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pling batch, which are individually but not collectively informative towards the

as they barely contribute extra information towards update of the surrogate. To
address this issue, we impose a dispersion criterion on concurrent selection of
sampling points, which essentially forces a sparse distribution of critical points
in each batch, and demonstrate the effectiveness of this approach in adaptive
contour estimation. Specifically, we adopt Gaussian process surrogate to emu-
late the simulator, acquire variance reduction of the critical region from new
sampling points as a dispersion criterion, and combine it with the modified
expected improvement (EI) function for critical batch selection. The critical
region here is the proximity of the contour of interest. This proposed approach
is vindicated in numerical examples of a two-dimensional four-branch function,
a four-dimensional function with a disjoint contour of interest and a time-delay

dynamic system.
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1 | INTRODUCTION

While computer simulations (e.g., finite element method) are widely used to aid the optimal design of real-world complex
systems,? those high-fidelity simulators generally entail prohibitive computational cost. Alternatively, low-fidelity sur-
rogate modeling has been brought to the limelight to emulate the expensive-to-evaluate simulators, which seeks to mimic
the mathematical relation between response surface and design inputs with only a paltry of the computational expense.*”’
Surrogate models can be derived from sequential or non-sequential sampling strategies. For non-sequential design, the
sampling points are selected in a one-shot fashion, and a large number of them are generally needed for accurate fitting. By
contrast, in sequential sampling, the design or sampling inputs are selected sequentially, and the surrogate is continuously
updated with the addition of new sampling points. Central to sequential modeling is how to select the most informative
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FIGURE 1 Comparison of the fitted iso-surface (the dashed red curve) against the underlying truth y = 0 (the solid black curve): (A)
the prediction by GP from the initial design (the blue dots); (B) prediction by GP with addition of the critical batch X, selected by the
proposed method (the green crosses); (C) prediction by GP with addition of the critical batch X selected by WKMS (the green crosses); and
(D) prediction by GP with addition of the critical batch X; selected by the modified EI (the green crosses). The shaded area signifies the
critical region X

design points across the design space {x € X} in each sampling iteration. As such, only a fraction of the sampling points
is required to achieve accuracy comparable to the one-shot design.

On the other hand, identification of a prescribed contour {x € X : y(x) = a € Y}is a profound quest in a host of indus-
trial applications. For instance, it represents the limit state in reliability engineering: {x € X : y(x) > a} denotes the set
of stable / functioning design points, and {x € X : y(x) < a}indicates unstable / failure design points.*'° That said, only
local accuracy around the limit state, instead of the global response surface, is required to build the surrogate. This is also
referred to as contour or iso-surface estimation. The iso-surface can be approximated from either a regression or classi-
fication perspective, depending on the continuous or discrete property of the output of the design points. Accordingly,
different criteria can be utilized to select the design points, including the modified EI'" and the integrated mean square
error (IMSE)."? In classification setting, the iso-surface is considered as the decision boundary of a classifier, and closeness
of design points to the boundary has been incorporated in active learning to locate the decision boundary in an iterative
manner.”® In regression setting, integration of modified EI function and the nonparametric Gaussian process (GP) has
been investigated to select the most informative design points.'*

Notably, GP is a widely used surrogate model, whose predictive uncertainty furnishes the quintessential information
in sequential design.'>"'® Whereas EI function was originally developed for efficient global optimization,” the modified
EI involves a utility function, which considers not only expected proximity to the iso-surface but also the associated
uncertainty to stipulate the most critical design point in each iteration to update the GP surrogate. Nonetheless, such
one-at-a-time sampling strategies engender a considerable number of iterations to fit the surrogate and approximate the
iso-surface, particularly for complicated contours. It is noteworthy that fitting of GP surrogate will become cumbersome
with the accumulation of sampling points. This bottleneck can be resolved by batch sampling, which is naturally compat-
ible with parallel computing. One naive solution is to select a batch of the most informative design points according to the
modified EI function in each iteration, which, however, inevitably leads to the near-duplicate issue, in that the selected
critical points are fairly close to each other (for illustration see Figure 1D). Intuitively, if one sampling point is selected
via the modified EI, then points sufficiently close to this one will have similar utility values and tend to be selected in the
same batch, provided that the underlying function is smooth. As a result, the near duplicates carry substantially redundant
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information, and they are individually-but-not-collectively informative towards the update of the surrogate and estimate
of the contour of interest. Of a similar ilk, other one-critical-point-per-selection strategies bear the same issue of near
duplicates, including the local IMSE."? Indeed, most existing improvement criteria do not lend themselves to sequential
batch sampling.'""”

