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A B S T R A C T

The paper studies multi-competitive continuous-time epidemic processes. We consider the setting where two
viruses are simultaneously prevalent, and the spread occurs due to individual-to-individual interaction. In such
a setting, an individual is either not affected by any of the viruses, or infected by one and exactly one of the
two viruses. One of the equilibrium points is the coexistence equilibrium, i.e., multiple viruses simultaneously
infect separate fractions of the population. We provide a sufficient condition for the existence of a coexistence
equilibrium. We identify a condition such that for certain pairs of spread matrices either every coexistence
equilibrium lies on a line that is locally exponentially attractive, or there is no coexistence equilibrium. We
then provide a condition that, for certain pairs of spread matrices, rules out the possibility of the existence of
a coexistence equilibrium, and, as a consequence, establishes global asymptotic convergence to the endemic
equilibrium of the dominant virus. Finally, we provide a mitigation strategy that employs one virus to ensure
that the other virus is eradicated. The theoretical results are illustrated using simulations.
1. Introduction

In February 1918 a deadly influenza pandemic (popularly known as
he Spanish flu) swept across the globe. It lasted until 1920, and caused
approximately 50 million deaths [1]. Influenza viruses have continued
to spread across the globe in recurring epidemics [2]. Given that the
pread of infectious diseases has an enormous impact on society, the
tudy of spread has been an active area of research since Bernoulli’s
eminal paper [3]. The overarching goal of these research directions is
to find conditions that would cause an epidemic to become eradicated,
and leverage the knowledge of these conditions to design spread control
strategies. To this end, various infection models have been proposed
and studied in the literature; susceptible–infected (SI), susceptible–
infected–susceptible (SIS), susceptible–infected–removed (SIR), etc. In
this paper, we focus on the susceptible–infected–susceptible (SIS) model.

More specifically, we consider networked SIS models, where each
node in the network represents a large population and interconnections
between nodes capture the possibility of the virus spreading between
populations. (Networked) SIS models have been studied extensively
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using discrete-time [4–8] and continuous-time dynamics [9–11]. In the
present paper, we will focus on continuous-time dynamics.

All of the aforementioned works consider the single-virus setting.
A more general setup is one in which more than one virus could be
simultaneously active in a population. More specifically, in a bi-virus
(two virus) setting with each virus spreading across its own contact net-
work, one possibility is for the viruses to be competitive [12]. Examples
include the simultaneous spread of multiple strains of a virus [13–
15], and the spread of two different viruses that cannot simultaneously
infect a host (such as influenza and the common cold) [16].

This paper deals with the competitive case. That is, say the two
viruses circulating are virus 1 and virus 2, an individual is either
healthy or infected by virus 1 or infected by virus 2; it cannot be
infected by both viruses 1 and 2 at the same time. Recovery from
a virus does not confer long-term immunity; the individual becomes
susceptible to both the viruses. Several families of models have been
proposed in the literature to better understand the (possibly complex)
phenomena that is exhibited when multiple viruses simultaneously
circulate in a population, and compete with each other so as to infect
https://doi.org/10.1016/j.mbs.2024.109286
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the susceptible population. The major ones being (i) the SIR model,
first devised for two competing strains in [17], subsequently extended
to account for various real-world scenarios (by means of introduction
of additional compartments), for instance, record of infection with
each of the two strains [18], transmission not just by person-to-person
contact but also via environment [19], possibility of some fraction of
the population being in quarantine [20], etc., and generalized to admit
arbitrary number of strains in [21,22]; and (ii) the SIS model, first
evised for two competing viral strains in a single population in [23].
ote that several other models have been devised to understand the
ehavior of multi-strain epidemics; see, for instance, De Leenheer and
ilyugin [24] and Gao et al. [25], with De Leenheer and Pilyugin [24]
remarkably even factoring in the possibility of mutation between the
strains. The present paper focuses on the continuous-time competitive
networked bivirus SIS model.

Competitive SIS epidemics have been studied extensively in the lit-
erature. Specifically, the papers [23,26–31] consider a single
sub)population i.e., no network. While clearly not applicable for
ettings with multiple (sub)population nodes, these papers nonetheless
ave the advantage of being able to account for various real-world
onstraints such as effects of immunization, quarantine, etc.
Overcoming the drawbacks in the aforesaid papers, several other

orks have considered the presence of an arbitrary but finite number
f (sub)population nodes, with very mild restrictions (namely, strong
onnectedness) imposed on the structure of the graph that captures how
he various nodes are connected with each other. In particular, see [32–
2]. For a recent overview of this subtopic, see [43]. The limiting
ehavior of competitive bi-virus SIS models have been recently studied
n [34]. It is well-known that competitive multi-virus propagation
xhibits richer behavior in comparison to single-virus propagation [17].
ne possible outcome of competitive multi-virus propagation is co-
xistence (i.e., multiple strains coexist in a population by infecting
eparate fractions of each population node), while another is competitive
xclusion (i.e., the spread parameters of one strain dominate those of
he other strains, thereby causing those strains to become eradicated).
he papers [32,35,36,38,44] provided conditions for coexistence in
etworked SIS models. In particular, analysis of the various equilibria
f a competing continuous-time time-invariant bi-virus model has been
rovided in [36], whereas a necessary and sufficient condition for a
coexistence equilibrium has been established [35, Theorem 6]. How-
ever, the results obtained in [34–36,38] are restrictive in the following
sense: (i) [36, Theorems 6 and 7] rely on the assumption that the spread
parameters with respect to each virus is the same for every population;
(ii) [35, Theorem 6] is reliant on the assumption that the set of spread
parameters for each virus is a scaled version of that of other viruses;
(iii) the setting in [38] assumes that the healing and infection rate for
each agent is the same, and (iv) coexistence equilibrium is not explored
in depth in [34].

Our contributions for the networked competitive bi-virus SIS model
are as follows:

(i) A sufficient condition for the existence of a coexistence equi-
librium that neither insists on the spread parameters being the
same for all agents nor on them being scaled versions of each
other; see Theorem 1. Later on, we will see that the set of choices
of system parameters for which the conditions in Theorem 1 are
fulfilled does not lie on a set of measure zero in the space of
free parameters,1 which, as we will see later in the paper, is in
sharp contrast to the results in [36, Theorems 6 and 7], [35,
Theorem 6], and [34, Proposition 3.9].

(ii) A condition which guarantees that, for certain pairs of spread
matrices, every coexistence equilibrium lies on a line, which is
locally exponentially attractive. If said condition is violated, then
there is no coexistence equilibrium. See Theorem 2.

1 A precise definition of the term free parameters appears in Section III after
heorem 2.
 t

2 
Fig. 1. Visualization of the model for the case when 𝑚 = 2. An individual is either
susceptible (S), infected with virus 1 (I1), or infected with virus 2 (I2).

(iii) A condition which, for certain pairs of spread matrices, precludes
the existence of a coexistence equilibrium, and as a consequence
leads to the single-virus endemic equilibrium of the dominant
virus being globally asymptotically stable; see Theorem 3.

(iv) Design of an open-loop control strategy such that the spread
dynamics converge to the single-virus endemic equilibrium of
a desired virus; see Theorem 4.

A summary of the contribution that the present paper makes and what
gaps in the literature it addresses has been provided in Table 1.

Notations

We denote the set of real numbers by R, and the set of non-negative
real numbers by R+. For a positive integer 𝑛, we use [𝑛] to denote the
set {1,… , 𝑛}. The 𝑖th entry of a vector 𝑥 is denoted by 𝑥𝑖. The element
in the 𝑖th row and 𝑗th column of a matrix𝑀 is denoted by𝑀𝑖𝑗 . We use
𝟎 and 𝟏 to denote vectors whose entries all equal 0 and 1, respectively,
and use 𝐼 to denote the identity matrix, while the sizes of the vectors
and matrices are to be understood from the context. For a vector 𝑥, we
denote the square matrix with 𝑥 along the diagonal by 𝛥(𝑥). For any two
real vectors 𝑎, 𝑏 ∈ R𝑛, we write 𝑎 ≥ 𝑏 if 𝑎𝑖 ≥ 𝑏𝑖 for all 𝑖 ∈ [𝑛], 𝑎 > 𝑏 if
𝑎 ≥ 𝑏 and 𝑎 ≠ 𝑏, and 𝑎 ≫ 𝑏 if 𝑎𝑖 > 𝑏𝑖 for all 𝑖 ∈ [𝑛]. Likewise, for any two
real matrices 𝐴,𝐵 ∈ R𝑛×𝑚, we write 𝐴 ≥ 𝐵 if 𝐴𝑖𝑗 ≥ 𝐵𝑖𝑗 for all 𝑖 ∈ [𝑛],
𝑗 ∈ [2], and 𝐴 > 𝐵 if 𝐴 ≥ 𝐵 and 𝐴 ≠ 𝐵. For a square matrix 𝑀 , we use
(𝑀) to denote the spectrum of 𝑀 , 𝜌(𝑀) to denote the spectral radius
f𝑀 , and 𝑠(𝑀) to denote the largest real part among the eigenvalues of
, i.e., 𝑠(𝑀) = max{Re(𝜆) ∶ 𝜆 ∈ 𝜎(𝑀)}. We denote a subset by 𝑃 ⊆ 𝑄,
proper subset by 𝑃 ⊂ 𝑄, and set difference by 𝑃 ⧵𝑄. Given two sets
and 𝐵, 𝐴 ∩ 𝐵 denotes the intersection of the two sets. For a set 
ith a boundary, we denote the boundary as 𝜕, and the interior as
nt() ∶=  ⧵ 𝜕.

. Problem formulation

In this section, we detail a model of multi-viral spread across a popu-
ation network. We then formally state the problems being investigated.
inally, pertinent assumptions and definitions are introduced for later
se.
Consider a set of 𝑛 nodes, where 𝑛 ≥ 2. Each node represents
population of individuals. Further, the number of individuals in a
opulation is fixed.2 We suppose that two viruses (hereafter referred
o as virus 1 and virus 2) are spreading in some (possibly all) of
he 𝑛 nodes. The spread could occur both between individuals in the
ame population node, and also between individuals across different
opulation nodes. The viruses are assumed to be competitive, i.e., an
ndividual in node 𝑖 (where 𝑖 ∈ [𝑛]) is infected either by virus 1 or
y virus 2 but not by both viruses 1 and 2 at the same time. Let, at
ime 𝑡, 𝑁1

𝑖 (𝑡) and 𝑁2
𝑖 (𝑡) represent the set of individuals in node 𝑖 that

2 SIS models with variable population sizes have also been considered in
he literature; see, for instance, Brauer and van den Driessche [48].
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Table 1
Comparison of the results in this paper with some of the other results in the literature.
Comparison of the results in this paper with other results

Paper Setting Contribution

Castillo-Chavez et al.
[45]

𝑛 = 3 case Castillo-Chavez et al. [45, Theorem 3.2] provides a necessary and sufficient
condition for the local stability of the boundary equilibria.

Li et al. [44] 𝑛 = 2 case Li et al. [44, Theorem 5.2] guarantees the existence of coexistence
equilibrium.

Martcheva and Pilyugin
[26], Gjini et al. [46]
and Dénes et al. [30]

𝑛 = 1 case, but with the possibility of
simultaneous infection by two viruses

A sufficient condition for the coexistence of two viruses has been provided;
see, for instance, Martcheva and Pilyugin [26, Theorem 3.2].

