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Abstract—Objective: Rotors, regions of spiral wave reen-
try in cardiac tissues, are considered as the drivers of atrial
fibrillation (AF), the most common arrhythmia. Whereas
physics-based approaches have been widely deployed to
detect the rotors, in-depth knowledge in cardiac physiology
and electrogram interpretation skills are typically needed.
The recent leap forward in smart sensing, data acquisition,
and Artificial Intelligence (Al) has offered an unprecedented
opportunity to transform diagnosis and treatment in car-
diac ailment, including AF. This study aims to develop an
image-decomposition-enhanced deep learning framework
for automatic identification of rotor cores on both simula-
tion and optical mapping data. Methods: We adopt the En-
semble Empirical Mode Decomposition algorithm (EEMD)
to decompose the original image, and the most represen-
tative component is then fed into a You-Only-Look-Once
(YOLO) object-detection architecture for rotor detection.
Simulation data from a bi-domain simulation model and op-
tical mapping acquired from isolated rabbit hearts are used
for training and validation. Results: This integrated EEMD-
YOLO model achieves high accuracy on both simulation
and optical mapping data (precision: 97.2%, 96.8%, recall:
93.8%, 92.2%, and F1 score: 95.5%, 94.4%, respectively).
Conclusion: The proposed EEMD-YOLO yields comparable
accuracy in rotor detection with the gold standard in litera-
ture.

Index Terms—Atrial fibrillation, convolutional neural net-
work, ensemble empirical mode decomposition (EEMD),
object detection, you only look once (YOLO).
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[. INTRODUCTION

TRIAL fibrillation (AF) is the most common arrhythmia
A that affects more than 2.3 million people in the U.S.
[1]1, [2], [3]. The untreated AF could lead to stroke and heart
failure, and itis associated with elevated morbidity and mortality.
Studies have suggested that AF may be maintained by a rapid
localized pattern, known as “rotor” [4]. Targeted rotor ablation
has been deployed to terminate AF in clinical practice [5],
which calls for accurate and timely identification of the rotor
cores. More recently, the universal availability of biomedical
data brings tremendous opportunities for data-driven approaches
in diagnosis. Techniques have been developed to characterize
and identify rotors based on cardiac electrograms, including
dominant frequency (DF), local activation time using isochronal
maps, complex fractionated atrial electrogram mean index map-
ping, and phase singularity analysis both in animal studies and
clinical applications [6], [7], [8], [9]. However, these methods
demand domain knowledge and dedicated expertise to transform
the raw data into a suitable representation to specify the pheno-
type, or require in-depth understanding of cardiac physiology
and electrogram interpretation [10]. For example, estimating
AF activation rates using DF relies on the understanding of
sine-wave signal decomposition and its connection to activation
rates detected from electrograms, which may increase clinical
workload and induce bias [10].

In comparison, deep learning approaches reveal the sophis-
ticated underlying patterns of the raw data without strong as-
sumptions of the data generation mechanisms, which usually
remain unknown or elusive to define [11]. Recent advances in
computer vision and image recognition techniques has enabled
the application of deep learning in rotor detection [12], [13],
[14], [15]. For instance, U-Net, an encoder-decoder deep learn-
ing architecture, was developed for the detection of rotors on
simulation data [14]. Lebert et al. explored rotor detection using
different architectures, including U-Net alone (as used in [14]),
a combination of U-Net and LSTM, as well as an autoencoder
structure. They found that all of these architectures exhibited
similar performance in detecting rotors based on computing
phase maps and phase singularities (PS) derived from a short se-
quence of excitation wave patterns. Additionally, their research
demonstrated that the Al-filtering methods could be trained on
simulated data and then successfully applied to experimental
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data. The rotor detection method was effective across different
species, from the rabbit to the pig, indicating its generalizabil-
ity [15]. While U-Net is a popular deep learning architecture,
training of U-Net with deep layers can be problematic due to the
vanishing gradient issues, and it may take rather long time for
the network to converge in terms of the Intersection over Union
(I0U). The IOU here is a measure of the overlap between the
predicted and actual bounding boxes, and it is commonly used to
evaluate the performance of segmentation models. Notably, most
U-Net architectures are not robust to variations in the input data,
such as changes in scale, or orientation. LSTM includes a set of
specialized units, known as memory cells, to store information
over time and selectively forget or update the information based
on the input data sequence, while maintaining an internal state to
capture information about the proceeding elements. This makes
LSTM a particularly effective RNN model in language mod-
eling, speech recognition, and machine translation. However,
the LSTM networks are generally computationally expensive to
train and evaluate, especially for data with a long sequence. They
also suffer from the vanishing gradient problem, which leads to
poor performance [16].

