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Image-Decomposition-Enhanced Deep
Learning for Detection of Rotor Cores

in Cardiac Fibrillation
Yu Shu , Tianqi Gao Smith, Shivaram P. Arunachalam , Elena G. Tolkacheva ,

and Changqing Cheng

Abstract—Objective: Rotors, regions of spiral wave reen-
try in cardiac tissues, are considered as the drivers of atrial
fibrillation (AF), the most common arrhythmia. Whereas
physics-based approaches have been widely deployed to
detect the rotors, in-depth knowledge in cardiac physiology
and electrogram interpretation skills are typically needed.
The recent leap forward in smart sensing, data acquisition,
and Artificial Intelligence (AI) has offered an unprecedented
opportunity to transform diagnosis and treatment in car-
diac ailment, including AF. This study aims to develop an
image-decomposition-enhanced deep learning framework
for automatic identification of rotor cores on both simula-
tion and optical mapping data. Methods: We adopt the En-
semble Empirical Mode Decomposition algorithm (EEMD)
to decompose the original image, and the most represen-
tative component is then fed into a You-Only-Look-Once
(YOLO) object-detection architecture for rotor detection.
Simulation data from a bi-domain simulation model and op-
tical mapping acquired from isolated rabbit hearts are used
for training and validation. Results: This integrated EEMD-
YOLO model achieves high accuracy on both simulation
and optical mapping data (precision: 97.2%, 96.8%, recall:
93.8%, 92.2%, and F1 score: 95.5%, 94.4%, respectively).
Conclusion: The proposed EEMD-YOLO yields comparable
accuracy in rotor detection with the gold standard in litera-
ture.

Index Terms—Atrial fibrillation, convolutional neural net-
work, ensemble empirical mode decomposition (EEMD),
object detection, you only look once (YOLO).
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I. INTRODUCTION

A
TRIAL fibrillation (AF) is the most common arrhythmia

that affects more than 2.3 million people in the U.S.

[1], [2], [3]. The untreated AF could lead to stroke and heart

failure, and it is associated with elevated morbidity and mortality.

Studies have suggested that AF may be maintained by a rapid

localized pattern, known as “rotor” [4]. Targeted rotor ablation

has been deployed to terminate AF in clinical practice [5],

which calls for accurate and timely identification of the rotor

cores. More recently, the universal availability of biomedical

data brings tremendous opportunities for data-driven approaches

in diagnosis. Techniques have been developed to characterize

and identify rotors based on cardiac electrograms, including

dominant frequency (DF), local activation time using isochronal

maps, complex fractionated atrial electrogram mean index map-

ping, and phase singularity analysis both in animal studies and

clinical applications [6], [7], [8], [9]. However, these methods

demand domain knowledge and dedicated expertise to transform

the raw data into a suitable representation to specify the pheno-

type, or require in-depth understanding of cardiac physiology

and electrogram interpretation [10]. For example, estimating

AF activation rates using DF relies on the understanding of

sine-wave signal decomposition and its connection to activation

rates detected from electrograms, which may increase clinical

workload and induce bias [10].

In comparison, deep learning approaches reveal the sophis-

ticated underlying patterns of the raw data without strong as-

sumptions of the data generation mechanisms, which usually

remain unknown or elusive to define [11]. Recent advances in

computer vision and image recognition techniques has enabled

the application of deep learning in rotor detection [12], [13],

[14], [15]. For instance, U-Net, an encoder-decoder deep learn-

ing architecture, was developed for the detection of rotors on

simulation data [14]. Lebert et al. explored rotor detection using

different architectures, including U-Net alone (as used in [14]),

a combination of U-Net and LSTM, as well as an autoencoder

structure. They found that all of these architectures exhibited

similar performance in detecting rotors based on computing

phase maps and phase singularities (PS) derived from a short se-

quence of excitation wave patterns. Additionally, their research

demonstrated that the AI-filtering methods could be trained on

simulated data and then successfully applied to experimental
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data. The rotor detection method was effective across different

