction with m ̸= 0, they discover that the real and imaginary parts of

an individual 2p orbital with m = ±1 take on the expected form for both the px and py

orbitals. Even more confusingly, instead of the traditional “dumbbell” shape, the magnitude

of the wavefunction for a 2p orbital with m = ±1 is rather like a “doughnut,” or more

properly a torus. The real or imaginary parts are what have the expected appearance of

a dumbbell. This is shown in Figure 2. The corresponding real and imaginary parts of

the orbital ψ2,1,−1 simply have the real and imaginary orientations swapped and the same

shapes as the components of the orbital ψ2,1,1. Since the wavefunctions ψn,l,m do not entirely

look like students expect based upon their general chemistry intuition, a connection between

the solutions to the Schrödinger equation and the orbital pictures drawn in introductory

chemistry courses must be made. Otherwise, it is unclear what exactly it is that textbooks

are plotting and calling the orbitals.
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Figure 2: Illustration of the real and imaginary parts of the orbital ψ2,1,1, one of the 2p
orbitals, and the orbital’s absolute magnitude. Note that the magnitude of the complete
orbital is shaped like a doughnut (torus) rather than the traditional dumbbell.
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A Modified Hydrogen Orbital Basis

The connection between the mathematical wavefunctions and general chemistry intuition

can be shown using some clever mathematical manipulations of the Legendre polynomials

in the angular wavefunction. A different, though in some ways more convenient, form of

the hydrogen atom orbitals that retains all of the necessary properties (degeneracies, or-

thonormality) can be constructed. This new set of orbitals will be entirely real, and so the

imaginary wavefunction component eimϕ is what must be dealt with. An identity that follows

from manipulation of the Rodrigues formula for the associated Legendre polynomials is,32,35

P−m
l (cos(θ)) =

(l −m)!

(l +m)!
Pm
l (cos(θ)) (14)

=⇒ P−m
l (cos(θ)) ∝ Pm

l (cos(θ))

Note that some authors will include a factor of (−1)m, called the Condon-Shortley phase, in

equation (14).32 This factor is omitted in this paper to simplify the algebraic presentation.

The identity in equation (14) suggests that various angular functions can be combined in a

useful way. Using the normalization constant Nl,m from equation (13) gives,

Nl,mP
m
l (cos(θ)) =

√

(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos(θ))

Nl,−mP
−m
l (cos(θ)) =

(l −m)!

(l +m)!

√

(2l + 1)(l +m)!

4π(l −m)!
Pm
l (cos(θ))

=

√

(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos(θ))

= Nl,mP
m
l (cos(θ)) (15)

Equation (15) says that the θ part of the angular wavefunction corresponding to −m is the

same as for m when including the normalization constant. Finally, the Euler formula for
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cos(ϕ) in equation (16) can be used to address the ϕ part of the wavefunction,

cos(ϕ) =
eiϕ + e−iϕ

2
(16)

Y m
l (θ, ϕ) + Y −m

l (θ, ϕ) = Nl,mP
m
l (cos(θ))eimϕ +Nl,−mP

−m
l (cos(θ))e−imϕ

= Nl,mP
m
l (cos(θ))

[

eimϕ + e−imϕ
]

= 2Nl,mP
m
l (cos(θ)) cos(mϕ)

= 2Re
(

Y m
l (θ, ϕ)

)

(17)

The linear combination of angular functions in equation (17) is entirely real, and thus much

easier to deal with. An exactly analogous result for the difference linear combination is

obtained using the Euler formula for sin(ϕ) in equation (18),

sin(ϕ) =
eiϕ − e−iϕ

2i
(18)

Y m
l (θ, ϕ)− Y −m

l (θ, ϕ) = Nl,mP
m
l (cos(θ))eimϕ −Nl,−mP

−m
l (cos(θ))e−imϕ

= Nl,mP
m
l (cos(θ))

(

eimϕ − e−imϕ
)

= 2iNl,mP
m
l (cos(θ)) sin(mϕ)

= 2iIm
(

Y m
l (θ, ϕ)

)

(19)

The linear combination in equation (19) is entirely imaginary, so multiplying by i gives an

entirely real function. Utilizing these results, a purely real new set of orbital wavefunctions

called ϕn,l,m is defined such that,

ϕn,l,±m(r, θ, ϕ) ≡















ψn,l,m(r, θ, ϕ) m = 0

± i0.5∓0.5

√
2

[ψn,l,m(r, θ, ϕ)± ψn,l,−m(r, θ, ϕ)] m ̸= 0

(20)

=















ψn,l,m(r, θ, ϕ) m = 0

± i0.5∓0.5

√
2
Rn,l(r)