To eschew those pitfalls in the encoder-decoder algorithms,
we employ an object detection algorithm for rotor detection.
More specifically, we use You Only Look Once (YOLO), a well-
established single-stage Convolutional Neural Network (CNN)
object detection algorithm. It only involves one forward pass
to detect objects of interest in an image, which is simpler and
faster than other two-stage detection algorithms, and YOLO is
designed to detect objects at different scales and aspect ratios,
which makes it more accurate than other algorithms that rely on a
fixed set of anchor boxes [17]. Itis further noted that high-quality
data are the premise for such Al-assisted diagnosis tools. The
advent of cardiac imaging techniques, including ECG imag-
ing, catheter-based electro-anatomic mapping, electrode contact
mapping, and high-density electrical mapping, has offered an
unprecedented opportunity to characterize the spatiotemporal
evolution of cardiac electrical activities [15], [18]. However,
such medical imaging data could be contaminated with noise
and blurred by artifacts, which poses a tremendous challenge
for effective learning algorithms [19], [20], [21]. Therefore,
data pre-processing (e.g., image denoising and sharpening) is
indispensable to enhance details and contrast in imaging data
and facilitate the subsequent learning and recognition tasks [19].
Empirical mode decomposition (EMD), a data-driven signal
processing filtering, which decomposes a signal into a collec-
tion of intrinsic mode functions, has demonstrated competitive
performance in noise reduction and pattern detection [22]. Al-
though different filtering techniques have been integrated into
CNN architecture to pre-process medical images and improve
learning accuracy [23], limited success has been reported. So
far, image sharpening and Al in rotor detection are largely
under-explored.

In this study, we compare several algorithms in pre-processing
imaging data and employ the YOLO model to detect the rotor
cores using both simulated and animal cardiac imaging data. We
show that accuracy of this image-decomposition-enhanced deep

learning framework for automatic rotor detection is on par with
the existing gold standard of the physics-based methods.

[I. METHODOLOGY
A. Model and Data Description

We employ a bi-domain simulation to mimic the intracellu-
lar electrical coupling and propagation of electrical excitation
[24], shown in (1)—(3), and characterize cardiac dynamics with
stationary rotor in isotropic human atrial tissues [9]. Here, the
stationary rotor pivots around a circular trajectory forming the
core of the spiral wave. The bi-domain simulation captures
the evolution of the extracellular potential ¢., the myocyte
transmembrane voltage V"*¥°, and the fibroblast transmembrane
voltage V/?:
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where I}V and I} fib 7 are the total ion channel current across the
myocyte and fibroblast membranes, and C™¥° and CFi® are the
myocyte and fibroblast membrane capacitance. o!"¥° and o/
are the intracellular myocyte and fibroblast conductivity, and
o denotes the extracellular conductivity. N/% ~ N(u, 0%;) is
the local number of fibroblasts coupled to a single myocyte,
and a stationary rotor is generated when p = 0. Gyqp is the
gap junction conductance of a coupled fibroblast-myocyte pair;
Istim 1s an external stimulation current, and 3 is the myocyte and
fibroblast per volume ratio. The dynamic potential . in a spatial
domain of 25 mm x 25 mm with a single rotor is simulated and
recorded in 4 episodes. We also generate 4 episodes for multiple
rotors via reaction-diffusion equations as suggested in [25].

For training, we generate a series of 1500 snapshots or video
frames with a resolution of 200x200 pixels for each episode
(12000 in total) as illustrated in Fig. 1. Two additional episodes
are generated for evaluation: one with a single rotor and the
other with multiple rotors. A series of 600 snapshots are cre-
ated individually from each episode and are excluded from the
training process for testing. The true core of rotors are identified
via the phase singularity (PS) approach [8], [9]. To evaluate
the performance of image enhancement in our model, Gaussian
noise with signal-to-noise ratio (SNR) of 5dB is added into the
extracellular potentials ¢, of each video frame [26].