Martcheva [27] 𝑛 = 1 case, but time-varying healing and
infection rates

A sufficient condition for the coexistence of two viral strains has been
provided in [27, Corollary 5.3].

Liu et al. [36] and Paré
et al. [35]

Arbitrary but finite 𝑛, and arbitrary
network topologies

The results [36, Theorems 6 and 7] and [35, Theorem 6] establish the
existence of a line of coexistence equilibria, for certain choices of parameters
that lie on a set of measure zero.

Santos et al. [47] Arbitrary but finite 𝑛, but special classes
of graphs, and the assumption that
𝛿𝑘𝑖 = 1 for all 𝑖 ∈ [𝑛] and 𝑘 ∈ [2]

A condition which establishes one virus as being dominant has been provided
in [47, Theorem 21]. Santos et al. [47, Theorem 21] identifies a condition
which establishes one virus as being dominant.

Doshi et al. [40] Arbitrary but finite 𝑛, and arbitrary
network topologies

Doshi et al. [40, Theorem 5.4] secures the existence of, and global asymptotic
convergence to, a finite set of coexistence equilibria.

Ye et al. [34] Arbitrary but finite 𝑛, and arbitrary
network topologies

A specific choice of parameters that gives rise to a set of locally exponentially
attractive coexistence equilibria has been identified in [34, Proposition 3.9],
while necessary conditions for the existence of co-existence equilibria are
identified in [34, Corollary 3.11].

This paper Arbitrary but finite 𝑛, and arbitrary
network topologies

A sufficient condition for existence of a co-existence equilibrium (with a novel
proof technique); a necessary and sufficient condition for every co-existence
equilibrium to lie on a line; design of a control scheme that guarantees
convergence to a desired single-virus endemic equilibrium
m
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are infected with virus 1 and with virus 2, respectively. Then, 𝑁1
𝑖 (𝑡) ∩

2
𝑖 (𝑡) = ∅. To be more specific, assuming node 𝑖 gets infected with both
he viruses at time 𝑡, then it is indeed separate fractions of node 𝑖 that are
etting infected with both the viruses. Assuming an individual in node
is infected with virus 1 (resp. virus 2), said individual recovers from
irus 1 (resp. virus 2) based on its healing rate with respect to virus 1
resp. virus 2). Thereafter, the same individual becomes susceptible to
eing infected by either virus 1 or by virus 2. Consequently, there could
xist 𝑡1 and 𝑡2, with 𝑡1 ≠ 𝑡2, such that 𝑁1

𝑖 (𝑡1)∩𝑁2
𝑖 (𝑡2) ≠ ∅. The spread of

oth the viruses in a population of 𝑛 nodes could be represented by a
two-layer graph  = { , 𝐸1, 𝐸2}, where  = {1, 2,… , 𝑛} [32]. The edge
ets 𝐸1 and 𝐸2 determine the contact spreading network for virus 1 and
irus 2, respectively.
Let 𝑝1𝑖 (𝑡) ∈ [0, 1] and 𝑝2𝑖 (𝑡) ∈ [0, 1] denote the infection ratios in node

∈  at time 𝑡 ∈ R≥0 with respect to virus 1 and virus 2. Then the
nfection ratio 𝑝𝑘𝑖 (𝑡) of virus 𝑘 = 1, 2, in node 𝑖 ∈  will evolve as
ollows.

𝑝̇𝑘𝑖 (𝑡) = −𝛿𝑘𝑖 𝑝
𝑘
𝑖 (𝑡) +

(

1 −
2
∑

𝑙=1
𝑝𝑙𝑖(𝑡)

)(

𝑛
∑

𝑗=1
𝛽𝑘𝑖𝑗𝑝

𝑘
𝑗 (𝑡)

)

. (1)

ere, 𝛿𝑘𝑖 represents the recovery rate of an individual with virus 𝑘 in
ode 𝑖, while 𝛽𝑘𝑖𝑗 represents the spread rate of virus 𝑘 from node 𝑖 to
ode 𝑗. Note that all individuals within a population have the same
ealing (resp. infection) rates, while individuals belonging to different
opulations may have different healing (resp. infection) rates [49]. See
ig. 1 for a pictorial depiction of the model.
Then, by defining the vectors 𝑝1(𝑡) = [𝑝11(𝑡),… , 𝑝1𝑛(𝑡)]

⊤ and 𝑝2(𝑡) =
𝑝21(𝑡),… , 𝑝2𝑛(𝑡)]

⊤, (1) can be written as

𝑝̇𝑘(𝑡) =
(

−𝐷𝑘 +
(

𝐼 −
2
∑

𝑙=1
𝛥(𝑝𝑙(𝑡))

)

𝐵𝑘
)

𝑝𝑘(𝑡), (2)

where 𝐷𝑘 is the diagonal matrix with 𝛿𝑘𝑖 on the diagonal, while 𝐵𝑘 is
the matrix of 𝛽𝑘𝑖𝑗 . The system in (2) has state variable (𝑝1(𝑡), 𝑝2(𝑡)), and is
a mean-field approximation of a coupled Markov process that captures

the SIS bi-virus spread; see [32,33,36]. We have the following remarks. f

3 
Remark 1. For the case when 𝑛 = 1, model (2) is subsumed by the
multi-strain model proposed in [27], due to the fact that the model
in [27] allows for the healing and infection rates to be non-negative
periodic functions. When 𝑛 = 1, (2) is a special case also of the model
in [31], given that the latter allows for: (i) the infection rate to be not
deterministic (it is in fact governed by a Levy process), and (ii) the
presence of an arbitrary but finite number of strains.

Remark 2. For the case when 𝑛 = 2, model (2) coincides with the
odel studied in [44].

Furthermore, we can let 𝑝(𝑡) ∶= [𝑝1(𝑡), 𝑝2(𝑡)]⊤. Then, with 𝐴𝑘(𝑝(𝑡)) ∶=
−𝐷𝑘 +(𝐼 −

∑2
𝑙=1 𝛥(𝑝

𝑙(𝑡)))𝐵𝑘) for 𝑘 = 1, 2, the dynamics of 𝑝(𝑡) are given
y

𝑝̇(𝑡) =

[

𝐴1(𝑝(𝑡)
)

0

0 𝐴2(𝑝(𝑡)
)

]

𝑝(𝑡). (3)

.1. Problem statements

For the model (3), we formally state the problems being investigated
n this paper.

(i) Identify a sufficient condition for the existence of a coexistence
equilibrium, i.e., (𝑝̂1, 𝑝̂2) such that 𝑝̂1 > 𝟎 and 𝑝̂2 > 𝟎.

(ii) Identify a condition such that for certain pairs of spread matrices
𝐵1 and 𝐵2 either (i) every coexistence equilibrium (𝑝̂1, 𝑝̂2) such
that 𝑝̂1 > 𝟎 and 𝑝̂2 > 𝟎 lies on a line, or (ii) there is no coexistence
equilibrium.

(iii) Identify a condition that precludes the existence of a coexistence
equilibrium, i.e., any (𝑝̂1, 𝑝̂2) such that 𝑝̂1 > 𝟎 and 𝑝̂2 > 𝟎.

(iv) How can the healing rates of virus 2, i.e., 𝛿2𝑖 , be chosen to
ensure that the system converges to the single-virus endemic
equilibrium of virus 1?

.2. Positivity assumptions

In order for (3) to be well-defined and realistic, we make the

ollowing assumption.
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Assumption 1. The model parameters satisfy 𝛿𝑘𝑖 > 0 and 𝛽𝑘𝑖𝑗 ≥ 0 for
all 𝑖, 𝑗 ∈ [𝑛] and 𝑘 ∈ [2].

Note that if Assumption 1 holds, then for all 𝑘 ∈ [2], 𝐵𝑘 is a
non-negative matrix and 𝐷𝑘 is a positive diagonal matrix. Moreover,
recall that a square matrix 𝑀 is said to be irreducible if, replacing the
non-zero elements of 𝑀 with ones and interpreting it as an adjacency
matrix, the corresponding graph is strongly connected. Then, noting
that non-zero elements in 𝐵𝑘 represent directed edges in the set 𝐸𝑘,
we see that 𝐵𝑘 is irreducible whenever the 𝑘th layer of the multi-layer
network  is strongly connected.

Thanks to Assumption 1, we can restrict our analysis to the sets
 ∶= {𝑝𝑘(𝑡) ∈ [0, 1]𝑛,∀𝑘 ∈ [2]} and 𝑘 ∶= {𝑝𝑘(𝑡) ∈ [0, 1]𝑛}. Since 𝑝𝑘𝑖 (𝑡)
is to be interpreted as a fraction of a population, these sets represent
the sensible domain of the system. That is, if 𝑝𝑘(𝑡) takes values outside
of 𝑘, then those values would lack physical meaning. The following
lemma shows that 𝑝(𝑡) never leaves  .

Lemma 1. Let Assumption 1 hold. Then the set  is positively invariant
with respect to (3)

Proof. Consider 𝑝(𝑡) ∈  . If 𝑝𝑘𝑖 (𝑡) = 1, then 𝑝̇𝑘𝑖 (𝑡) < 0, so if 𝑝𝑘𝑖 (0) ≤ 1
then 𝑝𝑘𝑖 (𝑡) ≤ 1, for all 𝑡 ≥ 0, 𝑘 ∈ [2], 𝑖 ∈ [𝑛]. Further, if 𝑝𝑘𝑖 (𝑡) = 0 then
𝑝̇𝑘𝑖 (𝑡) ≥ 0, for all 𝑡 ≥ 0. □

It can be easily verified that (𝟎, 𝟎) is an equilibrium of (2), and is
referred to as the healthy state. A sufficient condition for convergence
to the healthy state has been provided by Liu et al. [36]. Any non-zero
equilibrium in  is known as an endemic equilibrium, which can be
further categorized as follows: Equilibria of the form (𝟎, 𝑝̃𝑘) are referred
to as the single-virus endemic equilibria or boundary equilibria. Note that
in the single-virus setting, an endemic equilibrium, when it exists, is
unique [50, Theorem 2.1]. It turns out that indeed 𝑝̃1 (resp. 𝑝̃2) is the
endemic equilibrium of virus 1 (resp. virus 2) [34, Section 2.2]. The
equilibria of the form (𝑝̄1, 𝑝̄2), where 𝑝̄𝑘 for 𝑘 = 1, 2 are non-negative
vectors with at least one positive entry in 𝑝̄𝑘 for 𝑘 = 1, 2 are referred to
as coexistence equilibria. It turns out that any non-zero equilibrium of (2)
must necessarily satisfy the following: 𝟎 ≪ 𝑝𝑘 ≪ 𝟏, and, furthermore,
∑2

𝑘=1 𝑝
𝑘 ≪ 𝟏; see Lemma 6 in Appendix.

3. Coexistence of viruses

In this section, we present the main results of the paper; all of which
pertain to the existence (or lack thereof) of a coexistence equilibrium.
The proofs are deferred to Appendix. The following theorem provides
a sufficient condition for the existence of a coexistence equilibrium.

