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Abstract—Human-robot collaboration can improve and
enhance current manufacturing processes, in which robots are
able to provide collaborative assistance to humans, allowing for
increased productivity and minimal time waste. The use of
everyday mechanical appliances and tools is unavoidable, making
these handover tasks common in human-robot collaborative
manufacturing contexts. A typical handover task can be performed
in three general steps: object identification, object grasping, and
object handover. In this work, we propose a learning-finding-
giving framework based on computer vision and speech
recognition approaches for robots to dynamically identify and
deliver tools for human partners in collaborative tasks. The
YOLOVS5 object detection algorithm is utilized for the
identification of common mechanical tools. To teach robots to
understand the target objects, a custom dataset is created from
over 2000 images of the mechanical tools, followed by the
implementation in real-world human-robot collaborative tasks.
Experimental results and evaluations show that the proposed
solution allows robots to dynamically understand and grasp
tools with high accuracy, effectively assisting in handover tasks
for human teammates.

Keywords—robotics; human-robot collaboration; handover;
smart manufacturing; object detection

I. INTRODUCTION

Robotics has become increasingly important, and its
applications are found in many places. For example, we use
robots to help secure areas, navigate terrain, and monitor
dangerous environments or situations [1, 2]. We also use
robots for assistance in agricultural tasks [3]. In the current
manufacturing industry, robots are frequently used for
extremely repetitive and monotonous tasks like those found on
assembly lines, handling hazardous materials, or performing
dangerous processes. Kas stated that robots have been used to
inspect dangerous areas that humans are unable to inspect on
their own, but also perform dangerous functions such as
cutting, sawing, hydro blasting, vacuum sludge, and more; in
turn, reducing human risk [4]. However, humans still provide
an abundance of critical value in manufacturing, as stated by
Kim, “The role of humans is not reduced, but robotic
technology requires different high-level responsibilities in
human-robot interaction (HRI)” [5]. For example, humans
still have unmatched problem-solving skills and provide
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creative and unique solutions compared to robots which are
usually tasked with solving the same work under the same set
of conditions. An increasingly popular implementation is
known as human-robot collaboration, which allows robots and
humans to coincide on the same task. This paradigm employs
the benefit of precise robot movements, while still allowing
human expertise and creativity [6, 7].

Human-robot collaboration is the cooperation and
interaction of humans with robot assistants. The collaboration
between humans and robots creates new opportunities to
enhance safety, optimize production, increase efficiency,
improve task quality, and empower worker flexibility [8].
Assigning time-consuming, monotonous, or meticulous tasks
to robots can allow human collaborators to focus on tasks that
require unique and creative solutions. Humans can also use
this extra help to better troubleshoot and quickly identify
issues in manufacturing processes. Freeing humans from
dangerous tasks can also lower the stress and fear of human
collaborators. These benefits all manifest in lower costs and a
safer environment for companies and their workers.

Handover tasks in human-robot collaboration are the
actions in which robots locate, grasp, and give objects or tools
to their human collaborator [9, 10]. This kind of task is
widespread in human-robot collaboration. A lot of human
time and energy can be saved with a proper implementation of
the handover task. Existing studies solved this problem by
researching human-human handovers and then using
observations from those to better inform human-robot
handover tasks [11]. They focused on when and where human-
robot handover tasks should take place and how they should
proceed. Another study utilized mixed reality techniques via
HoloLens to visualize human-robot handovers [12]. This
enables handovers to be done with robots that have little
limitations on their movement allowing for more fluid and
more human-like motions.

With interactions between humans and robots being more
common, there has been substantial research to make robot
interactions more predictable, efficient, and effective. Existing
research in the domain of human-robot handover in
collaborative tasks has contributed significantly to solving this
intricate challenge. Strabala et al. [11] have emphasized the