species, from the rabbit to the pig, indicating its generalizabil-

ity [15]. While U-Net is a popular deep learning architecture,

training of U-Net with deep layers can be problematic due to the

vanishing gradient issues, and it may take rather long time for

the network to converge in terms of the Intersection over Union

(IOU). The IOU here is a measure of the overlap between the

predicted and actual bounding boxes, and it is commonly used to

evaluate the performance of segmentation models. Notably, most

U-Net architectures are not robust to variations in the input data,

such as changes in scale, or orientation. LSTM includes a set of

specialized units, known as memory cells, to store information

over time and selectively forget or update the information based

on the input data sequence, while maintaining an internal state to

capture information about the proceeding elements. This makes

LSTM a particularly effective RNN model in language mod-

eling, speech recognition, and machine translation. However,

the LSTM networks are generally computationally expensive to

train and evaluate, especially for data with a long sequence. They

also suffer from the vanishing gradient problem, which leads to

poor performance [16].

To eschew those pitfalls in the encoder-decoder algorithms,

we employ an object detection algorithm for rotor detection.

More specifically, we use You Only Look Once (YOLO), a well-

established single-stage Convolutional Neural Network (CNN)

object detection algorithm. It only involves one forward pass

to detect objects of interest in an image, which is simpler and

faster than other two-stage detection algorithms, and YOLO is

designed to detect objects at different scales and aspect ratios,

which makes it more accurate than other algorithms that rely on a

fixed set of anchor boxes [17]. It is further noted that high-quality

data are the premise for such AI-assisted diagnosis tools. The

advent of cardiac imaging techniques, including ECG imag-

ing, catheter-based electro-anatomic mapping, electrode contact

mapping, and high-density electrical mapping, has offered an

unprecedented opportunity to characterize the spatiotemporal

evolution of cardiac electrical activities [15], [18]. However,

such medical imaging data could be contaminated with noise

and blurred by artifacts, which poses a tremendous challenge

for effective learning algorithms [19], [20], [21]. Therefore,

data pre-processing (e.g., image denoising and sharpening) is

indispensable to enhance details and contrast in imaging data

and facilitate the subsequent learning and recognition tasks [19].

Empirical mode decomposition (EMD), a data-driven signal

processing filtering, which decomposes a signal into a collec-

tion of intrinsic mode functions, has demonstrated competitive

performance in noise reduction and pattern detection [22]. Al-

though different filtering techniques have been integrated into

CNN architecture to pre-process medical images and improve

learning accuracy [23], limited success has been reported. So

far, image sharpening and AI in rotor detection are largely

under-explored.

In this study, we compare several algorithms in pre-processing

imaging data and employ the YOLO model to detect the rotor

cores using both simulated and animal cardiac imaging data. We

show that accuracy of this image-decomposition-enhanced deep

learning framework for automatic rotor detection is on par with

the existing gold standard of the physics-based methods.

II. METHODOLOGY

A. Model and Data Description

We employ a bi-domain simulation to mimic the intracellu-

lar electrical coupling and propagation of electrical excitation

[24], shown in (1)–(3), and characterize cardiac dynamics with

stationary rotor in isotropic human atrial tissues [9]. Here, the

stationary rotor pivots around a circular trajectory forming the

core of the spiral wave. The bi-domain simulation captures

the evolution of the extracellular potential ϕe, the myocyte

transmembrane voltageVmyo, and the fibroblast transmembrane

voltage Vfib:

∇
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where I
myo
ion and I

fib
ion are the total ion channel current across the

myocyte and fibroblast membranes, and Cmyo and Cfib are the

myocyte and fibroblast membrane capacitance. σ
myo
i and σ

fib
i

are the intracellular myocyte and fibroblast conductivity, and

σe denotes the extracellular conductivity. Nfib ∼ N(µ, σ2
N ) is

the local number of fibroblasts coupled to a single myocyte,

and a stationary rotor is generated when µ = 0. Ggap is the

gap junction conductance of a coupled fibroblast-myocyte pair;

Istim is an external stimulation current, andβ is the myocyte and

fibroblast per volume ratio. The dynamic potentialϕe in a spatial

domain of 25 mm× 25 mm with a single rotor is simulated and

recorded in 4 episodes. We also generate 4 episodes for multiple

rotors via reaction-diffusion equations as suggested in [25].

