International Journal of Applied Earth Observation and Geoinformation 133 (2024) 104156

FI. SEVIER

International Journal of Applied Earth
Observation and Geoinformation

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jag

Check for

Predicting plants in the wild: Mapping arctic and boreal plants with | el
UAS-based visible and near infrared reflectance spectra

Peter R. Nelson *”", Kenneth Bundy ?, Kevaughn. Smith °, Matt. Macander ¢, Catherine Chan ¢

2 University of Maine, United States

® Laboratory of Ecological Spectroscopy — lecospec, LLC, United States

¢ ABR Inc, United States
4 University of Nebraska, United States

ARTICLE INFO

Keywords:

Adaboost

Alaska

Bagged Regression Trees
Drone

Classification

Ground validation
Fairbanks

Hyperspectral

Image processing
Machine learning
Optimization
Open-source

Partial Least-Squares Linear Discriminant
Analysis (PLS-DA)
Ranger

R

Spectral Library
Transferability
Vegetation indices

ABSTRACT

Biophysical changes in the Arctic and boreal zones drive shifts in vegetation, such as increasing shrub cover from
warming soil or loss of living mat species due to fire. Understanding current and future responses to these factors
requires mapping vegetation at a fine taxonomic resolution and landscape scale. Plants vary in size and spectral
signatures, which hampers mapping of meaningful functional groups at coarse spatial resolution. Fine spatial
grain of remotely sensed data (<10 cm pixels) is often necessary to resolve patches of many Arctic and boreal
plant groups, such as bryophytes and lichens, which are significant components of terrestrial vegetation cover.
Separation of co-occurring small vegetation patches in images also requires high spectral resolution. Our goal
here was to test the capabilities of UAS-based imaging spectroscopy for mapping plant functional types (PFT)
using high spatial and spectral resolution data over Arctic and boreal vegetation at four sites in central Alaska.
We then tested several Machine and Deep learning models of PFT cover using the reflectance spectra. The best
models were very simple, balancing both bias (overfitting caused by imbalance sample sizes) and variance (fit to
the independent validation data), explaining > 50 % of the independent ground cover estimation and > 84 %
accuracy in estimating validation pixels. We explored the impact of spectral resolution on PFT mapping by
including vegetation indices and a gradient of narrow (5 nm) to wide (50 nm) band features in our classification
models across. Vegetation indices were the most important predictors for classifying PFTs, while including band
features improved models, with narrow and wide bandwidths having similar importance but models with wide
bandwidths performing slightly better. We conclude that Arctic and boreal PFT reflectance can be pooled across
sites for mapping with relatively few labeled pixels. Underfit, simple algorithms outperformed deep learning, at
least with these small sample sizes, in classifying PFTs by balancing bias and variance. Future work should aim to
increase the number of labeled pixels and the detail of labels to further improve mapping taxonomic precision.

1. Introduction

1.1. Vegetation composition and the challenges of spatial and spectral

scale

satellites is too large (>10 m) to correctly estimate many properties of
surface patches (Rocchini et al., 2016; Siewert and Olofsson 2020. Un-
certainty in estimating the composition of ground surface mixtures in
the Arctic and boreal is driven by the fact that most areas are fine
mixtures of living vegetation, litter, gravel, rock, soil, water, snow, and

A vital challenge to understanding the impacts of accelerating
climate remains mapping vegetation composition and function across
the Arctic and boreal, which combined are the largest terrestrial biomes
on earth. The identity of surfaces, especially plants, at the most precise
taxonomic rank is essential to understanding ecosystem processes. While
satellite remote sensing has enabled scaling ground surface vegetation
measurements across the landscape, the pixel size of freely available
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ice in mixed in patches from 1 em? to 100's m? (Résdnen and Virtanen
2019; Thomson et al., 2021). Pixels from satellite images in this region
are therefore usually admixtures of spectrally heterogeneous surfaces
which complicates estimates of many basic parameters, such as accu-
rately estimating soil erosion (Kodl et al., 2024) which are then used for
upscaling for ecosystem modeling Siewert and Olofsson 2020. Scale
mismatches between global models and regional to local studies
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underscore the need for measuring and understanding scale dependent
properties of vegetation (Xu et al., 2009).

Arctic and boreal ecosystems have diverse reflectance spectra
(Nelson et al., 2022). Vegetation diversity is one major driver of spectral
diversity of vegetation, along with phenology. Green vascular vegeta-
tion spectra are relatively similar at peak phenology (i.e. midsummer)
yet consist of a large number of species (Liu et al., 2023). Other surfaces,
such as lichens and rocks, have highly heterogeneous reflectance sig-
natures within the same group (Rees et al., 2004). Remotely sensed
spectra within the Arctic and boreal are characterized by both high
variability within and between taxonomic groups (Nelson et al., 2022).
Spectral resolution of Landsat and Sentinel-2 satellite images have up to
10 bands that are usually too wide to separate similar looking surfaces,
such as trees or shrubs in the same genus but different species (Pinto-
Ledezma and Cavender-Bares, 2021). To achieve high taxonomic pre-
cision, recent studies needed to use structural measures of the vegetation
to separate optically similar vegetation (Orndahl et al., 2022; Yang et al.,
2023). Remote sensing data capable of separating tundra surfaces must
therefore have sufficient spectral and spatial resolution to distinguish
surfaces, which is a major challenge to collect given the challenges
including a narrow phenological window, low-sun angle, and logistical
access (Nelson et al., 2022). There is a long standing belief that there is a
connection between spectral variation and vegetation diversity (Palmer,
2008). While this may be true and certainly of interest, this connection is
tenuous depending on many factors, such as diversity metric selected
and the size of the spatial window in which diversity is measured
(Torresani et al., 2024). Instead of diversity metrics of plants, we focused
on the straight-forward estimation of plant groups themselves so that
individual patches or groups can be mapped across larger spatial scales.
Our study shares the same idea as Palmer (2008) of extending the bot-
anist’s eye beyond what can be visited on foot to identify mixtures of
plants in the landscape.

