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Learning-Finding-Giving: A Natural Vision-Speech-based 
Approach for Robots to Assist Humans in Human-Robot 

Collaborative Manufacturing Contexts 

Abstract—Human-robot collaboration can improve and 
enhance current manufacturing processes, in which robots are 
able to provide collaborative assistance to humans, allowing for 
increased productivity and minimal time waste. The use of 
everyday mechanical appliances and tools is unavoidable, making 
these handover tasks common in human-robot collaborative 
manufacturing contexts. A typical handover task can be performed 
in three general steps: object identification, object grasping, and 
object handover. In this work, we propose a learning-finding-
giving framework based on computer vision and speech 
recognition approaches for robots to dynamically identify and 
deliver tools for human partners in collaborative tasks. The 
YOLOv5 object detection algorithm is utilized for the 
identification of common mechanical tools. To teach robots to 
understand the target objects, a custom dataset is created from 
over 2000 images of the mechanical tools, followed by the 
implementation in real-world human-robot collaborative tasks. 
Experimental results and evaluations show that the proposed 
solution allows robots to dynamically understand and grasp 
tools with high accuracy, effectively assisting in handover tasks 
for human teammates. 

Keywords—robotics; human-robot collaboration; handover; 
smart manufacturing; object detection  

I. INTRODUCTION 
Robotics has become increasingly important, and its 

applications are found in many places. For example, we use 
robots to help secure areas, navigate terrain, and monitor 
dangerous environments or situations [1, 2]. We also use 
robots for assistance in agricultural tasks [3]. In the current 
manufacturing industry, robots are frequently used for 
extremely repetitive and monotonous tasks like those found on 
assembly lines, handling hazardous materials, or performing 
dangerous processes. Kas stated that robots have been used to 
inspect dangerous areas that humans are unable to inspect on 
their own, but also perform dangerous functions such as 
cutting, sawing, hydro blasting, vacuum sludge, and more; in 
turn, reducing human risk [4]. However, humans still provide 
an abundance of critical value in manufacturing, as stated by 
Kim, “The role of humans is not reduced, but robotic 
technology requires different high-level responsibilities in 
human-robot interaction (HRI)” [5]. For example, humans 
still have unmatched problem-solving skills and provide 

creative and unique solutions compared to robots which are 
usually tasked with solving the same work under the same set 
of conditions. An increasingly popular implementation is 
known as human-robot collaboration, which allows robots and 
humans to coincide on the same task. This paradigm employs 
the benefit of precise robot movements, while still allowing 
human expertise and creativity [6, 7]. 

Human-robot collaboration is the cooperation and 
interaction of humans with robot assistants. The collaboration 
between humans and robots creates new opportunities to 
enhance safety, optimize production, increase efficiency, 
improve task quality, and empower worker flexibility [8]. 
Assigning time-consuming, monotonous, or meticulous tasks 
to robots can allow human collaborators to focus on tasks that 
require unique and creative solutions. Humans can also use 
this extra help to better troubleshoot and quickly identify 
issues in manufacturing processes. Freeing humans from 
dangerous tasks can also lower the stress and fear of human 
collaborators. These benefits all manifest in lower costs and a 
safer environment for companies and their workers. 

Handover tasks in human-robot collaboration are the 
actions in which robots locate, grasp, and give objects or tools 
to their human collaborator [9, 10]. This kind of task is 
widespread in human-robot collaboration. A lot of human 
time and energy can be saved with a proper implementation of 
the handover task. Existing studies solved this problem by 
researching human-human handovers and then using 
observations from those to better inform human-robot 
handover tasks [11]. They focused on when and where human-
robot handover tasks should take place and how they should 
proceed. Another study utilized mixed reality techniques via 
HoloLens to visualize human-robot handovers [12]. This 
enables handovers to be done with robots that have little 
limitations on their movement allowing for more fluid and 
more human-like motions. 