For training, we generate a series of 1500 snapshots or video

frames with a resolution of 200×200 pixels for each episode

(12000 in total) as illustrated in Fig. 1. Two additional episodes

are generated for evaluation: one with a single rotor and the

other with multiple rotors. A series of 600 snapshots are cre-

ated individually from each episode and are excluded from the

training process for testing. The true core of rotors are identified

via the phase singularity (PS) approach [8], [9]. To evaluate

the performance of image enhancement in our model, Gaussian

noise with signal-to-noise ratio (SNR) of 5dB is added into the

extracellular potentials ϕe of each video frame [26].

Further, we capture 4 more optical mapping recordings

from different Langendorff-perfused rabbit hearts by voltage-

sensitive dye and 12-bit CCD cameras, as described in [8]. For
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Fig. 1. (a) And (b) are stationary rotors; (c) and (d) are meandering
rotors; (e)–(h) are multiple rotors.

Fig. 2. Four separate optical mapping recordings obtained in different
Langendorff-perfused rabbit hearts.

Fig. 3. (a) Animal optical mapping data with one meandering (“1”)
and one stationary (“2”) rotors; (b) location of the rotor cores as time
evolves for the animal optical mapping data: The meandering rotor and
the stationary rotor.

each recording, we collect 1800 snapshots (7200 in total) as

training datasets (Fig. 2).

The testing dataset comprises of 1500 snapshots derived from

figure-of-8 optical mapping recording, which are excluded from

the training dataset. A snapshot of the potential from the testing

dataset is shown in Fig. 3(a). The meandering and stationary

rotor cores are indicated by “1” and “2”, respectively [8]. The

clusters (the white dots) of both types of cores as time evolves

are depicted in Fig. 3(b). Compared to the simulation data, the

animal potential mapping is blurrier, obscuring the rotor core. To

address the issue of data scarcity and validate if AI methods can

be trained on simulation and then applied to experimental data,

we use all the simulated images (more than 13000 video frames)

to train the AI model and assess the detection performance using

the randomly selected 10% of the animal optical mapping data

(1500 frames). The result is compared with models trained by

animal optical mapping data and the combination of simulation

and animal optical mapping data.

B. Image Pre-Processing

We investigate 4 different techniques to pre-process the im-

ages: the average filter (AVF), the Gaussian filter (GF), the

median filter (MF), and the EEMD. The pre-processed im-

ages are then fed into the YOLO model for rotor core detec-

tion. EEMD is inspired by the Empirical Mode Decomposition

(EMD), which decomposes a time series signal into compo-

nents with progressively lower frequencies, known as Intrinsic

Mode Functions (IMFs). An IMF is a function with symmetric

upper and lower envelopes, and the number of zero-crossings

and the number of extremes is equal or different at most by

one. Each IMF reflects the signal characteristics in a different

frequency band, and they collectively reveal the underlying in-

stantaneous time-frequency-energy characteristics of the signal

[27]. EMD variants have been extended to spatial data, such

as images [28], [29]. However, such variants are susceptible

to noise contamination and mode mixing issues, as they rely

on the data values at each time stamp to iteratively conduct

the decomposition. Remarkably, the EEMD circumvents such

issues with noise-assisted ensemble decomposition: each entity

in the ensemble is the original image contaminated with white

noise, and the mean of those ensemble trials constitute the IMFs

[27], [28]. To alleviate computational cost, images are converted

into one-dimensional vectors based on which the decomposition

is then applied, as in most EMD algorithms. Specifically, an

image X with size l1 × l2 is first transformed to a 1 ×l1l2 vector

R(s), where s ∈ [1, l1l2] is the vector signal index, and then

decomposed to derive the IMFs as below:

1) Add white noise ωj(s) into R(s) to generate a target

vector for the jth trial:

qj (s) = R (s) + ωj (s) (4)

Here, the noise variance is chosen as 0.01 by trial and error

so that the noise is not so large that it contaminates the

texture of images yet large enough to generate a diverse

ensemble.