Further, we capture 4 more optical mapping recordings
from different Langendorff-perfused rabbit hearts by voltage-
sensitive dye and 12-bit CCD cameras, as described in [8]. For
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Fig. 1. (a) And (b) are stationary rotors; (c) and (d) are meandering
rotors; (e)—(h) are multiple rotors.

(d)

Fig. 2. Four separate optical mapping recordings obtained in different
Langendorff-perfused rabbit hearts.

(@) (b)

Fig. 3. (a) Animal optical mapping data with one meandering (“1”)
and one stationary (“2”) rotors; (b) location of the rotor cores as time
evolves for the animal optical mapping data: The meandering rotor and
the stationary rotor.

each recording, we collect 1800 snapshots (7200 in total) as
training datasets (Fig. 2).

The testing dataset comprises of 1500 snapshots derived from
figure-of-8 optical mapping recording, which are excluded from
the training dataset. A snapshot of the potential from the testing
dataset is shown in Fig. 3(a). The meandering and stationary

rotor cores are indicated by “1” and “2”, respectively [8]. The
clusters (the white dots) of both types of cores as time evolves
are depicted in Fig. 3(b). Compared to the simulation data, the
animal potential mapping is blurrier, obscuring the rotor core. To
address the issue of data scarcity and validate if Al methods can
be trained on simulation and then applied to experimental data,
we use all the simulated images (more than 13000 video frames)
to train the Al model and assess the detection performance using
the randomly selected 10% of the animal optical mapping data
(1500 frames). The result is compared with models trained by
animal optical mapping data and the combination of simulation
and animal optical mapping data.

B. Image Pre-Processing

We investigate 4 different techniques to pre-process the im-
ages: the average filter (AVF), the Gaussian filter (GF), the
median filter (MF), and the EEMD. The pre-processed im-
ages are then fed into the YOLO model for rotor core detec-
tion. EEMD is inspired by the Empirical Mode Decomposition
(EMD), which decomposes a time series signal into compo-
nents with progressively lower frequencies, known as Intrinsic
Mode Functions (IMFs). An IMF is a function with symmetric
upper and lower envelopes, and the number of zero-crossings
and the number of extremes is equal or different at most by
one. Each IMF reflects the signal characteristics in a different
frequency band, and they collectively reveal the underlying in-
stantaneous time-frequency-energy characteristics of the signal
[27]. EMD variants have been extended to spatial data, such
as images [28], [29]. However, such variants are susceptible
to noise contamination and mode mixing issues, as they rely
on the data values at each time stamp to iteratively conduct
the decomposition. Remarkably, the EEMD circumvents such
issues with noise-assisted ensemble decomposition: each entity
in the ensemble is the original image contaminated with white
noise, and the mean of those ensemble trials constitute the IMFs
[27], [28]. To alleviate computational cost, images are converted
into one-dimensional vectors based on which the decomposition
is then applied, as in most EMD algorithms. Specifically, an
image X with size [; X [ is first transformed to a 1 x [yl vector
R(s), where s € [1, l1l2] is the vector signal index, and then
decomposed to derive the IMFs as below:

1) Add white noise w;(s) into R(s) to generate a target
vector for the jth trial:

q; () = R(s) +wj (s) @

Here, the noise variance is chosen as 0.01 by trial and error
so that the noise is not so large that it contaminates the
texture of images yet large enough to generate a diverse
ensemble.

2) The upper and lower envelops, denoted as U (s) and L(s),
of ¢;(s) are identified by interpolation between the local
maxima and minima of ¢;(s), from which we get the
overall trend:

T () = 2= 5)
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3) Subtract the trend from g;(s) to derive a new data u; (s)
as

ur (s) =¢; () =T () (6)

4) Tterate the sifting operations in step 2 and 3 until u;(s)
meets two conditions: over the entire range of s, the num-
ber of signal extrema and the number of zero-crossings
must be equal or differ by one at most; and the mean value
of the envelope defined by the local maxima and the local
minima is zero at any index s. A sifting stop criterion I"
is included to avoid the issue of amplitude obliteration
caused by the second condition [27],

_ [uprev (8) — Ucur (5)”3
2
”upre’u (3)”2

where Uprey () is the u(s) value in previous iteration,
Ueyr(8) is the value in current iteration, and the sifting
process stops when I' < 0.2 [27]. Then, we set u;(s)
as Fi,(s), the first IMF of the jth ensemble , which
possesses the highest frequency components of the signal.
The first residual 71 (s) = g; (s) — F1;(s) becomes the
new target vector.