Theorem 1. Consider the SIS model (3) under Assumption 1. Suppose
that 𝐵1 and 𝐵2 are irreducible matrices, and that 𝑠(𝐵1 − 𝐷1) > 0 and
𝑠(𝐵2 −𝐷2) > 0. If

𝑠(−𝐷1 + (𝐼 − 𝛥(𝑝̃2))𝐵1) > 0 (4)

𝑠(−𝐷2 + (𝐼 − 𝛥(𝑝̃1))𝐵2) > 0. (5)

with 𝑝̃1 and 𝑝̃2 being the single-virus endemic equilibria of viruses 1 and 2,
respectively, then there exists at least one coexistence equilibrium (𝑝̂1, 𝑝̂2) ≫
𝟎 in  such that 𝑝̂1 + 𝑝̂2 ≤ 𝟏.

Proof. See Appendix. □

With each virus satisfying the condition for the existence of its
single-virus endemic equilibrium, Theorem 1 states that if, for each
virus, the largest real part of any eigenvalue of the matrix of the
dynamics linearized around the single-virus endemic equilibrium of the
other virus is positive, then both the viruses can simultaneously infect

separate fractions of each population node. o

4 
Remark 3. Due to Liu et al. [36, Proposition 1], conditions (4)
and (5) in Theorem 1 are equivalent to 𝜌((𝐼 − 𝛥(𝑝̃2))(𝐷1)−1𝐵1) > 1
and 𝜌((𝐼 − 𝛥(𝑝̃1))(𝐷2)−1𝐵2) > 1, respectively. This is consistent with
an interpretation of 𝜌((𝐼 − 𝛥(𝑝̃2))(𝐷1)−1𝐵1) and 𝜌((𝐼 − 𝛥(𝑝̃1))(𝐷2)−1𝐵2)
as the invasion reproduction numbers3 of virus 1 invading virus 2 and
virus 2 invading virus 1, respectively. The invasion reproduction num-
ber is defined for an invading pathogen, introduced into a setting with
another, endemic pathogen at equilibrium. It is defined as the average
number of secondary infections caused by an individual infected by the
invading pathogen, at the time of introduction [52]. In line with this
interpretation, Theorem 1 shows that coexistence is possible whenever
both invasion reproduction numbers are greater than one.

Theorem 1 guarantees existence of a coexistence equilibrium in the
bi-virus setup.4 It turns out that the condition in Theorem 1 implies
the existence of a finite set of coexistence equilibria. Furthermore,
the aforementioned set is globally attractive; for any non-zero initial
infection levels with respect to both virus 1 and virus 2, the system
converges to some point in the set of coexistence equilibria, see [40,
Theorem 5.4]. Note that [40, Theorem 5.4] builds upon [38, Theo-
rem 4.3]. Moreover, the result in [40, Theorem 5.4] relies on the notion
of monotone dynamical systems (MDS).5 While competitive bi-virus
systems are monotone [34], competitive tri-virus systems are not [55,
Theorem 1]. As a consequence, the proof technique in [40, Theo-
rem 5.4] cannot be adapted to scenarios where there are more than
two viruses. Our proof relies on fixed point mapping, and can possibly
be extended for scenarios involving more than two viruses. Another
result that has improved upon Theorem 1, by using the Poincaré–Hopf
theorem [56] and Morse–Smale inequalities [57], is [41, Corollary 3.9],
which gives a lower bound on the number of coexistence equilibria.

Observe that the works [35,36] also study multi-competitive virus
spread, and identify special scenarios where coexistence equilibria can
exist. In particular, Liu et al. [36, Theorems 6 and 7] and, particularized
for the bi-virus setting, Paré et al. [35, Theorem 6] establish the
existence of infinitely many coexistence equilibria, thus implying that a
coexistence equilibrium in the bi-virus setup is not necessarily unique.
In order to compare our result with Paré et al. [35, Theorem 6], we
recall the same in the next proposition. Prior to so doing, we need to
introduce the following: For the case when there is only one virus in
the network (i.e., no competition), the dynamics can, by dropping the
notation for virus index, be immediately obtained from (1), as given
below:

𝑝̇𝑖(𝑡) = −𝛿𝑖𝑝𝑖(𝑡) +
(

1 − 𝑝𝑖(𝑡)
)(

𝑛
∑

𝑗=1
𝛽𝑖𝑗𝑝𝑗 (𝑡)

)

. (6)

In vector form, (6) can be written as follows:

𝑝̇(𝑡) = [−𝐷 + (𝐼 − 𝛥(𝑝(𝑡)))𝐵]𝑝(𝑡). (7)

where 𝑝 is the vector of all 𝑝𝑖.

Proposition 1 ([35, Theorem 6]). Suppose that 𝛿1𝑖 = 𝑣𝛿2𝑖 > 0, ∀𝑖 ∈ [𝑛],
𝛽1𝑖𝑗 = 𝜈𝛽2𝑖𝑗 ∀𝛽𝑘𝑖𝑗 ≠ 0 𝑘 ∈ [2], 𝜈 > 0, the matrix 𝐵1 is non-negative and
irreducible, and 𝑠(−𝐷1+𝐵1) > 0. We have that (𝑝̂1, 𝑝̂2) with 𝑝̂𝑘 > 𝟎 ∀𝑘 ∈ [2]
is an equilibrium of (1) if and only if 𝑝̂𝑘 ≫ 𝟎 for 𝑘 ∈ [2], 𝑝̃𝑖 = 𝛼𝑖𝑘𝑝̂𝑘,
∀𝑖, 𝑘 ∈ [2], for some constants 𝛼𝑖𝑘 > 0 such that 𝑝̃ = 𝑝̂1 + 𝑝̂2, where 𝑝̃ is the
non-zero endemic state of (7).

We now explore the relationship between Theorem 1 and Paré et al.
[35, Theorem 6].

3 The term reproduction number is also referred to as reproductive number
n the literature; see, for instance, Hyman and Li [51].
4 Theorem 1 is the same as [39, Corollary 1]. It is an improvement of a

similar result in [44, Theorem 5.2], wherein the same is established for 𝑛 = 2;
nd of Doshi et al. [38, Theorem 4.3] where all nodes have the same healing
nd infection rates.
5 The notion of MDS was pioneered by Morris Hirsch in [53]. For a detailed

verview of MDS, the reader is referred to Smith [54].
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Proposition 2. Suppose that

(i) 𝛿1𝑖 = 𝜈𝛿2𝑖 > 0 for 𝑖 ∈ [𝑛];
(ii) 𝛽1𝑖𝑗 = 𝜈𝛽2𝑖𝑗 for all 𝛽

𝑘
𝑖𝑗 ≠ 0 𝑘 ∈ {1, 2} 𝜈 > 0;

ith 𝐷1 = 𝛥(𝛿1), 𝐵1 = [𝛽1𝑖𝑗 ]𝑛×𝑛 non-negative and irreducible, and 𝑠(−𝐷1 +
1) > 0. Then, with 𝑝̃1, 𝑝̃2 being the single-virus endemic equilibrium of
iruses 1 and 2, respectively, it follows that

(−𝐷1 + (𝐼 − 𝛥(𝑝̃2))𝐵1) = 0

(−𝐷2 + (𝐼 − 𝛥(𝑝̃1))𝐵2) = 0.

roof. See Appendix. □

As a consequence of Proposition 2, Theorem 1 and Paré et al. [35,
heorem 6] cannot be applied at the same time, i.e., the conditions in
heorem 1 and Proposition 1 are mutually exclusive.
While Theorem 1 provides conditions for the existence of coexis-

ence equilibrium, a related problem is finding conditions under which
o coexistence equilibrium can exist. As a first step in this direction,
e devise a test that disqualifies an arbitrary point (𝑝1, 𝑝2) in the state
pace from being a coexistence equilibrium of system (3).

roposition 3. Consider a bi-virus state 𝟎 ≪ (𝑝1, 𝑝2) ≪ 𝟏 with 𝐵1,
2 irreducible and 𝐷1 = 𝐷2 = 𝐼 , where 𝜌(𝐵1) > 1 and 𝜌(𝐵2) > 1. If
𝐵2 − 𝐵1)𝑝1 < 𝟎, or if (𝐵2 − 𝐵1)𝑝1 > 𝟎, then (𝑝1, 𝑝2) is not an equilibrium
f the system (3).

roof. See Appendix. □

Note that Proposition 3 does not preclude the existence of a co-
xistence equilibrium; if every point (𝑝1, 𝑝2) in the state space fulfills
he conditions of Proposition 3, then a coexistence equilibrium, (𝑝1, 𝑝2)
here 𝑝1 > 𝟎 and 𝑝2 > 𝟎, does not exist.
It turns out that given one of the spread matrices, say 𝐵1, there

ould be several 𝐵2 obeying a specific functional form (but different
rom the one identified in [34, Proposition 3.9]), that yield a connected
et, such that every element in this set is a non-zero equilibrium point.
urthermore, this set comprises an interval of a straight line. The
ollowing theorem establishes the same.

heorem 2. Consider system (3) under Assumption 1. Suppose that
1 = 𝐷2 = 𝐼 , and that 𝐵1 is an irreducible, non-negative matrix with
(𝐵1) > 1. Let 𝑝̃ be the unique solution to

𝐼 − 𝛥(𝑝))𝐵1𝑝 = 𝑝 (8)

uch that 𝟎 ≪ 𝑝̃ ≪ 𝟏. Suppose 𝑏 > 𝟎.

(i) Consider some 𝑧 ∈ R𝑛 such that 𝑧⊤𝑝̃ = 0. If 𝐵2 = 𝐵1 + 𝑏𝑧⊤ is an
irreducible non-negative matrix, then every coexistence equilibrium
of system (3) is of the form (𝑝1, 𝑝2) = (𝑐𝑝̃, (1−𝑐)𝑝̃) for some 𝑐 ∈ (0, 1).
Further, the line of coexistence equilibria (𝑐𝑝̃, (1 − 𝑐)𝑝̃) is locally
exponentially attractive.

(ii) Consider some 𝑧 ∈ R𝑛 such that 𝑧⊤𝑝̃ ≠ 0. If 𝐵2 = 𝐵1 + 𝑏𝑧⊤ is an
irreducible non-negative matrix, then system (3) has no coexistence
equilibrium.

roof. See Appendix. □

In words, Theorem 2 states that, assuming a bi-virus network is
onstructed in a particular way, either every point in the interval of a
traight line, with each end of the interval corresponding to the single-
irus endemic equilibrium associated with each of the viruses, is a
oexistence equilibrium (thus obtaining a connected set of equilibria);
r no coexistence equilibrium exists. This further implies that said line
s the unique set of coexistence equilibria.
Observe that the results in Proposition 3 and Theorem 2 rely on

he assumption that 𝐷1 = 𝐷2 = 𝐼 , which begets the following question:
s there a loss of generality in using the aforesaid assumption? In order
o answer this, we recall the following result.
5 
emma 2 ([34, Lemma 3.7]). Consider two bivirus network systems  and
̂, defined by quadruples 𝐵1, 𝐷1, 𝐵2, 𝐷2 and 𝐵̂𝑘 = (𝐷𝑘)−1𝐵𝑘, 𝐷̂𝑘 = 𝐼 for
= 1, 2, respectively. Then, the two systems have the same equilibrium sets
nd the (local) stability properties of each equilibrium are the same.

