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ARTICLE INFO ABSTRACT

Keywords: The paper studies multi-competitive continuous-time epidemic processes. We consider the setting where two
Epidemic processes viruses are simultaneously prevalent, and the spread occurs due to individual-to-individual interaction. In such
Competing viruses a setting, an individual is either not affected by any of the viruses, or infected by one and exactly one of the

Coexistence equilibrium

S N two viruses. One of the equilibrium points is the coexistence equilibrium, i.e., multiple viruses simultaneously
Mitigation strategies

infect separate fractions of the population. We provide a sufficient condition for the existence of a coexistence
equilibrium. We identify a condition such that for certain pairs of spread matrices either every coexistence
equilibrium lies on a line that is locally exponentially attractive, or there is no coexistence equilibrium. We
then provide a condition that, for certain pairs of spread matrices, rules out the possibility of the existence of
a coexistence equilibrium, and, as a consequence, establishes global asymptotic convergence to the endemic
equilibrium of the dominant virus. Finally, we provide a mitigation strategy that employs one virus to ensure
that the other virus is eradicated. The theoretical results are illustrated using simulations.

1. Introduction using discrete-time [4-8] and continuous-time dynamics [9-11]. In the
present paper, we will focus on continuous-time dynamics.

In February 1918 a deadly influenza pandemic (popularly known as All of the aforementioned works consider the single-virus setting.
the Spanish flu) swept across the globe. It lasted until 1920, and caused A more general setup is one in which more than one virus could be
approximately 50 million deaths [1]. Influenza viruses have continued simultaneously active in a population. More specifically, in a bi-virus
to spread across the globe in recurring epidemics [2]. Given that the (two virus) setting with each virus spreading across its own contact net-
spread of infectious diseases has an enormous impact on society, the work, one possibility is for the viruses to be competitive [12]. Examples

include the simultaneous spread of multiple strains of a virus [13—
15], and the spread of two different viruses that cannot simultaneously
infect a host (such as influenza and the common cold) [16].

This paper deals with the competitive case. That is, say the two
viruses circulating are virus 1 and virus 2, an individual is either
healthy or infected by virus 1 or infected by virus 2; it cannot be
infected by both viruses 1 and 2 at the same time. Recovery from
a virus does not confer long-term immunity; the individual becomes
susceptible to both the viruses. Several families of models have been
proposed in the literature to better understand the (possibly complex)
phenomena that is exhibited when multiple viruses simultaneously
circulate in a population, and compete with each other so as to infect

study of spread has been an active area of research since Bernoulli’s
seminal paper [3]. The overarching goal of these research directions is
to find conditions that would cause an epidemic to become eradicated,
and leverage the knowledge of these conditions to design spread control
strategies. To this end, various infection models have been proposed
and studied in the literature; susceptible-infected (SI), susceptible—
infected-susceptible (SIS), susceptible-infected-removed (SIR), etc. In
this paper, we focus on the susceptible-infected-susceptible (SIS) model.

More specifically, we consider networked SIS models, where each
node in the network represents a large population and interconnections
between nodes capture the possibility of the virus spreading between
populations. (Networked) SIS models have been studied extensively
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the susceptible population. The major ones being (i) the SIR model,
first devised for two competing strains in [17], subsequently extended
to account for various real-world scenarios (by means of introduction
of additional compartments), for instance, record of infection with
each of the two strains [18], transmission not just by person-to-person
contact but also via environment [19], possibility of some fraction of
the population being in quarantine [20], etc., and generalized to admit
arbitrary number of strains in [21,22]; and (ii) the SIS model, first
devised for two competing viral strains in a single population in [23].
Note that several other models have been devised to understand the
behavior of multi-strain epidemics; see, for instance, De Leenheer and
Pilyugin [24] and Gao et al. [25], with De Leenheer and Pilyugin [24]
remarkably even factoring in the possibility of mutation between the
strains. The present paper focuses on the continuous-time competitive
networked bivirus SIS model.

Competitive SIS epidemics have been studied extensively in the lit-
erature. Specifically, the papers [23,26-31] consider a single
(sub)population i.e., no network. While clearly not applicable for
settings with multiple (sub)population nodes, these papers nonetheless
have the advantage of being able to account for various real-world
constraints such as effects of immunization, quarantine, etc.

Overcoming the drawbacks in the aforesaid papers, several other
works have considered the presence of an arbitrary but finite number
of (sub)population nodes, with very mild restrictions (namely, strong
connectedness) imposed on the structure of the graph that captures how
the various nodes are connected with each other. In particular, see [32—
42]. For a recent overview of this subtopic, see [43]. The limiting
behavior of competitive bi-virus SIS models have been recently studied
in [34]. It is well-known that competitive multi-virus propagation
exhibits richer behavior in comparison to single-virus propagation [17].
One possible outcome of competitive multi-virus propagation is co-
existence (i.e., multiple strains coexist in a population by infecting
separate fractions of each population node), while another is competitive
exclusion (i.e., the spread parameters of one strain dominate those of
the other strains, thereby causing those strains to become eradicated).
The papers [32,35,36,38,44] provided conditions for coexistence in
networked SIS models. In particular, analysis of the various equilibria
of a competing continuous-time time-invariant bi-virus model has been
provided in [36], whereas a necessary and sufficient condition for a
coexistence equilibrium has been established [35, Theorem 6]. How-
ever, the results obtained in [34-36,38] are restrictive in the following
sense: (i) [36, Theorems 6 and 7] rely on the assumption that the spread
parameters with respect to each virus is the same for every population;
(ii) [35, Theorem 6] is reliant on the assumption that the set of spread
parameters for each virus is a scaled version of that of other viruses;
(iii) the setting in [38] assumes that the healing and infection rate for
each agent is the same, and (iv) coexistence equilibrium is not explored
in depth in [34].

Our contributions for the networked competitive bi-virus SIS model
are as follows:

(i) A sufficient condition for the existence of a coexistence equi-
librium that neither insists on the spread parameters being the
same for all agents nor on them being scaled versions of each
other; see Theorem 1. Later on, we will see that the set of choices
of system parameters for which the conditions in Theorem 1 are
fulfilled does not lie on a set of measure zero in the space of
free parameters,’ which, as we will see later in the paper, is in
sharp contrast to the results in [36, Theorems 6 and 7], [35,
Theorem 6], and [34, Proposition 3.9].

(ii) A condition which guarantees that, for certain pairs of spread
matrices, every coexistence equilibrium lies on a line, which is
locally exponentially attractive. If said condition is violated, then
there is no coexistence equilibrium. See Theorem 2.

1 A precise definition of the term free parameters appears in Section III after
Theorem 2.
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Fig. 1. Visualization of the model for the case when m = 2. An individual is either
susceptible (S), infected with virus 1 (I'), or infected with virus 2 (I?).

(iii) A condition which, for certain pairs of spread matrices, precludes
the existence of a coexistence equilibrium, and as a consequence
leads to the single-virus endemic equilibrium of the dominant
virus being globally asymptotically stable; see Theorem 3.

(iv) Design of an open-loop control strategy such that the spread
dynamics converge to the single-virus endemic equilibrium of
a desired virus; see Theorem 4.

A summary of the contribution that the present paper makes and what
gaps in the literature it addresses has been provided in Table 1.

Notations

We denote the set of real numbers by R, and the set of non-negative
real numbers by R, . For a positive integer n, we use [n] to denote the
set {1,...,n}. The ith entry of a vector x is denoted by x;. The element
in the ith row and jth column of a matrix M is denoted by M,;. We use
0 and 1 to denote vectors whose entries all equal 0 and 1, respectively,
and use I to denote the identity matrix, while the sizes of the vectors
and matrices are to be understood from the context. For a vector x, we
denote the square matrix with x along the diagonal by A(x). For any two
real vectors a,b € R", we write a > b if a; > b, for all i € [n], a > b if
a>banda#b,and a> bif a; > b; for all i € [n]. Likewise, for any two
real matrices A, B € R™", we write A > B if A;; > B;; for all i € [n],
j€I[2],and A> B if A> B and A # B. For a square matrix M, we use
(M) to denote the spectrum of M, p(M) to denote the spectral radius
of M, and s(M) to denote the largest real part among the eigenvalues of
M, i.e., s(M) = max{Re(1) : A € 6(M)}. We denote a subset by P C Q,
a proper subset by P c Q, and set difference by P \ Q. Given two sets
A and B, A n B denotes the intersection of the two sets. For a set M
with a boundary, we denote the boundary as dM, and the interior as
Int(M) 1= M\ OM.