5) Repeat step 4, the kth residual or the new target vector is
given as 7, (8) = ri_1 (s) — F);(s), where ¢;(s) in (4)
is 7o (s). This iteration continues until a certain criterion
is reached, such as a maximum number of iterations or
the frequency level of the residual term. Therefrom, g; ()
is decomposed into a sum of K IMFs and a residual term
as

)

Z Fyj () + 7 () (8)
where FJ;(s) is the kth IMF of the jth ensemble trial,
and 7k (s) is the residual in the K'th iteration.

6) With different white noise realizations to implement M

ensemble trials, we obtain the ensemble mean of the kth
IMF as

1 M
== Y Ry ©
j=1

The total number of ensemble trials is set as M = 50 in
this study. The ensemble mean of the kth IMF Fj, will then
be transferred to 2D-image IMF (. The ensemble means
of the corresponding IMFs portray finer details in the image,
when detrended, have enhanced contrast and facilitate the image
recognition [30]. Consequently, we select the best IMF G, with
the highest peak-signal-to-noise ratio (PSNR), which possesses
the highest resemblance with the original image [31]. For the
video frame X,

PSNR (G, X) = 10log;, ( (10)

2552
MSE (G, X)
where

MSE (Gg, X (11)

1 L1 12
lf ZZ Gk:z]a

The AVF convolves a sliding window filter on the image that
replaces the center value in the window with the average values
of neighbor pixels. The MF replaces each pixel values by the
median values of its neighbor pixels, sorted in an increasing or-
der, in the window. The GF is achieved by convolving Gaussian
sliding window with the image [32]. A 3 x 3 sliding window
with stride of 1 is used for AVF, MF, and GF.

C. Spatial Resolution

Here, both simulation and optical potential mapping images
have relatively low resolution, with 200 x 200 and 80 x 80
pixels, respectively. YOLO is exceptionally effective in detect-
ing small objects or the rotor core in our case here. YOLO
utilizes anchor boxes, which are predefined bounding boxes with
specific aspect ratios and sizes based on the characteristics of the
training data. During training, YOLO adjusts the coordinates of
these anchor boxes to accurately localize objects in the image
by fitting them to the ground truth bounding boxes. This differs
from other object detection methods that employ fixed default
boxes or sliding windows, which may fail to detect small objects.
Additionally, YOLO demonstrates greater flexibility in handling
objects with diverse shapes and sizes. It achieves this through a
grid-based approach: the image is divided into numerous cells,
and the presence and absence of the object in each cell will then
be determined.

Further, YOLO predicts bounding boxes as offsets from the
top-left corner of each cell in the grid, and the size of the
bounding box can vary depending on the size and aspect ratio of
the object being detected. During post-processing, the predicted
bounding boxes are converted to coordinates relative to the entire
image, and their sizes are adjusted based on the anchor boxes
used in training. This allows YOLO to generate bounding boxes
of various sizes and aspect ratios, even if they are smaller than
the size of the grid cell. Moreover, rotors have been observed in
various shapes (e.g., spiral, figure-eight, and multiform [1]) and
sizes during rotor mapping procedures, depending on patient
condition and location of the rotors in the heart. Indeed, the size
of the bounding box represents the uncertainty in identification
of rotor cores.

D. The YOLO Model

To detect the rotor core, we apply the YOLO-based object
detection architecture with 24 convolutional layers (CLs) fol-
lowed by 2 fully connected layers (FCLs), as demonstrated in
Fig. 4. The first 24 CLs with max pooling layer are used to extract
features from images, and the last 2 FCLs are added to predict the
output probabilities and bounding boxes [33]. A linear activation
function is used for the final layer, and the activation function
of the leaky rectified linear unit (ReLLU) are used for all other
layers.