Specifically, Lemma 2 states that there is no loss of generality in
ssuming 𝐷1 = 𝐷2 = 𝐼 . Consequently, the findings of Proposition 3 and
heorem 2 are applicable even if 𝐷𝑘 for 𝑘 = 1, 2 are arbitrary positive
iagonal matrices that are not necessarily equal to each other.
Note that if the condition in Theorem 2 is fulfilled, then the bivirus

ystem has an infinite number of coexistence equilibria. A question
hat one is faced with at this point is as follows: do almost all bivirus
etworks possess an infinite number of equilibria? In order to answer
his question, we recall the following result:

roposition 4 ([34, Theorem 3.6]). For generic parameter matrices 𝐷𝑖, 𝐵𝑖,
= 1, 2, the bivirus equation set (3) has a finite number of equilibria. If
𝑖 = 𝐼 , 𝑖 = 1, 2, then for generic parameter matrices 𝐵𝑖, 𝑖 = 1, 2 the same
onclusion holds.

In order to understand the ramifications of Proposition 4, and
ow that relates with statement (i) in Theorem 2, we introduce the
ollowing. Free parameters in 𝐷𝑖, 𝐵𝑖, 𝑖 = 1, 2 are those positions in
𝑖, 𝐵𝑖, 𝑖 = 1, 2, that are free to take any value in R+; these free
arameters can be collected in a vector, with the dimension of the
ector equaling the sum total of the free parameters in matrices 𝐷1,
2, 𝐵1 and 𝐵2. Each numerical choice of said vector of free parameters
ields a system, whose dynamics are as given in (3). A property (in
his case, that of having a finite number of equilibria) being true for
lmost all choices of free parameters means that it is true for all choices
f free parameters except those lying on a set of measure zero. In the
ontext of Theorem 2, observe that, since by assumption, 𝐷1 = 𝐷2 = 𝐼 ,
nd since all off-diagonal terms in matrices 𝐷1, 𝐷2 are fixed to zero,
t is clear that the matrices 𝐷1, 𝐷2 have no free parameters. Since no
estrictions are imposed on any of the entries in matrices 𝐵1 and 𝐵2, all
ntries in these matrices are free parameters. Given that Proposition 4
ays that for almost all choices of 𝐵𝑖, 𝑖 = 1, 2, system (3) has a finite
umber of equilibria, it follows that for almost all choices of 𝐵1, the set
f numerical choices of free parameters of 𝐵2 for which the condition
n statement (i) of Theorem 2 is fulfilled has measure zero.
In a similar vein, with respect to Proposition 2, note that since 𝐷1

nd 𝐵1 are scaled versions of 𝐷2 and 𝐵2, respectively, the elements
long the diagonal of 𝐷2 and (in general) all elements in 𝐵2 are
ree parameters, while none of the elements in 𝐷1 and 𝐵1 are free
arameters. The choices of free parameters of 𝐷2 and 𝐵2 for which the
onditions in Proposition 2 are fulfilled lies on a set of measure zero in
he corresponding space of free parameters; see [34, Section 3.2.1]. The
et of choices of free parameters that fulfill Proposition 2 is contained
ithin the set of choices of free parameters that fulfill the conditions
n Theorem 2, as illustrated by the following. By setting 𝑧 = 0 in
tatement (i) of Theorem 2, we recover conditions (i) and (ii) from
roposition 2 with 𝑣 = 1 (assuming 𝛿1𝑖 = 1, for each 𝑖 ∈ [𝑛]), that is, Liu
t al. [36, Theorem 6] and Paré et al. [35, Theorem 6] for two viruses,
with 𝑣 = 1) which guarantees the existence of a line of coexistence
quilibria (and is a necessary condition according to Paré et al. [35,
heorem 6]). Furthermore, in so doing, statement (i) of Theorem 2
trengthens [36, Theorem 6] (and adds to Paré et al. [35, Theorem 6] in
he bi-virus case when 𝑣 = 1) due to the guarantee of local exponential
ttractivity to the line of coexistence equilibria.

emark 4. One key insight that Theorem 2 provides is as follows:
uppose that we are interested in constructing bivirus networks for
hich we would like to obtain infinitely many coexistence equilibria.
hen, statement (i) in Theorem 2 says that purely from knowledge of
arameters corresponding to virus 1, we can obtain said construction.
o see this, consider the following: Suppose that we are given 𝐵1 such
hat 𝐵1 is irreducible non-negative and 𝜌(𝐵1) > 1. Since 𝜌(𝐵1) > 1,
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there exists an endemic equilibrium corresponding to virus 1, call it 𝑝̃1,
here 𝟎 ≪ 𝑝̃1 ≪ 𝟏, see [50, Theorem 2.1]. An exact characterization of

𝑝̃1 can be obtained from [58, Theorem 5]. Consequently, with a suitable
hoice of 𝑧 such that 𝑧⊤𝑝̃1 = 0 and with some choice of 𝑏 ≫ 𝟎, it
ight be perhaps possible to design 𝐵2 such that 𝐵2 = 𝐵1 + 𝑏𝑧⊤. Due
o Theorem 2 statement i), it follows that the corresponding bi-virus
ystem will possess infinitely many coexistence equilibria. Provision of
systematic procedure for the construction of a bivirus network in the
forementioned manner is beyond the scope of the present paper.

The following result makes use of a nontrivial condition to eliminate
he possibility of coexistence equilibrium in a bi-virus setting, and
stablishes one virus as being dominant.

heorem 3. Consider system (3) under Assumption 1. Suppose that
1 = 𝐷2 = 𝐼 , and that 𝐵1 is an irreducible, non-negative matrix with
(𝐵1) > 1. Let 𝑝̃1 be the unique solution to

𝐼 − 𝛥(𝑝1))𝐵1𝑝1 = 𝑝1 (9)

uch that 𝟎 ≪ 𝑝̃1 ≪ 𝟏. Consider some 𝑧 ∈ R𝑛 such that 𝑧⊤𝑝̃1 > 0, and
ome 𝑏 ≫ 𝟎. If 𝐵2 = 𝐵1 + 𝑏𝑧⊤ is an irreducible non-negative matrix with
(𝐵2) > 1, and 𝑝̃2 is the unique solution to

𝐼 − 𝛥(𝑝2))𝐵2𝑝2 = 𝑝2, (10)

such that 𝟎 ≪ 𝑝̃2 ≪ 𝟏, then the only equilibria of (3) are (𝟎, 𝟎) and
(𝑝̃1, 𝟎), which are unstable, and (𝟎, 𝑝̃2), which is locally exponentially stable.
Moreover, the equilibrium (𝟎, 𝑝̃2) is asymptotically stable with a domain of
attraction that includes Int( ).

Proof. See Appendix. □

Theorem 3 establishes one virus as being dominant. Note that [47,
Theorem 21] also provides a condition for establishing one virus as
dominant. However, since the condition in Theorem 3 involves matrix
inequalities, the condition in [47, Theorem 21] does not imply the
condition in Theorem 3; see [47, Definition 11].

4. Leveraging one virus to eradicate another

It turns out that in a bi-virus setting, where one virus is malignant
and the other virus is benign, we can leverage the benign virus in
order to help eradicate the malignant virus, as stated in the following
theorem.

Theorem 4. Consider the bi-virus SIS model (3) under Assumption 1.
Suppose that 𝐵1 and 𝐵2 are irreducible matrices; 𝑠(𝐵1 − 𝐷1) > 0; 𝑠(𝐵2 −
𝐷2) > 0; and 𝐸2 ⊆ 𝐸1, where 𝐸1 and 𝐸2 are as defined in Section 2. If the
healing rates for virus 2 fulfill

𝛿2𝑖 > max
𝑗∈[𝑛]

{

(𝐵2)𝑖𝑗
((𝐷1)−1𝐵1)𝑖𝑗

}

(𝐵1)𝑖𝑗>0

, (11)

for all 𝑖 ∈ [𝑛], then the only locally asymptotically stable equilibrium in 
is (𝑝̃1, 𝟎) with 𝟎 ≪ 𝑝̃1 ≪ 𝟏.

Proof. See Appendix. □

Theorem 4 represents a strategy to eradicate one of the viruses in a
i-virus system, made possible by leveraging the fact that one virus has
stronger set of spread parameters than the other. Theorem 4 addresses
uestion (iv) in Section 2.1. We discuss an interesting interpretation
f the strategy in Theorem 4, and of the merits of the same in the
ollowing remarks.

emark 5 (Virus as Vaccine). Since the strategy given in Theorem 4
nsures local asymptotic convergence to the single-virus endemic equi-
ibrium of the benign virus, it could also be interpreted in the following
6 
Fig. 2. Spread network for virus 1.

sense: the benign virus effectively acts as a vaccine against the malig-
nant virus. In the context of battling epidemic outbreaks, where the
goal is to minimize the mortality rate, this strategy could potentially
provide health administration officials with an effective tool. ■

The mitigation strategies detailed in this section can be compared
s follows. On the one hand, assuming that the objective of public
ealth officials is solely to eradicate one virus in a bi-virus system while
onsidering resource constraints (e.g., availability of vaccines, drugs,
entilators, etc.), it may be more feasible to implement the strategy
iven in Theorem 4. On the other hand, this strategy requires the
ersistence of one virus, which may be undesirable. Observe that since
he condition in Theorem 4 involves adjusting healing rates, it can be
iewed as an allocation of healing resources but under the assumption
hat there are enough resources to meet the demand.
Given that both Theorems 3 and 4 establish one virus as dominating

he other virus, it is natural to ask whether Theorem 3 implies and is im-
lied by Theorem 4. We address the same in the following. Theorem 3
ays that if 𝐵2 = 𝐵1 + 𝑏𝑧⊤, for some 𝑏 ≫ 𝟎 and 𝑧 such that 𝑧⊤𝑝̃1 > 0,
here 𝑝̃1 is the unique solution to Eq. (9), then virus 2 dominates
irus 1. Setting 𝐷𝑘 = 𝐼 for 𝑘 = 1, 2 in Theorem 4 (and there is no loss
f generality in doing so; see [34, Lemma 3.7]), it can be immediately
bserved that 𝐵1 > 𝐵2, which, due to Ye et al. [34, Corollary 3.10]
urther implies that virus 1 dominates virus 2. Indeed, post a suitable
djustment of notation in Theorem 4 (i.e., essentially replace index 1
ith index 2 and vice-versa), it can be readily seen that 𝐵2 > 𝐵1, which
mplies that virus 2 dominates virus 1. Note that for the condition in
heorem 3 to be satisfied, we require 𝐵2 = 𝐵1 + 𝑏𝑧⊤ where the vector
satisfies 𝑧⊤𝑝̃1 > 0. However, the vector 𝑧 does not necessarily need to
ave all its elements to be strictly positive. Hence, 𝐵2 = 𝐵1 + 𝑏𝑧⊤ does
ot necessarily imply that 𝐵2 > 𝐵1 or 𝐵1 > 𝐵2. Thus, the condition
n Theorem 3 does not imply the condition in Theorem 4. It also turns
ut that the condition in Theorem 4 does not imply the condition in
heorem 3; to see this, consider the following: Suppose that 𝐵2 > 𝐵1,
hen, for some 𝑏′ ≫ 𝟎 and 𝑧̄, we have 𝐵2 = 𝐵1 + 𝑏′𝑧̄⊤. Note that such a
̄ need not necessarily satisfy 𝑧̄⊤𝑝̃1 > 0. In conclusion, Theorem 3 (resp.
heorem 4) does not subsume Theorem 4 (resp. Theorem 3).