In this present study, we aim to sequentially select a batch of the most informative points for contour estimation and
avoid succumbing to the issue of near duplicates. Remarkably, a dispersion concept is included to sparsely distribute
the selected points in each batch. A similar notion of diversity among design points has been explored in the literature,
mostly under the framework of classification. For instance, Bayesian active learning by disagreement (BALD) selects the
most critical design point according to the mutual information between the responses and model parameters.”’ Based
upon this, Batch BALD is formulated to explicitly maximize the collective information carried by the selected batch to
eschew near duplicates.”’ Unfortunately, the criteria used in BALD and Batch BALD are intractable in regression settings.
Similarly, BADGE and Core-Set are specially designed for classification as well.”?»?* Zhdanov formulated weighted K-
means (WKMS) clustering on the candidate points that are possibly in close proximity to the contour of interest, and then
the batch was selected across the clusters; the batch size is equivalent to the number of clusters; the weight of WKMS can be
any informativeness score in active learning, for example, entropy.”* Whereas this method is also applicable in regression
problems and represents one of state-of-the-art approaches, it does not explicitly gauge the uncertainty associated with
the estimated iso-surface. Some other works related to batch sampling focus on the fitting of the global surface'*?>?° and
they may not be easily adapted to the fitting of the iso-surface.

Herein, we develop a dispersion-enhanced sequential batch sampling approach to adaptively estimate the iso-surface,
by integrating the modified EI and a variance reduction technique for the critical region, which is defined as the proximity
of the contour of interest. The modified EI plays the role of weight in variance reduction of the critical region. Thus,
the variance reduction effectively exacts the dispersion “force” among all design points in each batch, and account for
the predictive uncertainty in the estimated iso-surface simultaneously. We show that this novel approach is superior to
WKMS, particularly for intricate contours.

The rest of this paper is organized as follows. In Section 2, we revisit GP and the modified EI function. Section 3 provides
the methodology of the proposed method, and the comparison of WKMS, the one-shot design and our approach are given
in Section 4. Section 5 concludes the paper.

2 | BACKGROUND
2.1 | Problem statement

Define a training set {(x;, y;)}'_ , with x; € X C R? and y; € Y C R, annotated from the simulator, and an unlabeled
dataset D C X, the iso-surface of interest is given as {x € X : y(x) = a € Y C R}. A surrogate model is trained to learn
y(x) along with the uncertainty for any x € D. In sequential optimal design, we seek to sketch the contour or iso-surface
{xe X : (x) = a €Y C R}iteratively with the least number of sampling points. In each iteration, a batch of critical
design points are selected from D and appraised by the simulator, which will then be annexed into the training set to
update the surrogate model. Mathematically, a batch X, = {x},...,x;} C D with cardinality |X;| = n;, will be selected
sequentially based on an acquisition function A,

X, = argmax A (Xp). 1)
XbED

Here, GP is adopted as the surrogate model, as it provides a full predictive distribution as opposed to merely a point
estimate. Subsequently, a modified EI function based upon the GP is utilized as the acquisition function to estimate the
iso-surface.!! Note that we use bold letters for vectors or sets and non-bold letters for scalars or functions.