With interactions between humans and robots being more 
common, there has been substantial research to make robot 
interactions more predictable, efficient, and effective. Existing 
research in the domain of human-robot handover in 
collaborative tasks has contributed significantly to solving this 
intricate challenge. Strabala et al. [11] have emphasized the 
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replication of natural human handover tasks, controlling key 
parameters such as reach distance and timing to enhance the 
intuitiveness of interactions. Huber et al. [13] have delved into 
the realm of effective joint strategies, evaluating the role of 
'biological motion' in handover interactions, thereby 
improving coordination and collaboration between humans 
and robots. Wang et al. [14] have explored the utilization of 
partial demonstrations to predict human handover intentions, 
effectively modeling and understanding human behaviors.  
Furthermore, Castro et al. [15] introduced a machine learning-
based approach to adapt to diverse handover scenarios, 
showcasing the adaptability of robots to varying collaborative 
environments. Researchers have also addressed safety 
concerns in this context, with Chan et al. [16] focusing on 
advanced perception systems to detect grip strength, ensuring 
safety during handover interactions, and reducing the risk of 
accidents. Additionally, a coordinated approach has been 
explored by Wang et al. [17] for multi-agent handovers as well 
as presenting a method for training robots to handle diverse 
human behaviors. Moreover, trust-building mechanisms have 
been suggested by [18, 19], emphasizing transparent 
communication and reliable execution of tasks especially in 
manufacturing contexts. The integration of tactile or visual 
feedback into handover tasks enhances the robot's grasp and 
object manipulation abilities [20, 21]. Cakmak et al. [22] have 
proposed a design initiative to facilitate effective 
communication and coordination between humans and robots 
during handover tasks by advocating for human preferences 
for optimal handover configurations. These collective efforts 
in research serve to make collaborative tasks more effective, 
safer, and adaptable to different contexts.  

However, these approaches treat humans as part of the 
environment as mentioned in [17]. A problem area has been 
dynamically identifying the object that is being handed over 
to the human. The authors of [15] brought up the argument 
that in an industrial environment, voice commands may be 
ineffective due to background noise and chatter. Overall, the 
major issue that these researchers try to tackle is the safety of 
the human operators as well as the robots in control [23, 24]. 
In a collaborative workspace, there may be multiple robots, so 
it is vital for the robots to track human movements to prevent 
collisions. Research elaborated by [25, 26], discussed pressing 
issues regarding the ergonomics of collaborative robots in 
human-centered workspaces, specifying that posture plays a 
key role as well as the human’s manipulation capacity. 

In given collaborative contexts, it is vital that machines 
can use vision-based systems for object recognition for 
various aspects of handover tasks. The authors of [27] utilized 
a vision system to allow the robot to be the giver and the 
receiver in handover tasks by adopting a dynamic path-
finding algorithm to find the human hand. The work [28] 
employed deep learning-based perception modules to provide 
a safe handover experience for previously unseen objects and 
those labeled in their database. There also has been research 
demonstrating how the YOLOv5 model can specifically be 
implemented for picking apples [29]. In [30], the authors 
discussed the training procedure, active learning, where the 
model selected its samples for labeling based on uncertainty. 

 However, robots learning from demonstrations would 
require accurate perception abilities [26]. This presents a 
challenge, especially with smaller items—and that is why 
they suggest that learning programming, or learning from 
demonstration, should only be utilized with large objects and 
small objects may benefit from a customized image processing 
or machine learning algorithm. An unfortunate limitation is 
how object detection can be a bottleneck in some research 
[28], where objects that aren’t detected wouldn’t be handed 
over so humans can get impatient. The approach that they 
wanted was a very natural handover experience, but this can 
make humans unwilling to collaborate. There is also the issue 
previously mentioned about the intentions of handover. Some 
users may not intend to initiate a handover, but they may 
accidentally say a phrase or keyword that would prompt the 
robot to proceed with the task anyway. 

Motivated by the above issues, in this study, we propose a 
novel learning-finding-giving framework based on computer 
vision and speech recognition techniques for robots to 
dynamically identify and deliver tools for human partners in 
collaborative tasks. The YOLOv5 object detection algorithm 
is utilized for the identification of common mechanical tools 
during the human-robot handover process. The developed 
natural vision-speech-based approach is validated in real-
world human-robot collaborative manufacturing contexts.  

 
Fig. 1. The proposed learning-finding-giving framework. 

II. APPROACH OVERVIEW 
The overarching vision of this study is to improve human-

robot collaboration quality by incorporating artificial 
intelligence, computer vision, speech recognition, and eye-in-
hand calibration techniques [31]. The proper implementation 
of these approaches allows for a natural, safe, and effective 
human-robot collaboration process in different assembly, 
disassembly, and repair tasks. As shown in Fig. 1, the proposed 
framework includes three core sections: Learning, Finding, 
and Giving. Learning will be incorporated with a YOLOv5 
model that will enable the robot to learn from a dataset of 
common tools from our shared workspace demonstration. 
Finding will allow the robot to utilize the trained YOLOv5 
model to distinguish between and accurately identify the 
various tools in a workspace, while also using eye-in-hand 
calibration to generate the coordinates of the tools. Giving will 
act upon and utilize eye-in-hand calibration, and speech 
recognition to have the robot execute movements toward the 
tools and toward a designated hand-off position when given 
the proper verbal command. These three parts all depend on 



   
 

   
 

each other to create a safe and effective handover of tools. 
Using this framework, the robot is able to differentiate and 
locate different tools, obtain accurate coordinates of the tools, 
and move precisely and effectively for fluid handoffs. During 
the collaboration process, the human can direct the robot 
according to their specific needs in the shared task. 