2. Problem formulation

In this section, we detail a model of multi-viral spread across a popu-
lation network. We then formally state the problems being investigated.
Finally, pertinent assumptions and definitions are introduced for later
use.

Consider a set of n nodes, where n > 2. Each node represents
a population of individuals. Further, the number of individuals in a
population is fixed.? We suppose that two viruses (hereafter referred
to as virus 1 and virus 2) are spreading in some (possibly all) of
the n nodes. The spread could occur both between individuals in the
same population node, and also between individuals across different
population nodes. The viruses are assumed to be competitive, i.e., an
individual in node i (where i € [n]) is infected either by virus 1 or
by virus 2 but not by both viruses 1 and 2 at the same time. Let, at
time ¢, N,.1 (t) and Nf(t) represent the set of individuals in node i that

2 SIS models with variable population sizes have also been considered in
the literature; see, for instance, Brauer and van den Driessche [48].
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Table 1
Comparison of the results in this paper with some of the other results in the literature.
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Comparison of the results in this paper with other results

Paper Setting Contribution

Castillo-Chavez et al. n =3 case Castillo-Chavez et al. [45, Theorem 3.2] provides a necessary and sufficient
[45] condition for the local stability of the boundary equilibria.

Li et al. [44] n=2 case Li et al. [44, Theorem 5.2] guarantees the existence of coexistence

equilibrium.

Martcheva and Pilyugin
[26], Gjini et al. [46]
and Dénes et al. [30]

n=1 case, but with the possibility of
simultaneous infection by two viruses

A sufficient condition for the coexistence of two viruses has been provided;
see, for instance, Martcheva and Pilyugin [26, Theorem 3.2].

Martcheva [27] n=1 case, but time-varying healing and

infection rates

A sufficient condition for the coexistence of two viral strains has been
provided in [27, Corollary 5.3].

Liu et al. [36] and Paré
et al. [35]

Arbitrary but finite n, and arbitrary
network topologies

The results [36, Theorems 6 and 7] and [35, Theorem 6] establish the
existence of a line of coexistence equilibria, for certain choices of parameters
that lie on a set of measure zero.

Santos et al. [47] Arbitrary but finite n, but special classes
of graphs, and the assumption that

sk=1for all i € [n] and k € [2]

A condition which establishes one virus as being dominant has been provided
in [47, Theorem 21]. Santos et al. [47, Theorem 21] identifies a condition
which establishes one virus as being dominant.

Doshi et al. [40] Arbitrary but finite n, and arbitrary

network topologies

Doshi et al. [40, Theorem 5.4] secures the existence of, and global asymptotic
convergence to, a finite set of coexistence equilibria.

Ye et al. [34] Arbitrary but finite n, and arbitrary

network topologies

A specific choice of parameters that gives rise to a set of locally exponentially
attractive coexistence equilibria has been identified in [34, Proposition 3.9],
while necessary conditions for the existence of co-existence equilibria are
identified in [34, Corollary 3.11].

This paper Arbitrary but finite n, and arbitrary

network topologies

A sufficient condition for existence of a co-existence equilibrium (with a novel
proof technique); a necessary and sufficient condition for every co-existence
equilibrium to lie on a line; design of a control scheme that guarantees
convergence to a desired single-virus endemic equilibrium

are infected with virus 1 and with virus 2, respectively. Then, N,.] "N
Nl.z(t) = ¢. To be more specific, assuming node i gets infected with both
the viruses at time ¢, then it is indeed separate fractions of node i that are
getting infected with both the viruses. Assuming an individual in node
i is infected with virus 1 (resp. virus 2), said individual recovers from
virus 1 (resp. virus 2) based on its healing rate with respect to virus 1
(resp. virus 2). Thereafter, the same individual becomes susceptible to
being infected by either virus 1 or by virus 2. Consequently, there could
exist #; and t,, with #; # t,, such that N!(r;) " N2(t,) # @. The spread of
both the viruses in a population of n nodes could be represented by a
two-layer graph ¢ = {V, E|, E,}, where V = {1,2,...,n} [32]. The edge
sets E, and E, determine the contact spreading network for virus 1 and
virus 2, respectively.

Let p!(1) € [0, 1] and p?(#) € [0, 1] denote the infection ratios in node
i €V at time ¢t € Ry, with respect to virus 1 and virus 2. Then the
infection ratio pf.‘(t) of virus k = 1,2, in node i € V will evolve as
follows.

2 n
i = =sf k0 + (1= Y pl0) (Y BEph ). m
I=1 j=1

Here, 5 represents the recovery rate of an individual with virus k in
node i, while [3’."/. represents the spread rate of virus k from node i to
node j. Note that all individuals within a population have the same
healing (resp. infection) rates, while individuals belonging to different
populations may have different healing (resp. infection) rates [49]. See
Fig. 1 for a pictorial depiction of the model.

Then, by defining the vectors p'(t) = [p{(®),...,ps(]" and p*(1) =
[pf(t), .»P2(M]T, (1) can be written as

2
0 = (=D + (1= Y 40/ @)) B ), @
I=1

where D* is the diagonal matrix with % on the diagonal, while B is
the matrix of ﬂ,’j The system in (2) has state variable (p' (¢), p*(¢)), and is
a mean-field approximation of a coupled Markov process that captures
the SIS bi-virus spread; see [32,33,36]. We have the following remarks.

Remark 1. For the case when »n = 1, model (2) is subsumed by the
multi-strain model proposed in [27], due to the fact that the model
in [27] allows for the healing and infection rates to be non-negative
periodic functions. When n = 1, (2) is a special case also of the model
in [31], given that the latter allows for: (i) the infection rate to be not
deterministic (it is in fact governed by a Levy process), and (ii) the
presence of an arbitrary but finite number of strains.

Remark 2. For the case when n = 2, model (2) coincides with the
model studied in [44].

Furthermore, we can let p(¢) := [p!(r), p>(1)]". Then, with A¥(p(r)) :=
(-DF+UI - 212:| A(p' (1))B¥) for k = 1,2, the dynamics of p(r) are given
by

Al(p@)) 0

H(1) = . 3
b 0 A2(p(r) p(n) 3

2.1. Problem statements

For the model (3), we formally state the problems being investigated
in this paper.

(i) Identify a sufficient condition for the existence of a coexistence
equilibrium, i.e., (p!, %) such that p! > 0 and p> > 0.

(ii) Identify a condition such that for certain pairs of spread matrices
B! and B? either (i) every coexistence equilibrium (5!, *) such
that p' > 0 and 5? > 0 lies on a line, or (ii) there is no coexistence
equilibrium.

(iii) Identify a condition that precludes the existence of a coexistence
equilibrium, i.e., any (', 5?) such that ' > 0 and > > 0.

(iv) How can the healing rates of virus 2, i.e., 6,.2, be chosen to
ensure that the system converges to the single-virus endemic
equilibrium of virus 1?

2.2. Positivity assumptions

In order for (3) to be well-defined and realistic, we make the
following assumption.
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Assumption 1. The model parameters satisfy 6* > 0 and ﬂl.kj > 0 for
all i,j € [n] and k € [2].

Note that if Assumption 1 holds, then for all k € [2], BX is a
non-negative matrix and D is a positive diagonal matrix. Moreover,
recall that a square matrix M is said to be irreducible if, replacing the
non-zero elements of M with ones and interpreting it as an adjacency
matrix, the corresponding graph is strongly connected. Then, noting
that non-zero elements in B¥ represent directed edges in the set E,,
we see that B is irreducible whenever the kth layer of the multi-layer
network G is strongly connected.

