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Abstract

In computer simulation and optimal design, sequential batch sampling offers

an appealing way to iteratively stipulate optimal sampling points based upon

existing selections and efficiently construct surrogatemodeling. Nonetheless, the

issue of near duplicates poses tremendous quandary for sequential learning. It

refers to the situation that selected critical points cluster together in each sam-

pling batch, which are individually but not collectively informative towards the

optimal design. Near duplicates severely diminish the computational efficiency

as they barely contribute extra information towards update of the surrogate. To

address this issue, we impose a dispersion criterion on concurrent selection of

sampling points, which essentially forces a sparse distribution of critical points

in each batch, and demonstrate the effectiveness of this approach in adaptive

contour estimation. Specifically, we adopt Gaussian process surrogate to emu-

late the simulator, acquire variance reduction of the critical region from new

sampling points as a dispersion criterion, and combine it with the modified

expected improvement (EI) function for critical batch selection. The critical

region here is the proximity of the contour of interest. This proposed approach

is vindicated in numerical examples of a two-dimensional four-branch function,

a four-dimensional function with a disjoint contour of interest and a time-delay

dynamic system.
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1 INTRODUCTION

While computer simulations (e.g., finite element method) are widely used to aid the optimal design of real-world complex

systems,1,2 those high-fidelity simulators generally entail prohibitive computational cost. Alternatively, low-fidelity sur-

rogate modeling has been brought to the limelight to emulate the expensive-to-evaluate simulators, which seeks to mimic

themathematical relation between response surface and design inputs with only a paltry of the computational expense.3–7

Surrogate models can be derived from sequential or non-sequential sampling strategies. For non-sequential design, the

sampling points are selected in a one-shot fashion, and a large number of them are generally needed for accurate fitting. By

contrast, in sequential sampling, the design or sampling inputs are selected sequentially, and the surrogate is continuously

updated with the addition of new sampling points. Central to sequential modeling is how to select the most informative
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F IGURE 1 Comparison of the fitted iso-surface (the dashed red curve) against the underlying truth ÿ = 0 (the solid black curve): (A)

the prediction by GP from the initial design (the blue dots); (B) prediction by GP with addition of the critical batch ÿ∗
ÿ
selected by the

proposed method (the green crosses); (C) prediction by GP with addition of the critical batch ÿ∗
ÿ
selected by WKMS (the green crosses); and

(D) prediction by GP with addition of the critical batch ÿ∗
ÿ
selected by the modified EI (the green crosses). The shaded area signifies the

critical region ÿý

design points across the design space {ý ∈ æ} in each sampling iteration. As such, only a fraction of the sampling points
is required to achieve accuracy comparable to the one-shot design.

On the other hand, identification of a prescribed contour {ý ∈ æ ∶ ÿ(ý) = ÿ ∈ ç} is a profound quest in a host of indus-
trial applications. For instance, it represents the limit state in reliability engineering: {ý ∈ æ ∶ ÿ(ý) ≥ ÿ} denotes the set

of stable / functioning design points, and {ý ∈ æ ∶ ÿ(ý) < ÿ} indicates unstable / failure design points.8–10 That said, only

local accuracy around the limit state, instead of the global response surface, is required to build the surrogate. This is also

referred to as contour or iso-surface estimation. The iso-surface can be approximated from either a regression or classi-

fication perspective, depending on the continuous or discrete property of the output of the design points. Accordingly,

different criteria can be utilized to select the design points, including the modified EI11 and the integrated mean square

error (IMSE).12 In classification setting, the iso-surface is considered as the decision boundary of a classifier, and closeness

of design points to the boundary has been incorporated in active learning to locate the decision boundary in an iterative

manner.13 In regression setting, integration of modified EI function and the nonparametric Gaussian process (GP) has

been investigated to select the most informative design points.11,14

Notably, GP is a widely used surrogate model, whose predictive uncertainty furnishes the quintessential information

in sequential design.15–18 Whereas EI function was originally developed for efficient global optimization,5 the modified

EI involves a utility function, which considers not only expected proximity to the iso-surface but also the associated

uncertainty to stipulate the most critical design point in each iteration to update the GP surrogate. Nonetheless, such

one-at-a-time sampling strategies engender a considerable number of iterations to fit the surrogate and approximate the

iso-surface, particularly for complicated contours. It is noteworthy that fitting of GP surrogate will become cumbersome

with the accumulation of sampling points. This bottleneck can be resolved by batch sampling, which is naturally compat-

ible with parallel computing. One naïve solution is to select a batch of the most informative design points according to the

modified EI function in each iteration, which, however, inevitably leads to the near-duplicate issue, in that the selected

critical points are fairly close to each other (for illustration see Figure 1D). Intuitively, if one sampling point is selected

via the modified EI, then points sufficiently close to this one will have similar utility values and tend to be selected in the

same batch, provided that the underlying function is smooth. As a result, the near duplicates carry substantially redundant
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information, and they are individually-but-not-collectively informative towards the update of the surrogate and estimate

of the contour of interest. Of a similar ilk, other one-critical-point-per-selection strategies bear the same issue of near