replication of natural human handover tasks, controlling key
parameters such as reach distance and timing to enhance the
intuitiveness of interactions. Huber et al. [13] have delved into
the realm of effective joint strategies, evaluating the role of
'biological motion' in handover interactions, thereby
improving coordination and collaboration between humans
and robots. Wang et al. [14] have explored the utilization of
partial demonstrations to predict human handover intentions,
effectively modeling and understanding human behaviors.
Furthermore, Castro ef al. [15] introduced a machine learning-
based approach to adapt to diverse handover scenarios,
showcasing the adaptability of robots to varying collaborative
environments. Researchers have also addressed safety
concerns in this context, with Chan et al. [16] focusing on
advanced perception systems to detect grip strength, ensuring
safety during handover interactions, and reducing the risk of
accidents. Additionally, a coordinated approach has been
explored by Wang et al. [17] for multi-agent handovers as well
as presenting a method for training robots to handle diverse
human behaviors. Moreover, trust-building mechanisms have
been suggested by [18, 19], emphasizing transparent
communication and reliable execution of tasks especially in
manufacturing contexts. The integration of tactile or visual
feedback into handover tasks enhances the robot's grasp and
object manipulation abilities [20, 21]. Cakmak et al. [22] have
proposed a design initiative to facilitate effective
communication and coordination between humans and robots
during handover tasks by advocating for human preferences
for optimal handover configurations. These collective efforts
in research serve to make collaborative tasks more effective,
safer, and adaptable to different contexts.

However, these approaches treat humans as part of the
environment as mentioned in [17]. A problem area has been
dynamically identifying the object that is being handed over
to the human. The authors of [15] brought up the argument
that in an industrial environment, voice commands may be
ineffective due to background noise and chatter. Overall, the
major issue that these researchers try to tackle is the safety of
the human operators as well as the robots in control [23, 24].
In a collaborative workspace, there may be multiple robots, so
it is vital for the robots to track human movements to prevent
collisions. Research elaborated by [25, 26], discussed pressing
issues regarding the ergonomics of collaborative robots in
human-centered workspaces, specifying that posture plays a
key role as well as the human’s manipulation capacity.

In given collaborative contexts, it is vital that machines
can use vision-based systems for object recognition for
various aspects of handover tasks. The authors of [27] utilized
a vision system to allow the robot to be the giver and the
receiver in handover tasks by adopting a dynamic path-
finding algorithm to find the human hand. The work [28]
employed deep learning-based perception modules to provide
a safe handover experience for previously unseen objects and
those labeled in their database. There also has been research
demonstrating how the YOLOVS model can specifically be
implemented for picking apples [29]. In [30], the authors
discussed the training procedure, active learning, where the
model selected its samples for labeling based on uncertainty.

However, robots learning from demonstrations would
require accurate perception abilities [26]. This presents a
challenge, especially with smaller items—and that is why
they suggest that learning programming, or learning from
demonstration, should only be utilized with large objects and
small objects may benefit from a customized image processing
or machine learning algorithm. An unfortunate limitation is
how object detection can be a bottleneck in some research
[28], where objects that aren’t detected wouldn’t be handed
over so humans can get impatient. The approach that they
wanted was a very natural handover experience, but this can
make humans unwilling to collaborate. There is also the issue
previously mentioned about the intentions of handover. Some
users may not intend to initiate a handover, but they may
accidentally say a phrase or keyword that would prompt the
robot to proceed with the task anyway.

Motivated by the above issues, in this study, we propose a
novel learning-finding-giving framework based on computer
vision and speech recognition techniques for robots to
dynamically identify and deliver tools for human partners in
collaborative tasks. The YOLOVS object detection algorithm
is utilized for the identification of common mechanical tools
during the human-robot handover process. The developed
natural vision-speech-based approach is validated in real-
world human-robot collaborative manufacturing contexts.
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« The robot learns from the
custom dataset using YOLOvS
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Fig. 1. The proposed learning-finding-giving framework.

II. APPROACH OVERVIEW

The overarching vision of this study is to improve human-
robot collaboration quality by incorporating artificial
intelligence, computer vision, speech recognition, and eye-in-
hand calibration techniques [31]. The proper implementation
of these approaches allows for a natural, safe, and effective
human-robot collaboration process in different assembly,
disassembly, and repair tasks. As shown in Fig. 1, the proposed
framework includes three core sections: Learning, Finding,
and Giving. Learning will be incorporated with a YOLOVS5
model that will enable the robot to learn from a dataset of
common tools from our shared workspace demonstration.
Finding will allow the robot to utilize the trained YOLOVS
model to distinguish between and accurately identify the
various tools in a workspace, while also using eye-in-hand
calibration to generate the coordinates of the tools. Giving will
act upon and utilize eye-in-hand calibration, and speech
recognition to have the robot execute movements toward the
tools and toward a designated hand-off position when given
the proper verbal command. These three parts all depend on



each other to create a safe and effective handover of tools.
Using this framework, the robot is able to differentiate and
locate different tools, obtain accurate coordinates of the tools,
and move precisely and effectively for fluid handoffs. During
the collaboration process, the human can direct the robot
according to their specific needs in the shared task.