Thanks to Assumption 1, we can restrict our analysis to the sets
F = {p*() € [0,11",Vk € [2]} and F¥ := {p*(1) € [0,1]"}. Since p¥(»)
is to be interpreted as a fraction of a population, these sets represent
the sensible domain of the system. That is, if p*(r) takes values outside
of F¥, then those values would lack physical meaning. The following
lemma shows that p(¢) never leaves F.

Lemma 1. Let Assumption 1 hold. Then the set F is positively invariant
with respect to (3)

Proof. Consider p(t) € F. If pF(r) = 1, then k() < 0, so if p¥(0) < 1
then p(t) < 1, for all + > 0, k € [2],i € [n]. Further, if p*(r) = 0 then
pf.‘(t) >0, foralls>0. [

It can be easily verified that (0,0) is an equilibrium of (2), and is
referred to as the healthy state. A sufficient condition for convergence
to the healthy state has been provided by Liu et al. [36]. Any non-zero
equilibrium in 7 is known as an endemic equilibrium, which can be
further categorized as follows: Equilibria of the form (0, 5*) are referred
to as the single-virus endemic equilibria or boundary equilibria. Note that
in the single-virus setting, an endemic equilibrium, when it exists, is
unique [50, Theorem 2.1]. It turns out that indeed ' (resp. 3%) is the
endemic equilibrium of virus 1 (resp. virus 2) [34, Section 2.2]. The
equilibria of the form (', 5%), where 5* for k = 1,2 are non-negative
vectors with at least one positive entry in j* for k = 1,2 are referred to
as coexistence equilibria. It turns out that any non-zero equilibrium of (2)
must necessarily satisfy the following: 0 < p* < 1, and, furthermore,
Zi=l p* < 1; see Lemma 6 in Appendix.

3. Coexistence of viruses

In this section, we present the main results of the paper; all of which
pertain to the existence (or lack thereof) of a coexistence equilibrium.
The proofs are deferred to Appendix. The following theorem provides
a sufficient condition for the existence of a coexistence equilibrium.

Theorem 1. Consider the SIS model (3) under Assumption 1. Suppose
that B! and B? are irreducible matrices, and that s(B' — D') > 0 and
(B> - D% > 0. If

s(=D'+(I - AF*)B") >0 Q)
s(=D* + (I — A(F"))B*) > 0. (5)

with p' and p? being the single-virus endemic equilibria of viruses 1 and 2,
respectively, then there exists at least one coexistence equilibrium (p', p*) >
0 in F such that p' + p*> < 1.

Proof. See Appendix. [

With each virus satisfying the condition for the existence of its
single-virus endemic equilibrium, Theorem 1 states that if, for each
virus, the largest real part of any eigenvalue of the matrix of the
dynamics linearized around the single-virus endemic equilibrium of the
other virus is positive, then both the viruses can simultaneously infect
separate fractions of each population node.
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Remark 3. Due to Liu et al. [36, Proposition 1], conditions (4)
and (5) in Theorem 1 are equivalent to p((I — A(p*))(D")™'B!) > 1
and p((I — A(FY))(D?)~'B?) > 1, respectively. This is consistent with
an interpretation of p((I — A(p*))(D')~'B') and p((I — A(F"))(D?)~' B?)
as the invasion reproduction numbers® of virus 1 invading virus 2 and
virus 2 invading virus 1, respectively. The invasion reproduction num-
ber is defined for an invading pathogen, introduced into a setting with
another, endemic pathogen at equilibrium. It is defined as the average
number of secondary infections caused by an individual infected by the
invading pathogen, at the time of introduction [52]. In line with this
interpretation, Theorem 1 shows that coexistence is possible whenever
both invasion reproduction numbers are greater than one.

Theorem 1 guarantees existence of a coexistence equilibrium in the
bi-virus setup.” It turns out that the condition in Theorem 1 implies
the existence of a finite set of coexistence equilibria. Furthermore,
the aforementioned set is globally attractive; for any non-zero initial
infection levels with respect to both virus 1 and virus 2, the system
converges to some point in the set of coexistence equilibria, see [40,
Theorem 5.4]. Note that [40, Theorem 5.4] builds upon [38, Theo-
rem 4.3]. Moreover, the result in [40, Theorem 5.4] relies on the notion
of monotone dynamical systems (MDS).° While competitive bi-virus
systems are monotone [34], competitive tri-virus systems are not [55,
Theorem 1]. As a consequence, the proof technique in [40, Theo-
rem 5.4] cannot be adapted to scenarios where there are more than
two viruses. Our proof relies on fixed point mapping, and can possibly
be extended for scenarios involving more than two viruses. Another
result that has improved upon Theorem 1, by using the Poincaré-Hopf
theorem [56] and Morse-Smale inequalities [57], is [41, Corollary 3.91,
which gives a lower bound on the number of coexistence equilibria.

Observe that the works [35,36] also study multi-competitive virus
spread, and identify special scenarios where coexistence equilibria can
exist. In particular, Liu et al. [36, Theorems 6 and 7] and, particularized
for the bi-virus setting, Paré et al. [35, Theorem 6] establish the
existence of infinitely many coexistence equilibria, thus implying that a
coexistence equilibrium in the bi-virus setup is not necessarily unique.
In order to compare our result with Paré et al. [35, Theorem 6], we
recall the same in the next proposition. Prior to so doing, we need to
introduce the following: For the case when there is only one virus in
the network (i.e., no competition), the dynamics can, by dropping the
notation for virus index, be immediately obtained from (1), as given
below:

Bi0) = =600 + (1= pi®) (X Biyp; ). Q)]
j=1

In vector form, (6) can be written as follows:
p@) = [-D + (I — A(p(1)))Blp(?). @]

where p is the vector of all p;.

Proposition 1 ([35, Theorem 6]). Suppose that 5‘.] = véf >0, Vi € [n],
ﬁi‘j = vﬁizj Vﬂ,.kj # 0k € [2], v > 0, the matrix B' is non-negative and
irreducible, and s(—D'+ B') > 0. We have that (p', p*) with p* > 0 Vk € [2]
is an equilibrium of (1) if and only if p* > 0 for k € [2], j' = a'*pF,
Vi, k € [2], for some constants a'* > 0 such that j = p' + p>, where j is the
non-zero endemic state of (7).

We now explore the relationship between Theorem 1 and Paré et al.
[35, Theorem 6].

3 The term reproduction number is also referred to as reproductive number
in the literature; see, for instance, Hyman and Li [51].

4 Theorem 1 is the same as [39, Corollary 1]. It is an improvement of a
similar result in [44, Theorem 5.2], wherein the same is established for n = 2;
and of Doshi et al. [38, Theorem 4.3] where all nodes have the same healing
and infection rates.

5 The notion of MDS was pioneered by Morris Hirsch in [53]. For a detailed
overview of MDS, the reader is referred to Smith [54].
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Proposition 2. Suppose that

@) 8! =82 >0 forie[n]
i) B}, =P forall Bf; #0 k€ (1,2} v>0;

with D' = A(8'), B! = [ﬁflj]m non-negative and irreducible, and s(—D' +
B') > 0. Then, with j', 3> being the single-virus endemic equilibrium of
viruses 1 and 2, respectively, it follows that

s(=D'+ (I - Ap*)BH =0
s(=D* + (I — A(p"))B?) = 0.

Proof. See Appendix. []

As a consequence of Proposition 2, Theorem 1 and Paré et al. [35,
Theorem 6] cannot be applied at the same time, i.e., the conditions in
Theorem 1 and Proposition 1 are mutually exclusive.

While Theorem 1 provides conditions for the existence of coexis-
tence equilibrium, a related problem is finding conditions under which
no coexistence equilibrium can exist. As a first step in this direction,
we devise a test that disqualifies an arbitrary point (p', p?) in the state
space from being a coexistence equilibrium of system (3).

Proposition 3. Consider a bi-virus state 0 < (p',p*) < 1 with B!,
B? irreducible and D' = D?> = I, where p(B') > 1 and p(B?) > 1. If
(B2 - BYp!' <0, orif (B> — BY)p' > 0, then (p', p?) is not an equilibrium
of the system (3).