The YOLO architecture uses bounding boxes to detect objects
in an partitioned image [33]. Specifically, the input image is first
divided into D x D grid cells. If the center of rotor core falls
into a grid cell, a bounding box (the red box in Fig. 5(a)) in that
grid cell is then included and responsible for detecting that rotor
core. The centroid and size of the bounding box indicate the core
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Fig. 4. CNN architecture has 24 convolutional layers followed by 2 fully connected layers. (a) The original image is resized to 448 x 448. The

default stride (how far the filter moves in every step along one direction) for each CL is 1; (b) the first layer includes 1 CL (7 x 7 x 64 with stride= 2)
and 1 max pool (2 x 2 with stride = 2); (c) the second layer includes 1 CL (1 x 1 x 128 and 1 max pool (2 x 2 with stride = 2); (d) the third
layer includes 4 CLs (1 x 1 x 128, 3 x 3 x 256, 1 x 1 x 256, and 1 x 1 x 512) and 1 max pool (2 x 2 with stride = 2); (e) the fourth layer includes
10 CLs ((1 x 1 x 256, 3x3x512) x4, 1x1x512, and 3 x 3 x 1024) and 1 max pool (2 x 2 with stride = 2); (f) the fifth layer includes 6 CLs
((1x1x512, 3 x3x1024) x 2, 3x3x 1024, and 3 x 3 x 1024 with stride = 2) and 1 max pool (2 x 2, stride= 2); (g) the sixth layer includes 2

CLs ((3 x 3 x 1024) x2); (h) and (i) each include a FCL.

Union

Intersection

(b)

Fig. 5. (a) Image of a simulated rotor is divided into 7 x 7 grid cells;
the centroid of the bounding box (the yellow dot) indicates the rotor core;
(b) intersection and union between the predicted bounding box (red) and
the ground truth (black).

location and its potential range. Each bounding box is associated
with 5 variables: x, y, w, h,and C. (x, y) are the centroid coor-
dinates of the bounding box. The valuation of (z, y) is relative to
the grid cell that the core may reside in. By default, coordinates
of the upper-left and the lower-right corners of each grid cell are
(0, 0) and (1, 1), respectively. Thus, x,y € [0, 1]. The width
w and height h of the bounding box determine the prediction
precision; a small bounding box implies high precision. The
precision can be further quantified by the IOU (IOU € [0, 1]),
which hinges on intersection and union between the predicted
bounding box and the ground truth (Fig. 5(b)). Intersection is
the overlapping area between the predicted and ground truth

bounding boxes, and union is the total area covered by these two
bounding boxes. Multiple bounding boxes (quantity denoted by
B) can be adopted for each grid cell in case there are multiple
rotor cores in one cell. For the multiple rotor cores in simulated
datasets, B = 4 isused to stipulate that each grid cell can contain
up to 4 cores. B = 2 is used for the animal optical mapping
dataset, as the stationary rotor core and the meandering one may
co-existinone grid cell. C' = I, x IOU is the confidence for
rotor core detection. /... = 0 if no rotor exists in a cell, which
also implies that C' = 0. Otherwise, I.,.. = 1. Therefore, the
output of the last FCL contains information on z, y, w, h, C' for
B bounding boxes and the corresponding probability of rotor
core existence in all grid cells (D = 7). Thus, the dimension of
the last FCLis 7 x 7 x (B x 5+ 1).

The optimal valuation of x,y,w,h and C is derived from
minimization of a loss function, as depicted in (12), which es-
sentially corrects the centroid and size of the bounding box [33]:

LOSS (I7 y? w7 h’ C)

= A Z Z uOb] [ —xio)® + (i — yz‘o)ﬂ

ngzow[ ~vE + (Vi - Vim)'|
Hl;zombﬂ[ - vE + (Vi - Vi)'

$? B
+ZZMObJC —Cio) +X2ZZMZOObj(Ci—Ci0)2

i=0 j=0 i=0 j=0
bi ;i 2
+ Z :uo ! pcore - pz%re) 12)

The first term of the loss function arises from the prediction
of the centroid (z, y). (xo, yo) are the true coordinate of the
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centroid given in the training data. ,uf;’ 7 — 1if the j*" bounding
box in the ith cell contains the rotor core, and ufjb J — 0 other-
wise. The true valuation of width wy and height h( are given
by the PS approach [9], which points to the smallest bounding
box that fully covers the rotor core. The third term is the loss
related to the confidence C' for each bounding box predictor.
0 < Cp < 1 if the rotor core exists in the jth bounding box
of the ith cell, otherwise C;y = 0. M?j""bj = 1 when there is no
rotor core in the jth bounding box in the 7th cell. The last term
is the classification loss. u?b] = 1 if the rotor core resides in
the 4th cell, and u?bj = 0 otherwise. A1 = 5 and Ay = 0.5 are
the weights used for coordinate predictions and for confidence
predictions when no rotor is present, respectively. pcore is the
probability that a rotor core exists in one grid cell.