2.2 | Gaussian process surrogate

GP is a collection of random variables {f(x)|x € X}, any finite number of which have a joint Gaussian distribution. It
is specified by the mean function m(x) and covariance function k(x,x’), that is, f(x) ~ GP(m(x), k(x,x’)). The noisy
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observation y(x) = f(x) + ¢, where ¢ ~ N'(0,0%) and o2 is the noise variance. In Bayesian learning, a Gaussian prior
p(f1X) is placed on f(x) and the posterior p(f|y,X) can be derived from assimilating observation data, where X €
R™? and y € R" are the set of design points x and the corresponding responses y(x), respectively. For simplicity, we
assume the prior f|X ~ N (0, k(X,X)),and k(X,X) is n X n symmetric positive-definite covariance matrix. The likelihood
is given as y|f,X ~ N'(f,oI), which leads to the fact that the marginal likelihood is also Gaussian, that is, p(y|X) =

J pIf, X)p(fIX)d f, and
YIX ~ N (0,K +0%I), @)

where K:=k(X,X) is the n x n covariance matrix for design points X € R™*%, For the training of GP, we maxi-
mize the marginal likelihood in Equation ( (2) in terms of the hyperparameters in the covariance function k(x,x’).
The posterior distribution p(f|X,y) is the prior joint distribution p(y, fIX) = p(y|f,X)p(f|X) conditioning on
observations. Consequently, posterior GP is specified by the posterior mean and covariance of nominal function

Fx),
YX) =Fx) =K (K+0%) 'y 3)

Cov (P (x)) = Cov (f (%)) = Kyy — Ky (K + 021)_1K£, 4

where K,:=k(x,X)isthe 1 X n covariance vector between the response y(x),x € R% and y(X),X € R™¢ K, :=k(x, x)is
the covariance at design point x. I is the n x n identify matrix. Hence, the nominal function f(x) ~ N'(f(x), Couv(f(x))).*

2.3 | Modified expected improvement function for contour estimation

To quantify the importance or informativeness of a design point x towards estimation of the iso-surface, a utility function
derived from the GP framework is employed'':

1() = $*@) —min (0 (®) - ), $2(®)), )

where a is the response of the iso-surface of interest.

Here, y(x) ~ N (Px), Var(P(x))) is the predictive response for design point x € D derived from the GP surrogate.
Define s(x) = v/Var((x)), then the uncertainty measure S(x) = Ss(x) with 8 a positive constant weight which controls
the scale of the uncertainty measure. That said, the range of selection of x can be wider if a larger 8 is adopted. Maximiza-
tion of the utility function tends to select x* that finds the balance between the proximity to the iso-surface (y(x) — a)2
and the uncertainty measure S%(x). Considering the predictive uncertainty for y(x), we define an acquisition function
A(x) = Ey[I(x)]. Therefrom, selection of x* can be represented as

x* = argmax E,, [I (x)] . (6)
x€D

The closed-form expression of the acquisition function E,[I(x)] is given as!!

BT = (80 -0 @ =) @) - 2() =5 &) [ 9 ) do -

+20 () —a)s () (¢ up) = ¢ b)),

YOI | aIESE) gy aIE-SE)
s(x) s(x) s(x)
the up, and [, are derived from (y(x) — a)2 < S%(x) and then normalized. ®(-) and ¢(-) are standard Gaussian den-
sity function and cumulative density function, respectively. Equation ( (7) can be further simplified as E,[I(x)] =

(82(x) = () — @)” = SP(X)(@(up) — D(1y)) + 26N wtpP(up) — Lyp(1y)) + 2((x) — @)s(x) () — $(1,): the first term

where v = . Equation ( (7) is obtained when (y(x) — a)2 < S?(x), wherein
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dominates the value of E,[I(x)] if the predicted response y ~ a, i.e., the sampling point is close to the iso-surface; the
second term gains sway for the design point with large predictive uncertainty while it is in the proximity [a — S,a + S] to
the iso-surface; and the third term promotes global exploration of regions that are not in the proximity of the iso-surface
but with high uncertainty."