NASA, the National Science Foundation (NSF), and other U.S. Earth
observing agencies and organizations have recently invested in collect-
ing higher spatial and spectral resolution imaging spectroscopy datasets
by fixed wing aircraft over Arctic and boreal zones. NASA’s AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer) — Next Generation
(AVIRIS-NG), NASA Goddard LiDAR Hyperspectral Thermal (G-LiHT)
system and NSF National Ecological Observatory Network’s Airborne
Observation Platform (NEON AOP) have higher spatial (<10m) and
spectral resolution than available satellite data to bridge the gaps in
retrieval of surface properties. All three platforms have been deployed
extensively in Alaska over the last 5 years. Our intent here is to explore
higher spatial and similar spectral resolution spectroscopy in the Arctic
and boreal to better understand the composition of the ground condi-
tions. To do this, we use an airborne imaging spectrometer on UAS,
which has been shown to be a key spatial scaling tool in the Arctic and
boreal vegetation (Siewert and Olofsson 2020; Thomson et al., 2021;
Yang et al., 2022). We also aimed to understand what kinds of models
and forms of data manipulation may aid in this mapping effort.

1.2. Ecologically Informative Mappable plant functional types (PFTs)

Plant functional types (PFTs) represent our best approximation of
species that distill down to a mixture of morphology, taxonomy and sizes
of vegetation while still representing a meaningful taxonomic class
(Ustin and Gamon, 2010). Although significant progress has been made
in estimating functional traits in plants in some other biomes, only a few
studies have done so in the Arctic and boreal. The best example of this
used a few vegetation classes studied over small spatial extents to nicely
demonstrate separation of Arctic and boreal plant groups (Thomson
et al., 2021). Furthermore, estimating plant traits does not produce the
same understanding as taxonomic categories used for estimating bio-
logical diversity. Nonetheless, spectral variability within and between
species has prevented remote sensing collectively from being able to
reliably predict species occurrence or cover within bigger pixels.
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Instead, PFTs are used to represent vegetation species groups but their
application has been uneven in terms of taxonomy, comprehensiveness
of taxa and other co-occurring abiotic surfaces.

Definition and selection of PFTs affects the utility and accuracy of a
vegetation map while varying PFT classification approaches preclude
direct comparison between studies. While mapping species is the ideal,
this is not yet a realistic goal in the Arctic and boreal (Nelson et al.,
2022). One alternative is to use a first-principles approach proposed PFT
selection driven by ecological theory balanced with empirical reflec-
tance differences (Kattenborn et al., 2019). However, the operational
limitations of detection remain at some aggregated groupings of plants.
For our study, we selected PFTs classes based on these considerations,
using taxonomic structure to guide our PFT classes while grouping many
heterogeneous classes together, understanding that many are dominated
by only a few members (e.g. most PFTs have only a few dominant spe-
cies). We also selected PFTs to match general categories of recent
mapping efforts (Macander et al., 2022; Orndahl et al., 2022) to maxi-
mize comparability across studies.

1.3. Translating data and imagery into maps

1.3.1. Reflectance data analysis history/challenges

Past modeling efforts to classify or estimate fractional cover of PFTs
in the Arctic, boreal and elsewhere utilized statistical methods (Schaaf
et al., 2011), traditional machine learning (e.g. random forest)
(Macander et al., 2017; Orndahl et al., 2022; Yang et al., 2023) and deep
neural networks (Hong et al., 2023; Yokoya et al., 2023). The majority of
these, apart from deep learning methods, utilize site-specific classifiers.
These approaches utilize data from a single image to train their statis-
tical or ML models. As a result, inference is limited to that particular
scene. This limits the ability of this approach to scale between images or
across larger areas of the boreal and Arctic.

Deep learning approaches, on the other hand, offer transferable
models. These approaches typically train models from satellite images
and classify the landscape at coarse resolutions. Many of these models
are targeted at classifying farmland or forests, which are primarily large
patches of similar vegetation. This approach, in addition to these limi-
tations of spatial resolution, are limited by the amount of data required
to train them. For example, SpectralGPT, a pre-trained spectral trans-
former foundation model, was trained on one million images (Hong
et al., 2023). Past U-net based computer vision approaches have been
trained on tens or hundreds of thousands of images. There is no such
comparable dataset for the Arctic and boreal yet, so training such a
model would require tremendous amounts of data collection. While
these models offer excellent performance across most of the globe, the
lack of data representative of the Arctic and boreal zone limits their
applicability to remote sensing in the tundra.

1.3.2. Vegetation indices as a means for data reduction and transferability
between images

While great care is taken to collect reflectance data at the same time
of year under optimal illumination and atmospheric conditions, inherent
features within each image creates variation that can cause the same PFT
to appear different between locations. This reflectance variation can be
caused by many factors that are hard to control, such as cloud cover,
bidirectional reflectance (BRDF), shadows at the local scale (nearby
tree) or landscape scale (shaded valley). Correcting for these effects is
ideal but often not practical, especially for very high spatial resolution
imagery like used here.

In lieu of model-based atmospheric and BRDF corrections, we used
the simple but effective empirical line method per flight to standardize
reflectance across sites. We then use traditional machine learning with a
wide array of vegetation indices as features in addition to reflectance as
predictors. Our rationale comes from the well-established approach of
band ratios, in the simplest for one band divided by another, then to
normalized vegetation indices (e.g. NDVI), and to more complex,
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nuanced shape metrics (e.g. 1st derivative of a segment of the reflec-
tance profile). These vegetation indices (VIs) utilize band ratios and
relative differences in reflectance across a range of the bandpass avail-
able, therefore limiting the effects of differences between scenes and
flights. Models using VIs are therefore likely to be more transferable
across scenes, flights, and locations. Machine learning models including
VIs as covariates can be trained with much smaller amounts of data than
the deep learning approach while mitigating the primary challenge of
the traditional machine learning approach.