III. MODELING METHODOLOGY 

A. YOLOv5 
YOLO (You Only Look Once)  is a real-time detection 

algorithm utilizing a single neural network to predict and 
classify images in one evaluation [32, 33].  In this study, we 
utilize an evolved version of YOLO, known as YOLOv5.  
YOLOv5 is a state-of-the-art real-time deep learning-based 
object identification system, which consists of pre-trained 
models and is compared to previous iterations of YOLO 
based on Darknet. It is lighter and further optimized allowing 
for faster detection without sacrificing its high accuracy [33]. 
Similar to previous iterations of YOLO, it works by applying 
a single convolutional neural network architecture to the 
whole image. The image is divided into regions for which 
bounding boxes and probabilities are predicted. As the model 
is trained, the detection performance is optimized and frame 
detection is done using regression, which is a lot less complex 
than other approaches. In this study, we use YOLOv5 to 
identify objects in our workspace together with eye-in-hand 
coordination techniques to identify, grasp, and hand over 
tools to a human. 

B. Data Collection and Processing 
In this study, we created a dataset for the purpose of 

training the YOLOv5 model. The dataset originally consisted 
of 981 images of eight different common mechanical tools 
which are: adjustable wrenches, linesman pliers, screwdrivers, 
regular wrenches, utility knives, long nose pliers, torpedo 
levels, and wire strippers. These were annotated images with 
class labels and bounding boxes one by one. After applying 
augmentations to these images changing the hue, brightness, 
and blur, and adding cutouts, mosaics, shear, and noise, the 
dataset expanded to 2359 images. These augmentations increase 
the diversity and performance of the dataset, especially when 
there are changes in lighting, contrast, and more. For each 
image, bounding boxes for each class of objects present in the 
image were properly annotated for the dataset. All photos 
were also resized to be 640px by 640px because we run 
inference at this resolution, and it will provide better accuracy 
and faster inference as a result of the dataset. 

C. Human Speech Instruction Parameterization 
The approach utilized in this study is based on a continual 

speech interaction between the human and the robot, as 
presented in Fig. 2. The robot begins by prompting the human 
to what mechanical tool they would like. The robot then 
begins to listen through the microphone for a response. Once 
the speech is no longer detected, the speech is then recognized 
through Google speech recognition, and text is generated. 
This text is used by the robot to decide what tool to pick up. 
The program scans the text for tool names and takes the tool 
name that is recognized first. If no tool name is found in the 

generated text the system will again prompt for another 
response through the microphone until a tool name is found. 
After locating, grasping, and performing a handoff maneuver 
with the tool requested the robot returns to a rest state and 
loops the previous steps. The microphone used is connected 
separately and is placed on the edge of the workspace. When 
the microphone is opened, it first adjusts for ambient noise to 
obtain clear readings. The microphone turns sounds into 
electrical signals which are then analyzed by algorithms to 
determine the word that best fits the sound recorded. 

 
Fig. 2. Diagram of the speech recognition process. 

D. Neural Network Configuration 
To begin the configuration of our YOLOv5 model, we 

first chose a pre-trained model’s weights ‘yolov5s6.pt’ from 
YOLOv5 as our initial weights to train our dataset with. To 
set up our dataset for training, we utilized Roboflow to create 
bounding boxes and annotate images for the dataset. The 
images resized to 640px by 640px match the size we run 
inference at for training and testing. A data.yaml file was 
created that specifies the file path to the training, validation, 
and testing portions of our dataset as well as the number of 
classes and those class names in the YOLOv5. 88% of the 
images were put into training, 8% were used for validation and 
the final 4% were used for testing. Inside each of the training, 
validation, and testing dataset files there were two subfolders, 
one containing the images themselves, and another named 
‘labels’ that contained bounding box information for each 
image. The training parameters are shown in Table I. The 
training stopped after the epochs we specified were completed 
which was 100, where 1 epoch is one cycle through the 
dataset. After the training was completed, two weights files 
were generated: one for the best mAP@0.5 (mean average 
precision) score, and another for the final epoch’s run through 
the dataset. The training metrics and figures were also 
generated to better understand the model’s performance. 