duplicates, including the local IMSE.12 Indeed, most existing improvement criteria do not lend themselves to sequential

batch sampling.11,19

In this present study, we aim to sequentially select a batch of the most informative points for contour estimation and

avoid succumbing to the issue of near duplicates. Remarkably, a dispersion concept is included to sparsely distribute

the selected points in each batch. A similar notion of diversity among design points has been explored in the literature,

mostly under the framework of classification. For instance, Bayesian active learning by disagreement (BALD) selects the

most critical design point according to the mutual information between the responses and model parameters.20 Based

upon this, Batch BALD is formulated to explicitly maximize the collective information carried by the selected batch to

eschew near duplicates.21 Unfortunately, the criteria used in BALD and Batch BALD are intractable in regression settings.

Similarly, BADGE and Core-Set are specially designed for classification as well.22,23 Zhdanov formulated weighted K-

means (WKMS) clustering on the candidate points that are possibly in close proximity to the contour of interest, and then

the batchwas selected across the clusters; the batch size is equivalent to the number of clusters; theweight ofWKMS can be

any informativeness score in active learning, for example, entropy.24Whereas this method is also applicable in regression

problems and represents one of state-of-the-art approaches, it does not explicitly gauge the uncertainty associated with

the estimated iso-surface. Some other works related to batch sampling focus on the fitting of the global surface19,25,26 and

they may not be easily adapted to the fitting of the iso-surface.

Herein, we develop a dispersion-enhanced sequential batch sampling approach to adaptively estimate the iso-surface,

by integrating themodified EI and a variance reduction technique for the critical region, which is defined as the proximity

of the contour of interest. The modified EI plays the role of weight in variance reduction of the critical region. Thus,

the variance reduction effectively exacts the dispersion <force= among all design points in each batch, and account for

the predictive uncertainty in the estimated iso-surface simultaneously. We show that this novel approach is superior to

WKMS, particularly for intricate contours.

The rest of this paper is organized as follows. In Section 2, we revisit GP and themodified EI function. Section 3 provides

the methodology of the proposed method, and the comparison of WKMS, the one-shot design and our approach are given

in Section 4. Section 5 concludes the paper.

2 BACKGROUND

2.1 Problem statement

Define a training set {(ýÿ, ÿÿ)}
ÿ
ÿ = 1

with ýÿ ∈ æ ⊂ ℝý and ÿÿ ∈ ç ⊂ ℝ, annotated from the simulator, and an unlabeled

dataset  ⊂ æ , the iso-surface of interest is given as {ý ∈ æ ∶ ÿ(ý) = ÿ ∈ ç ⊂ ℝ}. A surrogate model is trained to learn

ÿ(ý) along with the uncertainty for any ý ∈ . In sequential optimal design, we seek to sketch the contour or iso-surface
{ý ∈ æ ∶ ÿ̂(ý) = ÿ ∈ ç ⊂ ℝ} iteratively with the least number of sampling points. In each iteration, a batch of critical

design points are selected from  and appraised by the simulator, which will then be annexed into the training set to

update the surrogate model. Mathematically, a batch ÿ∗
ÿ
= {ý∗1 , … , ý

∗
ÿ
} ⊆  with cardinality |ÿ∗

ÿ
| = ÿÿ will be selected

sequentially based on an acquisition function ý,

ÿ∗
ÿ
= argmax

ÿÿ∈
ý (ÿÿ) . (1)

Here, GP is adopted as the surrogate model, as it provides a full predictive distribution as opposed to merely a point

estimate. Subsequently, a modified EI function based upon the GP is utilized as the acquisition function to estimate the

iso-surface.11 Note that we use bold letters for vectors or sets and non-bold letters for scalars or functions.

2.2 Gaussian process surrogate

GP is a collection of random variables {ÿ(ý)|ý ∈ æ}, any finite number of which have a joint Gaussian distribution. It
is specified by the mean function ÿ(ý) and covariance function ý(ý, ý′), that is, ÿ(ý) ∼ ÿÿ(ÿ(ý), ý(ý, ý′)). The noisy



134 CHE et al.

observation ÿ(ý) = ÿ(ý) + ÿ, where ÿ ∼ (0, ÿ2) and ÿ2 is the noise variance. In Bayesian learning, a Gaussian prior

ý(ÿ|ÿ) is placed on ÿ(ý) and the posterior ý(ÿ|ÿ,ÿ) can be derived from assimilating observation data, where ÿ ∈

ℝÿ×ý and ÿ ∈ ℝÿ are the set of design points ý and the corresponding responses ÿ(ý), respectively. For simplicity, we

assume the priorÿ|ÿ ∼ (0, ý(ÿ, ÿ)), and ý(ÿ,ÿ) isÿ × ÿ symmetric positive-definite covariancematrix. The likelihood

is given as ÿ|ÿ,ÿ ∼ (ÿ, ÿ2ý), which leads to the fact that the marginal likelihood is also Gaussian, that is, ý(ÿ|ÿ) =
∫ ý(ÿ|ÿ,ÿ)ý(ÿ|ÿ)ýÿ, and

ÿ|ÿ ∼
(
0,ÿ + ÿ2ý

)
, (2)

where ÿ≔ý(ÿ,ÿ) is the ÿ × ÿ covariance matrix for design points ÿ ∈ ℝÿ×ý. For the training of GP, we maxi-

mize the marginal likelihood in Equation ( (2) in terms of the hyperparameters in the covariance function ý(ý, ý′).