1.4. Overall study goals

We developed a transferable (pooling data across sites), efficient, and
scalable approach to map PFTs that maintains high spatial and spectral
resolution of remotely sensed data. We used an imaging spectrometer on
a UAS and detailed rapid ground cover measurements. Our workflow of
mapping using remotely sensed imagery involves three main steps; 1)

International Journal of Applied Earth Observation and Geoinformation 133 (2024) 104156

taking ground measurements (cover by PFT or species) on a series of
plots or sample units, 2) acquiring imagery of the locations where
ground measurements occurred and acquiring a spectral signature of the
plot or sample unit from the remotely sensed image and 3) modeling the
ground measured surface attributes (e.g. presence of a plant) using the
spectral signatures acquired from the imagery and interpolating the
surface attribute to areas not directly measured. We apply these methods
to map Arctic and boreal vegetation into different classes in imagery in
central Alaska.

2. Methods
2.1. Field methods
2.1.1. Site, plot and transect Layout

Site locations were in the Fairbanks North Star and Denali Boroughs
in central Alaska. Each site was selected to be located within (planned or
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Fig. 1. Study area map of Alaska showing UAS collections with RGB images showing ground reference sampling locations, RGB images and predicted PFT maps for

each site. The coordinate system is WGS84 UTM Zone 9.
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recent) AVIRIS-NG (“AVIRIS”) flight lines which were accessible to
ground crews, some of which were also known research areas. Site lo-
cations were sampled as close in time to AVIRIS overflights as possible
for future use in ground validation. Sites included long term ecological
research (LTER) areas and other sites in central Alaska, accessed in day
trips from Fairbanks representing Arctic or alpine tundra to boreal for-
ests, including Bison Gulch (adjacent Denali National Park and not
under AVIRIS), Eight Mile Lake area (north of Healy, Alaska) near other
teams long term research plots, Bonanza Creek Experimental Forest
(southwest of Fairbanks) and Caribou-Poker Experimental Forest
(northeast of Fairbanks, which we call Chatanika in this study because
that is the nearby village).

At each site, we sampled a plot consisting of a ground calibration
transect 100 m long delimited by a tape with 1 m white plastic pipes for
ground control laid perpendicular to the tape at every 10 m mark
(Fig. 1). Transects were laid out along the contour of any hillslope so that
there was little elevation change along the transect but were otherwise
randomly constrained by access (within a few hundred meters of road
access). Starting at 0 m and at each 10 m increment along the transect, a
1 m? quadrat was used to constrain the ocular estimation of vegetation
cover by species for both vascular and non-vascular species. See Figs. 1
and 6 for a map of locations and detailed view of the ground validation
at one site.

2.1.2. In Situ vegetation cover Estimates

For each quadrat along the transect at each site, ground cover by taxa
or abiotic cover class was estimated by a single, expert observer using
the ground photos. Cover was estimated as visible from above (“top
cover”) and therefore summed to 100 % for each quadrat. PFTs that
were observed but less than 1 % of the image were counted as not
present. Cover was estimated at the most precise taxonomic level
possible, typically to species or genus. Abiotic surfaces were estimated in
the images as litter, wood, rock, gravel, or bare soil but were lumped as
“Abiotic” in the modeling and mapping. Cover estimates at the high
precision (e.g. species or genus level) were aggregated to a single PFT
level for a standard set of categories for all vegetation and abiotic sur-
faces in images.

2.1.3. UAS imaging spectroscopy

Over each site, airborne images were collected with a Headwall
Micro A- series push-broom imaging spectrometer (Headwall Photonics,
Bolton, MA, USA) covering the VNIR range (324 spectral bands from
400-1000 nm with 1004 spatial bands/pixel) hard-mounted on UAS (DJI
Matrice 600). Geometric position of each image was recorded on-board
with an APX-15 GPS/IMU without any post-processing due to the lack of
base stations nearby and no satellite correction available at that time (e.
g. PP-RTX). Expected accuracy of location and orientation with this
configuration was 1-3 m. Our imagery had pixels ~ 4 cm ground surface
distance (GSD) at 50 m flight above ground level (AGL).

All images were collected using the same process for radiometric
calibration. Right before each flight, we collected a white reference
image of a Spectralon panel covering the entire FOV under ambient
light, typically by tilting the UAS to avoid shadows, which was used to
assess illumination conditions and set flight speed. We also selected
pixels from a 55 % reflectance tarp as white reference for radiometric
calibration (Fig. 1). We used this tarp reflectance for converting radiance
to reflectance in sensor manufacturer’s software that uses the empirical
line approach compared to the white reference (SpectralView v.1.3,
Headwall Photonics, Bolton, MA, USA). Images were orthorectified to
WGS 84 UTM Zone 6 (EPSG code 32606) using Alaska 2 Arc-second
Digital Elevation Models (DEMs) from the USGS.

Images were collected late July-early Aug in 2018-2019, primarily
under AVIRIS footprints, and as close in time to AVIRIS flights as
possible. Each day’s flights were conducted as close to solar noon as
possible although a couple flights were much later (Table 1). These
missions resulted in 750 GB of orthorectified reflectance across 12 sites,
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Table 1
Site name, date, conditions of each flight and number of ground validation
quadrats.

Site name Date and time Atmospheric Ground #
(UTC-8) Conditions wetness validation
quadrats
Bison Gulch ~ 8/12/2019, Clear with a Dry 9
(Healy) 12:07:28-12:17:41 small area of
light scattered
clouds on the
horizon
Eight Mile 7/28/2018, Partly cloudy Dry 11
(Healy) 14:37:17-14:45:04 with breaks of
full illumination
Chatanika 7/29/2018, Clear Dry 11
(Caribou- 11:32:59-11:47:40
Poker)
Bonanza 7/25/2018, Scattered high Moist 11
Creek 11:54:03-14:12:21 cirrus

each with 5-20 image strips, from ABoVE domain under AVIRIS will
soon be available from the Oak Ridge National Lab (ORNL) Distributed
Active Archive Center (DAAC). Images used here are a subset of this full
dataset.