TABLE I.  PARAMETERS AND THEIR VALUES USED WHEN RUNNING 
THE TRAINING OF OUR CUSTOM YOLOV5 DATASET 

Parameter Value Description 
Image 640 Image size to run training at 

Batch Size 32 Number of samples to run in one 
batch 

Epochs 100 Number of complete iterations to 
learn from training examples 

Data data.yaml Name of a file that specifies the path 
to the dataset and classes 

Weights/Model yolov5s6.pt Name of file containing the pre-
trained weights/model 



   
 

   
 

Cache disk 
Optional parameter to cache 

information to either disk or RAM for 
faster training 

Device 0 Optional parameter to specify which 
GPU/CPU to run training with 

E. Vision-Based Object Detection and Picking Up 
Attached to the collaborative robot is an Intel D435i 

RealSense depth camera with which we run YOLOv5’s 
inference with a confidence threshold of 70%. Confidence 
refers to the score associated with each prediction made by 
the model, the score is generated from the model’s certainty 
of the accuracy of the predicted class label and the predicted 
bounding box for the detected object. To detect, locate, and 
pick up objects, we utilize an eye-in-hand calibration method. 
To calibrate our RealSense camera, we first obtain extrinsic 
and intrinsic rotation matrices and translation vectors to apply 
corrective transformations. Then utilize the hand-eye 
calibration package in MoveIt! [34], we took photos of an 
ArUco marker from varying angles and positions and ran an 
algorithm developed by Daniilidis to determine the correct 
transformation to apply to convert the pixel coordinates of an 
object to a real-world object [35]. After applying those 
transformations, we can obtain the camera pixel coordinates 
of the center of an object from YOLOv5 inference based on 
the location of the bounding boxes around detected objects. 
Then we sent and looked up transforms via a transformation 
module to receive real-world coordinates for our robot. 

 
Fig. 3. The experimental platform. 

IV. EXPERIMENTAL SETUP 

A. Experimental Platform 
The experimental platform, as shown in Fig. 3, consists of 

a collaborative robot, an Intel D435i RealSense depth camera, 
a microphone, mechanical tools, a product to repair/work on, 
and the workspace. The collaborative robot is a 7-DoF robot 
arm with a two-finger parallel gripper that is connected to a 
local controller [36]. The Robot Operating System (ROS) is 
used for robot system control. ROS is an open-source framework 
that provides a vast collection of libraries and tools that allow 
for complex control and applications of robot systems [37]. 
Alongside ROS we utilize the package MoveIt! [34], which 
contains many powerful tools for robot path planning. The 
Speech Recognition package that utilizes Google speech-to-text 
API allows for voice commands to direct the robot. 

B. Task Description 
The proposed framework is validated via a real-world 

human-robot collaborative task, in which we set up a shared 

working environment where tools and a product are laid out. 
Once our experiment and algorithms start running, YOLOv5 
will begin detection and the eye-in-hand coordination 
approach will provide real-time position location for the tools 
in the frame. The human collaborator will be prompted to ask 
for a tool. The system will then search for the name of a tool 
in the response and begin the process for finding it. The robot 
will then scan both sides of the workspace and find the tool 
requested on one of the sides. The process for grasping the 
tool will begin where the robot centers itself above the tool, 
then descends to grasp it and move to a handoff position 
where the tool will be handed to the human worker. 

V. RESULTS AND EVALUATIONS 

A. Training and Validation Loss Results and Analysis 
Fig. 4 presents the loss of the developed model as the 

training and validation progressed. The loss in YOLOv5 is 
the combination of class loss, object loss, and bounding box 
loss. The Y-axis refers to the percentage of the type of loss. 
The X-axis refers to the epoch number. Box loss refers to how 
accurate the predicted bounding boxes of our model are 
compared to the bounding boxes provided from our annotated 
dataset. Object loss calculates the error in detecting whether 
an object is present in a grid cell. Class loss is how correct the 
classifications of all predicted bounding boxes are. During 
the training, we can see that all three types of loss decrease 
rapidly approaching values less than 0.02. Validation shows 
the same for bounding box loss and class loss. However, 
object loss during validation doesn’t consistently decrease as 
our epoch increases, rather this metric goes up and down 
ending about 0.0073. 