2) The upper and lower envelops, denoted asU(s) andL(s),
of qj(s) are identified by interpolation between the local

maxima and minima of qj(s), from which we get the

overall trend:

T (s) =
U (s) + L (s)

2
(5)
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3) Subtract the trend from qj(s) to derive a new data u1(s)
as

u1 (s) = qj (s)− T (s) (6)

4) Iterate the sifting operations in step 2 and 3 until ui(s)
meets two conditions: over the entire range of s, the num-

ber of signal extrema and the number of zero-crossings

must be equal or differ by one at most; and the mean value

of the envelope defined by the local maxima and the local

minima is zero at any index s. A sifting stop criterion Γ
is included to avoid the issue of amplitude obliteration

caused by the second condition [27],

Γ =
‖uprev (s)− ucur (s)‖22

‖uprev (s)‖22
(7)

where uprev(s) is the u(s) value in previous iteration,

ucur(s) is the value in current iteration, and the sifting

process stops when Γ < 0.2 [27]. Then, we set ui(s)
as F1j(s), the first IMF of the jth ensemble , which

possesses the highest frequency components of the signal.

The first residual r1 (s) = qj (s)− F1j(s) becomes the

new target vector.

5) Repeat step 4, the kth residual or the new target vector is

given as rk (s) = rk−1 (s)− Fkj(s), where qj(s) in (4)

is r0(s). This iteration continues until a certain criterion

is reached, such as a maximum number of iterations or

the frequency level of the residual term. Therefrom, qj(s)
is decomposed into a sum of K IMFs and a residual term

as

qj (s) =
K
∑

k=1

Fkj (s) + rK (s) (8)

where Fkj(s) is the kth IMF of the jth ensemble trial,

and rK(s) is the residual in the Kth iteration.

6) With different white noise realizations to implement M

ensemble trials, we obtain the ensemble mean of the kth

IMF as

Fk =
1

M

M
∑

j=1

Fkj (9)

The total number of ensemble trials is set as M = 50 in

this study. The ensemble mean of the kth IMF Fk will then

be transferred to 2D-image IMF Gk. The ensemble means

of the corresponding IMFs portray finer details in the image,

when detrended, have enhanced contrast and facilitate the image

recognition [30]. Consequently, we select the best IMF Gk with

the highest peak-signal-to-noise ratio (PSNR), which possesses

the highest resemblance with the original image [31]. For the

video frame X ,

PSNR (Gk, X) = 10 log10

(

2552

MSE (Gk, X)

)

(10)

where

MSE (Gk, X) =
1

l1l2

l1
∑

i=1

l2
∑

j=1

(Gkij , Xij)
2

(11)

The AVF convolves a sliding window filter on the image that

replaces the center value in the window with the average values

of neighbor pixels. The MF replaces each pixel values by the

median values of its neighbor pixels, sorted in an increasing or-

der, in the window. The GF is achieved by convolving Gaussian

sliding window with the image [32]. A 3 × 3 sliding window

with stride of 1 is used for AVF, MF, and GF.

C. Spatial Resolution

Here, both simulation and optical potential mapping images

have relatively low resolution, with 200 × 200 and 80 × 80

pixels, respectively. YOLO is exceptionally effective in detect-

ing small objects or the rotor core in our case here. YOLO

utilizes anchor boxes, which are predefined bounding boxes with

specific aspect ratios and sizes based on the characteristics of the

training data. During training, YOLO adjusts the coordinates of

these anchor boxes to accurately localize objects in the image

by fitting them to the ground truth bounding boxes. This differs

from other object detection methods that employ fixed default

boxes or sliding windows, which may fail to detect small objects.

Additionally, YOLO demonstrates greater flexibility in handling

objects with diverse shapes and sizes. It achieves this through a

grid-based approach: the image is divided into numerous cells,

and the presence and absence of the object in each cell will then

be determined.

Further, YOLO predicts bounding boxes as offsets from the

top-left corner of each cell in the grid, and the size of the

bounding box can vary depending on the size and aspect ratio of

the object being detected. During post-processing, the predicted

bounding boxes are converted to coordinates relative to the entire

image, and their sizes are adjusted based on the anchor boxes

used in training. This allows YOLO to generate bounding boxes

of various sizes and aspect ratios, even if they are smaller than

the size of the grid cell. Moreover, rotors have been observed in

various shapes (e.g., spiral, figure-eight, and multiform [1]) and

sizes during rotor mapping procedures, depending on patient

condition and location of the rotors in the heart. Indeed, the size

of the bounding box represents the uncertainty in identification

of rotor cores.