[

Y m
l (θ, ϕ)± Y −m

l (θ, ϕ)
]

m ̸= 0
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where the factor of i0.5∓0.5 gives a result of 1 when using the positive linear combination

from equation (17) and i when using the negative linear combination in equation (19). This

ensures that the resultant orbitals are strictly real. Using equation (3) for the hydrogen

wavefunctions ψn,l,m, the fact that the radial wavefunction is completely real, and equations

(17) and (19), the orbitals ϕn,l,m can be neatly written,

ϕn,l,m(r, θ, ϕ) =































ψn,l,m(r, θ, ϕ) m = 0

2√
2
Re

(

ψn,l,m(r, θ, ϕ)
)

m > 0

2√
2
Im

(

ψn,l,−m(r, θ, ϕ)
)

m < 0

(21)

where the extra factor of 2 comes from equations (17) and (19) and the requirement of nor-

malization. This set of orbital wavefunctions ϕn,l,m is completely real for every set of quantum

numbers. Note that while McQuarrie does explain this construction of the “real represen-

tation” of the hydrogen orbitals in the context of the p and d orbitals, this construction is

entirely general and too frequently left unexplained.11

The new set of functions {ϕn,l,m} is a complete spanning set of orthonormal functions

that is a legitimate replacement for the hydrogen atom wavefunctions. The original hydrogen

atom wavefunctions ψn,l,m obey the orthonormality relationship expressed in Dirac’s bra-ket

notation,11,33

⟨ψn,l,m|ψn′,l′,m′⟩ =

∫

R3

ψ∗
n,l,m(r, θ, ϕ)ψn′,l′,m′(r, θ, ϕ)dτ = δn,n′δl,l′δm,m′ (22)

where δjk is the Kronecker delta (1 if j = k and 0 otherwise), R3 is all of 3-D space and

dτ is the volume element (dτ = dxdydz in Cartesian coordinates, dτ = r2 sin(θ)drdθdϕ in

spherical coordinates).32,34 The same relationship is obeyed by the new functions ϕn,l,m,

⟨ϕn,l,m|ϕn′,l′,m′⟩ =

∫

R3

ϕ∗
n,l,m(r, θ, ϕ)ϕn′,l′,m′(r, θ, ϕ)dτ = δn,n′δl,l′δm,m′ (23)
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which can be verified case-by-case using equations (20) and (22).

The orbitals ϕn,l,m have identical energies to the unmodified hydrogen orbitals ψn,l,m

since Ĥϕn,l,m = Enϕn,l,m. This set of orbitals will span all 2l+1 possible values of m for any

particular choice of n and l since we have defined a set of orbitals {ϕn,l,m} that are unique and

orthonormal for every value of m. Mathematically, this means that the definition of ϕn,l,m

can be interpreted as a change of basis for the hydrogen atomic orbitals ψn,l,m. The ϕn,l,m

orbitals are also strictly real, and can thus be plotted using a single picture for each distinct

orbital. Plotting the orbitals corresponding to ϕn,l,m and ϕn,l,−m for 2p orbitals in the same

fashion as before gives the familiar looking pictures corresponding to 2px and 2py orbitals

shown in Figure 3. It turns out that when chemists are trained to visualize the atomic

orbitals for hydrogen, they are typically introduced, at least implicitly, to this modified basis

set {ϕn,l,m} rather than the direct solutions to the Schrödinger equation {ψn,l,m}. This is due

to the simplification of only needing one plot of the orbital in its “real representation,” as

McQuarrie describes it.11 This is a detail often missed by even veteran chemistry instructors.

An explanation of how these 3-D visualizations of the orbitals were generated and the tool

that students may use to explore the orbitals is now in order.

Implementation of the the Hydrogen Orbital Visualizer

The method used in this paper to capture the 3-D structure of the orbitals exploits a fairly

unique suite of visualization tools available in packages of the Python coding language.36

The orbitals are drawn using the scalar field visualization tool within the Mayavi package,

where the colormaps are derived from the sign and magnitude of the wavefunction at various

points in space.37 The magnitude of the wavefunction is also used to determine the opacity

of the regions of the scalar field. This feature is not particularly common in other plotting

software, including Python’s matplotlib suite, which motivated the use of Python’s Mayavi

package to produce the orbital illustrations.38 The 3-D plots can be easily manipulated with
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Figure 3: Illustration of the modified orbitals ϕn,l,m and ϕn,l,−m for the 2p orbitals. Note
that these match the traditional 2px and 2py orbitals taught to general chemistry students
as well as the real and imaginary parts of the orbital ψ2,1,1.
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point and click controls, allowing students and instructors the freedom to display important

3-D features of the orbitals from multiple viewing angles.