Proof. See Appendix. []

Note that Proposition 3 does not preclude the existence of a co-
existence equilibrium; if every point (p', p?) in the state space fulfills
the conditions of Proposition 3, then a coexistence equilibrium, (p', p?)
where p! > 0 and p? > 0, does not exist.

It turns out that given one of the spread matrices, say B!, there
could be several B? obeying a specific functional form (but different
from the one identified in [34, Proposition 3.9]), that yield a connected
set, such that every element in this set is a non-zero equilibrium point.
Furthermore, this set comprises an interval of a straight line. The
following theorem establishes the same.

Theorem 2.  Consider system (3) under Assumption 1. Suppose that
D' = D> = I, and that B' is an irreducible, non-negative matrix with
p(B") > 1. Let j be the unique solution to

(I -4p)B'p=p ®
such that 0 < p < 1. Suppose b > 0.

(i) Consider some z € R” such that z'p = 0. If B> = B! + bz is an
irreducible non-negative matrix, then every coexistence equilibrium
of system (3) is of the form (p', p*) = (cp, (1—c)p) for some c € (0, 1).
Further, the line of coexistence equilibria (cp,(1 — ¢)p) is locally
exponentially attractive.

(ii) Consider some z € R" such that z'j # 0. If B> = B' 4+ bz" is an
irreducible non-negative matrix, then system (3) has no coexistence
equilibrium.

Proof. See Appendix. [

In words, Theorem 2 states that, assuming a bi-virus network is
constructed in a particular way, either every point in the interval of a
straight line, with each end of the interval corresponding to the single-
virus endemic equilibrium associated with each of the viruses, is a
coexistence equilibrium (thus obtaining a connected set of equilibria);
or no coexistence equilibrium exists. This further implies that said line
is the unique set of coexistence equilibria.

Observe that the results in Proposition 3 and Theorem 2 rely on
the assumption that D' = D? = I, which begets the following question:
is there a loss of generality in using the aforesaid assumption? In order
to answer this, we recall the following result.
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Lemma 2 ([34, Lemma 3.7]). Consider two bivirus network systems S and
S, defined by quadruples B!, D', B2, D? and B* = (D¥)"'B*, D* = I for
k = 1,2, respectively. Then, the two systems have the same equilibrium sets
and the (local) stability properties of each equilibrium are the same.

Specifically, Lemma 2 states that there is no loss of generality in
assuming D! = D? = I. Consequently, the findings of Proposition 3 and
Theorem 2 are applicable even if D¥ for k = 1,2 are arbitrary positive
diagonal matrices that are not necessarily equal to each other.

Note that if the condition in Theorem 2 is fulfilled, then the bivirus
system has an infinite number of coexistence equilibria. A question
that one is faced with at this point is as follows: do almost all bivirus
networks possess an infinite number of equilibria? In order to answer
this question, we recall the following result:

Proposition 4 ([34, Theorem 3.6]). For generic parameter matrices D', B,
i = 1,2, the bivirus equation set (3) has a finite number of equilibria. If
D' = I, i = 1,2, then for generic parameter matrices B', i = 1,2 the same
conclusion holds.

In order to understand the ramifications of Proposition 4, and
how that relates with statement (i) in Theorem 2, we introduce the
following. Free parameters in DY, B/, i = 1,2 are those positions in
D', B', i = 1,2, that are free to take any value in R,; these free
parameters can be collected in a vector, with the dimension of the
vector equaling the sum total of the free parameters in matrices D',
D?, B! and B2. Each numerical choice of said vector of free parameters
yields a system, whose dynamics are as given in (3). A property (in
this case, that of having a finite number of equilibria) being true for
almost all choices of free parameters means that it is true for all choices
of free parameters except those lying on a set of measure zero. In the
context of Theorem 2, observe that, since by assumption, D! = D? = I,
and since all off-diagonal terms in matrices D', D? are fixed to zero,
it is clear that the matrices D', D> have no free parameters. Since no
restrictions are imposed on any of the entries in matrices B' and B2, all
entries in these matrices are free parameters. Given that Proposition 4
says that for almost all choices of B, i = 1,2, system (3) has a finite
number of equilibria, it follows that for almost all choices of B!, the set
of numerical choices of free parameters of B> for which the condition
in statement (i) of Theorem 2 is fulfilled has measure zero.

In a similar vein, with respect to Proposition 2, note that since D'
and B' are scaled versions of D?> and B?, respectively, the elements
along the diagonal of D? and (in general) all elements in B? are
free parameters, while none of the elements in D! and B! are free
parameters. The choices of free parameters of D> and B* for which the
conditions in Proposition 2 are fulfilled lies on a set of measure zero in
the corresponding space of free parameters; see [34, Section 3.2.1]. The
set of choices of free parameters that fulfill Proposition 2 is contained
within the set of choices of free parameters that fulfill the conditions
in Theorem 2, as illustrated by the following. By setting z = 0 in
statement (i) of Theorem 2, we recover conditions (i) and (ii) from
Proposition 2 with v = 1 (assuming 5[.' =1, for each i € [n]), that is, Liu
et al. [36, Theorem 6] and Paré et al. [35, Theorem 6] for two viruses,
(with v = 1) which guarantees the existence of a line of coexistence
equilibria (and is a necessary condition according to Paré et al. [35,
Theorem 6]). Furthermore, in so doing, statement (i) of Theorem 2
strengthens [36, Theorem 6] (and adds to Paré et al. [35, Theorem 6] in
the bi-virus case when v = 1) due to the guarantee of local exponential
attractivity to the line of coexistence equilibria.

Remark 4. One key insight that Theorem 2 provides is as follows:
Suppose that we are interested in constructing bivirus networks for
which we would like to obtain infinitely many coexistence equilibria.
Then, statement (i) in Theorem 2 says that purely from knowledge of
parameters corresponding to virus 1, we can obtain said construction.
To see this, consider the following: Suppose that we are given B! such
that B! is irreducible non-negative and p(B') > 1. Since p(B!) > 1,
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there exists an endemic equilibrium corresponding to virus 1, call it 5!,
where 0 < p' < 1, see [50, Theorem 2.1]. An exact characterization of
p' can be obtained from [58, Theorem 5]. Consequently, with a suitable
choice of z such that z'p' = 0 and with some choice of b > 0, it
might be perhaps possible to design B> such that B> = B' + bz'. Due
to Theorem 2 statement i), it follows that the corresponding bi-virus
system will possess infinitely many coexistence equilibria. Provision of
a systematic procedure for the construction of a bivirus network in the
aforementioned manner is beyond the scope of the present paper.

The following result makes use of a nontrivial condition to eliminate
the possibility of coexistence equilibrium in a bi-virus setting, and
establishes one virus as being dominant.

Theorem 3.  Consider system (3) under Assumption 1. Suppose that
D' = D? = I, and that B' is an irreducible, non-negative matrix with
p(B") > 1. Let p' be the unique solution to

(I - Ap")B'p' = p! ©)

such that 0 < p' < 1. Consider some z € R" such that z'p' > 0, and
some b > 0. If B> = B' + bz" is an irreducible non-negative matrix with
p(B?) > 1, and p* is the unique solution to

(I — A(p»)B*p* = p%, 10)

such that 0 < j* < 1, then the only equilibria of (3) are (0,0) and
(5',0), which are unstable, and (0, 5*), which is locally exponentially stable.
Moreover, the equilibrium (0, 5*) is asymptotically stable with a domain of
attraction that includes Int(F).

Proof. See Appendix. []

Theorem 3 establishes one virus as being dominant. Note that [47,
Theorem 21] also provides a condition for establishing one virus as
dominant. However, since the condition in Theorem 3 involves matrix
inequalities, the condition in [47, Theorem 21] does not imply the
condition in Theorem 3; see [47, Definition 11].

4. Leveraging one virus to eradicate another

It turns out that in a bi-virus setting, where one virus is malignant
and the other virus is benign, we can leverage the benign virus in
order to help eradicate the malignant virus, as stated in the following
theorem.