The posterior distribution ý(ÿ|ÿ, ÿ) is the prior joint distribution ý(ÿ, ÿ|ÿ) = ý(ÿ|ÿ,ÿ)ý(ÿ|ÿ) conditioning on

observations. Consequently, posterior GP is specified by the posterior mean and covariance of nominal function

ÿ(ý),

ÿ̂ (ý) = ÿ̄ (ý) = ÿý

(
ÿ + ÿ2ý

)−1
ÿ (3)

ÿýÿ (ÿ̂ (ý)) = ÿýÿ
(
ÿ̄ (ý)

)
= ÿýý − ÿý

(
ÿ + ÿ2ý

)−1
ÿÿ
ý , (4)

whereÿý≔ý(ý, ÿ) is the 1 × ÿ covariance vector between the responseÿ(ý), ý ∈ ℝý andÿ(ÿ), ÿ ∈ ℝÿ×ý.ÿýý≔ý(ý, ý)is
the covariance at design pointý. ý is the ÿ × ÿ identifymatrix. Hence, the nominal functionÿ(ý) ∼ (ÿ̄(ý), ÿýÿ(ÿ(ý))).18

2.3 Modified expected improvement function for contour estimation

To quantify the importance or informativeness of a design point ý towards estimation of the iso-surface, a utility function

derived from the GP framework is employed11:

ý (ý) = 2 (ý) − min
(
(ÿ (ý) − ÿ)

2
, 2 (ý)

)
, (5)

where ÿ is the response of the iso-surface of interest.

Here, ÿ(ý) ∼ (ÿ̂(ý), ýÿÿ(ÿ̂(ý))) is the predictive response for design point ý ∈  derived from the GP surrogate.

Define ý(ý) =
√
ýÿÿ(ÿ̂(ý)), then the uncertainty measure (ý) = ÿý(ý)with ÿ a positive constant weight which controls

the scale of the uncertainty measure. That said, the range of selection of ý can be wider if a larger ÿ is adopted. Maximiza-

tion of the utility function tends to select ý∗ that finds the balance between the proximity to the iso-surface (ÿ(ý) − ÿ)
2

and the uncertainty measure 2(ý). Considering the predictive uncertainty for ÿ(ý), we define an acquisition function
ý(ý) = ýÿ[ý(ý)]. Therefrom, selection of ý

∗ can be represented as

ý∗ = argmax
ý∈

ýÿ [ý (ý)] . (6)

The closed-form expression of the acquisition function ýÿ[ý(ý)] is given as
11

ýÿ [ý (ý)] =
(
2 (ý) − (ÿ̂ (ý) − ÿ)2

)
(Φ (ÿÿ) − Φ (ýÿ)) − ý

2 (ý)
ÿÿ

∫
ýÿ

ÿ2ÿ (ÿ) ýÿ

+ 2 (ÿ̂ (ý) − ÿ) ý (ý) (ÿ (ÿÿ) − ÿ (ýÿ)) ,

(7)

where ÿ =
ÿ(ý)−ÿ̂(ý)

ý(ý)
, ÿÿ =

ÿ−ÿ̂(ý)+(ý)

ý(ý)
and ýÿ =

ÿ−ÿ̂(ý)−(ý)

ý(ý)
. Equation ( (7) is obtained when (ÿ(ý) − ÿ)

2 ≤ 2(ý), wherein

the ÿÿ and ýÿ are derived from (ÿ(ý) − ÿ)
2 ≤ 2(ý) and then normalized. Φ(⋅) and ÿ(⋅) are standard Gaussian den-

sity function and cumulative density function, respectively. Equation ( (7) can be further simplified as ýÿ[ý(ý)] =

(2(ý) − (ÿ̂(ý) − ÿ)2 − ý2(ý))(Φ(ÿÿ) − Φ(ýÿ)) + ý2(ý)(ÿÿÿ(ÿÿ) − ýÿÿ(ýÿ)) + 2(ÿ̂(ý) − ÿ)ý(ý)(ÿ(ÿÿ) − ÿ(ýÿ)): the first term
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dominates the value of ýÿ[ý(ý)] if the predicted response ÿ̂ ≈ ÿ, i.e., the sampling point is close to the iso-surface; the

second term gains sway for the design point with large predictive uncertainty while it is in the proximity [ÿ −  , ÿ + ] to
the iso-surface; and the third term promotes global exploration of regions that are not in the proximity of the iso-surface

but with high uncertainty.11

In batch sampling, a set of ÿÿ critical points ÿ
∗
ÿ
= {ý∗1 , … , ý

∗
ÿ
} can be selected via

ÿ∗
ÿ
= argmax

ÿÿ∈

∑
ý∈ÿÿ,|ÿÿ|=ÿÿ

ýÿ [ý (ý)] . (8)

In contrast to Equation ( (6) for the selection of one single best sampling point, the top ÿÿ points with maximal sum of

expected utility is sought after. Nonetheless, as alluded earlier, this selection criterion inevitably leads to near duplicates,

that are informative individually but not collectively. This considerably suppresses the efficiency of surrogate learning,

particularly for the GP, and barely contributes to update of the learned iso-surface.