D. The YOLO Model

To detect the rotor core, we apply the YOLO-based object

detection architecture with 24 convolutional layers (CLs) fol-

lowed by 2 fully connected layers (FCLs), as demonstrated in

Fig. 4. The first 24 CLs with max pooling layer are used to extract

features from images, and the last 2 FCLs are added to predict the

output probabilities and bounding boxes [33]. A linear activation

function is used for the final layer, and the activation function

of the leaky rectified linear unit (ReLU) are used for all other

layers.

The YOLO architecture uses bounding boxes to detect objects

in an partitioned image [33]. Specifically, the input image is first

divided into D ×D grid cells. If the center of rotor core falls

into a grid cell, a bounding box (the red box in Fig. 5(a)) in that

grid cell is then included and responsible for detecting that rotor

core. The centroid and size of the bounding box indicate the core
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Fig. 4. CNN architecture has 24 convolutional layers followed by 2 fully connected layers. (a) The original image is resized to 448× 448. The
default stride (how far the filter moves in every step along one direction) for each CL is 1; (b) the first layer includes 1 CL (7× 7× 64 with stride= 2)
and 1 max pool (2× 2 with stride = 2); (c) the second layer includes 1 CL (1× 1× 128 and 1 max pool (2× 2 with stride = 2); (d) the third
layer includes 4 CLs (1× 1× 128, 3× 3× 256, 1× 1× 256, and 1× 1× 512) and 1 max pool (2× 2 with stride = 2); (e) the fourth layer includes
10 CLs ((1× 1× 256, 3× 3× 512)× 4, 1× 1× 512, and 3× 3× 1024) and 1 max pool (2× 2 with stride = 2); (f) the fifth layer includes 6 CLs
((1× 1× 512, 3× 3× 1024) × 2, 3× 3× 1024, and 3× 3× 1024 with stride = 2) and 1 max pool (2× 2, stride= 2); (g) the sixth layer includes 2
CLs ((3× 3× 1024) ×2); (h) and (i) each include a FCL.

Fig. 5. (a) Image of a simulated rotor is divided into 7× 7 grid cells;
the centroid of the bounding box (the yellow dot) indicates the rotor core;
(b) intersection and union between the predicted bounding box (red) and
the ground truth (black).

location and its potential range. Each bounding box is associated

with 5 variables:x, y, w, h, andC. (x, y) are the centroid coor-

dinates of the bounding box. The valuation of (x, y) is relative to

the grid cell that the core may reside in. By default, coordinates

of the upper-left and the lower-right corners of each grid cell are

(0, 0) and (1, 1), respectively. Thus, x, y ∈ [0, 1]. The width

w and height h of the bounding box determine the prediction

precision; a small bounding box implies high precision. The

precision can be further quantified by the IOU (IOU ∈ [0, 1]),
which hinges on intersection and union between the predicted

bounding box and the ground truth (Fig. 5(b)). Intersection is

the overlapping area between the predicted and ground truth

bounding boxes, and union is the total area covered by these two

bounding boxes. Multiple bounding boxes (quantity denoted by

B) can be adopted for each grid cell in case there are multiple

rotor cores in one cell. For the multiple rotor cores in simulated

datasets,B = 4 is used to stipulate that each grid cell can contain

up to 4 cores. B = 2 is used for the animal optical mapping

dataset, as the stationary rotor core and the meandering one may

co-exist in one grid cell.C = Icore × IOU is the confidence for

rotor core detection. Icore = 0 if no rotor exists in a cell, which

also implies that C = 0. Otherwise, Icore = 1. Therefore, the

output of the last FCL contains information on x, y, w, h, C for

B bounding boxes and the corresponding probability of rotor

core existence in all grid cells (D = 7). Thus, the dimension of

the last FCL is 7× 7× (B × 5 + 1).
The optimal valuation of x, y, w, h and C is derived from

minimization of a loss function, as depicted in (12), which es-

sentially corrects the centroid and size of the bounding box [33]:

Loss (x, y, w, h, C)

= λ1

D2

∑

i=0

B
∑

j=0

µ
obj
ij

[

(xi − xi0)
2 + (yi − yi0)