Theorem 4. Consider the bi-virus SIS model (3) under Assumption 1.
Suppose that B' and B? are irreducible matrices; s(B' — D') > 0; s(B* —
D?) > 0; and E* C E', where E' and E? are as defined in Section 2. If the
healing rates for virus 2 fulfill

(B%);;
62 > max 1—1111 , an
s LADDTB ] 1y, 50
ij

for all i € [n], then the only locally asymptotically stable equilibrium in F
is (5',0) with 0 < ' < 1.

Proof. See Appendix. []

Theorem 4 represents a strategy to eradicate one of the viruses in a
bi-virus system, made possible by leveraging the fact that one virus has
a stronger set of spread parameters than the other. Theorem 4 addresses
question (iv) in Section 2.1. We discuss an interesting interpretation
of the strategy in Theorem 4, and of the merits of the same in the
following remarks.

Remark 5 (Virus as Vaccine). Since the strategy given in Theorem 4
ensures local asymptotic convergence to the single-virus endemic equi-
librium of the benign virus, it could also be interpreted in the following
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Fig. 2. Spread network for virus 1.

sense: the benign virus effectively acts as a vaccine against the malig-
nant virus. In the context of battling epidemic outbreaks, where the
goal is to minimize the mortality rate, this strategy could potentially
provide health administration officials with an effective tool. [ ]

The mitigation strategies detailed in this section can be compared
as follows. On the one hand, assuming that the objective of public
health officials is solely to eradicate one virus in a bi-virus system while
considering resource constraints (e.g., availability of vaccines, drugs,
ventilators, etc.), it may be more feasible to implement the strategy
given in Theorem 4. On the other hand, this strategy requires the
persistence of one virus, which may be undesirable. Observe that since
the condition in Theorem 4 involves adjusting healing rates, it can be
viewed as an allocation of healing resources but under the assumption
that there are enough resources to meet the demand.

Given that both Theorems 3 and 4 establish one virus as dominating
the other virus, it is natural to ask whether Theorem 3 implies and is im-
plied by Theorem 4. We address the same in the following. Theorem 3
says that if B2 = B! + bz, for some b > 0 and z such that z'5' > 0,
where j' is the unique solution to Eq. (9), then virus 2 dominates
virus 1. Setting D* = I for k = 1,2 in Theorem 4 (and there is no loss
of generality in doing so; see [34, Lemma 3.7]), it can be immediately
observed that B' > B2, which, due to Ye et al. [34, Corollary 3.10]
further implies that virus 1 dominates virus 2. Indeed, post a suitable
adjustment of notation in Theorem 4 (i.e., essentially replace index 1
with index 2 and vice-versa), it can be readily seen that B > B', which
implies that virus 2 dominates virus 1. Note that for the condition in
Theorem 3 to be satisfied, we require B> = B! + bz where the vector
z satisfies z" 5! > 0. However, the vector z does not necessarily need to
have all its elements to be strictly positive. Hence, B> = B! + bz" does
not necessarily imply that B> > B! or B! > B?. Thus, the condition
in Theorem 3 does not imply the condition in Theorem 4. It also turns
out that the condition in Theorem 4 does not imply the condition in
Theorem 3; to see this, consider the following: Suppose that B> > B!,
then, for some # > 0 and z, we have B2 = B! + ’z". Note that such a
Z need not necessarily satisfy z' 5' > 0. In conclusion, Theorem 3 (resp.
Theorem 4) does not subsume Theorem 4 (resp. Theorem 3).

5. Simulations

In this section, we present a number of simulations to illustrate our
theoretical findings. In particular, we consider a network having 15
population nodes, thus, » = 15. In all simulated scenarios we consider
two competing viruses, namely virus 1 and virus 2. We denote the
average infection ratio of virus k, i.e., % Z:’ pf.‘(t), by *(t). The spread
parameter ﬂ[."j is set to one if node j is a neighbor of node i; otherwise
ﬂi"j is set to zero. The spread network for virus 1 is as shown in Fig. 2.

In the simulation depicted in Fig. 3, the contact network of each
virus is the same, i.e., E! = E2. We chose 6! = 1.5 for i € [8], and §! =2
for i € [15]\ [8]. Mirroring this pattern, we chose 6i2 =2 for i € [8], and
62 = 1.5 for i € [15]\ [8]. As initial conditions, we set p!(0) = 0.5 and
pl.z(O) = 0.3 for all i € [15]. With these choices of parameters, it turns out
that s(B! — D!) = 2.5032, and s(B? — D?) = 2.5188. Hence, both viruses
fulfill the conditions in [36, Theorem 3], thus providing the existence
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Fig. 3. Simulation with two viruses (red and blue), converging to a coexistence
equilibrium. The average infection ratio of virus k is denoted by F*().
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Fig. 4. Simulation with two viruses (red and blue). With z" = [ones(1, 14), —14.0608]
(z being a column vector), b = 0.1 * ones(15,1), and letting B> = B' + bz", neither
virus is able to push out the other; thereby leading to the existence of a coexistence
equilibrium point.
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Fig. 5. Simulation with two viruses (red and blue). With z = [ones(14, 1);14.0608],
b = 0.1 = ones(15,1), and letting B> = B! + bz', the infection level with respect to
virus 1 dies out, thereby precluding the possibility of the existence of a coexistence
equilibrium.

of exactly two single-virus endemic equilibria, namely (', 0) and (0, 5%).
Note, j' can be approximated by setting p'(0) > 0 and p*(0) = 0,
and running the simulation for a sufficiently long period of time T.
Then, assuming that 5! ~ p!(T), and, with an analogous approximation
for virus 2, p* ~ p*(T), we obtain s((I — A(5*))B! — D!) = 2.126, and
s((I — A(p"))B* — D?) = 2.147. Consequently, this pair of viruses fulfills
the conditions for Theorem 1. In line with the result in Theorem 1, there
exists a coexistence equilibrium; see Fig. 3. Moreover, our simulations
show that the viral infection levels appear to converge to a coexistence
equilibrium . Additionally, irrespective of how the initial condition is
varied within 7, excluding p'(0) = 0 or p*(0) = 0, we observe that
all simulations converge to the same coexistence equilibrium, which
suggests that the coexistence equilibrium might be unique, as well as
asymptotically stable.

For the simulation depicted in Fig. 5, we set the initial conditions to
be p!(0) = 0.5 and p?(0) = 0.5 for all i € [15]. The matrix B' is the same
as that for the simulation depicted in Fig. 3, except that all entries in
the last column are increased by 10. The healing rates are éf‘ =1 for
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Fig. 6. Simulation with two viruses (red and blue). The average infection ratio of
virus k is denoted by 5*(¢). The single-virus endemic equilibrium of virus 1 is unstable,
whereas that of virus 2 is asymptotically stable.
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Fig. 7. Simulation with two viruses (red and blue). The healing rates of virus 2 are
changed to fulfill Theorem 4. Virus 1 persists and reaches its single-virus endemic
equilibrium, whereas virus 2 dies out.
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Fig. 8. Simulation with reproduction numbers analogous to Covid variants, with
Omicron (p'(¢)) depicted in red and Delta (5°(t)) depicted in blue. While the Delta
variant starts out close to its single-virus endemic equilibrium, it is eventually overtaken
by Omicron, despite the latter barely being present in the population initially.

i € [15] and k € [2]. We choose z to be a vector with all entries except
the last one being equal to 1; the last entry equals —14.0608. Observe
that z7 5! = 0, where p' is obtained as described in the simulation for
Fig. 3. We choose b to be a column vector with all entries being equal
to 0.1. We set B2 = B! +bzT, and observe that B? is an irreducible non-
negative matrix. Consistent with the result in Theorem 2 (statement i)),
a coexistence equilibrium point exists; see Fig. 4. Next, we choose z to
be a column vector with all entries except the last one being equal to 1;
the last entry equals 14.0608. Note that with this choice of z, zTj! # 0.
We choose vector b as described for Fig. 3, and accordingly construct
B2. Consistent with the result in Theorem 2 (statement (ii)), it can be
seen that the infection level with respect to virus 1 decays to zero (see
red line in Fig. 5); thus implying that a coexistence equilibrium does
not exist.