3 METHODOLOGY

It is noted that only the selection of individual critical design points via Equation ( (6) is considered for sequential

design in.11 We instead investigate sequential batch sampling in this present study. The innovation of our work lies

in the first-of-a-kind dispersion concept to distribute sampling points in each batch for variance reduction in the

critical region, and the modified EI prescribes the informativeness for those design points during the optimization

process.

3.1 Nystrom approximation of covariance for the critical region

To eschew the near duplicates, the concept of dispersion for the critical batchÿ∗
ÿ
is investigated byNystromapproximation.

As the modified EI tends to select the critical points with response ÿ(ý∗) ∈ [ÿ − (ý∗), ÿ + (ý∗)], we define a critical
region {ý ∈ ÿý ⊂ ÿ ∶ ÿ̂(ý) ∈ [ÿ − (ý), ÿ + (ý)]}, which consists of a set of ÿý design points. Ideally, addition of a new
batch ÿÿ should reduce uncertainty of the critical region ÿý to a maximal extent. Given that ÿ(ÿý) ≡ ýý and ÿ(ÿÿ) ≡ ýÿ

have a joint Gaussian distribution [
ýý
ýÿ
] ∼ (0, [

ÿýý ÿýÿ

ÿÿ
ýÿ
ÿÿÿ

]), the uncertainty of critical region ÿý with addition of a batch

ÿÿ can be expressed as

ý =
ÿÿ (ÿýÿ(ÿý|ÿÿ))

ÿý
=
ÿÿ

(
ÿýý − ÿýÿÿ

−1
ÿÿ
ÿÿ
ýÿ

)
ÿý

, (9)

where ÿÿ is the trace of a matrix, and ÿýý ∈ ℝÿý×ÿý and ÿÿÿ ∈ ℝÿÿ×ÿÿ are the covariance matrixes of ÿý and ÿÿ, respec-

tively.ÿýÿ ∈ ℝÿý×ÿÿ is the covariance matrix betweenÿý and ÿÿ. The entities of the covariance matrices are derived from

the covariance function ý(ý, ý′). ÿýÿÿ
−1
ÿÿ
ÿÿ
ýÿ
is the Nystrom approximation of covariance matrix ÿýý.

27 ý can be inter-

preted as the variance of ÿý when ÿÿ is included. It is noteworthy that Equation ( (9) bears the resemblance to selection

of inducing points in sparse GP, which comprises of a subset of the most informative training data.28 The optimal batch

is selected to minimizeý for better Nystrom approximation. To minimizeý, the selected critical points in ÿÿ should not

be close to each other, resulting in large entities ofÿýÿÿ
−1
ÿÿ
ÿÿ
ýÿ
. We use exponential kernel ý(ý, ý′) = exp(−

‖ý−ý′‖2
2ý2

) as an

example: if ý and ý′ are close, ý(ý, ý′)will be close to 0 for a fixed length scale ý. In this regard,miný can be deemed as a

dispersion force among the sampling points in ÿÿ, namely, ÿ
∗
ÿ
= argmin

ÿÿ⊆ÿý

ý. Furthermore, Equation ( (9) can be rewritten

as ý =
ÿÿ(ÿýÿ(ÿý∖ÿ|ÿÿ))

ÿý
, where ÿý∖ÿ is the difference between set ÿý and ÿÿ, namely ÿý = ÿý∖ÿ ∪ ÿÿ. To start with, we

set ÿý as the unlabeled set , and it will be refined as more sampling points are included to update the contour and the
surrogate.
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3.2 Weighted variance reduction of critical region

Next, we integrate the idea of greedy selection of inducing variables in sparse GP29 with the modified EI function for

critical batch selection. Given a batch ÿÿ∖ÿ ⊂ ÿý, the variance reduction of the critical region ÿý with addition of a new

design point ýÿ ∈ ÿý is given as

Δÿ =
ÿÿ

(
ÿýÿ(ÿý|ÿÿ∖ÿ) − ÿýÿ(ÿý|ÿÿ)

)
ÿý

, (10)

where ÿÿ = ÿÿ∖ÿ ∪ {ýÿ}, ÿ = 1, … , ÿý − ÿÿ∖ÿ and |ÿÿ∖ÿ| = ÿÿ∖ÿ . The rescaled EI function ý̃ÿ[ý(ýÿ)] =
ýÿ[ý(ýÿ)]−min(ýÿ)

max(ýÿ)−min(ýÿ)
∈

[0, 1], whereýÿ = [ýÿ[ý(ý1)], ýÿ[ý(ý2)], … , ýÿ[ý(ýÿý)]], serves as an informativeness score. Then, the acquisition function

is given as

ý (ÿÿ) =
∑

ýÿ∈ÿÿ

ý̃ÿ
[
ý
(
ýÿ

)]
Δÿ . (11)

That said, the rescaled EI function plays a role of weight in variance reduction in the critical region with the batch ÿÿ
in the GP surrogate framework, and the weight ý̃ÿ[ý(ýÿ)] provide the importance of ýÿ in estimation of the iso-surface.

