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ABSTRACT

Non-pharmaceutical interventions (NPI) have been proven vital in the fight against the COVID-19
pandemic before the massive rollout of vaccinations. Considering the inherent epistemic-aleatoric
uncertainty of parameters, accurate simulation and modeling of the interplay between the NPI and contagion
dynamics are critical to the optimal design of intervention policies. We propose a modified SIRD-MPC
model that combines a modified stochastic Susceptible-Infected-Recovered-Deceased (SIRD) compartment
model with mixed epistemic-aleatoric parameters and Model Predictive Control (MPC), to develop robust
NPI control policies to contain the infection of the COVID-19 pandemic with minimum economic impact.
The simulation result indicates that our proposed model can significantly decrease the infection rate
compared to the practical results under the same initial conditions.

1 INTRODUCTION

The COVID-19 pandemic has taken a substantial economic and societal toll worldwide (Wan et al. 2022a).
Before the mass rollout of vaccination and at the early stages of the outbreak, the infection went rampant
globally, owing to human mobility and uncoordinated and ineffective non-pharmaceutical interventions
(NPI). Since the pandemic has almost waned and the world has returned to normalcy, it is essential to
perform a retrospective analysis to better understand the interplay between intervention policies and the
infection dynamics, to enhance the preparedness for future pandemic outbreaks and the resilience of the
whole society. Notably, with a lack of knowledge about the novel coronavirus and insufficient and
inaccurate data, epistemic and aleatory uncertainty have hindered effective prediction of contagion
evolution. Aleatory uncertainty refers to a process's innate randomness and variability, and epistemic
uncertainty refers to a lack of knowledge or understanding about the process.

Compartment models have been predominantly used in modeling the infection dynamics of epidemic
outbreaks (Chen et al. 2019; Chowell et al. 2003; Jin et al. 2011; Xia et al. 2015). Specifically, the
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population is divided into non-overlapping groups or compartments representing, for example, those who
are susceptible (S), infected (I), recovered (R), and deceased (D). The SIRD model and its variants have
been widely used to predict case counts for COVID-19 and the optimal design of NPIs (Armaou et al. 2022;
Calafiore et al. 2020). The large number of infections in a short period could crimp the hospital system and
exhaust the healthcare resources for non-COVID patients. In an attempt to contain infections, NPIs
inevitably strain the economy and social functions (Miller et al. 2020; Polcz et al. 2022). A good NPI
strategy seeks a delicate trade-off between economic loss and infections (Lemaitre et al. 2022; Scarabaggio
et al. 2022; Sharomi and Malik 2017; She et al. 2022). Model predictive control (MPC) has proven effective
in controlling various real-world processes in which future dynamics are highly uncertain. (Armaou et al.
2022; Péni and Szederkényi 2021). Consequently, combining MPC with the compartment model is a
promising approach to designing policies to contain the spread of diseases.

As in most complex systems, parameters in a compartmental model could be rather challenging to infer
from the available data owing to a lack of knowledge, incomplete and inaccurate data, as well as
computational issues (Gallo et al. 2022). Conventional compartmental models, regarded as deterministic,
could suffer severely from poor predictive power. Uncertainty quantification in parametric compartment
models could also help formalize a more robust design of control policies (Wu and Mortveit 2015).
Stochastic compartmental models, moreover, have been developed and applied to the investigation of the
COVID-19 pandemic (Mamis and Farazmand 2023) and quantify uncertainties in such models.