For the following simulation, we set p!(0) = 0.5 and p?(0) = 0.3, for
all i € [15]. For the simulation depicted in Fig. 6, B! is same as that
for the simulation depicted in Fig. 3. The healing rates are 5{‘ =1,
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for i € [15] and k € [2]. We choose z to be a column vector with
all entries being equal to 0.01, and note that z' 5! > 0, where j' is
obtained as described in the simulation for Fig. 3. We choose b to be a
column vector with all entries being equal to 0.1. We set B> = B! +5z7,
and note that B? is irreducible. Further, s(-D' + B') = 3.1599, and
therefore s(—D' + B') > 0, which implies p(B') > 1. Likewise, s(—D? +
B?) = 3.1729, and therefore s(—D? + B%) > 0, which implies p(B?) >
1. Thus, the aforementioned choice of parameters fulfills the criteria
in Theorem 3. In line with the result in Theorem 3, the single-virus
endemic equilibrium corresponding to virus 1 is unstable (see red line
in Fig. 6), while the single-virus endemic equilibrium corresponding to
virus 2 is asymptotically stable (see blue line in Fig. 6).

The simulations depicted in Fig. 7 was initialized at the coexistence
equilibrium from Fig. 3, with all parameters the same as in that
simulation, except for the healing rate with respect to virus 2. The
healing rates of virus 2, i.e., 6?, are chosen as in (11). More specifically,
51'2 = 4 for i € [15]. With these choices of parameters, it turns out
that s(B! — D') = 25032, and s(B?> — D?) = 0.1599. Given that the
choice of 61.2 fulfills the inequality in (11), it follows that, consistent
with the result in Theorem 4, virus 1 persists and reaches its single-
virus endemic equilibrium (see red line in Fig. 7), whereas virus 2 is
eradicated (see blue line in Fig. 7).

To relate the consequences of Theorem 4 to a real-world epidemic,
the simulations depicted in Fig. 8 feature two viruses with similar
basic reproduction numbers to the Covid-19 variants Omicron (red)
and Delta (blue). Specifically, the healing parameters for virus 1 were
chosen as §! = 0.51 for i € [15] to obtain p((D")~! B!) = 8.2, emulating
the estimated basic reproduction number of the Omicron variant [59].
For virus 2, setting 6> = 0.81 for i € [15] ensures that p(D*)~'B?) =
5.1, emulating the estimated basic reproduction number of the Delta
variant [60]. Furthermore, the initial conditions were set to p[.l ) =
0.001 and pl.z(()) = 0.7 for all i € [15], representing a situation where
the Delta variant is endemic in the population whereas the Omicron
variant has just appeared. From Theorem 4 it follows that the only
locally stable equilibrium is the single-virus endemic equilibrium of
the Omicron variant. As seen in Fig. 8, despite the disadvantageous
initial condition, the Omicron variant will eventually beat out the Delta
variant, similar to what was witnessed in real-world data by Paton et al.
[61]. In this sense, the Omicron variant may be thought of as a type of
vaccine against the Delta variant, as discussed in Remark 5. However,
it should be noted that these simulation parameters and the underlying
assumptions may not be adequate models of Covid-19 spread.

6. Conclusions

The paper dealt with the existence of a coexistence equilibrium in
a competitive bi-virus networked SIS model. We provided a sufficient
condition, and a necessary condition, for the existence of a coexistence
equilibrium. Further, we identified a condition, the fulfillment of which
guarantees that, for certain special pairs of spread matrices, every
coexistence equilibrium lies on a line; the violation of the said condi-
tion guarantees that there does not exist any coexistence equilibrium.
Lastly, we devised a mitigation strategy, which employs one virus for
eradicating the other.

There are several promising directions that could be pursued. A
natural question is to ascertain whether the sufficient condition for
existence of a coexistence equilibrium can be further strengthened to
guarantee uniqueness and global (or at least local) asymptotic sta-
bility of the said equilibrium. Another line of work could involve
devising closed-loop control strategies for steering the dynamics to the
disease-free equilibrium, and to the boundary equilibrium of the benign
virus, respectively. Yet another line of future investigation may revolve
around characterizing observability in a bi-virus setting. Finally, it is
of interest to consider the problem of leveraging one virus to eradicate
another virus but under the caveat that there are constraints on the
availability of healing resources.
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Preliminaries

In this section, we recall some preliminary results, pertinent to the
analysis of system (3). A real square matrix is said to be Metzler if
all elements outside the diagonal are non-negative. We require the
following result for Metzler matrices.

Lemma 3 ([36, Proposition 1]). Suppose that A is a negative diagonal
matrix and N is an irreducible non-negative matrix. Let M be the irreducible
Metzler matrix M = A + N. Then, s(M) < 0 if and only if p(—A~'N) <
1,s(M) = 0 if and only if p(~A"'N) = 1, and s(M) > 0 if and only if,
p(—A'NY>1. N

We will also be making use of the following variants of the Perron—
Frobenius theorem for irreducible matrices.

Lemma 4 ([62, Chapter 8.3] [63, Theorem 2.7]). Suppose that N is an
irreducible non-negative matrix. Then,

(i) r = p(N) is a simple eigenvalue of N.
(i) There is an eigenvector { > 0 corresponding to the eigenvalue r.
(iii) x > 0 is an eigenvector only if Nx = rx and x > 0.
(iv) If A is a non-negative matrix such that A < N, then p(A) < p(N).
|

Lemma 5 ([63, Lemma 2.3]). Suppose that M is an irreducible Metzler
matrix. Then r = s(M) is a simple eigenvalue of M, with an eigenvector
>0. N

The following lemma pertains to system (3), providing a constraint
on any endemic equilibrium.

Lemma 6. Consider system (3) under Assumption 1. Suppose, for all
k € [2], that B* is irreducible. If p = (p',p*) € F is an equilibrium
of (3), then, for each k € [2], either p* = 0, or 0 < p* < 1. Moreover,
<l H

Proof. Consider an equilibrium p € F of system (3). Assume, by way
of contradiction, that Zi:] pf > 1 for some i € [n]. Plugged into (1)
under Assumption 1, we obtain

2 2
PN ACEED I RN a2)
k=1 k=1

where (12) follows from (i) Assumption 1, (ii) Ei=1 pf.‘ > 1 and (iii)
that p € F. Note that (12) is a contradiction of the fact that p is
an equilibrium, following from the assumption Ei:l pf,‘ > 1 for some
i € [n]. Therefore, Ziﬂ PF<1.
Now, for all k € [2], p* is a equilibrium of (2), so we have
2
(=D +(I = Y A" B =0,
I=1
2
= (I - ), ApH)D"™' Bfp* = pt. 13)
=1
Then, since 0 < p* <« 1, (I — 212=1 A(pH)(D¥)~1 B¥ is an irreducible
non-negative matrix for all k¥ € [2]. Now, for some k € [2], assume by
way of contradiction that p* > 0, with pf.‘ = 0 for all i € W, where
W C [n] is nonempty. By the properties of irreducible non-negative
matrices, (I — 212=1 A(pH))(D*)T'BFpY); > 0 for some j € W. Since
p;? = 0, this contradicts (13), and therefore we must either have p* > 0,
or pk =0, foreach k € [2]. O
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Appendix

Proof of Theorem 1. Recall that for k € [2], Assumption 1 implies that

D is a positive diagonal matrix, and therefore invertible. Furthermore,

note that (I + A((D)™'B'p")) and (I + A((D?)~'B?*p?)) are positive

diagonal matrices whenever p! > 0 and p?> > 0, and are then also

invertible. Define the maps T!(p',p?) : [0,1]" x [0,1]" — [0,1]", and

T2(p!, p?) : [0,1]" X [0,1]" — [0,1]", such that

T'(p', p*) = (I + A(D"Y ' B'p') ™ x (I — Ap*)(D")™' B'p!

T2(p', p*) = (I + (D' B*p*) ™ x (I — A(p")(D*) ™' B*p?.