Here, we evaluate the accuracy of deep learning meth-
ods, YOLO, AVF-YOLO, GF-YOLO, MF-YOLO, and EEMD-
YOLO, using both simulation and the animal optical mapping
datasets to tackle the rotor core detection problem. The IOU is
used as the criterion for rotor core detection, and the accuracies
are compared using precision, recall, and F1 score. In addition,
Tukey’s honestly significant difference (Tukey’s HSD) test are
utilized to evaluate and compare the performance of models
trained with simulation data, animal optical mapping data, and
a combination of both.

I11. NUMERICAL RESULTS
A. Rotors Detection on Simulated Data

Fig. 6 shows the rotor core detection using AI models on sim-
ulated dataset with single rotor. In EEMD-YOLO, the original
simulated data is first decomposed by EEMD. The 2D-image
IMF G¢ with the highest average PSNR = 7.91 dB is selected
for rotor detection. Detection results using YOLO, AVF-YOLO,
GF-YOLO, and MF-YOLO are shown in Fig. 6(b)—(e). EEMD-
YOLO removes Gaussian noise while preserving fine details of
the images (Fig. 6(f)). Fig. 6(g)—(1) shows detected locations
of predicted rotor cores (blue) and ground truth (white) using
Al models on the randomly selected snapshots over the testing
dataset. It is observed that all Al models can correctly detect the
location of the majority of rotor cores where ground truth are
located.

Fig. 7 shows the rotor cores detection using AI models on
a randomly selected video frame of simulation dataset with
multiple rotors. The 2D-image IMF G with the highest average
PSNR = 7.87 dB is selected for rotor detection. Detection
results using YOLO, AVF-YOLO, GF-YOLO, and MF-YOLO
are shown in Fig. 7(b)—(e). EEMD-YOLO removes Gaussian
noise while preserving fine details of the images (Fig. 7(f)).
Fig. 7(g)—(1) shows detected locations of predicted rotor cores
(blue) and ground truth (white) using Al models on the randomly
selected snapshots over the testing dataset, indicating that rotor
cores are mostly predicted in locations where ground truth
located.

As shown in Table I, we compare the performance of different
models on simulated data. It appears that the EEMD-YOLO
model achieves the highest IOU (0.95), precision (97.2%),

Detection of rotor cores on a snapshot

) (k) ()

Fig. 6. Detection results on pre-processed simulated single rotor us-
ing different methods: (a) The ground truth; (b) simulated rotor core
with SNR = 5dB noise, core identified via YOLO; (c)—(f) detection re-
sults using AVF-YOLO, GF-YOLO, MF-YOLO, and EEMD-YOLO; The
blue clusters of dots are locations of stationary rotor cores from 300
testing snapshots of the simulated single-rotor: (g) The ground truth,
and predicted locations using (h) YOLO, (i) AVF-YOLO, (j) GF-YOLO,
(k) MF-YOLO, and (I) EEMD-YOLO models.

TABLE |
COMPARISON OF 10U, PRECISION, RECALL, AND F1 SCORE FOR
DIFFERENT METHODS ON SIMULATED DATA

Models 10U (SD) Precision  Recall  FI score
YOLO 0.82 (0.188) 89.3% 82.7%  85.9%
MF-YOLO 0.91 (0.108) 96.2% 91.3%  93.7%
AVF-YOLO 0.92 (0.129) 95.2% 85.4%  90.0%
GF-YOLO 0.93 (0.124) 96.9% 87.8%  92.1%
EEMD-YOLO .95 (0.072) 97.2% 93.8%  95.5%

recall (93.8%), and F1 score (95.5%) among the models
listed. This suggests that EEMD-YOLO performs the best to
accurately localize objects and achieve a good balance be-
tween precision and recall. The YOLO model performs rel-
atively worse. Other models, MF-YOLO, AVF-YOLO, and
GF-YOLO, demonstrate varying levels of performance, better
than YOLO.
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Detection of rotor cores on a snapshot

Fig. 7. Detection results on pre-processed snapshots using sim-
ulated data with multiple rotors: (a) The ground truth; (b) sim-
ulated multiple rotor cores with SNR = 5 dB noise, and cores
identified via YOLO; (c)—(f) detection results using AVF-YOLO, GF-
YOLO, MF-YOLO, and EEMD-YOLO; the blue clusters of dots are
locations of meandering rotor cores from 300 testing snapshots
of the simulated multiple-rotors data: (g) The ground truth, and
predicted locations using (h) YOLO, (i) AVF-YOLO, (j) GF-YOLO,
(k) MF-YOLO, and (l) EEMD-YOLO models.