In this study, we consider a mixed epistemic-aleatoric uncertainty for parameters in compartmental
models in the context of COVID-19 for two reasons. First, the knowledge gap is narrowing as more studies
are conducted on COVID-19 and its variants; and second, the uncertainty of infectious system parameters
cannot be completely eliminated by acquiring new knowledge or data, due to inherent stochasticity and
individual differences. Therefore, it is more reasonable to characterize the extensively studied COVID-19
pandemic in compartmental models using a mixed epistemic-aleatoric parameter. This paper uses
probability bounds analysis (PBA) to quantify the uncertainty of the SIRD compartment model. PBA is a
collection of mathematical tools that extends the ideas of interval analysis and probability theory, and may
be used to quantify both random and deterministic forms of uncertainty in a wide range of scientific
endeavors. Since it does not make any optimistic assumptions about parameter values, distribution shapes,
or correlations between variables, PBA excels when there is a paucity of information regarding such
variables (Gray et al. 2022).

Moreover, conventional compartmental models have limitations in capturing the complexities of the
dynamics of the realistic interventional COVID-19 pandemic due not only to the deterministic and constant
nature of the model parameters but also to the neglectfulness of human society interventions during the
pandemic. Indeed, the effects of human society interventions, as described by various NPI policies
implemented by policymakers, are not insignificant. The impact of human society interventions of COVID-
19 essentially enters the infection process via feedback from some observables (March et al. 2022), and can
significantly alter the population dynamics more than the parameters in the conventional models. Therefore,
optimal control to develop practical policies to reduce the realistic pandemic should involve the integration
of collected data and the implemented human society interventions to avoid implementing inappropriate
policies. One example of this is the incorporation of pandemic data collected on the use of masks into
pandemic models that consider the presence of human society interventions. Failure to consider these
interventions can result in control policies that do not align with policy design expectations, due to
discrepancies between the control effort of the developed policy (treating wearing masks as the minimum
intervention) and the control effort of policy implementation (treating non-intervention as the minimum
intervention). Therefore, it is inevitable that attempts to capture the complexity of the dynamics of a realistic
interventional COVID-19 pandemic will involve some degree of uncertainty in the model parameters and
the dynamics of human society interventions. In this study, we introduce additional population feedback
parameters to model the impact of human society interventions on a SIRD compartment model, to control
a set of models further, and finally assess the simulated achievable robustness in combatting COVID-19
infection.
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We propose a modified stochastic SIRD-MPC model to develop robust control policies to combat the
spread of disease with minimal social and economic impacts. We use mixed epistemic-aleatoric parameters
in a stochastic compartmental model with feedback to emulate the dynamics of human interventions.
Subsequently, we apply the MPC technique to determine the optimal NPI control policy while considering
uncertainty propagation using probability bounds analysis (PBA) for uncertainty quantification. It is
noteworthy that our proposed model possesses general applicability beyond the scope of COVID-19.
Additionally, the COVID-19 case provides a valuable means of validating our model.

The following is the structure of this paper. Section 2 introduces the modified stochastic SIRD-MPC
model. The data preprocessing and retrospective analysis are introduced in section 3. The simulation result
is shown in section 4. The last section is the conclusion and discussion.

2 METHODOLOGY

We use a modified SIRD compartment model and the MPC approach to design optimal containment
policies for the COVID-19 pandemic, considering both the epistemic and aleatoric parameter uncertainty.

2.1 Modified SIRD Compartment Model with Parameter Uncertainty

In the conventional SIRD model, the population is divided into four compartments at each time t:
susceptible S(t), infected I(t), recovered R(t), and deceased D(t). The intrinsic dynamics of the infection
process are fully elucidated by the evolution of S(t), I(t), R(t), and D(t), according to a system of
nonlinear differential equations:

ds
% = —BS®I(®)
dl
% = BS®IE) —yI(t) — al(t)
dR(t)
- =1(®) )
dzgt) = al(t)