2
]

+ λ1

D2

∑

i=0

B
∑

j=0

µ
obj
ij

[

(
√
wi −

√
wi0)

2
+
(

√

hi −
√
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B
∑
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µ
obj
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√
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√
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2
+
(

√
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√
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]

+

D2

∑

i=0

B
∑

j=0

µ
obj
ij (Ci−Ci0)

2+λ2

S2

∑

i=0

B
∑

j=0

µ
noobj
ij (Ci−Ci0)

2

+

D2

∑

i=0

µ
obj
i

(

picore − pi0core
)2

(12)

The first term of the loss function arises from the prediction

of the centroid (x, y). (x0, y0) are the true coordinate of the
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centroid given in the training data. µ
obj
ij = 1 if the jth bounding

box in the ith cell contains the rotor core, and µ
obj
ij = 0 other-

wise. The true valuation of width w0 and height h0 are given

by the PS approach [9], which points to the smallest bounding

box that fully covers the rotor core. The third term is the loss

related to the confidence C for each bounding box predictor.

0 < C0 ≤ 1 if the rotor core exists in the jth bounding box

of the ith cell, otherwise C0 = 0. µ
noobj
ij = 1 when there is no

rotor core in the jth bounding box in the ith cell. The last term

is the classification loss. µ
obj
i = 1 if the rotor core resides in

the ith cell, and µ
obj
i = 0 otherwise. λ1 = 5 and λ2 = 0.5 are

the weights used for coordinate predictions and for confidence

predictions when no rotor is present, respectively. pcore is the

probability that a rotor core exists in one grid cell.

Here, we evaluate the accuracy of deep learning meth-

ods, YOLO, AVF-YOLO, GF-YOLO, MF-YOLO, and EEMD-

YOLO, using both simulation and the animal optical mapping

datasets to tackle the rotor core detection problem. The IOU is

used as the criterion for rotor core detection, and the accuracies

are compared using precision, recall, and F1 score. In addition,

Tukey’s honestly significant difference (Tukey’s HSD) test are

utilized to evaluate and compare the performance of models

trained with simulation data, animal optical mapping data, and

a combination of both.

III. NUMERICAL RESULTS

A. Rotors Detection on Simulated Data

Fig. 6 shows the rotor core detection using AI models on sim-

ulated dataset with single rotor. In EEMD-YOLO, the original

simulated data is first decomposed by EEMD. The 2D-image

IMF G6 with the highest average PSNR = 7.91 dB is selected

for rotor detection. Detection results using YOLO, AVF-YOLO,

GF-YOLO, and MF-YOLO are shown in Fig. 6(b)–(e). EEMD-

YOLO removes Gaussian noise while preserving fine details of

the images (Fig. 6(f)). Fig. 6(g)–(l) shows detected locations

of predicted rotor cores (blue) and ground truth (white) using

AI models on the randomly selected snapshots over the testing

dataset. It is observed that all AI models can correctly detect the

location of the majority of rotor cores where ground truth are

located.

Fig. 7 shows the rotor cores detection using AI models on

a randomly selected video frame of simulation dataset with

multiple rotors. The 2D-image IMF G6 with the highest average

PSNR = 7.87 dB is selected for rotor detection. Detection

results using YOLO, AVF-YOLO, GF-YOLO, and MF-YOLO

are shown in Fig. 7(b)–(e). EEMD-YOLO removes Gaussian

noise while preserving fine details of the images (Fig. 7(f)).

Fig. 7(g)–(l) shows detected locations of predicted rotor cores

(blue) and ground truth (white) using AI models on the randomly

selected snapshots over the testing dataset, indicating that rotor

cores are mostly predicted in locations where ground truth

located.

As shown in Table I, we compare the performance of different

models on simulated data. It appears that the EEMD-YOLO

model achieves the highest IOU (0.95), precision (97.2%),

Fig. 6. Detection results on pre-processed simulated single rotor us-
ing different methods: (a) The ground truth; (b) simulated rotor core
with SNR = 5dB noise, core identified via YOLO; (c)–(f) detection re-
sults using AVF-YOLO, GF-YOLO, MF-YOLO, and EEMD-YOLO; The
blue clusters of dots are locations of stationary rotor cores from 300
testing snapshots of the simulated single-rotor: (g) The ground truth,
and predicted locations using (h) YOLO, (i) AVF-YOLO, (j) GF-YOLO,
(k) MF-YOLO, and (l) EEMD-YOLO models.