2.2. Processing methods

2.2.1. Image Acquisition and processing

Orthorectification of ground control was performed by iteratively
adjusting flight altitude for each flight to match ground features
(shorelines, vegetation patches) in Google Earth imagery to match ex-
pected Ground Surface Distance (GSD). Radiometric correction from
digital number (DN) to radiance to reflectance followed manufacturer’s
recommendation. DN were first converted to radiance based on a dark
reference measurement (lens cap on) prior to flight. Radiance to
reflectance conversion followed the empirical line method based using a
single pixel from a 55 % reflectance gray scale tarp in an image (Fig. 1)
in the SpectralView software (Headwall Photonics, Bolton, MA). Gray
reflectance tarp values were close to expected values (Supplemental
Fig. 1), varying largely due to the tarp not being flat due to vegetation
and microtopography.

2.2.2. Image-based PFT spectral library

Ground photos of validation quadrats were georeferenced to the UAS
VNIR imagery in ArcMap 10.8 (ESRI Redlands, CA) and exported as
images. Patches of PFTs and the extent of each quadrat were digitized in
ENVI geospatial software (ENVI 5.5.1 Harris Geospatial Solutions, Inc.,
2018) using the georeferenced ground photos and coincident higher
resolution RGB imagery from UAS (ca. 2 cm resolution) when available.
PFTs located in images were hand digitized based on ground reference
photos or obvious characteristics (e.g. gravel road, large conifer trees),
primarily outside quadrats used for validation, although some patches
were digitized inside quadrats. At each site and quadrat, pure patches of
a PFTs were in a georeferenced ground photo. The minimum patch size
was 3 pixels for any PFT to be digitized. PFTs were digitized from images
across as many of the sites as possible to account for known differences
in reflectance and environmental conditions among locations and im-
ages. Reflectance by PFT is summarized in Fig. 2 showing the variability
within PFTs and in Fig. 3 showing how the median reflectance differed
between PFTs.

2.2.3. Spectral resampling and vegetation indices

Ninety (90) narrow-band vegetation indices (VIs) were calculated
using the hsdar package (Lehnert et al., 2019) in R (R Core Team, 2023).
The VIs used range from Chlorophyll to carotenoids to soil indicators
and were chosen as an efficient means to account for differences in the
magnitude of the reflectance between the images while preserving shape



P.R. Nelson et al.

Abiotic

BroadleafDecid
100-

75-

50+

251

|

ConiferEvergreen Graminoid

100-

751

Reflectance
wn
o

Lichen Moss

100+

75-

50+

251
e i A

600
800
1000

o
o
<

o 2
o
@ -—

400
600

Wavelength

Fig. 2. Reflectance (5 nm resampling) by plant functional type (PFT). Red lines
are the median reflectance, gray 90 % quantiles and blue line showing Standard
Deviation based on 17,201 pixels from 193 PFT patches hand digitized in UAS
VNIR imagery. For reference only, Sentinel-2 band passes are depicted behind
the spectra. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

and relative magnitudes.

After VI calculation, we tested the influence of spectral resolution on
the classification of PFTs by resampling the spectral library to 5, 10, 25
and 50 nm (last bandpass not used in PLS since it would have too few
bands to warrant use of PLS) to reduce noise in the image spectra.
Resampling was performed using cubic spline interpolation in the
spectrolab package (Meireles et al., 2017). The 90 VIs (based on the raw
data at 1 nm resolution) and bands resampled at different widths were
the independent variables (“predictors™) in our models of PFT occur-
rence below.

2.2.4. Balancing of the sampling between PFTs, patches and sites

Bias from PFTs with many patches was reduced by building balanced
datasets. We randomly sampled pixels one patch at a time until the
specified sample size was reached, both for the training and testing
splits. We set the testing sample size to 20 pixels per PFT and used a
gradient of sample sizes for training. The fully balanced train/test split
had 125 pixels per PFT. We also tested a range of sample sizes up to 2000
pixels, with the majority of PFTs having far fewer samples. This gradient
represented the tradeoff between coverage of large PFTs with bias
associated with differing sample sizes by PFT. Most sites had pixels for
most PFTs, which ensured the data for each PFT has adequate repre-
sentation of each site to prevent site-based and flight-based differences
confounding the analysis (Table 2). After balancing the number of pixels
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Fig. 3. Median reflectance (5 nm resampling) by plant functional type (PFT)
based on 17,201 pixels from 193 PFT patches hand digitized in UAS VNIR
imagery. Sentinel-2 band passes are depicted behind the spectra. Vertical
dashed lines represent bands used in calculating the most important vegetation
indices in the best Adaboost model.

by PFT across sites, we tested for differences between PFTs, sites and PFT
by site interaction using PerMANOVA (Anderson, 2001) using a
Euclidean distance and 1000 iterations.

2.3. Training and implementation of machine learning

2.3.1. Model experimental conditions and image to image transferability

Models were trained with a variety of preprocessing, feature
extraction methods and hyperparameter tuning (Supplemental Table 1).
We performed a grid search of preprocessing methods and features
utilizing a containerized version of lecospec running R 4.3.0 on Ubuntu
22.04 on a high-performance cluster at University Maine’s Advanced
Computing Group. AdaBoost model training in particular took signifi-
cant amounts of time.

2.3.2. Bagged regression trees using Ranger and Adaboost and linear
models PLS-LDA

We used four types of classification models built in the modeling
framework caret (Kuhn 2008):

1) Random forest (RF) as implemented by Ranger (Wright and Ziegler,
2017). We trained RF models with 2, 4, 8, 16, 32, 64, 128, 256 and
512 trees. Exploratory analysis on this data with RF models sug-
gested that adding max depth reduced accuracy, and alpha did not
have a significant effect on model performance. While max depth
and alpha typically reduce model overfitting, we noticed no associ-
ated increase in test set performance or quadrat-based validation R?
across levels of alpha and max depth. These therefore were not
included in the final hyperparameter tuning step.