Hence, the design points, that maximally reduce the uncertainty of the critical region and are more likely to update the

predicted iso-surface, are selected. Note that Equation ( (11) is a non-decreasing linear modular function, and we propose

a greedy algorithm for iterative selection of sampling points for each batch in Algorithm 1. Here, ý̃ÿ[ý(ýÿ)] ∈ [0, 1] is

the rescaled modified EI and Δÿ > 0 is the variance reduction after addition of ýÿ. Therefore, ý(ÿÿ) is positive. To start

with, we set the critical region as ÿý = , and ÿ∗
ÿ
is initialized as ∅, thus ÿýÿ(ÿý|∅) = ÿýý. With selection of sampling

points in each batch, the GP surrogate model and the critical region ÿý, hence the estimated iso-surface, are updated

consequently.

Algorithm 1:

Input: acquisition size ÿÿ , ÿý = 
Initialize ÿ∗

ÿ
= ∅, ÿ = 1

While ÿ ≤ ÿÿ:

ÿÿ∖ÿ≔ÿ
∗
ÿ

For ýÿ ∈ ∖ÿÿ∖ÿ:
ÿ̃ÿ = ÿÿ∖ÿ ∪ {ýÿ}

Δÿ =
ÿÿ(ÿýÿ(ÿý|ÿÿ∖ÿ)−ÿýÿ(ÿý|ÿ̃ÿ))

ÿý
End for

ý∗ = argmax
ýÿ∈∖ÿÿ∖ÿ

∑
ýÿ∈ÿÿ

ý̃ÿ[ý(ýÿ)] Δÿ

ÿ∗
ÿ
= ÿÿ∖ÿ ∪ {ý

∗}

ÿ + +

EndWhile

Output: ÿ∗
ÿ

Algorithm 1 requires calculation ofÿýÿ(ÿý|ÿ̃ÿ) that involves inversion operationÿ−1
ÿÿ
repeatedly. This could be cumber-

somewhenÿÿ is large.We suggest a lower-diagonal-upper (LDU) decomposition, that is,ÿ
−1
ÿÿ

= [
ý(ýÿ, ýÿ) ý(ýÿ, ÿý)

ý(ÿý, ýÿ) ÿÿ∖ÿ
]

−1

=

[
1 0

−ÿ−1
ÿ∖ý

ýÿ ýÿ∖ÿ
][

1

ýÿ−ý
ÿ
ÿ
ÿ−1
ÿ∖ý

ýÿ
0

0 ÿ−1
ÿ∖ÿ

][
1 −ýÿ

ÿ
ÿ−1
ÿ∖ÿ

0 ýÿ∖ÿ
]. Here, ÿÿ∖ÿ is the ÿÿ∖ÿ × ÿÿ∖ÿ covariance matrix of ÿÿ∖ÿ, ýÿ≔ý(ýÿ, ýÿ)

and ýÿ = ý(ÿý, ýÿ) is ÿý × 1 vector of covariance betweenÿý and ýÿ. The LDU decomposition only involves the inversion

of ÿÿ∖ÿ for each single selection in a batch.
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In our study, uncertainty reduction of the critical region ÿý effectively plays the role of the dispersion force. The crit-

ical region ÿý ≔ {ý ∈ ÿý ∶ ÿ̂(ý) ∈ [ÿ − (ý), ÿ + (ý)]} is a potential region in which the contour of interest lies. Here,
ÿ is the target and (ý) = ÿý(ý), with ÿ a positive constant weight that controls the scale of the uncertainty measure,

i.e., width of the region ÿý. Suppose the set ÿÿ is an optimal representation of the critical region ÿý, then the uncer-

tainty or variance in the critical region should be reducedmaximally byÿÿ. Mathematically, the variance thatÿÿ explains

is ÿÿ(ÿýÿÿ
−1
ÿÿ
ÿÿ
ýÿ
), which is the Nystrom approximation. Then, ÿÿ(ÿýý), the variance in critical region ÿý, is reduced

to ÿÿ(ÿýý − ÿýÿÿ
−1
ÿÿ
ÿÿ
ýÿ
) with addition of ÿÿ. Minimization of ÿÿ(ÿýý − ÿýÿÿ

−1
ÿÿ
ÿÿ
ýÿ
) is equivalent to minimization of

the average ý =
ÿÿ(ÿýý−ÿýÿÿ

−1
ÿÿ
ÿÿ
ýÿ
)

ÿý
. In the Nystrom approximation ÿÿ(ÿýÿÿ

−1
ÿÿ
ÿÿ
ýÿ
), points in the set ÿÿ should not be

close to each other, because ÿÿÿ≔ý(ÿÿ, ÿÿ) considers the distance among those design points. In implementation, the
greedy algorithm is used to approximate the NP-hard problem, i.e., the selection of ÿÿ. We use the modified expected

improvement ýÿ[ý(ý)] as weight for each candidate ý to select ÿÿ in the vicinity of the contour of interest to obtain

a weighted representation of ÿý. For unweighted representation, that is, Nystrom approximation, the weight is 1 for

each candidate.