TABLE I
COMPARISON OF IOU, PRECISION, RECALL, AND F1 SCORE FOR

DIFFERENT METHODS ON SIMULATED DATA

recall (93.8%), and F1 score (95.5%) among the models

listed. This suggests that EEMD-YOLO performs the best to

accurately localize objects and achieve a good balance be-

tween precision and recall. The YOLO model performs rel-

atively worse. Other models, MF-YOLO, AVF-YOLO, and

GF-YOLO, demonstrate varying levels of performance, better

than YOLO.
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Fig. 7. Detection results on pre-processed snapshots using sim-
ulated data with multiple rotors: (a) The ground truth; (b) sim-
ulated multiple rotor cores with SNR = 5 dB noise, and cores
identified via YOLO; (c)–(f) detection results using AVF-YOLO, GF-
YOLO, MF-YOLO, and EEMD-YOLO; the blue clusters of dots are
locations of meandering rotor cores from 300 testing snapshots
of the simulated multiple-rotors data: (g) The ground truth, and
predicted locations using (h) YOLO, (i) AVF-YOLO, (j) GF-YOLO,
(k) MF-YOLO, and (l) EEMD-YOLO models.

B. Rotors Detection on Animal Optical Mapping

Fig. 8 depicts the rotor core detection using AI models on

animal optical mapping dataset: the upper rotor is meandering,

and the lower one is stationary. Fig. 8(a) is the ground truth. The

AVF-YOLO, GF-YOLO, and MF-YOLO (Fig. 8(c)–(e)) slightly

removes more shadow area compared with the original optical

mapping image (Fig. 8(b)). In Fig. 8(f), for the EEMD-YOLO,

the 2D-image IMF G6 with an average PSNR = 6.76 dB is

selected. The selected IMF from EEMD has enhanced contrast

compared with other 3 AI models with filters. Fig. 8(g)–(l)

shows detected locations of the predicted rotor cores (blue) and

ground truth (white) using AI models on the randomly selected

snapshots over the testing dataset. It can be observed that all

AI models can correctly detect locations of the majority of rotor

cores. However, closer inspection of Fig. 8 shows that all models

miss part of the ground truth location of rotor cores.

The comparison of IOU and the SD for different models in

three different groups (A, B, and C) using Tukey’s HSD is

Fig. 8. Detection results on pre-processed animal optical mapping
data using different methods: (a) The ground truth; (b)–(f) rotor de-
tection results with YOLO, AVF-YOLO, GF-YOLO, MF-YOLO, and
EEMD-YOLO. The blue clusters of dots are locations of rotor cores
from 300 testing snapshots of the animal optical mapping: (g) The
ground truth, and predicted locations using (h) YOLO, (i) AVF-YOLO,
(j) GF-YOLO, (k) MF-YOLO, and (l) EEMD-YOLO models.

depicted in Table II. The models include YOLO, MF-YOLO,

AVF-YOLO, GF-YOLO, and EEMD-YOLO. In group A,

YOLO achieves an IOU of 0.65, while MF-YOLO and EEMD-

YOLO has a higher IOU of 0.75. AVF-YOLO and GF-YOLO

achieves IOU values of 0.70 and 0.68, respectively. In group B

and group C, all models achieve high performance (p value >

0.33), which are higher compared to Group A (p value < 0.001).

Overall, the EEMD-YOLO model registers the highest accuracy

in rotor core detection in all scenarios.

As shown in Table III, all models achieve high precision,

recall, and F1 scores on the animal optical mapping data. The

highest precision scores are achieved by EEMD-YOLO in all

three training groups (group A: 87.1%, group B: 97.5%, group

C: 97.2%). In general, it can be observed that models trained

with both simulation and animal optical mapping data (group

B) achieve better performance than models trained with only

simulation data (group A) or animal optical mapping data (group

C). This is evident from the fact that all models achieve higher

scores in group B than group A or C.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 08,2024 at 17:40:16 UTC from IEEE Xplore.  Restrictions apply. 