where 3, y, and « are the transmission rate, recovery rate, and death rate, respectively. Here, S(t), I(t),
R(t), and D(t) represent the proportional population of compartment susceptible, infected, recovered, and
deceased. Those parameters are assumed fixed and readily available in deterministic SIRD models.
However, due to a lack of knowledge and insufficient data on infectious diseases, particularly at the early
stage of the pandemic, the aleatory and epistemic uncertainty hinders most models from effectively
depicting the COVID-19 evolution. Therefore, there is a dire need for the effective quantification of the
parameter uncertainty and its propagation in the model. Though a huge amount of data have been collected
so far for the COVID-19 virus and its variations, the inherent stochastic spatiotemporal dynamics of the
infection and the population heterogeneity, among other factors, have presented a knowledge gap in the
simulation and modeling of COVID-19. Here, parameters in the SIRD compartment model are
characterized in a mixed epistemic-aleatoric scheme, where the uncertainty about the probability
distribution of a model parameter is expressed in terms of a particular form of the distribution function to
an interval bounded by lower and upper bounds on the distribution function parameters. For example, it is
generally accepted in the literature that the transmission rate 8 follows a normal distribution, which is the
internal randomness of disease transmission and cannot be eliminated as the aleatory uncertainty.
Meanwhile, the transmission rate  exhibits different infectivity in different environments (temperature,
altitude, geographical location) (Starke et al. 2021), which is the epistemic uncertainty with the knowledge
gaps in understanding the contagion process of disease and the ambient environments. Therefore, we can
use the interval to quantify the epistemic uncertainty to characterize the average infectivity under various
ambient environments and use the normal distribution to represent the aleatory uncertainty. Specifically,
B ~ Normal([0.03, 0.90], 0.05) follows the normal distribution to represent the aleatory uncertainty
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(internal randomness of disease transmission) with mean p = [0.03,0.90] and standard deviation o =
0.05, where [a, b] represents an interval to quantify the epistemic uncertainty (knowledge gaps in
understanding the contagion process of disease) of with lower bound a and upper bound b.

According to the record data on the prevalence rate of COVID-19, policymakers have responded with
interventions of varying magnitudes to contain the infection, from shelter-at-home orders to a large-scale
lockdown. While effective in bending the infection curve, the lockdown has incurred a huge economic cost.
The policymakers design the NPI policy C; to diminish the interaction in the population and hence the
effective transmission rate § according to the prevalence. Here, C; € [0.0, 1.0] represents the nominal level
of control at time stamp ¢, which indicates a nominal discount on 8. As explained in our recent work (Wan
et al. 2022a), the effective control policy U, is subject to the influence of the population's perception of
infection risk and compliance with the intervention policy. For simplicity, we have U, = Ct(l —elmoxi )).
In this study, the value of each compartment is normalized to represent the fraction of the total population.
Therefore, the value of infected compartment / in this SIRD model represents the infection rate (the
proportion of infected compartment); ¢ > 0 is the scaling factor to steer the strength of the feedback for
infection rate I, which can capture the attitude of society and/or government encountering /. Large ¢ means
that the public is prone to comply with the control policy and vice versa. Therefore, the 1 — e (—®*D
represents the effective level of policy implementation, which can characterize overall compliance of
control policy for the society and/or government in dealing with the pandemic. In such a manner, as the
infection rate [ rises, so too will the effective control policy U;, which will approach the nominal level of
control C; for large scaling factor ¢p. The effective transmission rate will decrease to become (1 — U,) if
a control strategy is implemented. Therefore, we propose a modified SIRD compartment model by
incorporating the feedback control policy U, and the conventional SIRD compartment model to capture the
interventional evolution of the COVID-19 pandemic. Subsequently, discretization of the modified SIRD
model is adopted to characterize the compartment evolution, with time step At = 1 day:

SE+1)=S)— (11— U)BS)I(t)
It+1)=1()+ (1 — U)BS®I(t) —yI(t) — al(t)
R(t+1) =R(t) +VyI(t)
Dt+1)=D()+ al(t) (2)
Uy = C,(1 — e(-0x1®))