4 NUMERICAL STUDIES

In this section, we demonstrate the effectiveness of the proposed approach for adaptive contour estimation in three numer-

ical studies, that is, the four-branch function, a disjoint iso-surface, aswell as the stability analysis for time-delay dynamics.

It is noted that given the contour of interest {ý ∶ ÿ(ý) = ÿ}, it is no-trivial to solve the inverse problem to glean the design

points that are on the iso-surface. To this end, we include a new setÿýÿýý of ÿýÿýý test points to assess the quality of contour

estimation:

ÿ = 1 −

∑
ý 1 (ý)

ÿýÿýý
(12)

where ý ∈ ÿýÿýý and 1(ý) = {
1, (ÿ̂(ý) − ÿ)(ÿ(ý) − ÿ) ≥ 0

0, ýýℎÿÿýÿýÿ
. ÿ̂(ý) is the predictive response from GP. Ideally, the overlap of

the target contour {ý ∶ ÿ(ý) = ÿ} and the surrogate estimation {ý ∶ ÿ̂(ý) = ÿ} induces ÿ = 0. ÿýÿýý is constructed from a

large number of mesh grid points in the two-dimensional examples in Case 1 and Case 3, and from Latin hypercube design

(LHD)30 for the four-dimensional example in Case 2.ÿýÿýý is also used to establish the ground truth of the iso-surface. We

also note that ÿ controls the width of the critical region, and large ÿ implies huge computational cost, especially for high-

dimensional cases. It also depends on the volume of initial design, or the cold-start problem. Hence, for high-dimensional

problems (e.g., even the 4D Case 2 here), we suggest a relatively large number of initial design points, which only entails

a small ÿ and further reduces the computational cost.

We compare the proposed method with the state-of-the-art method WKMS and the one-shot design. The result shows

that the proposedmethod can achieve even better result especially when the iso-surface is complicated and achieves simi-

lar result when the iso-surface is simple compared toWKMS selection. Also, the proposedmethod can obtain significantly

better result compared to the one-shot design.

The batch size |ÿÿ| and the number of initial training points may depend on the dimension of problems. There are no
specific rules to determine the number of batch size |ÿÿ| and the number of initial training points. The fundamental is
that we need sufficient number of initial training points to cover the whole sampling space, and in each batch, the new

addon points should cover the critical region as much as possible. Hence, we may select a larger number of points on

problems with higher dimension.

4.1 The four-branch function

The four-branch function represented in Equation ( (13) is widely used in structural reliability analysis. It captures the

limit state of a series system with four distinct components.31
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F IGURE 2 Evolution of the predicted iso-surface using the proposed method at (A) 2nd, (B) 4th and (C) 8th iteration, and (D) the

predicted iso-surface of the one-shot design. The black solid curve is the true iso-surface and the red dashed curve is the predicted iso-surface.

The green crosses are critical batch ÿ∗
ÿ
and yellow area is ÿý. Blue dots are the initial design points in (A), (B), (C), and green dots are the

one-shot design points in (D). To avoid the clutter, we only show the selected critical batch ÿ∗
ÿ
for each batch and hide those selected in

previous batches

(ý) = min

£
¤¤¤¤¤¤¤¤¤¤¥

3 + 0.1(ý1 − ý2)
2
−
ý1 + ý2√

2

3 + 0.1(ý1 − ý2)
2
+
ý1 + ý2√

2

ý1 − ý2 +
6√
2

ý2 − ý1 +
6√
2

¦
§§§§§§§§§§̈

, (13)

Here, ý = [ý1, ý2] are the design variables, and the system fails when ÿ(ý) ≤ 0. Hence, the iso-surface of interest is

defined as {ý ∶ ÿ(ý) = 0}. The true iso-surface is derived from evaluation of Equation ( (13) on a 100 × 100 mesh grid

of ÿýÿýý ∈ [−6, 6]
2
, amounting to 104 evaluations in total. For the sequential design, ÿ = 15 initial design points (the

blue dots in Figures 1 and 2) are selected by LHD with min-max distance criterion. Next, ÿÿ = 11 critical design points

(green crosses in Figures 1 and 2) are selected via the proposed method to form the critical batch ÿ∗
ÿ
in each iteration,

which will be evaluated according to Equation ( (13). Following this, the GP surrogate is updated at each iteration until

the predicted iso-surface converges to the true iso-surface. To obtain the critical region ÿý ⊂ ÿýÿýý (the shaded yellow

area), we set ÿ = 0.95, that is, ÿ̂(ýý) ∈ [0 − 0.95 × ý(ýý), 0 + 0.95 × ý(ýý)], ýý ∈ ÿý.