 
Fig. 4. The training and validation loss. 

B. Evaluations 
1)  Precision-Confidence 

The precision-confidence of the developed model is 
shown in Fig. 5. This metric is a representation of how well 
our model performs at different confidence thresholds. The 
results indicate that there is a high degree of precision 
between confidence levels of about 0.2 to 0.9. They also show 
that some classes have a drastic drop or rise of precision that 
dips as low as 0.0 or all the way up to 1.0 when confidence 

Collaborative robot
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begins to pass 0.9, which suggests that our model could benefit 
from an improved and larger dataset. However, between 
confidence levels of about 0.2 to about 0.8, our model functions 
well and we have the choice of setting the confidence level 
low to potentially adjust recall as we require. For the purposes 
of our experiment, higher confidence was chosen to better 
phase out potential false positives. All classes hit perfect 
precision, with some earlier than others. This suggests that all 
classes could benefit from a larger more diverse set of 
pictures. Some classes such as the knife or adjustable wrench 
that hit perfect precision early would benefit the most from 
this change. Combining this information with the metrics of 
Precision-Recall helps us determine a more exact confidence 
threshold to utilize to maximize model performance. 

 
Fig. 5. The precision-confidence of the developed model. 

 
Fig. 6. The precision-recall of the developed model. 

2)  Precision-Recall 
The precision-recall of the developed model in Fig. 6 

shows us the performance of our model with the tradeoff 
between precision and recall. Precision is the accuracy of 
positive predictions while recall refers to the ability of the 
model to classify all positive instances. A high area under the 
curve represents high recall and high precision, where high 
precision results in a low false positive rate and high recall 
results in a low false negative rate. This helps us determine 
the quality of the output. The results are generated by varying 
the decision threshold of the model. This gives us more 
insights as to where an optimal confidence threshold to run 
inference at. An ideal model would be as close as possible to 
the top right corner across all thresholds. In our model, as we 
move along the curve there is a noticeable tradeoff between 
precision and recall. This tradeoff is to be expected. The wire 

cutter class performs the worst in this metric having its 
precision decrease the fastest at about 0.6 recall while the 
other classes perform more as expected. Overall our model 
performs well for this metric. 

C. Real-World Human-Robot Collaboration 
Fig. 7 shows us the real-world experimentation and 

process of the proposed approach. In each part, the top left 
shows us the YOLOv5 inference, the bottom left shows us a 
visualization of the robot in RViz and the right side shows us 
an external view of the workspace. Fig. 7 (1) shows the 
human collaborator prompts the robot for a screwdriver. In 
Fig. 7 (2), the robot has moved after scanning one side of the 
workspace to center itself with the screwdriver that was 
located on that initial side. In Fig. 7 (3), the robot then moves 
to grasp the tool and finally, in Fig. 7 (4) the robot moves to 
a designated handoff position to drop the tool for the human 
collaborator. Thus, showing the complete cycle of one prompt 
for a tool and this process would repeat as many times as 
needed. The full demonstration video shows another crucial 
aspect of this process where tool positions were switched 
around and the robot grasped the tools at different locations: 
https://youtu.be/ucAgSIK6crA. This is important for a real-
world demonstration because tools may not stay in their 
original positions. 

 
Fig. 7. Real-world human-robot collaboration shows the robot picks up 

one of the tools. 

VI. CONCLUSIONS AND FUTURE WORK 
In this study, we have created an improved approach for 

the handover task in human-robot collaboration contexts. We 
proved that our framework of learning, finding, and giving 
combined with our specific approach resulted in a safe, 
effective, and repeatable way to conduct human-robot 
collaborative tasks. The major source of loss and error in our 
training is from false negatives. Our model could improve 
across all metrics. To do this as well as to scale our approach 
to a larger, more complex, manufacturing environment, we 
will improve our dataset by increasing images per class and 
instances per class. The variety of objects that we use would 
also need an increase in variability concerning certain aspects 
of luster, contamination, deterioration, and blemishes. Greater 
variety could also improve our dataset by capturing more 
images representative of real-world environments, different 
aspects of those environments such as lighting or different 
angles can help our model make more correct recognition. 
Moreover, adding background pictures or pictures with no 



   
 

   
 

classifications in them is another recommended tactic to 
increase model performance. In the future, we can use these 
enhancements along with newer versions of YOLO or other 
object detection models to obtain better model performance. 
We can also create a larger experiment to test and improve 
our approach with other human participants. 
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