2.2 Incorporation of Stochastic Compartment Model and MPC

In order to construct control strategies to combat the spread of COVID-19, we incorporate optimal control
method into the modified stochastic SIRD compartment model, considering the mixed epistemic-aleatoric
uncertainty. Therefore, to execute an optimal control approach to reduce the infection of COVID-19, it is
required to quantify the uncertainty of the crucial variables of the compartment model, which are
S(),I1(t),R(t), and D(t) at time stamp t. PBA method (implementation details of uncertainty
quantification are provided in the appendix section) for uncertainty propagation is used to assess the
possible outputs/compartment states and the effect of uncertainty on decision-making for our proposed
model. Meanwhile, cumulative uncertainty makes effective optimal control impractical due to the time
propagation of uncertainty with model dynamics. To address this issue, MPC is applied because it involves
continuously updating the best strategy to make up for performance losses predicted over lengthy time
horizons (Lemaitre et al. 2022). We use a two-stage approach to implementing MPC in this investigation:
(a) solving the optimization problem for a fixed predictive horizon N, using the system’s states h(ty) =
(S(to), I(tg), R(ty), D(ty)), achieved from the collected epidemiological data (true data or estimated
stochastic data), as the initial conditions at the start of the optimization problem and (b) putting into the first
step of optimal design C;  for the compartment model (equation (2)) to achieve the next time stamp states

h(t,) and starting the next new prediction horizon ([¢;, th+1]) until the final terminal time. Therefore, the

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. DownIon?eé on October 10,2024 at 18:58:49 UTC from IEEE Xplore. Restrictions apply.



Wan, Mirghorbani, Wu, and Cheng

MPC procedures aim at optimizing the objective within the predictive horizon N,,. The general MPC

problem with cost function f(h(t), U;) starting from time stamp t = k can be represented as:
K+Np

](h(k)) = Ig}}‘r)lzt:k.;.l f(h(t), Ut) (3)

s.t constraints

where ] (k) denotes the total estimated cost in MPC from time stamp k to k + N,,. f(h(t), U,) is the
general form of the cost function, reliant on h(t) and U, at the time stamp t. In other words, the control
cost depends on the contagion dynamics and the control magnitude, and different functional forms have
been attempted in the literature (Wan et al. 2022b). We elaborate on the cost function in this study in the
next section. h(t) = h(t|k) is the predicted state at time stamp t given state h(k) at time stamp k. C(k) =
{Cr, ... Cpes Np_l} is a vector of manipulated variables in a prediction horizon N,, days start from time stamp

k, and Cy,;,, and Gy, are the minimum and maximum values of the nominal level of control C;. In this
paper, the constraints are defined as follows:
SE+1) =St — (11— U)BS®I®)
It+1) =10+ Q- U)BSOI() —yI(t) — al(t)
Rt+1) =R®) +yI@®)
D(t+1)=D(@)+ al(t)
U, = C,(1 - e(-9XI0))
0<(¢ <10
where $,I, R, and D represent the estimated results for S, I, R, and D, respectively.

3 MODEL EVALUATION

3.1 Data Preprocessing

In this study, we use the COVID-19 data from the open-access database "The COVID Tracking Project"
(available at https://covidtracking.com/data/download) that compiles and makes available information on
COVID-19 in the United States. The data is collected from January 2020 to March 2021. We get the
cumulative information on "positive", "recovered", and "death". Based on the data definitions provided by
“The COVID Tracking Project”, which is available at https://covidtracking.com/about-data/data-
definitions. The "positive" refers to the cumulative confirmed cases plus probable cases reported of
COVID-19, the "death" to the cumulative deaths associated with a confirmed or probable case diagnosis of
COVID-19, and the "recovered" to the cumulative number of people who have been confirmed and then
recovered from COVID-19. Therefore, the daily infected cases should be the cumulative confirmed cases
minus the cumulative recovered and cumulative deceased cases. The susceptible cases are the total
population minus the cumulative confirmed cases. In this study, we consider all the data normalized for
each compartment susceptible (S), infected (1), recovered (R), and deceased (D). To begin with, we adopt
a 7-day moving average (MA) filter to smooth the time series record for the 4 compartments. In this study,
the preprocessed data obtained through the use of the MA technique is treated as true data and is utilized in
the analysis.