In both Figures 1 and 2, the solid / black curve represents the true iso-surface {ý ∶ ÿ(ý) = 0} and red / dashed curve

is the predicted iso-surface {ý ∶ ÿ̂(ý) = 0} from GP surrogate after addition of each critical batch. In Figure 1(A), the

predicted iso-surface by GP after the initial design is shown for comparison. Figure 1(B) shows the design point selec-

tion in the first iteration using the proposed method, which exhibits the dispersion effect, leading to significant update

of the surrogate model. In Figure 1(C), the WKMS24 is included for comparison and the scaled modified EI function

value serves as the weight. The WKMS achieves similar predicted iso-surface with the proposed method after the ini-
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F IGURE 3 Comparison of the predicted iso-surface between the proposed method and WKMS on 2 dimensions. (A) and (B) are the

predicted iso-surface obtained by the proposed method and WKMS on (ý2, ý3) while (ý1, ý4) fixed at 0.5. (C) and (D) are the predicted

iso-surface obtained by the proposed method and WKMS on (ý2, ý4) while (ý1, ý3) fixed at 0.5. The black solid curve is the true iso-surface

and the red dashed curve is the predicted iso-surface

tial design in this simple example. The issue of near duplicates from batch selection via modified EI is exemplified in

Figure 1(D), and those near duplicates barely contribute to the update of the surrogate. The evolution of the predicted

iso-surface using the proposed method at different iterative steps are shown in Figure (2 A-D) shows the predicted iso-

surface using one-shot designwith the same total number of design points. Here, the one-shot design is conducted by LHD

with min-max distance criterion. With 8 iterations, the estimated iso-surface almost converges to the true iso-surface, and

totally, 15 + 8 × 11 = 103 sampling points are included. The proposed method achieves ÿ = 0.006 and ÿ = 0.012 is

obtained for theWKMS. The one-shot design obtains ÿ = 0.034with 103 sampling points. In this simple case, the proposed

method obtains a slightly better result compared to the WKMS and a significantly better result compared to the one-shot

design.

4.2 A disjoint iso-surface

In this case, we adopt the four-dimensional function with a disjoint iso-surface:

ÿ (ý) =
1

4

(
sin (ý1 − 3) (ý2 − 1)

2
+ (ý3 − 1) ý4

)
− 3, (14)

whereý = [ý1, ý2, ý3, ý4] ∈ [0, 10]
4
. The iso-surface of interest is defined as {ý ∶ ÿ(ý) = 0}. To start with, we select ÿ = 40

design points from LHD with min-max distance criterion, define ÿ = 0.5 to reduce the computational cost and set the

size of each batch as ÿÿ = 5 in the sequential batch sampling. To quantify the performance of the proposed method and

WKMS, we select ÿýÿýý with size 10
5 from LHD. To further visualize the part of iso-surface, the four-dimensional iso-

surface is projected onto a two-dimensional space. Here, we select 2 angles. For the first one, we set [ý2, ý3] ∈ [0, 10]
2
and

fix [ý1, ý4] = 0.5. For the other, we set [ý2, ý4] ∈ [0, 10]
2
and fix [ý1, ý3] = 0.5. After 6 iterations, 40 + 5 × 6 = 70 design

points are used, and the proposed method obtains the error measure ÿ = 0.01 while ÿ = 0.02 for WKMS. The predicted

iso-surface are showcased in the Figure 3.
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F IGURE 4 The near duplicates (green clustered crosses) caused by selecting top 11 best critical design points according to the modified

EI after the initial design

The proposed method is slightly better than WKMS in terms of fitting the iso-surface and achieves smaller error with

the same experiment setting. In this case, the iso-surface is relatively simple because it requires less than 100 design points

to obtain a small error ÿ for both methods. Hence, both methods do not show a large difference in this case. The proposed

method obtains significantly better result compared to the one-shot design.

4.3 Stability identification of time-delay dynamic systems

In this example, we present the proposed method on a complicated and bumpy iso-surface: the stability boundary in

a machining or material removal process.9 The cutting tool vibration is modeled by a second-order delay differential

equation

ÿ̈ (ý) + 2ÿÿÿ ÿ̇ (ý) + ÿ
2
ÿÿ (ý) = −ý (ý1 − ÿ (ý) + ÿ (ý − ÿ)) . (15)

Here, ÿ(ý) ∈ ℝ is the tool displacement relative to the nominal position in feed direction during the machining process.