III. MODELING METHODOLOGY

A. YOLOvS

YOLO (You Only Look Once) is a real-time detection
algorithm utilizing a single neural network to predict and
classify images in one evaluation [32, 33]. In this study, we
utilize an evolved version of YOLO, known as YOLOVS.
YOLOVS is a state-of-the-art real-time deep learning-based
object identification system, which consists of pre-trained
models and is compared to previous iterations of YOLO
based on Darknet. It is lighter and further optimized allowing
for faster detection without sacrificing its high accuracy [33].
Similar to previous iterations of YOLO, it works by applying
a single convolutional neural network architecture to the
whole image. The image is divided into regions for which
bounding boxes and probabilities are predicted. As the model
is trained, the detection performance is optimized and frame
detection is done using regression, which is a lot less complex
than other approaches. In this study, we use YOLOVS to
identify objects in our workspace together with eye-in-hand
coordination techniques to identify, grasp, and hand over
tools to a human.

B. Data Collection and Processing

In this study, we created a dataset for the purpose of
training the YOLOvV5 model. The dataset originally consisted
of 981 images of eight different common mechanical tools
which are: adjustable wrenches, linesman pliers, screwdrivers,
regular wrenches, utility knives, long nose pliers, torpedo
levels, and wire strippers. These were annotated images with
class labels and bounding boxes one by one. After applying
augmentations to these images changing the hue, brightness,
and blur, and adding cutouts, mosaics, shear, and noise, the
dataset expanded to 2359 images. These augmentations increase
the diversity and performance of the dataset, especially when
there are changes in lighting, contrast, and more. For each
image, bounding boxes for each class of objects present in the
image were properly annotated for the dataset. All photos
were also resized to be 640px by 640px because we run
inference at this resolution, and it will provide better accuracy
and faster inference as a result of the dataset.

C. Human Speech Instruction Parameterization

The approach utilized in this study is based on a continual
speech interaction between the human and the robot, as
presented in Fig. 2. The robot begins by prompting the human
to what mechanical tool they would like. The robot then
begins to listen through the microphone for a response. Once
the speech is no longer detected, the speech is then recognized
through Google speech recognition, and text is generated.
This text is used by the robot to decide what tool to pick up.
The program scans the text for tool names and takes the tool
name that is recognized first. If no tool name is found in the

generated text the system will again prompt for another
response through the microphone until a tool name is found.
After locating, grasping, and performing a handoff maneuver
with the tool requested the robot returns to a rest state and
loops the previous steps. The microphone used is connected
separately and is placed on the edge of the workspace. When
the microphone is opened, it first adjusts for ambient noise to
obtain clear readings. The microphone turns sounds into
electrical signals which are then analyzed by algorithms to
determine the word that best fits the sound recorded.

Speech Instructions Request as Text
, Searching L .
1
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Fig. 2. Diagram of the speech recognition process.

D. Neural Network Configuration

To begin the configuration of our YOLOvVS model, we
first chose a pre-trained model’s weights ‘yolov5s6.pt’ from
YOLOVS as our initial weights to train our dataset with. To
set up our dataset for training, we utilized Roboflow to create
bounding boxes and annotate images for the dataset. The
images resized to 640px by 640px match the size we run
inference at for training and testing. A data.yaml file was
created that specifies the file path to the training, validation,
and testing portions of our dataset as well as the number of
classes and those class names in the YOLOVS. 88% of the
images were put into training, 8% were used for validation and
the final 4% were used for testing. Inside each of the training,
validation, and testing dataset files there were two subfolders,
one containing the images themselves, and another named
‘labels’ that contained bounding box information for each
image. The training parameters are shown in Table I. The
training stopped after the epochs we specified were completed
which was 100, where 1 epoch is one cycle through the
dataset. After the training was completed, two weights files
were generated: one for the best mAP@0.5 (mean average
precision) score, and another for the final epoch’s run through
the dataset. The training metrics and figures were also
generated to better understand the model’s performance.