Because of the mathematical definitions of the orbitals, Python’s robust scientific and

mathematical packages like Numpy and Scipy were used to calculate the values of the or-

thogonal polynomials on a coordinate grid.39,40 This makes the process of generating any

orbital fully algorithmic. The only necessary inputs to the program for each different orbital

are the values of the quantum numbers n, l, and m. Many other customized options are also

available to users, including choices of plotting the modified orbitals ϕn,l,m, their probability

densities ϕ2
n,l,m, or the real and imaginary parts and magnitudes for the original orbital basis

ψn,l,m, various colormaps, opacity scaling, background and foreground color schemes, wave-

function magnitude cutoffs, grid spatial extensions, and grid point densities. Default values

of these parameters are chosen that work well for most low-lying orbitals. Note, however,

that because of Mayavi’s lighting system there will be shadows present in the image that

may be mistaken by students for data with a higher amplitude than intended. This potential

pitfall should be preempted by instructors. A full explanation of the program’s features is

included in the Supporting Information. When plotting m = 0 orbitals, a quadrant can

also be carved out facing the default viewing angle so that the internal radial structure can

be more easily visualized. This is particularly helpful for visualizing s orbitals that contain

several radial nodes.

All of the options for this program are input through a graphical user interface (GUI) built

using Python’s Tkinter library.41 In addition, the individual components of the wavefunc-

tion including the radial wavefunction Rn,l(r) and radial probability function (r2 |Rn,l(r)|
2),

θ angular wavefunction Nl,mP
m
l (cos(θ)), and ϕ angular wavefunction eimϕ for the orbital

requested are also plotted to help with interpretation of the displayed figures, though this

feature is made optional in the pure Python version of the code via inclusion of an additional

GUI option. Finally, a plot of the components of the RGBA (red, green, blue, and alpha,

which denotes opacity) tuple used to illustrate the orbitals are also given. Examples of the
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result of modifying many of the various parameters and settings are given in the Supporting

Information. One version of the program is embedded within a Jupyter notebook to take ad-

vantage of the pedagogical nature of the Jupyter environment.42 Namely, the Python code is

embedded within explanatory code blocks and example images that allow interested users to

more thoroughly understand what is being done, if desired. Comments are used generously

throughout the code blocks to maximize readability, though experience with Python will be

necessary to fully understand the code structure. An example of the Jupyter environment

is shown in Figure 4. The code can, however, be run using the command line outside of the

Jupyter environment, if desired.

Figure 4: Example of the Jupyter window showing both a code block (with comments)
and an explanatory text block. Both are used throughout the visualizer program to give
interested users more insight into the code and its design.

Student Learning Outcomes and Assessments

One of the major learning outcomes for students using this tool is understanding the re-

lationship between the quantum numbers associated with an orbital and the 3-D structure

of that orbital. The nature of the radial and angular nodal structure of the wavefunctions

is made clearer when students are able to both plot and manipulate 3-D representations of
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the orbitals with and without the nodes drawn. Better yet, students can be challenged to

discover the patterns between the number of very particular types of nodes and the various

quantum numbers. The patterns they will discover for the orbitals ϕn,l,m are,

1. The total number of nodes is given by n− 1.

2. The total number of angular nodes is given by l.

3. The number of radial nodes is given by n− l − 1.

4. The number of angular nodes perpendicular to the x− y plane is given by |m|.

5. The number of angular nodes along θ cutting through the z axis is given by l − |m|.

Students should be encouraged to explore many different wavefunctions, including wavefunc-

tions describing orbitals that are not even used on the periodic table like g or h orbitals with

l = 4, 5, respectively. Once students have a firm grasp on the patterns connecting the nodal

structure and the quantum numbers, they should even be able to predict the structure of

unfamiliar wavefunctions a priori. It is this solid foundation that will prepare them well for

future courses in physical and inorganic chemistry wherein intuition about the geometry of

the wavefunctions is required for a robust understanding of molecular orbital theory.

To assess the effectiveness of this learning tool, students were given an assessment both

before and after the lecture and laboratory periods pertaining to the atomic orbitals where

the orbital visualization tool was used. The assessment focuses on the identification of wave-

function structures and nodes in relation to the quantum numbers, the relationship between

quantum numbers and energy, and predicting wavefunction shapes based on quantum num-

bers. One assessment item testing student knowledge of orbital degeneracies was used as a

control. This assessment was given at Le Moyne College, an undergraduate-focused institu-

tion, in the Spring 2024 Physical Chemistry II lecture course. Students were in the middle

of the course when the pretest was given and had not yet discussed the hydrogen atom.
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The posttest was given two weeks later, after the students had derived the solutions of the

Schrödinger equation and the Rydberg energy formula.