In batch sampling, a set of n, critical points X, = {x7, ...,

xZ} can be selected via

X, = argmax Z E,[I(x)]. 8)
Xb€D  xex,,|Xp|=ny

In contrast to Equation ( (6) for the selection of one single best sampling point, the top n;, points with maximal sum of
expected utility is sought after. Nonetheless, as alluded earlier, this selection criterion inevitably leads to near duplicates,
that are informative individually but not collectively. This considerably suppresses the efficiency of surrogate learning,
particularly for the GP, and barely contributes to update of the learned iso-surface.

3 | METHODOLOGY

It is noted that only the selection of individual critical design points via Equation ( (6) is considered for sequential
design in.!" We instead investigate sequential batch sampling in this present study. The innovation of our work lies
in the first-of-a-kind dispersion concept to distribute sampling points in each batch for variance reduction in the
critical region, and the modified EI prescribes the informativeness for those design points during the optimization
process.

3.1 | Nystrom approximation of covariance for the critical region

To eschew the near duplicates, the concept of dispersion for the critical batch X is investigated by Nystrom approximation.
As the modified EI tends to select the critical points with response y(x*) € [a — S(x*), a + S(x*)], we define a critical
region {x € X; Cc X : (x) € [a — S(x), a + S(x)]}, which consists of a set of n; design points. Ideally, addition of a new
batch X}, should reduce uncertainty of the critical region X to a maximal extent. Given that y(X) = Y and y(Xp) = Y,
Kss Ksb

KT K 1), the uncertainty of critical region X with addition of a batch
sb »bb

Y
have a joint Gaussian distribution [Ys] ~ N(0,[
b
X}, can be expressed as
Tr(Cov(X,|Xp)) T7 (Kys — KoKy KL )

U= = , 9
n. . )

where Tr is the trace of a matrix, and Ky € R™*"s and K, € R™>*"™ are the covariance matrixes of X and X}, respec-
tively. K, € R"*™ is the covariance matrix between X and Xj. The entities of the covariance matrices are derived from
the covariance function k(x, x"). KK, 1K T is the Nystrom approximation of covariance matrix K>’ U can be inter-
preted as the variance of X when X}, is 1ncluded. It is noteworthy that Equation ( (9) bears the resemblance to selection
of inducing points in sparse GP, which comprises of a subset of the most informative training data.”® The optimal batch

is selected to minimize U for better Nystrom approximation. To minimize U, the selected critical points in X} should not

fle—x"11?

be close to each other, resulting in large entities of KK, 1K T  We use exponential kernel k(x, x") = exp(— )asan

example: if x and x’ are close, k(x, x") will be close to 0 for a flxed length scale . In this regard, min U can be deemed asa

dispersion force among the sampling points in Xj, namely, X * = argmin U. Furthermore, Equation ( (9) can be rewritten
XpCX,
as U = TV(COU(Xs\blxb))

set X as the unlabeled set D, and it will be refined as more sampling points are included to update the contour and the
surrogate.

, Where X3 is the difference between set X and Xj, namely X = X\ U X, To start with, we
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3.2 | Weighted variance reduction of critical region

Next, we integrate the idea of greedy selection of inducing variables in sparse GP?° with the modified EI function for
critical batch selection. Given a batch Xp, j C X, the variance reduction of the critical region X with addition of a new
design point x; € Xj is given as

Tr (Cov(X4|Xp\ i) — Cov(Xs|Xp)
Aj _ ( s b\:l slp ), (10)
S

Ey[I(xj)]—min(Ey)
max(Ey)—min(E,)
[0,1], where Ey, = [E,[I(x,)], Ey[I(x5)], ..., Ey [I(xy,)]], serves as an informativeness score. Then, the acquisition function
is given as

where Xp, = Xp\jU{xj},j = 1,..,n; — ny\j and |Xp\ j| = np ;. The rescaled EI function Ey[I(xj)] =