B. Rotors Detection on Animal Optical Mapping

Fig. 8 depicts the rotor core detection using Al models on
animal optical mapping dataset: the upper rotor is meandering,
and the lower one is stationary. Fig. 8(a) is the ground truth. The
AVEF-YOLO, GF-YOLO, and MF-YOLO (Fig. 8(c)—(e)) slightly
removes more shadow area compared with the original optical
mapping image (Fig. 8(b)). In Fig. 8(f), for the EEMD-YOLO,
the 2D-image IMF Gg with an average PSNR = 6.76 dB is
selected. The selected IMF from EEMD has enhanced contrast
compared with other 3 Al models with filters. Fig. 8(g)—(1)
shows detected locations of the predicted rotor cores (blue) and
ground truth (white) using AI models on the randomly selected
snapshots over the testing dataset. It can be observed that all
Al models can correctly detect locations of the majority of rotor
cores. However, closer inspection of Fig. 8 shows that all models
miss part of the ground truth location of rotor cores.

The comparison of IOU and the SD for different models in
three different groups (A, B, and C) using Tukey’s HSD is

Detection of rotor cores on a snapshot

(d) (f

(e)

Locations of rotor cores

() (k) 0

Fig. 8. Detection results on pre-processed animal optical mapping
data using different methods: (a) The ground truth; (b)—(f) rotor de-
tection results with YOLO, AVF-YOLO, GF-YOLO, MF-YOLO, and
EEMD-YOLO. The blue clusters of dots are locations of rotor cores
from 300 testing snapshots of the animal optical mapping: (g) The
ground truth, and predicted locations using (h) YOLO, (i) AVF-YOLO,
(i) GF-YOLO, (k) MF-YOLO, and () EEMD-YOLO models.

depicted in Table II. The models include YOLO, MF-YOLO,
AVF-YOLO, GF-YOLO, and EEMD-YOLO. In group A,
YOLO achieves an IOU of 0.65, while MF-YOLO and EEMD-
YOLO has a higher IOU of 0.75. AVF-YOLO and GF-YOLO
achieves IOU values of 0.70 and 0.68, respectively. In group B
and group C, all models achieve high performance (p value >
0.33), which are higher compared to Group A (p value < 0.001).
Overall, the EEMD-YOLO model registers the highest accuracy
in rotor core detection in all scenarios.

As shown in Table III, all models achieve high precision,
recall, and F1 scores on the animal optical mapping data. The
highest precision scores are achieved by EEMD-YOLO in all
three training groups (group A: 87.1%, group B: 97.5%, group
C: 97.2%). In general, it can be observed that models trained
with both simulation and animal optical mapping data (group
B) achieve better performance than models trained with only
simulation data (group A) or animal optical mapping data (group
C). This is evident from the fact that all models achieve higher
scores in group B than group A or C.
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TABLE Il
COMPARISON OF 10U USING TUKEY’S HSD FOR DIFFERENT METHODS ON ANIMAL OPTICAL MAPPING DATA WITH DIFFERENT TRAINING DATA

P value P value P value

10U (SD) (A toB) (Ato C) (BtoC)
Models Group A Group B Group C
YOLO 0.65(0.112)  0.81 (0.046) 0.83(0.054)
MF-YOLO 0.75(0.099)  0.91 (0.052) 0.89(0.069)
AVF-YOLO 0.70 (0.101)  0.92(0.037) 0.90(0.031)  All<0.001  All<0.001  All>0.33
GF-YOLO 0.68 (0.098)  0.91 (0.035) 0.91(0.044)
EEMD-YOLO 0.75(0.076)  0.94 (0.028) 0.93(0.034)

Group A: simulation data, group B: both simulation and animal optical mapping data, group C: animal optical

mapping data.