2) Adaptive Boosting (Adaboost) (Alfaro et al., 2013). For each Ada-
boost model, we varied the number of weak learners (Classification
and regression Trees/CART) from two to 1024 and the maximum
depth of each learner from five to 30 splits.

3) Partial Least Square Linear Discriminant Analysis (PLS-LDA) (Liland
et al., 2016) across gradients of the wavelength and sample size per
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Table 2

Full sample sizes of pixels by site by PFT across 197 patches across four sites in central Alaska.
Site Abiotic Broadleaf Acid ConiferEvergreen Lichen Graminoid Moss
Bison Gulch 466 1085 2397 1482 0 0
Bonanza 448 972 1824 787 182 697
Chatanika 518 940 1937 0 116 321
Eight Mile 14 366 672 1039 34 904

PFT. The number of components varied from four to 40, increasing
by two each time. Models were trained with bandwidths of 5, 10 and
25 nm and no vegetation indices, since PLS assumes strong inter-
correlation between columns and VIs are far less intercorrelated than
reflectance.

Deep Learning (DL): 1-dimensional ResNet (He et al, 2016) and
Jigsaw (Moraga & Duzgun, 2022), with bands only, vegetation
indices and both.

4)

2.3.3. Deep learning methods

Some deep learning models were also developed using these data and
processing systems. The training data was kept similar between the tree-
based and deep learning based models, utilizing the same pixel-based
approach (eg. 1-dimensional). This required selecting hyperparameters
for the models using only a single pixel and providing them with no
spatial information. We tested traditional linear feed-forward models,
Residual Connection Convolutional Neural Networks (ResNet) and the
Jigsaw geospatial model identified in Moraga & Duzgun (2022). All
were trained with the Adam (Kingma, 2014) optimizer for a maximum
of 2000 epochs using cross entropy loss. All were trained with the Torch
deep learning framework using its R language binding.

2.3.4. Accuracy assessment

To assess model predictive accuracy for pure PFT patches, we
randomly sampled 20 pixels for each PFT from the 193 high confidence
pure patches digitized in the imagery. We compared the classification
accuracy of this independent validation data across models to inform
model selection and better understand model performance (hereafter
“accuracy”). To assess overall model fit for mixed PFT patches, we
aggregated cover estimates by PFT for each quadrant at each site. We
then computed the correlation between the ML predicted proportion of
pixels by PFT to the ground validation proportion by PFT to estimate the
proportion of explained variance (R%). We also compared the Relative
Percent Difference (RPD) between the model estimates and the ground
truth values, as used in Orndahl et al., (2022). Overall model perfor-
mance was assessed using the three above metrics (accuracy, R?, and
RPD), in which the best models had the highest R?, highest accuracy,
and the lowest RPD. After selecting a few well-performing models, we
created large area ground cover maps from a single, whole image per site
(Fig. 1). These predictions were then compared to the original images
and high-resolution aerial photographs to assess the map quality.

2.3.5. Variable importance

The best models were examined for variable importance. For RF, we
retrained models with more iterations and correcting for node impurity,
after which ranked predictors on the corrected gini impurity. For Ada-
boost, the most important predictors were averaged CART variable
importance scores across all the trees in the model. The 12 most
important variables for both models are listed with their respective
importance metrics in Supplemental Table 2.

Another important consideration in the variable importance is the
level of intercorrelation between variables. Variable inter-correlation
was assessed using pairwise Pearson correlation coefficients. We
compared models with the full predictor set to models with a reduced
predictor matrix, removing predictors at r = 0.99. We reduced the
predictor matrix sequentially starting with the variables correlated with
the most important RF predictors. We chose this approach because it

retained the most important predictors.
3. Results
3.1. Image-based PFT spectra

Pure patches (n = 193) of positively identified patches of different
vegetation at various levels of taxonomic specificity were distinct
enough to be digitized in the USA images based on the ground photos.
The sample size in the image spectral library was 17,201 pixels. Gra-
minoid had the fewest pure pixels (n = 332 pixels) while conifer trees
had the most (n = 6830 pixels), which we grouped as a single class called
ConiferEvergreen. No patches were large or distinguishable enough to
be digitized. PFTs were statistically different based on a balanced
dataset of 125 pixels per PFT at 1 nm wide bands accounting for dif-
ferences in sites (F=6.94, df = 5, p < 0.001) based on PerMANOVA. The
interaction between site and PFT was weak and non-significant (F=0.96,
df=12, p = 0.43).

3.2. Exploratory analysis

In order to better understand the data and PFTs therein, principal
component analysis (PCA) was used to examine the data (Fig. 4). Abiotic
and biotic classes appear separable based on the PCA results, with the
two classes forming distinct groups. Lichens appear between abiotic and
green plant clusters. Broadleaf, deciduous plants are largely super-
imposed on Axes 1 and 2 in the PCA, showing strong spectral similarity
of these groups relative to the other classes.

Q] o
—e— BroadleafDecid o
—&—  ConiferEvergreen
—5— Abiotic B
o | Lichen E%
= —%—  Graminoid =
—— Moss o
~ Bo
2
s 9 |
< o
(&)
o
o
S
o
w
S
T T T T T T
-3 -2 -1 0 1 2
PCA axis 1

Fig. 4. Principal Components Analysis (PCA) biplot using image spectra
showing separation of PFTs using a balanced sample across sites and PFTs (125
pixels per PFT) and 5 nm wide bands. Axes 1 explains 78.7 % of the variance
and Axis 2 9.5 %.
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3.3. Validation cover estimation by PFT

We used 42 quadrats (1x1 m) across 4 sites (Bonanza Cr, Bison Gulch,
Chatanika, Eight Mile) in central Alaska as our ground validation set
(Fig. 5, Table 1). Cover estimation by PFT in the ground photos pre-
sented difficulties due to the spatial distribution of patches in each
image. PFTs like graminoids or litter could often occur scattered in-
dividuals. Some PFTs were difficult to separate from each other, such as
gravel (abiotic) that is covered with a fine layer of lichen.