3.2 Retrospective Analysis

Analyzing past events, data, or results to better understand their causes and effects is called retrospective
analysis. In this work, the purpose of the retrospective analysis is to understand the interplay between such
intervention policies and infection dynamics. Here, we compare the nominal level of control C; and the
observed infection rate I to analyze whether the proposed feedback control intervention in our model can
capture the human society interventions during the pandemic, while maintaining the minimum gap between
the estimated result with the true data. In such a manner, we construct the cost function with the absolute
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value as a penalty term for the difference between the estimated states (I(t), R(t), and D(t)) and the true
data in order to evaluate whether our proposed model can capture the realistic intervention dynamics of
COVID-19. We also consider the estimated results from the final day to match the trend of the trajectories.
Due to the parameter uncertainty, we apply the mean of the estimated data to the objective function. Hence,
the optimization problem can be formulated by:

J(h(K)) = ’g:,QVH( min ¥;5 7 Z(0) +Z(t + N,,)) “4)

s.t constraints

where N is the total estimation time to estimate each compartment for a given initial condition h(k) and

we solve an optimization to predict coming N,, days at each time stamp t. Z(i) = g(l (i)) + g(R(i)) +

g(D (i)) and g(*) is the absolute difference between the mean of the estimated value and the true value of

compartments (I, R, and D). For example, g(I(t)) = ”,u (f(t)) —I(t) ” , where u(-) is the mean of the
1

variable, calculated based on the PBA method, and /(t) and I(t) are the estimated and true results for the
infected compartment at the time stamp t. This optimization problem includes N small optimization
problems and each small optimization problem can achieve a vector of optimized variables C(t — 1) =

{Ci_q, s Ct_1+Np} by minimizing Z::ivp Z() + Z(t + Np). Only the first control variable C;_; and the
first day of the state h(t) = (S(t),I(t), R(t), D(t)) are keeping for time stamp t. Based on equation (4),
we can achieve the implemented nominal level of control set Cyppp = {Cy, .., Cxqn}, Where Cy, i = k, ..., N,
is the first element of vector C(i) = {C;, ..., C;4 Np}. The achieved nominal level of control set Cipy =

{Cx,.., Crin} can represent the policy design of the government from time stamp k to k + N.
Here, we assume that the policymaker designs the control actions consistently for each prediction

horizon, which means that C(i) = {Ci, . Ci+1v,,} with €y = Cj,a =i+ 1,...,i + N,. Moreover, we set the

estimation time N = 7 days for reinitializing because we assume that the policymakers readjust/ re-estimate
the intervention policy weekly based on the latest collected information. We initialize the value of 4
compartments to the values of September 13, 2020, in Texas, and the total population is a constant value of
29,360,000. Thus, the normalized initial condition S(0) = 0.97157 , I(0) = 0.002641 , R(0) =
0.019720, and D(0) = 0.000482. Consequently, the initial condition of 4 compartments in the next period
is set to the value of September 20, 2020. Additionally, we set the prediction horizon N, = 7 and the scaling
factor @ = 1000. The parameter uncertainty for transmission rate 8, recovery rate y, and death rate « are
set as follows based on studies (Pacheco and de Lacerda 2021; Pei and Zhang 2021; Sebbagh and Kechida
2022):