TABLE IlI
COMPARISON OF PRECISION, RECALL, AND F1 SCORE USING DIFFERENT METHODS ON ANIMAL OPTICAL MAPPING DATA WITH DIFFERENT TRAINING DATA

Methods Precision % Recall % F1 score %

A B C A B C A B C
YOLO 83.8 94.3 94.1 65.0 84.1 84.3 73.2 88.9 88.9
MF-YOLO 86.8 97.3 96.6 71.6 91.7 91.2 78.5 94.4 93.8
AVF-YOLO 85.8 96.2 96.3 70.8 85.9 85.8 77.6 90.7 90.7
GF-YOLO 84.2 97.3 97.1 70.1 89.2 89.3 76.1 93.0 93.0
EEMD-YOLO 87.1 97.5 96.8 71.4 94.2 922 78.4 95.8 94.4

Group A: simulation data, group B: both simulation and animal optical mapping data, group C: animal optical mapping data.

Comparing different models, EEMD-YOLO appears to be the
most effective model in terms of overall performance, achieving
high precision, recall, and F1 scores across all three training
groups. AVF-YOLO also achieves good results in terms of
precision and F1 score but had lower recall scores compared
to other models. Furthermore, our images are of relatively low
resolution, and YOLO is fairly fast and agile. The training time
is 1166.3 seconds for the simulation data (12000 frames from 8
simulation episodes), 980.3 seconds for optical mapping data
(7200 frames randomly selected from optical mapping data)
and 1853.8 seconds for a combination of simulation and optical
mapping data as training dataset.

[V. DiSCUSSION

Addressing the scarcity of literature in AF identification us-
ing Al-assisted methods, this study presents the development
and validation of an image-decomposition-enhanced CNN algo-
rithm (EEMD-YOLO) for rotor core detection. It preserves the
fine details of the original image frames, yielding the highest
accuracy among different approaches for detecting both the
stationary and meandering rotors. We use both simulated electric
potential mapping data and optical mapping data acquired from
animal experiments to train and test the models. The model
learned only from the simulated patterns can identify rotors
in animal optical mapping data (see Table III). In comparison,
performance of models trained by the combination of both
simulation and animal optical mapping data, or only animal
optical mapping data register higher accuracy.

In clinical settings, the data recording is susceptible to noise
contamination or artifacts. This can be attributed to the impact
arising from electrode placement sites and contact areas in the
high-resolution electrocardiography system. In the average filter,
pixel values are replaced by average values of neighboring
pixels, which, however, may distort the image texture. The
median filter replaces each pixel values by the median values of
neighboring pixels and protects the edge of the image well while
filtering out the noise. It is less sensitive than linear techniques
(e.g., AVF) to extreme changes in pixel values, yet it could lead
to image discontinuity. GF works by assigning different weights
to pixels at different neighboring locations with a kernel, to pre-
serve the overall grayscale distribution of the image. The EEMD
algorithm instead decomposes electric potential mapping into
components with distinct frequency and energy amplitudes,
the ensemble technique guarantees a robust decomposition of
images. This method capitalizes the time-scale characteristics of
the data itself for decomposition without predefined basis func-
tions as required by Wavelet analysis. Thus, the EEMD method
can be applied to any type of signal decomposition in theory,
and has an obvious advantage in dealing with non-stationary
and non-linear data [27].

One limitation of this study is that we only investigate the
potential mapping on 2D surfaces, while the dynamic evolution
of the potential mapping on the 3D surfaces across epicardial
and endocardial regions could potentially lead to more actuate
diagnosis and realistic applications [34]. As a direction for
future work, cardiac imaging techniques have offered potential
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opportunities to visualize and monitor the heart’s electrophysio-
logical state at high spatial and temporal resolutions for real-time
and remote detection of cardiac ailments. Despite the potential
benefits, cardiac imaging techniques have inherent challenges,
such as the need for precise measurements using ECGI and the
possible complications associated with basket catheter insertion
[35], [36]. Nevertheless, exploring the effectiveness of Al-based
approaches in combination with cardiac imaging techniques for
real-time diagnosis and early recognition of cardiac illness in
clinic settings could hold promise for the future.

V. CONCLUSION

In this study, we investigate AF rotor detection via integrating
deep learning with image decomposition techniques. The novel
approach is comparable with the common gold standard of
physics-based methods using data from both simulation and
animal optical mapping experiments. It offers a more automated,
less labor- and expertise-intensive rotor detection process with
promises of application in real-time dynamic cardiac monitoring
and AF diagnosis.
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