AXp) = ), Ey[I(x))] A a

X'jEXb

That said, the rescaled EI function plays a role of weight in variance reduction in the critical region with the batch X,
in the GP surrogate framework, and the weight E"y [I(x)] provide the importance of x j in estimation of the iso-surface.
Hence, the design points, that maximally reduce the uncertainty of the critical region and are more likely to update the
predicted iso-surface, are selected. Note that Equation ( (11) is a non-decreasing linear modular function, and we propose
a greedy algorithm for iterative selection of sampling points for each batch in Algorithm 1. Here, E}[I(x;)] € [0,1] is
the rescaled modified ET and A; > 0 is the variance reduction after addition of x ;. Therefore, A(X}p) is positive. To start
with, we set the critical region as X = D, and X is initialized as §J, thus Cou(X|#) = K. With selection of sampling
points in each batch, the GP surrogate model and the critical region X, hence the estimated iso-surface, are updated
consequently.

Algorithm 1:
Input: acquisition size n;,, X; = D
Initialize X; =0, j = 1
While j < ny:
Xp\j=X,,
For xj E D\Xb\J
Xp =Xp\;Uix;}
Tr(Cou(X,|Xp j)—Cov(X,|X}))
A=
End for
x* = argmax Y E,[I(x;)] A,

x;ED\Xp\ j X;€Xp

n.\‘

X; = Xb\} U {x*}
jt++

End While

Output: X,

Algorithm 1requires calculation of Cou(X|X}) that involves inversion operation Kl;l} repeatedly. This could be cumber-

-1
some when n, is large. We suggest a lower-diagonal-upper (LDU) decomposition, that is, K;; = [Ilig{b’ ﬁb g k(zb ’ XS)] =
s> Xb b\j
1

1 0 o dkin O 1 —k KL _ , ,
[—K;\ljkb Ib\j] bO b\J k-0 I |- Here, Kp\ j is the ny\ ; X ny,\ ; covariance matrix of Xp\ j, kp:=k(xp, xp)
J

b\j
and kj, = k(X;, xp) is ny X 1 vector of covariance between X and x;. The LDU decomposition only involves the inversion

of Ky, j for each single selection in a batch.
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In our study, uncertainty reduction of the critical region X effectively plays the role of the dispersion force. The crit-
ical region X == {x € X : (x) € [a — S(x),a + S(x)]} is a potential region in which the contour of interest lies. Here,
a is the target and S(x) = Bs(x), with 8 a positive constant weight that controls the scale of the uncertainty measure,
i.e., width of the region X;. Suppose the set X}, is an optimal representation of the critical region X§, then the uncer-
tainty or variance in the critical region should be reduced maximally by X},. Mathematically, the variance that X}, explains
is Tr(KsbK_lK ) Which is the Nystrom approximation. Then, Tr(Kjy), the variance in critical region X, is reduced
to Tr(Kss — KpK, _lKT ,) With addition of X},. Minimization of Tr(Kgs — Ksp Ky, KT <) is equivalent to minimization of
Tr(Kss KsbK

bb sb)

the average U = - In the Nystrom approximation Tr(Kg,K, _1KT ,)> points in the set X}, should not be

close to each other, because Kpp:=k(Xp,X}) considers the distance among those design points. In implementation, the
greedy algorithm is used to approximate the NP-hard problem, i.e., the selection of X;. We use the modified expected
improvement E,[I(x)] as weight for each candidate x to select X} in the vicinity of the contour of interest to obtain
a weighted representation of X . For unweighted representation, that is, Nystrom approximation, the weight is 1 for
each candidate.