. Simulations

In this section, we present a number of simulations to illustrate our
heoretical findings. In particular, we consider a network having 15
opulation nodes, thus, 𝑛 = 15. In all simulated scenarios we consider
wo competing viruses, namely virus 1 and virus 2. We denote the
verage infection ratio of virus 𝑘, i.e., 1

𝑛
∑𝑛

𝑖 𝑝
𝑘
𝑖 (𝑡), by 𝑝̄𝑘(𝑡). The spread

parameter 𝛽𝑘𝑖𝑗 is set to one if node 𝑗 is a neighbor of node 𝑖; otherwise
𝛽𝑘𝑖𝑗 is set to zero. The spread network for virus 1 is as shown in Fig. 2.

In the simulation depicted in Fig. 3, the contact network of each
irus is the same, i.e., 𝐸1 = 𝐸2. We chose 𝛿1𝑖 = 1.5 for 𝑖 ∈ [8], and 𝛿1𝑖 = 2
or 𝑖 ∈ [15]⧵ [8]. Mirroring this pattern, we chose 𝛿2𝑖 = 2 for 𝑖 ∈ [8], and
𝛿2𝑖 = 1.5 for 𝑖 ∈ [15] ⧵ [8]. As initial conditions, we set 𝑝1𝑖 (0) = 0.5 and
𝑝2𝑖 (0) = 0.3 for all 𝑖 ∈ [15]. With these choices of parameters, it turns out
that 𝑠(𝐵1 −𝐷1) = 2.5032, and 𝑠(𝐵2 −𝐷2) = 2.5188. Hence, both viruses
fulfill the conditions in [36, Theorem 3], thus providing the existence
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Fig. 3. Simulation with two viruses (red and blue), converging to a coexistence
quilibrium. The average infection ratio of virus 𝑘 is denoted by 𝑝̄𝑘(𝑡).

Fig. 4. Simulation with two viruses (red and blue). With 𝑧⊤ = [ones(1, 14),−14.0608]
(𝑧 being a column vector), 𝑏 = 0.1 ∗ ones(15, 1), and letting 𝐵2 = 𝐵1 + 𝑏𝑧⊤, neither
irus is able to push out the other; thereby leading to the existence of a coexistence
quilibrium point.

Fig. 5. Simulation with two viruses (red and blue). With 𝑧 = [ones(14, 1); 14.0608],
𝑏 = 0.1 ∗ ones(15, 1), and letting 𝐵2 = 𝐵1 + 𝑏𝑧⊤, the infection level with respect to
irus 1 dies out, thereby precluding the possibility of the existence of a coexistence
quilibrium.

f exactly two single-virus endemic equilibria, namely (𝑝̃1, 𝟎) and (𝟎, 𝑝̃2).
ote, 𝑝̃1 can be approximated by setting 𝑝1(0) > 𝟎 and 𝑝2(0) = 𝟎,

and running the simulation for a sufficiently long period of time 𝑇 .
Then, assuming that 𝑝̃1 ≈ 𝑝1(𝑇 ), and, with an analogous approximation
for virus 2, 𝑝̃2 ≈ 𝑝2(𝑇 ), we obtain 𝑠((𝐼 − 𝛥(𝑝̃2))𝐵1 − 𝐷1) = 2.126, and
𝑠((𝐼 − 𝛥(𝑝̃1))𝐵2 −𝐷2) = 2.147. Consequently, this pair of viruses fulfills
the conditions for Theorem 1. In line with the result in Theorem 1, there
exists a coexistence equilibrium; see Fig. 3. Moreover, our simulations
show that the viral infection levels appear to converge to a coexistence
equilibrium . Additionally, irrespective of how the initial condition is
varied within  , excluding 𝑝1(0) = 𝟎 or 𝑝2(0) = 𝟎, we observe that
all simulations converge to the same coexistence equilibrium, which
suggests that the coexistence equilibrium might be unique, as well as
asymptotically stable.

For the simulation depicted in Fig. 5, we set the initial conditions to
be 𝑝1𝑖 (0) = 0.5 and 𝑝2𝑖 (0) = 0.5 for all 𝑖 ∈ [15]. The matrix 𝐵1 is the same
as that for the simulation depicted in Fig. 3, except that all entries in
the last column are increased by 10. The healing rates are 𝛿𝑘 = 1 for
𝑖

7 
Fig. 6. Simulation with two viruses (red and blue). The average infection ratio of
virus 𝑘 is denoted by 𝑝̄𝑘(𝑡). The single-virus endemic equilibrium of virus 1 is unstable,
whereas that of virus 2 is asymptotically stable.

Fig. 7. Simulation with two viruses (red and blue). The healing rates of virus 2 are
changed to fulfill Theorem 4. Virus 1 persists and reaches its single-virus endemic
equilibrium, whereas virus 2 dies out.

Fig. 8. Simulation with reproduction numbers analogous to Covid variants, with
Omicron (𝑝̄1(𝑡)) depicted in red and Delta (𝑝̄2(𝑡)) depicted in blue. While the Delta
variant starts out close to its single-virus endemic equilibrium, it is eventually overtaken
by Omicron, despite the latter barely being present in the population initially.

𝑖 ∈ [15] and 𝑘 ∈ [2]. We choose 𝑧 to be a vector with all entries except
the last one being equal to 1; the last entry equals −14.0608. Observe
that 𝑧⊤𝑝̃1 = 0, where 𝑝̃1 is obtained as described in the simulation for
Fig. 3. We choose 𝑏 to be a column vector with all entries being equal
o 0.1. We set 𝐵2 = 𝐵1+𝑏𝑧⊤, and observe that 𝐵2 is an irreducible non-
egative matrix. Consistent with the result in Theorem 2 (statement i)),
a coexistence equilibrium point exists; see Fig. 4. Next, we choose 𝑧 to
be a column vector with all entries except the last one being equal to 1;
the last entry equals 14.0608. Note that with this choice of 𝑧, 𝑧⊤𝑝̃1 ≠ 0.
We choose vector 𝑏 as described for Fig. 3, and accordingly construct
𝐵2. Consistent with the result in Theorem 2 (statement (ii)), it can be
seen that the infection level with respect to virus 1 decays to zero (see
red line in Fig. 5); thus implying that a coexistence equilibrium does
not exist.

For the following simulation, we set 𝑝1𝑖 (0) = 0.5 and 𝑝2𝑖 (0) = 0.3, for
all 𝑖 ∈ [15]. For the simulation depicted in Fig. 6, 𝐵1 is same as that
for the simulation depicted in Fig. 3. The healing rates are 𝛿𝑘 = 1,
𝑖
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for 𝑖 ∈ [15] and 𝑘 ∈ [2]. We choose 𝑧 to be a column vector with
ll entries being equal to 0.01, and note that 𝑧⊤𝑝̃1 > 0, where 𝑝̃1 is
btained as described in the simulation for Fig. 3. We choose 𝑏 to be a
olumn vector with all entries being equal to 0.1. We set 𝐵2 = 𝐵1+𝑏𝑧⊤,
nd note that 𝐵2 is irreducible. Further, 𝑠(−𝐷1 + 𝐵1) = 3.1599, and
herefore 𝑠(−𝐷1 + 𝐵1) > 0, which implies 𝜌(𝐵1) > 1. Likewise, 𝑠(−𝐷2 +
2) = 3.1729, and therefore 𝑠(−𝐷2 + 𝐵2) > 0, which implies 𝜌(𝐵2) >
. Thus, the aforementioned choice of parameters fulfills the criteria
n Theorem 3. In line with the result in Theorem 3, the single-virus
ndemic equilibrium corresponding to virus 1 is unstable (see red line
n Fig. 6), while the single-virus endemic equilibrium corresponding to
irus 2 is asymptotically stable (see blue line in Fig. 6).
The simulations depicted in Fig. 7 was initialized at the coexistence

quilibrium from Fig. 3, with all parameters the same as in that
imulation, except for the healing rate with respect to virus 2. The
ealing rates of virus 2, i.e., 𝛿2𝑖 , are chosen as in (11). More specifically,
2
𝑖 = 4 for 𝑖 ∈ [15]. With these choices of parameters, it turns out
hat 𝑠(𝐵1 − 𝐷1) = 2.5032, and 𝑠(𝐵2 − 𝐷2) = 0.1599. Given that the
hoice of 𝛿2𝑖 fulfills the inequality in (11), it follows that, consistent
ith the result in Theorem 4, virus 1 persists and reaches its single-
irus endemic equilibrium (see red line in Fig. 7), whereas virus 2 is
radicated (see blue line in Fig. 7).
To relate the consequences of Theorem 4 to a real-world epidemic,

he simulations depicted in Fig. 8 feature two viruses with similar
basic reproduction numbers to the Covid-19 variants Omicron (red)
and Delta (blue). Specifically, the healing parameters for virus 1 were
chosen as 𝛿1𝑖 = 0.51 for 𝑖 ∈ [15] to obtain 𝜌((𝐷1)−1𝐵1) = 8.2, emulating
the estimated basic reproduction number of the Omicron variant [59].
For virus 2, setting 𝛿2𝑖 = 0.81 for 𝑖 ∈ [15] ensures that 𝜌((𝐷2)−1𝐵2) =
5.1, emulating the estimated basic reproduction number of the Delta
variant [60]. Furthermore, the initial conditions were set to 𝑝1𝑖 (0) =
0.001 and 𝑝2𝑖 (0) = 0.7 for all 𝑖 ∈ [15], representing a situation where
the Delta variant is endemic in the population whereas the Omicron
variant has just appeared. From Theorem 4 it follows that the only
locally stable equilibrium is the single-virus endemic equilibrium of
the Omicron variant. As seen in Fig. 8, despite the disadvantageous
initial condition, the Omicron variant will eventually beat out the Delta
variant, similar to what was witnessed in real-world data by Paton et al.
[61]. In this sense, the Omicron variant may be thought of as a type of
vaccine against the Delta variant, as discussed in Remark 5. However,
it should be noted that these simulation parameters and the underlying
assumptions may not be adequate models of Covid-19 spread.

6. Conclusions

The paper dealt with the existence of a coexistence equilibrium in
a competitive bi-virus networked SIS model. We provided a sufficient
condition, and a necessary condition, for the existence of a coexistence
equilibrium. Further, we identified a condition, the fulfillment of which
guarantees that, for certain special pairs of spread matrices, every
coexistence equilibrium lies on a line; the violation of the said condi-
tion guarantees that there does not exist any coexistence equilibrium.
Lastly, we devised a mitigation strategy, which employs one virus for
eradicating the other.

There are several promising directions that could be pursued. A
natural question is to ascertain whether the sufficient condition for
existence of a coexistence equilibrium can be further strengthened to
guarantee uniqueness and global (or at least local) asymptotic sta-
bility of the said equilibrium. Another line of work could involve
devising closed-loop control strategies for steering the dynamics to the
disease-free equilibrium, and to the boundary equilibrium of the benign
virus, respectively. Yet another line of future investigation may revolve
around characterizing observability in a bi-virus setting. Finally, it is
of interest to consider the problem of leveraging one virus to eradicate
another virus but under the caveat that there are constraints on the
availability of healing resources.
8 
Preliminaries

In this section, we recall some preliminary results, pertinent to the
analysis of system (3). A real square matrix is said to be Metzler if
all elements outside the diagonal are non-negative. We require the
following result for Metzler matrices.

Lemma 3 ([36, Proposition 1]). Suppose that 𝛬 is a negative diagonal
matrix and𝑁 is an irreducible non-negative matrix. Let𝑀 be the irreducible
Metzler matrix 𝑀 = 𝛬 + 𝑁 . Then, 𝑠(𝑀) < 0 if and only if 𝜌(−𝛬−1𝑁) <
, 𝑠(𝑀) = 0 if and only if 𝜌(−𝛬−1𝑁) = 1, and 𝑠(𝑀) > 0 if and only if,
(−𝛬−1𝑁) > 1. ■

We will also be making use of the following variants of the Perron–
Frobenius theorem for irreducible matrices.