3.4. Image-based ML predictions

3.4.1. Overall model results summary

Model accuracy estimating PFTs in the quadrats (Fig. 5),PFT patches
and features in landscape broadly aligned with the known surfaces
present at each location (Fig. 6). At the quadrat level, individual pure
patches of PFTs were often visible both in the ground validation photos
and the predicted PFT images (Fig. 5). However, it was also clear from
the ground photos that many of the pixels in the quadrats were mixtures
in the UAS imagery. At the landscape level, model predictions showed
recognizable features, such as a calibration tarp in each image (Fig. 1)
correctly classified as “Abiotic” in most of the sites.

Model confusion/error was high for Graminoids across sites, espe-
cially Bonanza, likely due to a small sample size. Broadleaf deciduous
trees and shrubs were underestimated at Eight Mile while lichen had the
reverse case, with one high estimated cover and low observed cover in
one quadrant at Eight Mile (Fig. 1). Moss in one Bonanza quadrat had
very high observed cover and low estimated cover, likely from the
intermixed overstory above. Conifer evergreens were accurately esti-
mated across sites as was Abiotic (Fig. 6).

The best models from Adaboost and RF were close in their fit (ca. R?
= 0.5) and accuracy (ca. 0.85), while PLS-LDA was lower for both
metrics (RZ < 0.4, accuracy < 0.7) (Table 3). Overall, the most important
feature selection option in modeling was model complexity (e.g. number
of trees or components). Resampling bands to coarser spectral resolution
improved RF and Adaboost models although several narrow band
models were nearly as good in terms of accuracy and fit (Figs. 7 and 8).

3.4.2. Adaboost model results

Adaboost models with 4 bagged CARTs with a max depth of 20 had
the highest R? with relatively very high accuracy. This model used 500
pixels max sample size per PFT and 50 nm wide bands. Deeper trees
produced better accuracy but lower quadrant R?. After 12 trees, adding
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more increased model accuracy at the cost of RZ. Most of the calibration
tarp, road surfaces and gravel were regularly correctly estimated to be
Abiotic class by Adaboost models compared to RF. Accuracy by PFT for
this model is shown in a confusion matrix (Table 4). The validation cover
estimates from quadrats was more challenging for the model than the
validation pixel set. The fit of the model predicted cover to the observed
cover varied across sites and PFTs (Table 5) from near 0 to almost 1 for
lichens at a couple sites. The intercept showed strong bias for most PFTs
at each site. However, overall pooling the data across sites into a single
model resulted in quadrats clustered around the 1:1 observed vs pre-
dictoed for most PFTs with an intercept of near zero (Fig. 6).

3.4.3. Ranger model results

The best ranger model used 50 nm wide bands, 4 trees and removal
of variables at the 0.99 level of Pearson intercorrelation and moderate
imbalance (n = 500 max pixels per PFT). It explained 52 % of the
variation in the ground validation data (R? = 0.52) across the four sites
and was 80 % accurate on the test set of pixels. Several other simple RF
models with few trees (<10) with different combinations of wavelengths
(10 and 25 nm) and sample size (n = 125 or 2000 max pixels per PFT)
were close in overall fit and accuracy (R? > 0.5 and accuracy > 0.8). The
calibration tarp was often partially or completely estimated to be lichen
by RF models. Increasing the number of trees increased model accuracy
up to a point and then plateaued (Fig. 7).

3.4.4. Partial least Squares Discriminant analysis (PLS-LDA) model results

PLS-LDA image-based models produced a best model (R2 = 0.39)
with 65.6 % accuracy using 28 components derived from 10 nm band-
width data from 2000 samples max per PFT. The model accuracy peaked
at 24 components, with performance on the independent quadrat-based
validation peaked at 28 components. Observed vs predicted scatterplots
by PFT and site (like Fig. 6 but for PLS) show overfitting for the PFTs
with larger sample sizes, with very low fit for lichens and mosses across
all sites (results not shown).

3.4.5. Deep learning (DL) model results

Deep learning models were also investigated, but these models were
limited in their effectiveness, with the highest observed accuracy of 46
% for the Jigsaw model (Moraga & Duzgun, 2022). This model was far
less accurate than the comparable tree-based methods. We believe that
this is due to a lack of training data, and the use of these models at the
pixel level rather than patch level. This lack of spatial information may
significantly weaken the performance of these model types. Future work

Functional Type
Abiotic

l Graminoid

Lichen

Moss

BroadleafDecid

ConiferEvergreen

Fig. 5. Ground photo of a quadrat and model estimated cover by plant functional type (PFT) using the UAV-based VNIR image.
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four sites. See Table 6 for linear fit of observed vs predicted, slope and intercept by site by.

Table 3
Model results with the best in accuracy and fit with run conditions (best model
shown with *).

Model Accuracy  R? Training Conditions

Random 0.8 0.522  n = 4 trees, unbalanced, max depth = None,
Forest max variable correlation = 0.99, 500
samples per PFT, bandwidth = 50 nm

AdaBoost 0.843 0.518 n = 4, max depth = 20, balanced, max
(M1)* correlation = 0.99, bandwidth = 50 nm, 500
samples
PLS-DA 0.656 0.396  n = 28 components, bandwidth = 10 nm,
2000 samples

2 4 8 16 32 64

Number of trees
200 * 400 © 600 pangwith nm @ 5 @ 10 @ 25 @ 50

128 256 512

maxCount *

Fig. 7. Model fit (R?) vs complexity (number of trees) in Adaboost Models
jittered along X axis. Horizontal black line shows cut off for acceptable models
(R? >=0.5). Circle color varies by bandwidth of reflectance used. Circle size
varies by model bias measured as the maximum number of pixels per PFT in the
training dataset.

in this area using image patches is needed and outside the scope of this
work.