The data obtained are summarized in Table 1. The student scores were obtained by

adding up students’ scores (binary 0 or 1) on all items within each question and the dividing

by the total number of items. No partial credit was given on solutions. While the degenera-

Table 1: Results of assessment for students at Le Moyne College (N = 11)

Item Pretest Average Posttest Average Change
1. (Control) Identifying the orbital
degeneracy from quantum numbers 54.5 % 50.9% -3.6 %

2. Identifying the numbers and types
of nodes for different wavefunctions 40.9 % 95.5 % 54.6 %

3. Recognition that Rydberg formula
for orbital energy depends only on n 18.2 % 100 % 82.8 %

4. Understanding |m| gives the number of
nodal planes orthogonal to x− y plane 9.1 % 72.7 % 63.6 %

5. Predicting orbital orientation
and shape from quantum numbers 9.1 % 54.5 % 45.4 %

cies of orbitals is relevant to the topic at hand, no explicit mention of the degeneracies of the

orbitals was given until after the posttest assessment. This allowed for a comparison of stu-

dents’ growth with and without deliberate intervention. In all cases apart from the control,

students demonstrated significant growth in their ability to ascertain information about the

nodes from quantum numbers, relationships between quantum numbers and energies, and

even predicting how an orbital would look when projected into the 2-D plane. While this

latter exercise showed less substantial growth, it also required greater understanding of the

relationships between the quantum numbers and the orbital shape and orientation than the

other items. This is because students had to predict the shape of an orbital from quantum

numbers rather than identifying features of an orbital they could already see. Students were

also not explicitly shown any examples of this task during the orbital visualizer activity, and
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so this item essentially probed students’ ability to apply their learning to novel problems.

All in all, these results show that even with modest intervention, students are far stronger

in their ability to grasp the geometric implications of the quantum numbers after utilizing

flexible 3-D rendering tools.

One hurdle to implementing this tool and the associated exercise is that computers must

be available that are capable of installing and running the relevant software. Due to the large

number of dependencies, edge cases can arise where it may be difficult to implement this

software on particular machines, though it has been successfully installed on over a dozen

different combinations of brands, models, and operating systems. While almost all Apple

and Windows PCs are capable of running Python and the relevant packages, an insufficiently

powerful processor can cause the rendering and 3-D manipulation of the orbital plots to

become extremely slow. This can significantly hamper the utility of this tool for students’

learning. The requirements are relatively modest, but older machines or those with extremely

low-end processors and graphics processing will typically struggle to render the orbitals in a

reasonable amount of time. The use of smaller grid point densities is encouraged for those

with low-performance computers.
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Associated Content

Supporting Information Available

The Supporting Information is available on the ACS Publications website at DOI:####

The following are included in the supporting information:

1. The Python and Jupyter code for the visualizer

2. Instructions for installing the necessary packages

3. A guide to the features of the visualizer

4. The in-class orbital activity handout

5. The pre/posttest assessments and the answer key

Additional Information Available

The most updated code and instructions can also be accessed online in a public Github

repository at https://github.com/mhanson12363/Atomic-Orbitals-Visualizer/tree/main.
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(26) Barradas-Solas, F.; Gómez, P. J. S. Orbitals in Chemical Education. An Analysis

Through Their Graphical Representations. Chem. Educ. Res. Pract. 2014, 15, 311–

319.

(27) Moore, J. H.; Stanitski, C. L.; Wood, J. L.; Kotz, J. C.; Joesten, D., Melvin The

Chemical World, 2nd ed.; Saunders College Publishing and Harcourt Brace College

Publishers: Orlando, FL, 1998.

(28) Brown, T. L.; LeMay Jr., H. E.; Bursten, B. E.; Murphy, C. J.; Woodward, P. M.

Chemistry, 12th ed.; Prentice Hall: Glenview, IL, 2012.

(29) Munowitz, M. Principles of Chemistry ; W. W. Norton & Company: New York, 2000.

(30) Winter, M. the Orbitron. https://winter.group.shef.ac.uk/orbitron/.

21



(31) Jenkins, J. L.; Shoopman, B. T. Identifying Misconceptions that Limit Student Under-

standing of Molecular Orbital Diagrams. Sci. Ed. Int. 2019, 30, 152–157.

(32) Arfken, G. B.; Weber, H. J.; Harris, F. E. Mathematical Methods for Physicists, 7th

ed.; Elsevier: Waltham, MA, 2013.
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