4 | NUMERICAL STUDIES

In this section, we demonstrate the effectiveness of the proposed approach for adaptive contour estimation in three numer-
ical studies, that is, the four-branch function, a disjoint iso-surface, as well as the stability analysis for time-delay dynamics.
It is noted that given the contour of interest {x : y(x) = a}, it is no-trivial to solve the inverse problem to glean the design
points that are on the iso-surface. To this end, we include a new set X,,; of n,,, test points to assess the quality of contour
estimation:

RIC)

Rgest

(12)

LO®) —-a)yx)—a) =0

0, otherwise
the target contour {x : y(x) = a} and the surrogate estimation {x : (x) = a}inducese = 0. X, is constructed from a
large number of mesh grid points in the two-dimensional examples in Case 1 and Case 3, and from Latin hypercube design
(LHD)*" for the four-dimensional example in Case 2. X,; is also used to establish the ground truth of the iso-surface. We
also note that § controls the width of the critical region, and large 8 implies huge computational cost, especially for high-
dimensional cases. It also depends on the volume of initial design, or the cold-start problem. Hence, for high-dimensional
problems (e.g., even the 4D Case 2 here), we suggest a relatively large number of initial design points, which only entails
a small 3 and further reduces the computational cost.

We compare the proposed method with the state-of-the-art method WKMS and the one-shot design. The result shows
that the proposed method can achieve even better result especially when the iso-surface is complicated and achieves simi-
lar result when the iso-surface is simple compared to WKMS selection. Also, the proposed method can obtain significantly
better result compared to the one-shot design.

The batch size | X} | and the number of initial training points may depend on the dimension of problems. There are no
specific rules to determine the number of batch size |X}| and the number of initial training points. The fundamental is
that we need sufficient number of initial training points to cover the whole sampling space, and in each batch, the new
addon points should cover the critical region as much as possible. Hence, we may select a larger number of points on
problems with higher dimension.

where x € X, and 1(x) = { . y(x) is the predictive response from GP. Ideally, the overlap of

4.1 | The four-branch function

The four-branch function represented in Equation ( (13) is widely used in structural reliability analysis. It captures the
limit state of a series system with four distinct components.*!
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FIGURE 2 Evolution of the predicted iso-surface using the proposed method at (A) 2"¢, (B) 4™ and (C) 8" iteration, and (D) the
predicted iso-surface of the one-shot design. The black solid curve is the true iso-surface and the red dashed curve is the predicted iso-surface.
The green crosses are critical batch X and yellow area is X,. Blue dots are the initial design points in (A), (B), (C), and green dots are the
one-shot design points in (D). To avoid the clutter, we only show the selected critical batch X for each batch and hide those selected in
previous batches

340100 —x,)° — L2

X
340106 — X)) +

(x) = min , (13)

Here, x = [x;,x,] are the design variables, and the system fails when y(x) < 0. Hence, the iso-surface of interest is
defined as {x : y(x) = 0}. The true iso-surface is derived from evaluation of Equation ( (13) on a 100 X 100 mesh grid
of Xyesr € [—6, 6]2, amounting to 10* evaluations in total. For the sequential design, n = 15 initial design points (the
blue dots in Figures 1 and 2) are selected by LHD with min-max distance criterion. Next, n; = 11 critical design points
(green crosses in Figures 1 and 2) are selected via the proposed method to form the critical batch X} in each iteration,
which will be evaluated according to Equation ( (13). Following this, the GP surrogate is updated at each iteration until
the predicted iso-surface converges to the true iso-surface. To obtain the critical region Xy C X;., (the shaded yellow
area), we set § = 0.95, that is, (x5) € [0 — 0.95 X s(x4),0+ 0.95 X s(x4)], x5 € Xj.

In both Figures 1 and 2, the solid / black curve represents the true iso-surface {x : y(x) = 0} and red / dashed curve
is the predicted iso-surface {x : J(x) = 0} from GP surrogate after addition of each critical batch. In Figure 1(A), the
predicted iso-surface by GP after the initial design is shown for comparison. Figure 1(B) shows the design point selec-
tion in the first iteration using the proposed method, which exhibits the dispersion effect, leading to significant update
of the surrogate model. In Figure 1(C), the WKMS?** is included for comparison and the scaled modified EI function
value serves as the weight. The WKMS achieves similar predicted iso-surface with the proposed method after the ini-
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FIGURE 3 Comparison of the predicted iso-surface between the proposed method and WKMS on 2 dimensions. (A) and (B) are the
predicted iso-surface obtained by the proposed method and WKMS on (x,, x3) while (x;, x,) fixed at 0.5. (C) and (D) are the predicted
iso-surface obtained by the proposed method and WKMS on (x,, x,) while (x;, x;) fixed at 0.5. The black solid curve is the true iso-surface
and the red dashed curve is the predicted iso-surface