B ~ Normal([0.03, 0.90], 0.05)

y ~ Normal([0.001, 0.45],0.01)

a ~ Normal([0.0001, 0.07],0.01)
We compare the estimated result of our model and the true data in 7 weeks (7N), from September 14, 2020,
to November 1, 2020 (applied in all the figures in this work), as shown in Figure 1. The shaded area
represents the possible evolution result of each compartment under the given parameter uncertainty.
Because uncertainty propagation accumulates uncertainty from prior days, the shaded area gradually
expands. As time progresses, the uncertainty will grow to be enormous. As a result, the estimation time
cannot be made too long lest the prediction becomes meaningless. In this case, we suppose that
policymakers reassess the intervention strategy every week in light of the latest collected information,
causing uncertainty to build up again every N = 7 days. As a result, in the course of 7 days, there is an
incremental increase in uncertainty, followed by a significant drop as a result of the implementation of the
latest certain information. The result in Figure 1 shows that the predictive interval covers the observed
numbers, which indicates that our proposed model can capture the realistic interventional evolution of the
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COVID-19 pandemic. Furthermore, we compare the implemented nominal level of control C and the
effective control U, as obtained from equation (4), with the practical infection rate I to assess the correlation
between the two. This evaluation enables us to evaluate whether the proposed feedback control intervention
in our model can characterize the human society interventions during the pandemic. Our underlying
assumption is that an increase in the level of control leads to a reduction in infections, while a decrease in
control results in a rise in infections under a relatively stable scenario. The intuitive result, shown in Figure
2, indicates that the C has a negative influence on the infection rate I, which conforms to the expectation of
our proposed model. The correlation of € and [ is -0.92.

=
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Figure 1: Comparing the estimated time series resulted from proposed model and true data starting from
date September 14, 2020. The solid lines are the true data for infected, recovered, and deceased
compartments presented with blue, green, and orange colors, respectively. The shaded areas are the
estimated interval for infected, recovered, and deceased compartments presented with blue, green, and
orange colors, respectively.
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Figure 2: Comparing the achieved time series nominal level of control C; and the practical infection rate
1(t) to check the trend of I(t) and C; starting from date September 14, 2020. The shaded area in (a) is the
estimated interval of the infection rate and the solid line is the observed infection rate. The solid lines in (b)
show the achieved nominal level of control C and effective control U.
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4 SIMULATION RESULT

This work targets constructing a modified stochastic SIRD-MPC model to develop robust optimal control
policies to provide guidance to combat the spread of the pandemic. In this section, we implement a control
scheme into our proposed model to determine the robust optimal control policy so as to decrease the
maximum infection rate cost-effectively. The control scheme can be characterized by the detail
optimization problem described below:

J(h(0)) = min %, 27, wiU (1)) + wal(U) ®)
s.t constraints
where U(+) and LL(*) are the maximum and minimum values of the variable; w; and w, are weights for each
term. As introduced in Section 2, the control action U, is an effective control policy imposed on society
based on the nominal level of control C; designed by policymakers and the effective level of policy
implementation characterized by 1 — e(~®*D)_ Therefore, U, is also an uncertainty due to the existence of
I in U,. Here, the cost function considers the worst scenario of infected compartment U ( /(t) ) and worst
effective control policy LL(U;) to design the nominal level of control policy C; so as to avoid significant
infection and economic costs. Compared to the cost function in equation (4) minimizing the gap between
the estimated result with true data, we desire to decrease the infection rate to achieve a better control result
than true data.

In this case, we set the w; =1000 and w, = 1 to minimize the maximum estimated infection rate [
even with a large economic cost. Meanwhile, to curb the uncertainty cumulation, we reset the MPC every
7 days, similar in section 3.2, with new initial condition h(k) = u (h(k)), where A(k) is the estimated
system state based on our proposed model. The simulation result is shown in Figure 3 where (a) shows the
true and estimated infection rate and (b) presents the achieved nominal level of control and the effective
control based on our proposed model and control scheme. The result indicates that our proposed model can
effectively suppress the infection rate even in the worst-case scenario where uncertainty in model
parameters leads to the infection rate at each time stamp t. It is worth noting that due to the low infection
rate, the effective control is significantly less than the nominal level of control. Therefore, policymakers
should consider designing stricter control policies to tame the pandemic.