ÿÿ = 600ÿ Hz is the vibration natural frequency, ÿ = 0.02 is the damping ratio,  = 2 × 1011 ý∕ÿ2 represents the

force coefficient, and the constant cutting width is ý = 5 × 10−2 ÿÿ. Thus, the righthand side of Equation ( (15) is

the instantaneous cutting force, which is proportional to  and instantaneous cutting area ý(ý1 − ÿ(ý) + ÿ(ý − ÿ)). The

design variables areý = [ý1, ý2]: ý1 represents the nominal feed (ÿÿ) and ý2 is the spindle speed (round /minute), which

further determines the time delay ÿ, that is, ÿ =
2ÿ

ý2
. In this study, only ý1 and ý2 are tunable and other parameters are

fixed once the machine is set up. The stability problem, whether the dynamics of ÿ(ý) explodes or dies off, can be solved

via temporal finite element method (TFEM) as demonstrated in our recent studies,8,14 in which Equation ( (15) is reduced

to a compact matrix form as

ýÿÿ = ÿÿÿ−1 + ý (16)

where ÿÿ and ÿÿ−1 are the coefficient vectors for the polynomial bases in TFEM in the ÿýℎ and (ÿ − 1)
ýℎ
revolu-

tion, respectively. ý, ÿ and ý are the matrices for integration terms derived from Galerkin projection. Define ÿÿ
as the maximum absolute eigenvalue of the transition matrix ÿ = ý−1ÿ, then stable cutting requires ÿÿ ≤ 1. Con-

versely, ÿÿ > 1 implies unstable cutting, manifesting in fierce tool vibration, which could considerably diminish quality

of the machined products. Therefore, we seek the iso-surface {ý ∶ ÿÿ(ý) = 1} to separate the stable and unstable

cutting.

The initial design contains ÿ = 100 design points selected by LHD with min-max distance criterion and we set the

batch size ÿÿ = 11. For demonstration, we showcase the near duplicates in Figure 4, which are the batch sampling points

generated by the conventional modified EI. Evolution of the predicted boundary using the proposed method and the

WKMS are showcased in Figures 5 and 6. The black solid curve is the true boundary or the iso-surface {ý ∶ ÿÿ(ý) = 1},

obtained on a 100 × 100mesh grid which is also ÿýÿýý. The red dashed curve is the predicted boundary {ý ∶ ÿ̂ÿ(ý) = 1}
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F IGURE 5 Comparison between one-shot design and the proposed method. The evolution of predicted boundary using the proposed

method at the iteration (A) 1, (B) 11, (C) 21, and (D) the predicted iso-surface of the one-shot design. Solid black and dashed red curves are true

and predicted boundary respectively. Green crosses are the selected design points in the critical batch and shaded area is ÿý. Green dots are

the one-shot design points in (D). To avoid the clutter, we show the selected critical batch ÿ∗
ÿ
for each batch only and hide those selected in

previous batches

F IGURE 6 The evolution of predicted boundary using the WKMS at the iteration (A) 1, (B) 8, (C) 15, and (D) 21. Black and dashed red

curves are true and predicted boundary respectively. Green crosses are the selected design points in the critical batch and yellow area is ÿý. To

avoid the clutter, we show the selected critical batch ÿ∗
ÿ
for each batch only and hide those selected in previous batches
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via GP surrogate. Green crosses are the selected batch at each iteration while the shaded area is ÿý. In the experiment, we

set weight of predicted uncertainty ÿ = 0.95 to obtain ÿý.

As portrayed in Figure 5, the surrogate successfully finds the true boundary via the proposedmethod in the 21st iteration

with 100 + 11 × 21 = 331 and the critical batch exhibits the dispersion. Even though the critical batch in Figure 6 via

WKMS shows the diversity, the predicted boundary does not overlap with the true boundary with the same experiment

setting, i.e., with the same weight, batch size, total number of sampling design points. The result shows that the proposed

method significantly outperforms the WKMS in the same experiment setting in terms of the accuracy of predicted iso-

surface. Also, the proposed method has smaller error measure ÿ = 0.0017, while ÿ = 0.0177 for WKMS at the 21st

iteration. As aforementioned, the proposed method can achieve better result when the iso-surface is complicated. This

is because WKMS only aims to spread out the sampling points in each batch, without considering the uncertainty of the

predicted iso-surface.

5 CONCLUSION

Whereas sequential sampling plays a paramount role in surrogatemodeling and optimal design for computer simulations,

the sequential batch design has not been extensively carried out, particularly in the framework of GP surrogates. It is noted

that fitting the GP incurs a huge computational cost with accumulation of the sampling points, thus stymieing its applica-

bility. This can be readily solved by batch sampling, which is amenable to parallel computing.We have shown in this study

that the naive extension of the conventional top-one sequential sampling strategies to batch selection inevitably leads to

near duplicates, which considerably compromises the efficiency of surrogate learning and contour estimation. Whereas

the lion’s share of existing research in batch sampling is focused on classification problems, we develop a first-of-a-kind

algorithm for sequential batch sampling in regression settings. The novel dispersion concept is adopted to sparsely spread

the sampling points in each batch via integration of the modified EI function and variance reduction in the critical region

for iso-surface estimation in the framework of GP surrogate. The proposed method is corroborated in three numerical

case studies, and we have consistently shown that it outperforms the WKMS method in approximating the iso-surface of

interest, especially when the iso-surface is complicated. This is attributed to the fact thatWKMS achieves the sparse distri-

bution of design points for each batch bymaximizing the distance between them and does not account for the uncertainty

of the predicted iso-surface. By contrast, the proposed dispersion-enhanced approach concurrently spreads the design

points in each batch and reduces the uncertainty of the critical region in estimation of the iso-surface.
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