TABLE I. PARAMETERS AND THEIR VALUES USED WHEN RUNNING
THE TRAINING OF OUR CUSTOM YOLOVS5 DATASET

Parameter Value Description
Image 640 Image size to run training at
Batch Size 3 Number of samples to run in one
batch
Epochs 100 Number of complfzte iterations to
learn from training examples
Name of a file that specifies the path
Data data.yaml to the dataset and classes
. Name of file containing the pre-
Weights/Model yolov5s6.pt trained weights/model




Optional parameter to cache
Cache disk information to either disk or RAM for
faster training
. Optional parameter to specify which
Device 0 GPU/CPU to run training with

E. Vision-Based Object Detection and Picking Up

Attached to the collaborative robot is an Intel D435i
RealSense depth camera with which we run YOLOVS’s
inference with a confidence threshold of 70%. Confidence
refers to the score associated with each prediction made by
the model, the score is generated from the model’s certainty
of the accuracy of the predicted class label and the predicted
bounding box for the detected object. To detect, locate, and
pick up objects, we utilize an eye-in-hand calibration method.
To calibrate our RealSense camera, we first obtain extrinsic
and intrinsic rotation matrices and translation vectors to apply
corrective transformations. Then utilize the hand-eye
calibration package in Movelt! [34], we took photos of an
ArUco marker from varying angles and positions and ran an
algorithm developed by Daniilidis to determine the correct
transformation to apply to convert the pixel coordinates of an
object to a real-world object [35]. After applying those
transformations, we can obtain the camera pixel coordinates
of the center of an object from YOLOVS5 inference based on
the location of the bounding boxes around detected objects.
Then we sent and looked up transforms via a transformation
module to receive real-world coordinates for our robot.

Workspace

Fig. 3. The experimental platform.

IV. EXPERIMENTAL SETUP

A. Experimental Platform

The experimental platform, as shown in Fig. 3, consists of
a collaborative robot, an Intel D4351 RealSense depth camera,
a microphone, mechanical tools, a product to repair/work on,
and the workspace. The collaborative robot is a 7-DoF robot
arm with a two-finger parallel gripper that is connected to a
local controller [36]. The Robot Operating System (ROS) is
used for robot system control. ROS is an open-source framework
that provides a vast collection of libraries and tools that allow
for complex control and applications of robot systems [37].
Alongside ROS we utilize the package Movelt! [34], which
contains many powerful tools for robot path planning. The
Speech Recognition package that utilizes Google speech-to-text
API allows for voice commands to direct the robot.

B. Task Description

The proposed framework is validated via a real-world
human-robot collaborative task, in which we set up a shared

working environment where tools and a product are laid out.
Once our experiment and algorithms start running, YOLOvVS
will begin detection and the eye-in-hand coordination
approach will provide real-time position location for the tools
in the frame. The human collaborator will be prompted to ask
for a tool. The system will then search for the name of a tool
in the response and begin the process for finding it. The robot
will then scan both sides of the workspace and find the tool
requested on one of the sides. The process for grasping the
tool will begin where the robot centers itself above the tool,
then descends to grasp it and move to a handoff position
where the tool will be handed to the human worker.

V. RESULTS AND EVALUATIONS

A. Training and Validation Loss Results and Analysis

Fig. 4 presents the loss of the developed model as the
training and validation progressed. The loss in YOLOVS is
the combination of class loss, object loss, and bounding box
loss. The Y-axis refers to the percentage of the type of loss.
The X-axis refers to the epoch number. Box loss refers to how
accurate the predicted bounding boxes of our model are
compared to the bounding boxes provided from our annotated
dataset. Object loss calculates the error in detecting whether
an object is present in a grid cell. Class loss is how correct the
classifications of all predicted bounding boxes are. During
the training, we can see that all three types of loss decrease
rapidly approaching values less than 0.02. Validation shows
the same for bounding box loss and class loss. However,
object loss during validation doesn’t consistently decrease as
our epoch increases, rather this metric goes up and down
ending about 0.0073.
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Fig. 4. The training and validation loss.