= i
(a) -E Infection fluctuation (by 1.0 \/
0 0.004 1 : :
@ True infection 0.9 a —— Nominal level of control C
q; = _.J’ ‘l == Effective control U
S 0.003 & 0.8 -
= O 1
= = 1
2 2 0.7 1
£ 0.002 = b
o, o [
e 0 0.61 |
B ="
0 0.001 - -
ﬁ 0.5 - \\ s \\. i
0 10 20 30 40 50 0 10 20 30 40 50
Time index t (days) Time index t (days)

Figure 3: Comparing the estimated infection rate and true infection rate starting from date September 14,
2020: (a) comparison of the true and estimated infection rate; and (b) the achieved ideal level of control
C and the effective control U based on the proposed model.

5 CONCLUSION AND DISCUSSION

In this present study, we propose a modified stochastic SIRD compartment model with mixed epistemic-
aleatoric parameter uncertainty to characterize the COVID-19 dynamics and incorporate it with the optimal
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control technique MPC to develop the optimal NPI control policy to contain virus transmission with
minimum economic impact. The retrospective analysis indicates that our proposed modified SIRD-MPC
model can capture the realistic interventional COVID-19 dynamics with the proposed feedback NPI control
policy implementation. Moreover, the simulation result in section 4 suggests that our proposed model can
achieve a better containment of the infection rate compared to the practical control result based on the
control scheme. In a realistic control design, the effective control may be significantly smaller than the
nominal control, so the control scheme should be more stringent.

Possible future research will investigate how to design a prediction horizon Ny, such as inconstant Ny,
in our proposed model. Moreover, although our proposed model achieves good performance by model
validation, we will consider more factors for the feedback mechanism to improve our model. Likewise,
designing dynamic scaling factor ¢ and exploring various control schemes are also worth investigating in
order to better understand and apply our proposed model to combat the pandemic infection in a realistic
situation.
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APPENDIX

This paper employs the PBA method to quantify the mixed epistemic-aleatoric uncertainty by constructing
probability boxes (p-boxes) that capture the propagated uncertainty. The p-box serves as a versatile
framework that combines intervals and probability distributions into a unified structure, allowing for the
characterization of interval bounds on probability distributions. This framework facilitates the rigorous
treatment of both epistemic and aleatory uncertainty during computational processes.

Generally, a p-box, denoted as Py, (x) can be represented by a left bound and right bound function as

Py(x) = [Pp(x), Py (x)], Pp(x) = Py(x)
where Py (x) and P, (x) represent the left and right bound distribution functions, respectively. In the PBA

method, these functions are approximated based on the inverse of the cumulative distribution function of
the left and right bounds. The process involves selecting Ng points between 0 and 1 to construct a
cumulative probability dataset y = (¥4, ...yy,) to record each cumulative probability y;, where i =

1, ..., N;. Then, the minimum and maximum values (x;, x;) of variable x for each cumulative probability

y; are calculated using the inverse of the cumulative distribution functions. Finally, the left and right bound
distribution functions P, (x) and P, (x) are formulated based on the cumulative probability dataset y and

its coordinated left and right bound datasets x = (xq, ...xy,) and X = (X1, ..., Xy,), achieved from the

inverse of the cumulative distribution function. Therefore, the whole process allows for the determination
of interval bounds on probability distributions within the p-box framework.