For i € [n], the ith components of the maps are

_ (1 —P,-z)((Dl)’lBlpl)i

© O 1+(DY B,

2 = - P! B2p),
N EYGERE o)

1,1 2
T, (p'.p")

B

Note that the scalar function s/(1 +s) is increasing in s, and for k € [2],
the matrix (D¥)~!'B¥ is non-negative. Therefore, T* is an increasing
function in pj? for all i, j € [n]. Moreover, Tl.1 is a decreasing function in
p? and T? is a decreasing function in p!, for all i € [n]. Hence, for any

p,p* 10,117, if v > z it follows that
T'(0,p") 2 T'(zp), T'0'v) <T' ¢, 2), 14
T2(v, p*) < T%(z, p%), T*(p",v) 2 T*(p", 2).

The inequalities in (14) state that T*(p', p?) is increasing in its kth
argument and decreasing in its other argument. Let p = (p!, p?), and
let T(p) : [0,1]*" — [0,1]*" be the map T(p) = (T'(p),T%(p)). A fixed
point of T(p) fulfills

p' = +A(DY B x (I - ApP) (D) B'p!

P =+ A(DH ' B*pH) ! x (I - Ap")(D?) T B2 (15)
Pre-multiplying the first line (resp. second line) of (15) by
(I + A(DY)~'B'pY)) (resp. (I + A(D?)~! B>p?))) gives us

(I + 4" ' B'ptyp' = (I - Ap*) (D" B'p!

(I + A(DY ' B*ph)p* = (I - A(p")(DH ™' B2 PP (16)
Rearranging (16), and making use of the identity A(u)v = A(v)u yields
(I - A(p") - Ap*) (DY ' B'p! = p,

a7
(I - A(p") — Ap*)(D*) ' B*p* = p*.

Making use of the fact that diagonal matrices commute, pre-multiplying
the first line (resp. second line) of (17) by D' (resp. D?), and rearrang-
ing terms gives us

(=D' + (I = AQp") — Ap*)B"Yp' =0,

18
(=D? + (I = A(p") — Ap*) B>)p? = 0. a8

Comparing (18) with (2), it follows that a fixed point of T'(p) constitutes
an equilibrium of system (3) and vice versa. It suffices to show that T'(p)
has a fixed point p = (p', 5%) > 0, such that p! + p* <1.

Recall that (3',0) and (0, 5*) are single-virus endemic equilibria of
system (3). Consider T'(5!, y*). By assumption, (5!,0) is an equilibrium
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of (3), therefore T!(3',0) = p'. By the inequalities in (14) we have
T, p*) < p', and thus T'(p!, p*) < p', for all p' < p'. Analogously, it
can be shown that we have T2(p!, p?) < 5%, for all p? < j*. Thus,

T, p) <G ), 19

whenever (p!, p*) < 3, 7).

Now, by assumption, s(—D'+(I—A4(3*))B") > 0, and since D' and (I—
A(5%)) are positive diagonal matrices and B' is an irreducible and non-
negative matrix, (—D' 4+ (I — A(3%))B') is an irreducible Metzler matrix.
Therefore, by Lemma 3 and the fact that diagonal matrices commute,
we have p((I — A(5*))(D")~'B') > 1. Further, since (I — AF*))(D")~'B')
is an irreducible non-negative matrix, by item (i) in Lemma 4 we know
that 4! = p((I — A(F»))(D")"'B') is a simple eigenvalue of this matrix.
Furthermore, by item (ii) in Lemma 4, we know that the eigenspace
of A!' is spanned by a vector p' > 0. Analogously, we get 4> = p((I —
A(FYH)(D?*)~'B?) > 1, and the corresponding eigenvector 5* > 0.

With the eigenvectors j', 5 in place, we see that since (D')~' B! and
(D*)~'B* are irreducible non-negative matrices, we have
(DHY'B'pY; > 0, (D> B2p?); > 0, for all i € [n]. Further, given that
P!> 0,52 > 0,5' > 0, and 5* > 0, we have p!/p! > 0, and p?/5* > 0,
for all i € [n]. Moreover, note that 4! —1 > 0 and A2 — 1 > 0. Hence,
there exist ¢! > 0 and €% > 0 such that

L A1 B
€ < min I alzl ,_mlIl=—1 5
max;e, (D)~ Blpl); i€ln ;i

5 (20)
2 . A2—1 . P;
€ < min — ., min — p.
max;e, (D2)~! B2p?); " i€lnl 17,~2
From (20) it follows that
1+ max((DH™'Ble!jl), < AL,
i€[n]
@n

1+ mﬁ((oz)—leezﬁz),. < 22
i€ln
Employing (21) it follows that, for all i € [n], we have

(I = A@) (DY) ' B'e' B,
1+ ((Dl)—l Blelﬁl)i

T'(e'p' . Y =

1=1
= >€ P,
T+ (@) By,
( - AGY)DH ™' B2e?p?),
1+ ((D?)~1B2e2p?),
/12625’.2

= >
L+ (DY) B2e),

T} e?5) =

222
€°p;.

Given that (20) implies ¢!5' < p' and ¢25* < p?, by the inequalities
in (14) we have T'(e!5',p?) > ¢'p' whenever ¢25* < p? < p%, and
T?(p',e*p?) > €*p* whenever e'p' < p! < pl. Further application of
the inequalities in (14) yields

' p?) > e'p', TG 1% > 257, (22)

whenever (¢!'p!,e25%) < (', p?) < (5%, 5%). Then, (19) and (22) show
that (e'5',e2p%) < T(p', p*) < (p', 5*) whenever (!5, e25%) < (p',p?) <
(', 7%). By Brouwer’s fixed point theorem [64, Theorem 9.3], there
exists at least one fixed point of T(p) in the domain {p = (p',p?) :
€'p',e25%) < (. p» < (3'.5%). Recall that a fixed point of T(p) is
equivalent to an equilibrium of (3), hence, by Lemma 6, any fixed point
of T(p) must fulfill p' + p? < 1. In conclusion, system (3) has at least one

coexistence equilibrium (5!, 5>) > 0 in F, such that p' + > <1. W

Proof of Proposition 2. Suppose that there are matrices D! and B!
obeying conditions (i)-(ii) in the statement of Proposition 2, with the
matrix B! being non-negative and irreducible. Further, note that with
the given assumptions, s(—D' + B') > 0 implies that s(—D? + B?). Let '
and j* be the unique single-virus endemic equilibria for virus 1 and 2,



A. Janson et al.

respectively. It follows from (2), and the fact that D!, D? are invertible,
that p', 5 fulfill
I—AGY)DY B = 5,
( @ )N(WD) p=p 23)
(I - AFNDY) ' B = .

Since B! = vB?, D' = vD? gives (D!)~' B! = (D?)~!' B, from (23), it
is immediate that ' = 3* = p, and therefore
(I - 4D ' B'p = p,

g @9

I = AP)D")" B p=p.

By Lemma 6 we have p < 1, implying that (I — A(p)) is a positive
diagonal matrix. Then, for k € [2], it follows that (I — A(5))(D*)~' B is
irreducible and non-negative. Therefore, item (iii) in Lemma 4 can be
applied to (24), from which it follows that p((I — A(F))(D")"'B") = 1
and p((I — A(p))(D*)~' B?) = 1. Applying Lemma 3 we obtain

1 2\ ply
s(—D2 + - A(pl))Bz) =0, (25)
s(=D? + (I — A1) B?) = 0.

This concludes the proof.

Proof of Proposition 3. Suppose that (p!, p?) is an equilibrium of (2).
Let the left Perron eigenvector of (I — A(p') — 4(p*))B? be u > 0, with
corresponding eigenvalue p((I — A(p') — A(p*))B?), so that u'p' = 1.
Suppose that (B> — B!)p! < 0. Then
B>-BY' <0
& (I - A(p") - ApH)(B* - B)p' <0
o[-+ - Ap") - Ap*)B*1p' <0
= uT[-1 + (I - AQp") - A(p*)B1p' <0
= p((I - A(p") — A(p*)B?) # 1.