Based on the investigation of deep learning methods herein, the tree-
based models outperform the more complex deep learning networks. We

0.5
04
0.3
0.2:
0.1
0.70 0.75 0.80 0.85 0.90 0.95
accuracy

maxCount + 200 ¢ 400 ® 600 Bandwith nm @ 5 @ 10 @ 25 @ 50
Fig. 8. Model fit (R?) vs Accuracy for Adaboost Models. Horizontal and vertical
lines show cut offs for acceptable models (upper right) at R? = 0.5 and accuracy
= 0.8. Each circle represents a single model run that varies in color by band-
width of reflectance used. Circle color varies by bandwidth of reflectance used.
Circle size varies by model bias measured as the maximum number of pixels per
PFT in the training dataset.

believe additional spatial information (eg. 2-dimensional) would better
suit the convolutional neural networks, and patch-lebel training data
would potentially enable the performance of the deep learning ap-
proaches to surpass tree-based models used here. For comparison to ML,
DL model accuracy statistics are in Table 6.

3.5. Variable importance of vegetation indices over bands

The most important VIs in the RF models were almost entirely
different from those in the best AdaBoost model (Supplemental Table 2).
Adaboost’s five most important variables were Vogelmann (Vogelmann
et al., 1993), Pigment-Specific Normalized Difference (PSND,Blackburn
1998), Normalized Difference Vegetation Index 3 (NDVI3,Gandia et al.,
2004), 652.5-702.5 nm (50 nm wide band) and transformed chlorophyll
absorption ratio index 2 (TCARI2) divided by optimized soil-adjusted
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Table 4
Confusion matrix from best Adaboost model (kappa = 0.807) tested on an independent validation pixel set.
Abiotic BroadleafDecid Conifer Evergreen Graminoid Lichen Moss

Abiotic 16 0 2 1 2 1
BroadleafDecid 0 35 2 2 0 1
ConiferEvergreen 2 5 33 2 0 0
Graminoid 0 0 1 15 0 0
Lichen 1 0 2 0 18 0
Moss 1 0 0 0 0 18
bl clusters in the PCA (Fig. 4) and when comparing their median reflec-

Table 5

Statistics of the relationship between observed and predicted PFT cover by site
including fit (R? = covariance squared), slope and intercept (bias).

Site PFT R? Slope Intercept
Bison Gulch Abiotic 0.879 0.917 43.883
Bison Gulch BroadleafDecid 0.784 1.000 -23.119
Bison Gulch ConiferEvergreen 0.279 0.486 68.026
Bison Gulch Graminoid 0.572 0.456 20.100
Bison Gulch Lichen 0.949 0.646 —1.818
Bison Gulch Moss 0.319 0.485 33.442
Chatanika Abiotic 0.929 0.896 14.213
Chatanika BroadleafDecid 0.000 0.002 94.732
Chatanika ConiferEvergreen 0.076 0.270 88.470
Chatanika Graminoid 0.215 0.459 44.397
Chatanika Lichen 0.512 0.409 6.115
Chatanika Moss 0.030 0.583 50.097
Eight Mile Abiotic 0.501 1.453 —11.836
Eight Mile BroadleafDecid 0.850 0.781 7.535
Eight Mile ConiferEvergreen 0.148 0.381 75.082
Eight Mile Graminoid 0.336 0.380 46.129
Eight Mile Lichen 0.243 0.222 13.272
Eight Mile Moss 0.044 0.137 68.510
Bonanza Abiotic 0.648 1.248 11.262
Bonanza BroadleafDecid 0.210 0.474 78.338
Bonanza ConiferEvergreen 0.517 0.381 63.969
Bonanza Graminoid 0.305 0.367 40.388
Bonanza Lichen 0.899 1.166 3.485
Bonanza Moss 0.270 0.658 36.197
Table 6
Deep Learning model accuracy results by architecture.

Model Accuracy Kappa
Jigsaw 0.4375 0.3579
Linear, Bands Only 0.0625 0.0054
Linear, Indices Only 0.1125 0
Linear, Bands + Indices 0.0875 0.0487
ResNet25 0.2625 0.1525

vegetation index 2 (OSAVI2), (TCARI2/OSAVI2, Wu et al., 2008). The
five most important variables for RF were Disease-Water Stress Index 4
(DWSI4,Apan et al., 2004), Datt5 (Datt 1999), simple ratio pigment
index (SRP)I, normalized pigment chlorophyll ratio index (NPCI,
Penuelas et al., 1994) and Greeness Index (GI, Smith et al., 1995). None
of the five most important variables were the same between RF and
Adaboost. However, both Photochemical Reflective Index (PRI,Gamon
et al., 1992) and Simple Ratio 7 (SR7,Lichtenthaler et al., 1996) were
amongst the 10 most important variables for both models. The only
wavelength/bandpass combination of reflectance that was among the
most important predictors was 650-700 nm (50 nm wide bands).

4. Discussion
4.1. Data Exploration and Interpretation
4.1.1. Spectral patterns

Plant Functional Types (PFTs) VNIR reflectance signatures (Fig. 2)
differed from one another based on a PerMANOVA, the separation of

tance (Fig. 3). These spectral differences between PFTs were consistent
across sites, since there was no interaction between site and PFT in the
PerMANOVA. We interpreted this to indicate the reflectance measure-
ments across sites could be pooled by PFT into a single, transferrable
model rather than separate models by site. Both the reflectance profiles
(Figs. 2 and 3) and the PCA (Fig. 4) clearly show abiotic surfaces were
the most distinctive from the other classes. Abiotic surfaces are generally
darker across all wavelengths than the other PFTs, making it very
distinctive (Figs. 2 and 3). Most of the pixels for the training data came
from gravel roads or logs, as those were the larger patches positively
identified in the whole-image PFT predictions (Fig. 1). Smaller Abiotic
patches were missing from our training data, such as mineral or organic
materials like leaf litter. Our sample of Abiotic reflectance varied evenly
across all wavelengths, which also differed from all the other PFTs,
indicating we selected homogenous Abiotic surfaces. The best model
also correctly estimated the tarp to be primarily Abiotic pixels in most of
the four sites (Fig. 1), despite there being no tarp pixels in the model.