Lemma 4 ([62, Chapter 8.3] [63, Theorem 2.7]). Suppose that 𝑁 is an
irreducible non-negative matrix. Then,

(i) 𝑟 = 𝜌(𝑁) is a simple eigenvalue of 𝑁 .
(ii) There is an eigenvector 𝜁 ≫ 𝟎 corresponding to the eigenvalue 𝑟.
(iii) 𝑥 > 𝟎 is an eigenvector only if 𝑁𝑥 = 𝑟𝑥 and 𝑥 ≫ 𝟎.
(iv) If 𝐴 is a non-negative matrix such that 𝐴 < 𝑁 , then 𝜌(𝐴) < 𝜌(𝑁).

■

Lemma 5 ([63, Lemma 2.3]). Suppose that 𝑀 is an irreducible Metzler
matrix. Then 𝑟 = 𝑠(𝑀) is a simple eigenvalue of 𝑀 , with an eigenvector
𝜁 ≫ 𝟎. ■

The following lemma pertains to system (3), providing a constraint
on any endemic equilibrium.

Lemma 6. Consider system (3) under Assumption 1. Suppose, for all
𝑘 ∈ [2], that 𝐵𝑘 is irreducible. If 𝑝 = (𝑝1, 𝑝2) ∈  is an equilibrium
of (3), then, for each 𝑘 ∈ [2], either 𝑝𝑘 = 𝟎, or 𝟎 ≪ 𝑝𝑘 ≪ 𝟏. Moreover,
∑2

𝑘=1 𝑝
𝑘 ≪ 𝟏. ■

Proof. Consider an equilibrium 𝑝 ∈  of system (3). Assume, by way
of contradiction, that ∑2

𝑘=1 𝑝
𝑘
𝑖 ≥ 1 for some 𝑖 ∈ [𝑛]. Plugged into (1)

under Assumption 1, we obtain
2
∑

𝑘=1
𝑝̇𝑘𝑖 (𝑡) ≤ −

2
∑

𝑘=1
𝛿𝑘𝑖 𝑝

𝑘
𝑖 < 0, (12)

where (12) follows from (i) Assumption 1, (ii) ∑2
𝑘=1 𝑝

𝑘
𝑖 ≥ 1 and (iii)

that 𝑝 ∈  . Note that (12) is a contradiction of the fact that 𝑝 is
an equilibrium, following from the assumption ∑2

𝑘=1 𝑝
𝑘
𝑖 ≥ 1 for some

𝑖 ∈ [𝑛]. Therefore, ∑2
𝑘=1 𝑝

𝑘 ≪ 𝟏.
Now, for all 𝑘 ∈ [2], 𝑝𝑘 is a equilibrium of (2), so we have

(−𝐷𝑘 + (𝐼 −
2
∑

𝑙=1
𝛥(𝑝𝑙))𝐵𝑘)𝑝𝑘 = 0,

⟹ (𝐼 −
2
∑

𝑙=1
𝛥(𝑝𝑙))(𝐷𝑘)−1𝐵𝑘𝑝𝑘 = 𝑝𝑘. (13)

Then, since 𝟎 ≪ 𝑝𝑘 ≪ 𝟏, (𝐼 −
∑2

𝑙=1 𝛥(𝑝
𝑙))(𝐷𝑘)−1𝐵𝑘 is an irreducible

non-negative matrix for all 𝑘 ∈ [2]. Now, for some 𝑘 ∈ [2], assume by
way of contradiction that 𝑝𝑘 > 𝟎, with 𝑝𝑘𝑖 = 0 for all 𝑖 ∈ 𝑊 , where
𝑊 ⊂ [𝑛] is nonempty. By the properties of irreducible non-negative
matrices, ((𝐼 −

∑2
𝑙=1 𝛥(𝑝

𝑙))(𝐷𝑘)−1𝐵𝑘𝑝𝑘)𝑗 > 0 for some 𝑗 ∈ 𝑊 . Since
𝑝𝑘𝑗 = 0, this contradicts (13), and therefore we must either have 𝑝𝑘 ≫ 𝟎,
or 𝑝𝑘 = 𝟎, for each 𝑘 ∈ [2]. □
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Appendix

Proof of Theorem 1. Recall that for 𝑘 ∈ [2], Assumption 1 implies that
𝐷𝑘 is a positive diagonal matrix, and therefore invertible. Furthermore,
note that (𝐼 + 𝛥((𝐷1)−1𝐵1𝑝1)) and (𝐼 + 𝛥((𝐷2)−1𝐵2𝑝2)) are positive
diagonal matrices whenever 𝑝1 ≥ 0 and 𝑝2 ≥ 0, and are then also
invertible. Define the maps 𝑇 1(𝑝1, 𝑝2) ∶ [0, 1]𝑛 × [0, 1]𝑛 → [0, 1]𝑛, and
𝑇 2(𝑝1, 𝑝2) ∶ [0, 1]𝑛 × [0, 1]𝑛 → [0, 1]𝑛, such that

𝑇 1(𝑝1, 𝑝2) = (𝐼 + 𝛥((𝐷1)−1𝐵1𝑝1))−1 × (𝐼 − 𝛥(𝑝2))(𝐷1)−1𝐵1𝑝1

𝑇 2(𝑝1, 𝑝2) = (𝐼 + 𝛥((𝐷2)−1𝐵2𝑝2))−1 × (𝐼 − 𝛥(𝑝1))(𝐷2)−1𝐵2𝑝2.

For 𝑖 ∈ [𝑛], the 𝑖th components of the maps are

𝑇 1
𝑖 (𝑝

1, 𝑝2) =
(1 − 𝑝2𝑖 )((𝐷

1)−1𝐵1𝑝1)𝑖
1 + ((𝐷1)−1𝐵1𝑝1)𝑖

,

𝑇 2
𝑖 (𝑝

1, 𝑝2) =
(1 − 𝑝1𝑖 )((𝐷

2)−1𝐵2𝑝2)𝑖
1 + ((𝐷2)−1𝐵2𝑝2)𝑖

.

Note that the scalar function 𝑠∕(1+ 𝑠) is increasing in 𝑠, and for 𝑘 ∈ [2],
the matrix (𝐷𝑘)−1𝐵𝑘 is non-negative. Therefore, 𝑇 𝑘

𝑖 is an increasing
function in 𝑝𝑘𝑗 for all 𝑖, 𝑗 ∈ [𝑛]. Moreover, 𝑇 1

𝑖 is a decreasing function in
𝑝2𝑖 and 𝑇 2

𝑖 is a decreasing function in 𝑝1𝑖 , for all 𝑖 ∈ [𝑛]. Hence, for any
𝑝1, 𝑝2 ∈ [0, 1]𝑛, if 𝑣 ≥ 𝑧 it follows that

𝑇 1(𝑣, 𝑝2) ≥ 𝑇 1(𝑧, 𝑝2), 𝑇 1(𝑝1, 𝑣) ≤ 𝑇 1(𝑝1, 𝑧),

𝑇 2(𝑣, 𝑝2) ≤ 𝑇 2(𝑧, 𝑝2), 𝑇 2(𝑝1, 𝑣) ≥ 𝑇 2(𝑝1, 𝑧).
(14)

The inequalities in (14) state that 𝑇 𝑘(𝑝1, 𝑝2) is increasing in its 𝑘th
argument and decreasing in its other argument. Let 𝑝 = (𝑝1, 𝑝2), and
let 𝑇 (𝑝) ∶ [0, 1]2𝑛 → [0, 1]2𝑛 be the map 𝑇 (𝑝) = (𝑇 1(𝑝), 𝑇 2(𝑝)). A fixed
point of 𝑇 (𝑝) fulfills

𝑝1 = (𝐼 + 𝛥((𝐷1)−1𝐵1𝑝1))−1 × (𝐼 − 𝛥(𝑝2))(𝐷1)−1𝐵1𝑝1

𝑝2 = (𝐼 + 𝛥((𝐷2)−1𝐵2𝑝2))−1 × (𝐼 − 𝛥(𝑝1))(𝐷2)−1𝐵2𝑝2. (15)

Pre-multiplying the first line (resp. second line) of (15) by
(𝐼 + 𝛥((𝐷1)−1𝐵1𝑝1)) (resp. (𝐼 + 𝛥((𝐷2)−1𝐵2𝑝2))) gives us

(𝐼 + 𝛥((𝐷1)−1𝐵1𝑝1))𝑝1 = (𝐼 − 𝛥(𝑝2))(𝐷1)−1𝐵1𝑝1

(𝐼 + 𝛥((𝐷2)−1𝐵2𝑝2))𝑝2 = (𝐼 − 𝛥(𝑝1))(𝐷2)−1𝐵2𝑝2. (16)

Rearranging (16), and making use of the identity 𝛥(𝑢)𝑣 = 𝛥(𝑣)𝑢 yields

(𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))(𝐷1)−1𝐵1𝑝1 = 𝑝1,

(𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))(𝐷2)−1𝐵2𝑝2 = 𝑝2.
(17)

Making use of the fact that diagonal matrices commute, pre-multiplying
the first line (resp. second line) of (17) by 𝐷1 (resp. 𝐷2), and rearrang-
ing terms gives us

(−𝐷1 + (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵1)𝑝1 = 𝟎,
(−𝐷2 + (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵2)𝑝2 = 𝟎.

(18)

Comparing (18) with (2), it follows that a fixed point of 𝑇 (𝑝) constitutes
an equilibrium of system (3) and vice versa. It suffices to show that 𝑇 (𝑝)
has a fixed point 𝑝̂ = (𝑝̂1, 𝑝̂2) ≫ 𝟎, such that 𝑝̂1 + 𝑝̂2 ≤ 𝟏.