B. Evaluations

1) Precision-Confidence

The precision-confidence of the developed model is
shown in Fig. 5. This metric is a representation of how well
our model performs at different confidence thresholds. The
results indicate that there is a high degree of precision
between confidence levels of about 0.2 to 0.9. They also show
that some classes have a drastic drop or rise of precision that
dips as low as 0.0 or all the way up to 1.0 when confidence



begins to pass 0.9, which suggests that our model could benefit
from an improved and larger dataset. However, between
confidence levels of about 0.2 to about 0.8, our model functions
well and we have the choice of setting the confidence level
low to potentially adjust recall as we require. For the purposes
of our experiment, higher confidence was chosen to better
phase out potential false positives. All classes hit perfect
precision, with some earlier than others. This suggests that all
classes could benefit from a larger more diverse set of
pictures. Some classes such as the knife or adjustable wrench
that hit perfect precision early would benefit the most from
this change. Combining this information with the metrics of
Precision-Recall helps us determine a more exact confidence
threshold to utilize to maximize model performance.
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Fig. 5. The precision-confidence of the developed model.
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Fig. 6. The precision-recall of the developed model.

2) Precision-Recall

The precision-recall of the developed model in Fig. 6
shows us the performance of our model with the tradeoff
between precision and recall. Precision is the accuracy of
positive predictions while recall refers to the ability of the
model to classify all positive instances. A high area under the
curve represents high recall and high precision, where high
precision results in a low false positive rate and high recall
results in a low false negative rate. This helps us determine
the quality of the output. The results are generated by varying
the decision threshold of the model. This gives us more
insights as to where an optimal confidence threshold to run
inference at. An ideal model would be as close as possible to
the top right corner across all thresholds. In our model, as we
move along the curve there is a noticeable tradeoff between
precision and recall. This tradeoff is to be expected. The wire

cutter class performs the worst in this metric having its
precision decrease the fastest at about 0.6 recall while the
other classes perform more as expected. Overall our model
performs well for this metric.

C. Real-World Human-Robot Collaboration

Fig. 7 shows us the real-world experimentation and
process of the proposed approach. In each part, the top left
shows us the YOLOVS5 inference, the bottom left shows us a
visualization of the robot in RViz and the right side shows us
an external view of the workspace. Fig. 7 (1) shows the
human collaborator prompts the robot for a screwdriver. In
Fig. 7 (2), the robot has moved after scanning one side of the
workspace to center itself with the screwdriver that was
located on that initial side. In Fig. 7 (3), the robot then moves
to grasp the tool and finally, in Fig. 7 (4) the robot moves to
a designated handoff position to drop the tool for the human
collaborator. Thus, showing the complete cycle of one prompt
for a tool and this process would repeat as many times as
needed. The full demonstration video shows another crucial
aspect of this process where tool positions were switched
around and the robot grasped the tools at different locations:
https://youtu.be/ucAgSIK6crA. This is important for a real-
world demonstration because tools may not stay in their
original positions.

Fig. 7. Real-world human-robot collaboration shows the robot picks up
one of the tools.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we have created an improved approach for
the handover task in human-robot collaboration contexts. We
proved that our framework of learning, finding, and giving
combined with our specific approach resulted in a safe,
effective, and repeatable way to conduct human-robot
collaborative tasks. The major source of loss and error in our
training is from false negatives. Our model could improve
across all metrics. To do this as well as to scale our approach
to a larger, more complex, manufacturing environment, we
will improve our dataset by increasing images per class and
instances per class. The variety of objects that we use would
also need an increase in variability concerning certain aspects
of luster, contamination, deterioration, and blemishes. Greater
variety could also improve our dataset by capturing more
images representative of real-world environments, different
aspects of those environments such as lighting or different
angles can help our model make more correct recognition.
Moreover, adding background pictures or pictures with no



classifications in them is another recommended tactic to
increase model performance. In the future, we can use these
enhancements along with newer versions of YOLO or other
object detection models to obtain better model performance.
We can also create a larger experiment to test and improve
our approach with other human participants.
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