SHU et al.: IMAGE-DECOMPOSITION-ENHANCED DEEP LEARNING FOR DETECTION OF ROTOR CORES 75

TABLE II
COMPARISON OF IOU USING TUKEY’S HSD FOR DIFFERENT METHODS ON ANIMAL OPTICAL MAPPING DATA WITH DIFFERENT TRAINING DATA

TABLE III
COMPARISON OF PRECISION, RECALL, AND F1 SCORE USING DIFFERENT METHODS ON ANIMAL OPTICAL MAPPING DATA WITH DIFFERENT TRAINING DATA

Comparing different models, EEMD-YOLO appears to be the

most effective model in terms of overall performance, achieving

high precision, recall, and F1 scores across all three training

groups. AVF-YOLO also achieves good results in terms of

precision and F1 score but had lower recall scores compared

to other models. Furthermore, our images are of relatively low

resolution, and YOLO is fairly fast and agile. The training time

is 1166.3 seconds for the simulation data (12000 frames from 8

simulation episodes), 980.3 seconds for optical mapping data

(7200 frames randomly selected from optical mapping data)

and 1853.8 seconds for a combination of simulation and optical

mapping data as training dataset.

IV. DISCUSSION

Addressing the scarcity of literature in AF identification us-

ing AI-assisted methods, this study presents the development

and validation of an image-decomposition-enhanced CNN algo-

rithm (EEMD-YOLO) for rotor core detection. It preserves the

fine details of the original image frames, yielding the highest

accuracy among different approaches for detecting both the

stationary and meandering rotors. We use both simulated electric

potential mapping data and optical mapping data acquired from

animal experiments to train and test the models. The model

learned only from the simulated patterns can identify rotors

in animal optical mapping data (see Table III). In comparison,

performance of models trained by the combination of both

simulation and animal optical mapping data, or only animal

optical mapping data register higher accuracy.

In clinical settings, the data recording is susceptible to noise

contamination or artifacts. This can be attributed to the impact

arising from electrode placement sites and contact areas in the

high-resolution electrocardiography system. In the average filter,

pixel values are replaced by average values of neighboring

pixels, which, however, may distort the image texture. The

median filter replaces each pixel values by the median values of

neighboring pixels and protects the edge of the image well while

filtering out the noise. It is less sensitive than linear techniques

(e.g., AVF) to extreme changes in pixel values, yet it could lead

to image discontinuity. GF works by assigning different weights

to pixels at different neighboring locations with a kernel, to pre-

serve the overall grayscale distribution of the image. The EEMD

algorithm instead decomposes electric potential mapping into

components with distinct frequency and energy amplitudes,

the ensemble technique guarantees a robust decomposition of

images. This method capitalizes the time-scale characteristics of

the data itself for decomposition without predefined basis func-

tions as required by Wavelet analysis. Thus, the EEMD method

can be applied to any type of signal decomposition in theory,

and has an obvious advantage in dealing with non-stationary

and non-linear data [27].

One limitation of this study is that we only investigate the

potential mapping on 2D surfaces, while the dynamic evolution

of the potential mapping on the 3D surfaces across epicardial

and endocardial regions could potentially lead to more actuate

diagnosis and realistic applications [34]. As a direction for

future work, cardiac imaging techniques have offered potential
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opportunities to visualize and monitor the heart’s electrophysio-

logical state at high spatial and temporal resolutions for real-time

and remote detection of cardiac ailments. Despite the potential

benefits, cardiac imaging techniques have inherent challenges,

such as the need for precise measurements using ECGI and the

possible complications associated with basket catheter insertion

[35], [36]. Nevertheless, exploring the effectiveness of AI-based

approaches in combination with cardiac imaging techniques for

real-time diagnosis and early recognition of cardiac illness in

clinic settings could hold promise for the future.

V. CONCLUSION

In this study, we investigate AF rotor detection via integrating

deep learning with image decomposition techniques. The novel

approach is comparable with the common gold standard of

physics-based methods using data from both simulation and

animal optical mapping experiments. It offers a more automated,

less labor- and expertise-intensive rotor detection process with

promises of application in real-time dynamic cardiac monitoring

and AF diagnosis.
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