Recall that (𝑝̃1, 𝟎) and (𝟎, 𝑝̃2) are single-virus endemic equilibria of
1 1 2 1
system (3). Consider 𝑇 (𝑝̃ , 𝑦 ). By assumption, (𝑝̃ , 𝟎) is an equilibrium
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of (3), therefore 𝑇 1(𝑝̃1, 𝟎) = 𝑝̃1. By the inequalities in (14) we have
𝑇 1(𝑝̃1, 𝑝2) ≤ 𝑝̃1, and thus 𝑇 1(𝑝1, 𝑝2) ≤ 𝑝̃1, for all 𝑝1 ≤ 𝑝̃1. Analogously, it
can be shown that we have 𝑇 2(𝑝1, 𝑝2) ≤ 𝑝̃2, for all 𝑝2 ≤ 𝑝̃2. Thus,

𝑇 (𝑝1, 𝑝2) ≤ (𝑝̃1, 𝑝̃2), (19)

whenever (𝑝1, 𝑝2) ≤ (𝑝̃1, 𝑝̃2).
Now, by assumption, 𝑠(−𝐷1+(𝐼−𝛥(𝑝̃2))𝐵1) > 0, and since 𝐷1 and (𝐼−

𝛥(𝑝̃2)) are positive diagonal matrices and 𝐵1 is an irreducible and non-
negative matrix, (−𝐷1 + (𝐼 −𝛥(𝑝̃2))𝐵1) is an irreducible Metzler matrix.
Therefore, by Lemma 3 and the fact that diagonal matrices commute,
we have 𝜌((𝐼 −𝛥(𝑝̃2))(𝐷1)−1𝐵1) > 1. Further, since ((𝐼 −𝛥(𝑝̃2))(𝐷1)−1𝐵1)
is an irreducible non-negative matrix, by item (i) in Lemma 4 we know
hat 𝜆1 = 𝜌((𝐼 − 𝛥(𝑝̃2))(𝐷1)−1𝐵1) is a simple eigenvalue of this matrix.
urthermore, by item (ii) in Lemma 4, we know that the eigenspace
f 𝜆1 is spanned by a vector ̄̄𝑝1 ≫ 𝟎. Analogously, we get 𝜆2 = 𝜌((𝐼 −
(𝑝̃1))(𝐷2)−1𝐵2) > 1, and the corresponding eigenvector ̄̄𝑝2 ≫ 𝟎.
With the eigenvectors ̄̄𝑝1, ̄̄𝑝2 in place, we see that since (𝐷1)−1𝐵1 and

𝐷2)−1𝐵2 are irreducible non-negative matrices, we have
(𝐷1)−1𝐵1 ̄̄𝑝1)𝑖 > 0, ((𝐷2)−1𝐵2 ̄̄𝑝2)𝑖 > 0, for all 𝑖 ∈ [𝑛]. Further, given that
̄̄𝑝1 ≫ 𝟎, ̄̄𝑝2 ≫ 𝟎, 𝑝̃1 ≫ 𝟎, and 𝑝̃2 ≫ 𝟎, we have 𝑝̃1𝑖 ∕ ̄̄𝑝

1
𝑖 > 0, and 𝑝̃2𝑖 ∕ ̄̄𝑝

2
𝑖 > 0,

or all 𝑖 ∈ [𝑛]. Moreover, note that 𝜆1 − 1 > 0 and 𝜆2 − 1 > 0. Hence,
here exist 𝜖1 > 0 and 𝜖2 > 0 such that

1 < min

{

𝜆1 − 1
max𝑖∈[𝑛]((𝐷1)−1𝐵1 ̄̄𝑝1)𝑖

, min
𝑖∈[𝑛]

𝑝̃1𝑖
̄̄𝑝1𝑖

}

,

𝜖2 < min

{

𝜆2 − 1
max𝑖∈[𝑛]((𝐷2)−1𝐵2 ̄̄𝑝2)𝑖

, min
𝑖∈[𝑛]

𝑝̃2𝑖
̄̄𝑝2𝑖

}

.

(20)

From (20) it follows that

1 + max
𝑖∈[𝑛]

((𝐷1)−1𝐵1𝜖1 ̄̄𝑝1)𝑖 < 𝜆1,

1 + max
𝑖∈[𝑛]

((𝐷2)−1𝐵2𝜖2 ̄̄𝑝2)𝑖 < 𝜆2.
(21)

Employing (21) it follows that, for all 𝑖 ∈ [𝑛], we have

𝑇 1
𝑖 (𝜖

1 ̄̄𝑝1, 𝑝̃2) =
((𝐼 − 𝛥(𝑝̃2))(𝐷1)−1𝐵1𝜖1 ̄̄𝑝1)𝑖

1 + ((𝐷1)−1𝐵1𝜖1 ̄̄𝑝1)𝑖

=
𝜆1𝜖1 ̄̄𝑝1𝑖

1 + ((𝐷1)−1𝐵1𝜖1 ̄̄𝑝1)𝑖
> 𝜖1 ̄̄𝑝1𝑖 ,

𝑇 2
𝑖 (𝑝̃

1, 𝜖2 ̄̄𝑝2) =
((𝐼 − 𝛥(𝑝̃1))(𝐷2)−1𝐵2𝜖2 ̄̄𝑝2)𝑖

1 + ((𝐷2)−1𝐵2𝜖2 ̄̄𝑝2)𝑖

=
𝜆2𝜖2 ̄̄𝑝2𝑖

1 + ((𝐷2)−1𝐵2𝜖2 ̄̄𝑝2)𝑖
> 𝜖2 ̄̄𝑝2𝑖 .

Given that (20) implies 𝜖1 ̄̄𝑝1 < 𝑝̃1 and 𝜖2 ̄̄𝑝2 < 𝑝̃2, by the inequalities
in (14) we have 𝑇 1(𝜖1 ̄̄𝑝1, 𝑝2) > 𝜖1 ̄̄𝑝1 whenever 𝜖2 ̄̄𝑝2 ≤ 𝑝2 ≤ 𝑝̃2, and
𝑇 2(𝑝1, 𝜖2 ̄̄𝑝2) > 𝜖2 ̄̄𝑝2 whenever 𝜖1 ̄̄𝑝1 ≤ 𝑝1 ≤ 𝑝̃1. Further application of
the inequalities in (14) yields

𝑇 1(𝑝1, 𝑝2) > 𝜖1 ̄̄𝑝1, 𝑇 2(𝑝1, 𝑝2) > 𝜖2 ̄̄𝑝2, (22)

whenever (𝜖1 ̄̄𝑝1, 𝜖2 ̄̄𝑝2) ≤ (𝑝1, 𝑝2) ≤ (𝑝̃1, 𝑝̃2). Then, (19) and (22) show
that (𝜖1 ̄̄𝑝1, 𝜖2 ̄̄𝑝2) ≤ 𝑇 (𝑝1, 𝑝2) ≤ (𝑝̃1, 𝑝̃2) whenever (𝜖1 ̄̄𝑝1, 𝜖2 ̄̄𝑝2) ≤ (𝑝1, 𝑝2) ≤
(𝑝̃1, 𝑝̃2). By Brouwer’s fixed point theorem [64, Theorem 9.3], there
exists at least one fixed point of 𝑇 (𝑝) in the domain {𝑝 = (𝑝1, 𝑝2) ∶
(𝜖1 ̄̄𝑝1, 𝜖2 ̄̄𝑝2) ≤ (𝑝1, 𝑝2) ≤ (𝑝̃1, 𝑝̃2)}. Recall that a fixed point of 𝑇 (𝑝) is
equivalent to an equilibrium of (3), hence, by Lemma 6, any fixed point
of 𝑇 (𝑝) must fulfill 𝑝1+𝑝2 ≤ 𝟏. In conclusion, system (3) has at least one
coexistence equilibrium (𝑝̂1, 𝑝̂2) ≫ 𝟎 in  , such that 𝑝̂1 + 𝑝̂2 ≤ 𝟏. ■

Proof of Proposition 2. Suppose that there are matrices 𝐷1 and 𝐵1

obeying conditions (i)–(ii) in the statement of Proposition 2, with the
matrix 𝐵1 being non-negative and irreducible. Further, note that with
the given assumptions, 𝑠(−𝐷1+𝐵1) > 0 implies that 𝑠(−𝐷2+𝐵2). Let 𝑝̃1

2
and 𝑝̃ be the unique single-virus endemic equilibria for virus 1 and 2,
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respectively. It follows from (2), and the fact that 𝐷1, 𝐷2 are invertible,
that 𝑝̃1, 𝑝̃2 fulfill

(𝐼 − 𝛥(𝑝̃1))(𝐷1)−1𝐵1𝑝̃1 = 𝑝̃1,

𝐼 − 𝛥(𝑝̃2))(𝐷2)−1𝐵2𝑝̃2 = 𝑝̃2.
(23)

Since 𝐵1 = 𝜈𝐵2, 𝐷1 = 𝜈𝐷2 gives (𝐷1)−1𝐵1 = (𝐷2)−1𝐵2, from (23), it
s immediate that 𝑝̃1 = 𝑝̃2 = 𝑝̃, and therefore

(𝐼 − 𝛥(𝑝̃))(𝐷1)−1𝐵1𝑝̃ = 𝑝̃,

𝐼 − 𝛥(𝑝̃))(𝐷2)−1𝐵2𝑝̃ = 𝑝̃.
(24)

By Lemma 6 we have 𝑝̃ ≪ 𝟏, implying that (𝐼 − 𝛥(𝑝̃)) is a positive
diagonal matrix. Then, for 𝑘 ∈ [2], it follows that (𝐼 − 𝛥(𝑝̃))(𝐷𝑘)−1𝐵𝑘 is
rreducible and non-negative. Therefore, item (iii) in Lemma 4 can be
pplied to (24), from which it follows that 𝜌((𝐼 − 𝛥(𝑝̃))(𝐷1)−1𝐵1) = 1
nd 𝜌((𝐼 − 𝛥(𝑝̃))(𝐷2)−1𝐵2) = 1. Applying Lemma 3 we obtain

(−𝐷1 + (𝐼 − 𝛥(𝑝̃2))𝐵1) = 0,

(−𝐷2 + (𝐼 − 𝛥(𝑝̃1))𝐵2) = 0.
(25)

his concludes the proof. ■

roof of Proposition 3. Suppose that (𝑝1, 𝑝2) is an equilibrium of (2).
et the left Perron eigenvector of (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵2 be 𝑢 ≫ 𝟎, with
orresponding eigenvalue 𝜌((𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵2), so that 𝑢⊤𝑝1 = 1.
uppose that (𝐵2 − 𝐵1)𝑝1 < 𝟎. Then

(𝐵2 − 𝐵1)𝑝1 < 𝟎
⇔ (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))(𝐵2 − 𝐵1)𝑝1 < 𝟎
⇔ [−𝐼 + (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵2]𝑝1 < 𝟎

⇒ 𝑢⊤[−𝐼 + (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵2]𝑝1 < 0

⇒ 𝜌((𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵2) ≠ 1.

(26)

Since 𝜌((𝐼 −𝛥(𝑝1) −𝛥(𝑝2))𝐵2) = 1 at a coexistence equilibrium, we have
a contradiction. Now, suppose that (𝐵2 − 𝐵1)𝑝1 > 𝟎. Then

(𝐵2 − 𝐵1)𝑝1 > 𝟎
⇔ (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))(𝐵2 − 𝐵1)𝑝1 > 𝟎
⇔ [−𝐼 + (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵2]𝑝1 > 𝟎

⇒ 𝑢⊤[−𝐼 + (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵2]𝑝1 > 0

⇒ 𝜌((𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵2) ≠ 1.

(27)

Since 𝜌[(𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵2] = 1 at a coexistence equilibrium, this
contradicts (𝑝1, 𝑝2) being a coexistence equilibrium of system (3). ■

Proof of Theorem 2. Note that for any 𝑝2 ∈ R𝑛 we must have one of
the following.