tial design in this simple example. The issue of near duplicates from batch selection via modified EI is exemplified in
Figure 1(D), and those near duplicates barely contribute to the update of the surrogate. The evolution of the predicted
iso-surface using the proposed method at different iterative steps are shown in Figure (2 A-D) shows the predicted iso-
surface using one-shot design with the same total number of design points. Here, the one-shot design is conducted by LHD
with min-max distance criterion. With 8 iterations, the estimated iso-surface almost converges to the true iso-surface, and
totally, 15+ 8 X 11 = 103 sampling points are included. The proposed method achieves e = 0.006 and e = 0.012 is
obtained for the WKMS. The one-shot design obtainse = 0.034 with 103 sampling points. In this simple case, the proposed
method obtains a slightly better result compared to the WKMS and a significantly better result compared to the one-shot
design.

4.2 | A disjoint iso-surface

In this case, we adopt the four-dimensional function with a disjoint iso-surface:
1/.
y@ =7 (sinGe =3 -1 + (5 - Dy ) =3, (14)

where x = [x;, X5, X3, X4] € [0, 10]4. The iso-surface of interest is defined as {x : y(x) = 0}. To start with, we selectn = 40
design points from LHD with min-max distance criterion, define 8 = 0.5 to reduce the computational cost and set the
size of each batch as n;, = 5 in the sequential batch sampling. To quantify the performance of the proposed method and
WKMS, we select Xy, With size 10° from LHD. To further visualize the part of iso-surface, the four-dimensional iso-
surface is projected onto a two-dimensional space. Here, we select 2 angles. For the first one, we set [x,, x3] € [0, 10]2 and
fix [x, x4] = 0.5. For the other, we set [x,, x4] € [0, 10]2 and fix [x;, x3] = 0.5. After 6 iterations, 40 + 5 X 6 = 70 design
points are used, and the proposed method obtains the error measure e = 0.01 while e = 0.02 for WKMS. The predicted
iso-surface are showcased in the Figure 3.



MWI LEY CHE ET AL.

le—4

0.0

1 2 3 2
X5 (round/min) 1e3

FIGURE 4 The near duplicates (green clustered crosses) caused by selecting top 11 best critical design points according to the modified
EI after the initial design

The proposed method is slightly better than WKMS in terms of fitting the iso-surface and achieves smaller error with
the same experiment setting. In this case, the iso-surface is relatively simple because it requires less than 100 design points
to obtain a small error e for both methods. Hence, both methods do not show a large difference in this case. The proposed
method obtains significantly better result compared to the one-shot design.

4.3 | Stability identification of time-delay dynamic systems

In this example, we present the proposed method on a complicated and bumpy iso-surface: the stability boundary in
a machining or material removal process.” The cutting tool vibration is modeled by a second-order delay differential
equation

)+ 28w, 2() +w2z(t) = —Kw(x; —z({) +z(t —1)). (15)

Here, z(t) € R is the tool displacement relative to the nominal position in feed direction during the machining process.
w, = 6007 Hz is the vibration natural frequency, { = 0.02 is the damping ratio, £ = 2 X 10" N /m? represents the
force coefficient, and the constant cutting width is w = 5 X 1072 um. Thus, the righthand side of Equation ( (15) is
the instantaneous cutting force, which is proportional to K and instantaneous cutting area w(x; — z(t) + z(t — 7)). The
design variablesarex = [x;, x,]: x; represents the nominal feed (um) and x, is the spindle speed (round / minute), which
further determines the time delay z, that is, 7 = i—ﬂ In this study, only x; and x, are tunable and other parameters are