According to the description above, the most important step is to calculate the minimum and maximum
values (x;, x;) for each cumulative probability y;. To illustrate this process, we consider a general case
where x ~ Normal([a,b],[c,d]), a<b, and ¢ <d. We can reformulate the variable x into four
distributions: x1 ~ Normal(a,c), x2 ~ Normal(a,d), x3 ~ Normal(b,c), and x4 ~ Normal(b,d).
Denoting the cumulative distribution functions of x1, x2, x3, and x4 are y1 = P.1(x), y2 = B.2(x),
y3 = P.3(x), and y4 = P.4(x) for any given value x, respectively. The inverse of the cumulative
distribution functions of x1, x2, x3, and x4 are denoted as x1 = P.171(y), x2 = P.271(y), x3 =
P-371(y), and x4 = P.4~1(y) for any given cumulative probability y. Hence, we can obtain the left bound
and right bound points for a given cumulative probability y; as follows:
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x; =min(A17 (1), B2 ), B3 ), BAT ()

xX= maX(Prl_l(Yi)' Prz_l ), Pr3_1 ), Pr4'_1 D)
To quantify the uncertainty of variables, it is necessary to select a confidence interval I, = [I,1, [4,], Wwhere
0 <141 <14, < 1. The precision of the left bound and right bound functions approximation relies on the
total number of selected points, denoted as N;. In this study, we choose N; =200 evenly space values
between [,; = 0.0001 and [,, = 0.9999 . Consequently, the cumulative probability dataset y =
(0.0001, ...,0.9999).

As illustrated above, the uncertainty quantification based on the PBA method should be conducted
within the framework of p-box [P, (x), P, (x)]. In fact, probability distributions, intervals, and constants

can all be considered as special cases of p-boxes, as explained below:

1. The probability distribution of a variable x? with known cumulative distribution functions y =

fP(xP), the left and right bound datasets for its p-box can be written as xP =X =

(F?71(0.0001), ..., fP7"(0.9999)) and its p-box format is P, (x”) = |Py(x?), Pp(x?)], where

p

Pp(xP) = P, (xP) because as xP = x* in our study.

2. The interval variable x! with interval [a, b] can achieve the left and right bound datasets for its p-
box x! = (a, ...a) and X = (b, ..., b), respectively.
3. The constant ¢ can achieve the left and right bound datasets for its p-box x5 = x =(c ...0).
These representations allow for the flexible application of the p-box framework to various types of
uncertainty, encompassing probability distributions, intervals, and constants. The standard arithmetic

operations can be performed on p-boxes. Any two p-boxes P,1(x1) = [P,1 (x1),P,1(x1)] and
Py2(x2) = [Pp2 (x2),P,2(x2)] can conduct standard arithmetic operations as follows: P,3(x3) =
Pp1(x1) o Py2(x2) = [Pp3(x3),P,3(x3)], where o € (+,—,/).

As we mentioned above, the left and right bound functions Pp3 (x3) and P,3(3x) should be formulated

based on the cumulative probability dataset y and its coordinated achieved left and right bound datasets
x3 = (%13, ...xy,3) and x3 = (x,3, ., Xy, 3). In this study, we assume that there is a perfect positive

association between the two variables. Therefore, the left and right bound datasets x3 and x3 are calculated
as follows:
ﬁ = & ° E = (x11 o x12, ...stl o xNSZ)

X3 =XLox2 = (1 ox2, . xn 10 1m.2)
where, x1 = (x;1, ...xy,1) and x1 = (xl_l, ., Xy, 1) are the achieved left and right bound datasets for p-

box P,1(x1), based on selected cumulative probability dataset y = (¥4, ... yn,), respectively. Similarly,
X2 = (%12, ...xy,2) and x2 = (x,2, .., Xy, 2) are the achieved left and right bound datasets for p-box

P,2(x2), based on selected cumulative probability dataset y = (1, ... Y, ), respectively.

In the PBA framework, the arithmetic operations of p-boxes provide a means to calculate the p-box for
a dependent variable by leveraging the established arithmetic relationships of other given uncertainty
parameters and/or variables. Through the application of these arithmetic operations, it becomes possible to
determine the p-box associated with the dependent variable and consequently quantify its corresponding
uncertainty. The handling of cumulative uncertainty involves an iterative process that continuously updates
the relevant uncertainty (p-box) of parameters and/or variables, allowing for a comprehensive assessment
of the uncertainty pertaining to the dependent variable.
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