𝑏𝑧⊤𝑝2 > 𝟎, or 𝑏𝑧⊤𝑝2 < 𝟎, or 𝑏𝑧⊤𝑝2 = 𝟎. (28)

Assume that (𝑝1, 𝑝2) is a coexistence equilibrium. Hence, from Lemma 6
it follows that 𝟎 ≪ (𝑝1, 𝑝2) ≪ 𝟏. Then, by Proposition 3 we cannot have
𝑏𝑧⊤𝑝2 > 𝟎 or 𝑏𝑧⊤𝑝2 < 𝟎. Therefore 𝑏𝑧⊤𝑝2 = 𝟎, and thus

𝑝1 + 𝑝2 = (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))(𝐵1𝑝1 + 𝐵2𝑝2) (29)

= (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))(𝐵1𝑝1 + [𝐵1 + 𝑏𝑧⊤]𝑝2) (30)

= (𝐼 − 𝛥(𝑝1) − 𝛥(𝑝2))𝐵1(𝑝1 + 𝑝2). (31)

With 𝑦 ∶= 𝑝1 + 𝑝2, (31) becomes

𝑦 = (𝐼 − 𝛥(𝑦))𝐵1𝑦 (32)

Note that (32) is the same equation as (8). Therefore, (32) has the same
unique positive solution 𝑦 = 𝑝̃, and thus 𝑝1+𝑝2 = 𝑝̃ for every coexistence
equilibrium (𝑝1, 𝑝2). Further, the coexistence equilibrium equations are

𝑝1 = (𝐼 − 𝛥(𝑝̃))𝐵1𝑝1 (33)

𝑝2 = (𝐼 − 𝛥(𝑝̃))𝐵2𝑝2 (34)
10 
Since 𝐵1 is an irreducible non-negative matrix where 𝟎 ≪ 𝑝̃ ≪ 𝟏 solves
(8), we know that (𝐼 − 𝛥(𝑥̃))𝐵1 has a simple unity eigenvalue with the
corresponding eigenvector 𝑝̃. Moreover, we see that

(𝐼 − 𝛥(𝑝̃))𝐵2𝑝̃ = (𝐼 − 𝛥(𝑝̃))(𝐵1 + 𝑏𝑧⊤)𝑝̃ (35)

= (𝐼 − 𝛥(𝑝̃))𝐵1𝑝̃ (36)

= 𝑝̃, (37)

and since 𝐵2 is an irreducible non-negative matrix, this tells us that
(𝐼 − 𝛥(𝑝̃))𝐵2 has a simple unity eigenvalue with the corresponding
eigenvector 𝑝̃. Thus, (33) and (34), combined with (𝑝1, 𝑝2) ≫ 𝟎, imply
that 𝑝1 and 𝑝2 are both parallel to 𝑝̃. Therefore, every coexistence
equilibrium is of the form (𝑝1, 𝑝2) = (𝑐𝑝̃, (1−𝑐)𝑝̃) for some 𝑐 ∈ (0, 1). Local
exponential attractivity of the line of coexistence equilibria (𝑐𝑝̃, (1−𝑐)𝑝̃),
then, follows from [34, Proposition 3.9].

Now, note that by the same arguments as for (32), it follows that

𝑦 = (𝐼 − 𝛥(𝑦))𝐵2𝑦 (38)

Eqs. (32) and (38) must have a common solution if there exists a
oexistence equilibrium. However, note that

𝐼 − 𝑝̃)𝐵2𝑝̃ = (𝐼 − 𝑝̃)(𝐵1 + 𝑏𝑧⊤)𝑝̃ (39)

= 𝑝̃ + (𝐼 − 𝑝̃)𝑏𝑧⊤𝑝̃. (40)

rom (40) it can be seen that if 𝑧⊤𝑝̃ = 0, Eqs. (32) and (38) have a
ommon solution 𝑝̃. However, if 𝑧⊤𝑝̃ ≠ 0, it follows that Eqs. (32) and
38) cannot have a common solution, and therefore there can be no
oexistence equilibrium in the system. ■

In order to prove the claim in Theorem 3, we need the following
emma.

emma 7 ([34, Corollary 3.16]). For the bivirus system in (3) with
eneric parameter matrices, suppose there are no coexistence equilibria.
hen precisely one of the boundary equilibria is an attractive equilibrium,
nd Int( ) is in its domain of attraction.

In words, Lemma 7 says that if there exists no coexistence equilib-
ium then one of the boundary equilibria is globally stable.

roof of Theorem 3. Since 𝑧⊤𝑝̃1 > 0, by Theorem 2 there is no
oexistence equilibrium, so the only equilibria are (𝟎, 𝟎), (𝑝̃1, 𝟎) and
𝟎, 𝑝̃2). Since, by assumption, 𝜌(𝐵1) > 1 and 𝜌(𝐵2) > 1, from [36,
heorem 3] it follows that (𝟎, 𝟎) is unstable. Consider the Jacobian of
3) at (𝑝̃1, 𝟎), which takes the following form:

(𝑝̃1, 𝟎) =
[

−𝐼 + (𝐼 − 𝛥(𝑝̃1))𝐵1 − 𝛥(𝐵1𝑝̃1) −𝛥(𝐵1𝑝̃1)

0 −𝐼 + (𝐼 − 𝛥(𝑝̃1))𝐵2

]

. (41)

he matrix 𝐽 (𝑝̃1, 𝟎) is unstable if 𝐿1 = −𝐼+(𝐼−𝛥(𝑝̃1))𝐵2 is unstable. Note
hat 𝐿1 is an irreducible Metzler matrix, so if 𝐿1𝑝̃1 > 𝟎 then 𝑠(𝐿1) > 0.
ince
1𝑝̃1 = (−𝐼 + (𝐼 − 𝛥(𝑝̃1))(𝐵1 + 𝑏𝑧⊤))𝑝̃1 (42)

= (𝐼 − 𝛥(𝑝̃1))𝑧⊤𝑝̃1𝑏 (43)

> 𝟎, (44)

here inequality (44) is due to the fact that, by assumption, 𝑧⊤𝑝̃1
nd 𝑏 ≫ 𝟎, while (𝐼 − 𝛥(𝑝̃1)) is positive diagonal, which implies that
𝑧⊤𝑝̃1 ≫ 𝟎. Consequently, it follows that 𝑠(𝐿1) > 0, and therefore (𝑝̃1, 𝟎)
s an unstable equilibrium. Now, consider the Jacobian of (3) at (𝟎, 𝑝̃2),
hich takes the following form:

(𝟎, 𝑝̃2) =
[

−𝐼 + (𝐼 − 𝛥(𝑝̃2))𝐵1 0

−𝛥(𝐵2𝑝̃2) −𝐼 + (𝐼 − 𝛥(𝑝̃2))𝐵2 − 𝛥(𝐵2𝑝̃2)

]

. (45)

he matrix 𝐽 (𝟎, 𝑝̃2) is stable if, and only if, the matrices −𝐼+(𝐼−𝛥(𝑝̃2))𝐵1

nd −𝐼 + (𝐼 −𝛥(𝑝̃2))𝐵2 −𝛥(𝐵2𝑝̃2) are stable. Observe that since 𝑝̃2 is the
nique solution to (10) it follows that

2 2 2 2
(𝐼 − 𝛥(𝑝̃ ))𝐵 𝑝̃ = 𝑝̃
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⟹ (−𝐼 + (𝐼 − 𝛥(𝑝̃2))𝐵2)𝑝̃2 = 𝟎. (46)

Note that 𝑝̃2 ≫ 𝟎. Hence, since (−𝐼+(𝐼−𝛥(𝑝̃2))𝐵2) is irreducible Metzler,
applying Lemma 5 to (46) we have that 𝑠(−𝐼 +(𝐼 −𝛥(𝑝̃2))𝐵2) = 0. Since
𝛥(𝐵2𝑝̃2) is a non-negative matrix, it follows that −𝐼 + (𝐼 − 𝛥(𝑝̃2))𝐵2 >
−𝐼 + (𝐼 − 𝛥(𝑝̃2))𝐵2 − 𝛥(𝐵2𝑝̃2). Hence, from [65, Theorem 2.1], we have
that 𝑠(−𝐼+(𝐼−𝛥(𝑝̃2))𝐵2) > 𝑠(−𝐼+(𝐼−𝛥(𝑝̃2))𝐵2−𝛥(𝐵2𝑝̃2)), which further
implies that 𝑠(−𝐼 + (𝐼 − 𝛥(𝑝̃2))𝐵2−𝛥(𝐵2𝑝̃2)) < 0.

It remains to show that 𝐿2 = −𝐼 + (𝐼 − 𝛥(𝑝̃2))𝐵1 is stable. Since
𝐿2 is an irreducible Metzler matrix and 𝑝̃2 ≫ 𝟎, it suffices to show
that 𝐿2𝑝̃2 < 𝟎, thereby implying 𝑠(𝐿2) < 0. Note that

𝐿2𝑝̃2 = (−𝐼 + (𝐼 − 𝛥(𝑝̃2))(𝐵2 − 𝑏𝑧⊤))𝑝̃2

= −(𝐼 − 𝛥(𝑝̃2))𝑧⊤𝑝̃2𝑏, (47)

and since 𝑏 > 𝟎 by assumption and (𝐼 − 𝛥(𝑝̃2)) is a positive diagonal
matrix, it must be shown that 𝑧⊤𝑝̃2 > 0. By way of contradiction,
assume that 𝑧⊤𝑝̃2 ≤ 0. If 𝑧⊤𝑝̃2 < 0 then (47) is greater than 𝟎, implying
that 𝑠(𝐿2) > 0. Since 𝑠(𝐿1) > 0, the conditions for Theorem 1 are
fulfilled, implying that a coexistence equilibrium exists, which is a
contradiction. If 𝑧⊤𝑝̃2 = 0, then (𝐼 − 𝛥(𝑝̃2))𝐵1𝑝̃2 = 𝑝̃2, which by the
uniqueness of single-virus endemic equilibria implies that 𝑝̃1 = 𝑝̃2,
contradicting the prior assumption 𝑧⊤𝑝̃1 > 0. Hence, 𝑧⊤𝑝̃2 < 0, ensuring
that 𝐿2 is stable. Therefore, 𝑠(𝐽 (𝟎, 𝑝̃2)) < 0, which, from [66, Theorem
4.15 and Corollary 4.3], implies that the equilibrium point (𝟎, 𝑝̃2) is
locally exponentially stable.

Since the existence of a coexistence equilibrium has been ruled out,
Lemma 7 implies that the equilibrium (𝟎, 𝑝̃2) has a domain of attraction
that includes Int( ). ■

Proof of Theorem 4. In order to prove this result, we need the
following lemma.

Lemma 8 ([34, Corollary 3.10]). Consider the SIS model (3) under
Assumption 1. Suppose that 𝐵1 and 𝐵2 are irreducible matrices, and that
𝑠(𝐵1 − 𝐷1) > 0 and 𝑠(𝐵2 − 𝐷2) > 0. If (𝐷1)−1𝐵1 > (𝐷2)−1𝐵2 then there
are exactly three equilibria in [0, 1]2𝑛, namely the healthy state, which is
unstable, (𝟎, 𝑝̃2) with 𝟎 ≪ 𝑝̃2 ≪ 𝟏, which is unstable, and (𝑝̃1, 𝟎) with
𝟎 ≪ 𝑝̃1 ≪ 𝟏, which is locally exponentially stable.

Proof of Theorem 4. Note that with 𝛿2𝑖 given by (11) for all 𝑖 ∈ [𝑛],
since 𝐵1 and 𝐵2 are irreducible non-negative matrices we have 𝛿2𝑖 > 0
for all 𝑖 ∈ [𝑛]. Therefore (11) is consistent with Assumption 1. Then,
it follows from (i) the healing rate in (11), and (ii) 𝐸2 ⊆ 𝐸1, that
(𝐷1)−1𝐵1 > (𝐷2)−1𝐵2. Hence, since, by assumption, 𝑠(𝐵1 − 𝐷1) > 0
and 𝑠(𝐵2 − 𝐷2) > 0, the conditions for Lemma 8 are met. Therefore,
the only locally asymptotically stable equilibrium in  is (𝑝̃1, 𝟎) with
𝟎 ≪ 𝑝̃1 ≪ 𝟏. ■
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