(26)

Since p((I — A(p') — A(p?))B?) = 1 at a coexistence equilibrium, we have
a contradiction. Now, suppose that (B> — B')p! > 0. Then
(B> B')' >0
& (I - A(p") - A(p*)(B*> - B)p' >0
& [-1+I - Ap") - Ap»)B*1p' >0
= uT[-1+ (I - AQp") - A(p*)B1p' > 0
= p((I — A(p") — A(pP*)B?) # 1.

(27)

Since p[(I — A(p') — A(p*))B*] = 1 at a coexistence equilibrium, this
contradicts (p', p?) being a coexistence equilibrium of system (3). [ ]

Proof of Theorem 2. Note that for any p?> € R” we must have one of
the following.

bz p* >0, or bz' p> <0, or bz' p? =0. (28)

Assume that (p', p?) is a coexistence equilibrium. Hence, from Lemma 6
it follows that 0 < (p!, p?) < 1. Then, by Proposition 3 we cannot have
bz"p* > 0 or bz" p* < 0. Therefore bz' p? = 0, and thus

p'+p* =T - AQp") - APP)(B'p' + B*p?) (29)
= (I - A(p") - Ap")(B'p" +[B' +bz"1p) (30)
= (I - 4(p") - AP )B' (" + p). (€3]

With y := p' + p?, (31) becomes

y=(I-A)B'y (32)

Note that (32) is the same equation as (8). Therefore, (32) has the same
unique positive solution y = 5, and thus p' 4 p* = j for every coexistence
equilibrium (p!, p?). Further, the coexistence equilibrium equations are

(33)
(34)

p' = - A(p)B'p'
p* = - A(p)B*p?
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Since B! is an irreducible non-negative matrix where 0 < j < 1 solves
(8), we know that (I — A(X))B' has a simple unity eigenvalue with the
corresponding eigenvector p. Moreover, we see that

(I = A(p)B%p = (I — A(P))(B' + bz")p (35)
= - A(p)B'p (36)
=p, (37)

and since B? is an irreducible non-negative matrix, this tells us that
(I — A(p))B? has a simple unity eigenvalue with the corresponding
eigenvector j. Thus, (33) and (34), combined with (p', p?) >0, imply
that p' and p?> are both parallel to j. Therefore, every coexistence
equilibrium is of the form (p', p?) = (¢p, (1—c)p) for some ¢ € (0, 1). Local
exponential attractivity of the line of coexistence equilibria (¢p, (1—c¢)p),
then, follows from [34, Proposition 3.9].
Now, note that by the same arguments as for (32), it follows that

y=U - AQ)By

Egs. (32) and (38) must have a common solution if there exists a
coexistence equilibrium. However, note that

(38)

(I -p)B*p=(-pB" +bz")p

=j+ - pbz'p.

(39)
(40)

From (40) it can be seen that if z'j = 0, Egs. (32) and (38) have a
common solution j. However, if z' j # 0, it follows that Egs. (32) and
(38) cannot have a common solution, and therefore there can be no
coexistence equilibrium in the system. [ ]

In order to prove the claim in Theorem 3, we need the following
lemma.

Lemma 7 ([34, Corollary 3.16]). For the bivirus system in (3) with
generic parameter matrices, suppose there are no coexistence equilibria.
Then precisely one of the boundary equilibria is an attractive equilibrium,
and Int(F) is in its domain of attraction.

In words, Lemma 7 says that if there exists no coexistence equilib-
rium then one of the boundary equilibria is globally stable.

Proof of Theorem 3. Since z'j3' > 0, by Theorem 2 there is no
coexistence equilibrium, so the only equilibria are (0,0), (',0) and
(0, 7). Since, by assumption, p(B') > 1 and p(B?) > 1, from [36,
Theorem 3] it follows that (0, 0) is unstable. Consider the Jacobian of
(3) at (5',0), which takes the following form:

-1+ - A(pH)B' - AB'Y) —AB'pY)

J(3',0) = .
.0 0 —I+(I - 4GB

(41)
The matrix J (', 0) is unstable if L! = —I+(I—4(5")) B? is unstable. Note
that L! is an irreducible Metzler matrix, so if L'5' > 0 then s(L!) > 0.
Since

L'p' = (=1 + (I — AB"H))(B' + bz")p' (42)
= - Ap")z"p'b (43)
>0, 44)

where inequality (44) is due to the fact that, by assumption, z'p'
and b > 0, while (I — 4(5")) is positive diagonal, which implies that
bz'p' > 0. Consequently, it follows that s(L') > 0, and therefore (5',0)
is an unstable equilibrium. Now, consider the Jacobian of (3) at (0, 5%),
which takes the following form:

—I + (I — A(p*)B! 0

J, ) = .
@7 —A(B?p?) —1 + (I - A(p»)B? — A(B*j?)

(45)

The matrix J(0, 5%) is stable if, and only if, the matrices —I+(I—A4(5%))B'
and —1 + (I — A(5%))B% — A(B%j?) are stable. Observe that since j* is the
unique solution to (10) it follows that

I - AF*)B*P* =
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= (=1 +( - Ap*)BHp* =0. (46)

Note that 52 > 0. Hence, since (—I +(I —A(5?)) B2) is irreducible Metzler,
applying Lemma 5 to (46) we have that s(—I + (I — A(5*))B?) = 0. Since
A(B?p?) is a non-negative matrix, it follows that —I + (I — A(7))B> >
—I + (I — A(5*))B? — A(B%j*). Hence, from [65, Theorem 2.1], we have
that s(—I +(I —A(5%))B?) > s(—I +(I — A(p*)) B2 — A(B2 %)), which further
implies that s(—I + (I — A(5%))B>—A(B%p?)) < 0.

It remains to show that L2 = —I + (I — A(p*))B! is stable. Since
L? is an irreducible Metzler matrix and % > 0, it suffices to show
that L?3? < 0, thereby implying s(L?) < 0. Note that

L5 = (=1 + (I = AG*)(B* - bz"))p*

—(I = A(F*)z" p*b, 47)

and since b > 0 by assumption and (I — A(5%)) is a positive diagonal
matrix, it must be shown that z' 5> > 0. By way of contradiction,
assume that z' 5% < 0. If zT5? < 0 then (47) is greater than 0, implying
that s(L%) > 0. Since s(L') > 0, the conditions for Theorem 1 are
fulfilled, implying that a coexistence equilibrium exists, which is a
contradiction. If zT* = 0, then (I — 4(7*))B'p> = p*, which by the
uniqueness of single-virus endemic equilibria implies that ' = 72,
contradicting the prior assumption z' 5' > 0. Hence, z' 5> < 0, ensuring
that L2 is stable. Therefore, s(J(0, 5*)) < 0, which, from [66, Theorem
4.15 and Corollary 4.3], implies that the equilibrium point (0, 5%) is
locally exponentially stable.

Since the existence of a coexistence equilibrium has been ruled out,
Lemma 7 implies that the equilibrium (0, 5*) has a domain of attraction
that includes Int(F). ]

Proof of Theorem 4.
following lemma.

In order to prove this result, we need the

Lemma 8 ([34, Corollary 3.10]). Consider the SIS model (3) under
Assumption 1. Suppose that B' and B? are irreducible matrices, and that
s(B' — D) > 0 and s(B®> — D?) > 0. If (D")"'B! > (D?)~! B? then there
are exactly three equilibria in [0, 1]*", namely the healthy state, which is
unstable, (0, 5?) with 0 < jp* < 1, which is unstable, and (5',0) with
0 < j' < 1, which is locally exponentially stable.

Proof of Theorem 4. Note that with 6i2 given by (11) for all i € [n],
since B! and B? are irreducible non-negative matrices we have 51.2 >0
for all i € [n]. Therefore (11) is consistent with Assumption 1. Then,
it follows from (i) the healing rate in (11), and (ii) E*> C E!, that
(DY 'B' > (D*)~'B?. Hence, since, by assumption, s(B' — D') > 0
and s(B? — D?) > 0, the conditions for Lemma 8 are met. Therefore,
the only locally asymptotically stable equilibrium in F is (5',0) with

I<«<jl«l. N
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