2
fixed once the machine is set up. The stability problem, whether the dynamics of z(t) explodes or dies off, can be solved
via temporal finite element method (TFEM) as demonstrated in our recent studies,'* in which Equation ( (15) is reduced
to a compact matrix form as

Na" =Pa™ ' +Q (16)
where a" and a™! are the coefficient vectors for the polynomial bases in TFEM in the n'* and (n — l)lh revolu-
tion, respectively. N, P and Q are the matrices for integration terms derived from Galerkin projection. Define Ag
as the maximum absolute eigenvalue of the transition matrix G = N~'P, then stable cutting requires 15 < 1. Con-
versely, 15 > 1 implies unstable cutting, manifesting in fierce tool vibration, which could considerably diminish quality
of the machined products. Therefore, we seek the iso-surface {x : A5(x) = 1} to separate the stable and unstable
cutting.

The initial design contains n = 100 design points selected by LHD with min-max distance criterion and we set the
batch size n, = 11. For demonstration, we showcase the near duplicates in Figure 4, which are the batch sampling points
generated by the conventional modified EI. Evolution of the predicted boundary using the proposed method and the
WKMS are showcased in Figures 5 and 6. The black solid curve is the true boundary or the iso-surface {x : 15(x) = 1},
obtained on a 100 x 100 mesh grid which is also X, The red dashed curve is the predicted boundary {x : A;(x) = 1}
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via GP surrogate. Green crosses are the selected batch at each iteration while the shaded area is X;. In the experiment, we
set weight of predicted uncertainty 8 = 0.95 to obtain Xj.

As portrayed in Figure 5, the surrogate successfully finds the true boundary via the proposed method in the 21% iteration
with 100 + 11 X 21 = 331 and the critical batch exhibits the dispersion. Even though the critical batch in Figure 6 via
WKMS shows the diversity, the predicted boundary does not overlap with the true boundary with the same experiment
setting, i.e., with the same weight, batch size, total number of sampling design points. The result shows that the proposed
method significantly outperforms the WKMS in the same experiment setting in terms of the accuracy of predicted iso-
surface. Also, the proposed method has smaller error measure e = 0.0017, while e = 0.0177 for WKMS at the 215
iteration. As aforementioned, the proposed method can achieve better result when the iso-surface is complicated. This
is because WKMS only aims to spread out the sampling points in each batch, without considering the uncertainty of the
predicted iso-surface.

5 | CONCLUSION

Whereas sequential sampling plays a paramount role in surrogate modeling and optimal design for computer simulations,
the sequential batch design has not been extensively carried out, particularly in the framework of GP surrogates. It is noted
that fitting the GP incurs a huge computational cost with accumulation of the sampling points, thus stymieing its applica-
bility. This can be readily solved by batch sampling, which is amenable to parallel computing. We have shown in this study
that the naive extension of the conventional top-one sequential sampling strategies to batch selection inevitably leads to
near duplicates, which considerably compromises the efficiency of surrogate learning and contour estimation. Whereas
the lion’s share of existing research in batch sampling is focused on classification problems, we develop a first-of-a-kind
algorithm for sequential batch sampling in regression settings. The novel dispersion concept is adopted to sparsely spread
the sampling points in each batch via integration of the modified EI function and variance reduction in the critical region
for iso-surface estimation in the framework of GP surrogate. The proposed method is corroborated in three numerical
case studies, and we have consistently shown that it outperforms the WKMS method in approximating the iso-surface of
interest, especially when the iso-surface is complicated. This is attributed to the fact that WKMS achieves the sparse distri-
bution of design points for each batch by maximizing the distance between them and does not account for the uncertainty
of the predicted iso-surface. By contrast, the proposed dispersion-enhanced approach concurrently spreads the design
points in each batch and reduces the uncertainty of the critical region in estimation of the iso-surface.
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