Lichens (and mosses) were the next most distinctive PFTs based on
the PCA and reflectance profiles and had the overall lowest misclassi-
fication rate (Table 4), with generally darker reflectance than vascular
plants in the near infrared. Lichens and mosses vary their photosynthetic
activity based on environmental conditions since they do not actively
control their hydration state. This large temporal and spatial variation in
water content variation leads to large differences in reflectance (Salko
et al., 2023; Turner et al., 2023). Therefore, it is not surprising their
chlorophyll absorption features, which are partially controlled by a
plant’s hydration state, are different from vascular plants. Lichens (and
mosses) also lacked the distinctive absorption in the yellow before the
steep red edge in all the vascular plant PFTs. Lichens, and to a lesser
degree mosses, have different physical and chemical components than
vascular plants, with many unique chemicals which are involved in
photoprotection and therefore optically active.

While our sample of lichen reflectance is within the range of lichen
reflectance published (Rees et al., 2004), our sample lacked many darker
species (e.g. Cetraria spp.) because large patches didn’t occur in our
imagery. Compared to lichens, mosses were much more variable in the
NIR region, likely due to their similarity in physical and photochemical
composition to vascular plants (Nelson et al., 2022). Mosses in our
sample were largely Sphagnum sp., which are broadly similar to vascular
plants in that their cells are primarily made of cellulose whereas lichens
are primarily made of chitin (Honegger and Bartnicki-Garcia 1991).
However, both mosses and lichens absorb and lose water rapidly
depending on environmental conditions, which in turn drives strong
changes in reflectance based on hydration state (Turner et al., 2023).

All vascular plants (BroadleafDecid, ConiferEvergreen, Graminoids)
were somewhat similar in their reflectance profiles, with low variability
in the visible and more variability in the near infrared. This manifested
as those PFT classes largely superimposed points in the PCA. Con-
iferEvergreen and BroadleafDecid were more different from each other
than Graminoids, which appeared intermediate between the non-
vascular plants (lichens and mosses) and vascular plants. ConiferEver-
green was primarily made of Picea sp. (with some Larix laricina) and a
few patches of shrubs, such as Ledum spp.. All these species form finely
dissected or thin canopies with likely large BRDF and have overall
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darker pigmentation. In contrast, BroadleafDecid included wide-leaved
species, such as Populus sp., Salix sp. and Alnus spp.. All these fall into the
stereotypical “green plant” reflectance spectrum, with the obvious green
peak, steep red edge and relatively large infrared plateau (Fig. 2). Gra-
minoids are likely different from other vascular vegetation, in part,
because grass leaves are very narrow and the pixels that were selected
contained whatever was on the ground surface (often litter, lichen,
moss). Another reason Graminoids were different may be the standing
dead leaves of graminoids (Abiotic) observed in many patches, which
would dampen the reflectance of green grass leaves.

4.1.2. Spatial patterns

Despite many quadrat pixels being mixtures, many PFT patches were
correctly predicted when the patch was greater than a couple mostly
pure pixels and not over topped by a different PFT and spectrally
distinctive to adjacent patches (contrast). For example, lichen and moss
patches were often easily detected when separated from adjacent
vascular plants. The opposite also occurred where the spatial pattern
predicted in the PFT maps did not seem to resemble the ground pattern,
despite the overall cover per PFT for that quadrant being decently
accurate.

PFT patterns in the whole images showed large agreement with what
can be seen in just RGB images. Features that were clearly correctly
estimated included ConiferEvergreen canopies, Abiotic areas (roads and
the calibration tarp) and Graminoid, Lichen and Moss patches. Since we
did not separate conifer trees from evergreen shrubs, it was sometimes
difficult to make out conifer tree canopies where there was a large un-
derstory component of evergreen shrubs. The same was true of broadleaf
trees and deciduous shrubs.

4.1.3. Transferability

While PFTs were strongly different from each other, they were
similar between sites based on no statistical support for the interaction
between site and PFT in the PerMANOVA. We therefore felt comfortable
using our PFT classes as distinguishable in our imagery. Reflectance of
gray scale calibration tarps between sites was also similar
(Supplementary Fig. 1), which also gave us confidence that images were
consistently radiometrically corrected between sites. Most PFTs were
present at all sites but two sites lacked one or two PFTs (Table 2), which
meant that site-specific models would lack those PFTs. For these reasons,
we did not attempt to build separate models for each site because we
wanted a transferable model across sites and potentially usable across
other sites where we don’t have ground validation data. Pooling data
across sites resulted in similar error between sites in estimating the
ground validation quadrat PFT cover (Fig. 6).

4.2. Models and model performance

4.2.1. Model selection

Throughout model development and hyperparameter tuning, the
models were evaluated on an independent test pixel set (accuracy) and
the predictions on quadrat images were compared to the human esti-
mates via Pearson correlation and RPD. In addition to the metrics, the
output images (PFT cover) were compared to the ground photographs.
However, no single metric appears to adequately represent which model
performed best. For example, models with higher accuracy and R?
sometimes failed to capture features that would be obvious to a human
observer (e.g. trees and boulders) while models with slightly lower
performance captured spatial patterns better.

Highly accurate models were often biased, significantly over-
predicting certain PFTs when applied at larger scales. Models with
higher R?, while matching the distribution of plants on the landscape,
were not necessarily correct about which plants were growing at a
particular location. RPD alone, without high accuracy and R?, produced
maps that failed to capture the spatial patterns, with similar issues to the
high R%low accuracy maps. For this reason, the models that produced
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the best estimates across the landscape had high accuracy, high R?, and
low RPD.

After hyperparameter tuning was complete, high-performing models
were identified and used to create large area maps. These maps were
evaluated to compare how well visually identifiable features (trees,
calibration tarp, roads, large patches of moss, etc.) matched the model
predictions. Of the best models (R? > 0.5 and accuracy > 0.8), we saw
artifacts in some full image output that dissuaded us from using them (e.
g. estimating gravel road or the tarp as lichen). No single model was free
of such artifacts, but we selected the best model based on the calibration
tarp in the four sites being mostly estimated to be Abiotic, gravel on two
sites as Abiotic and conifer tree canopies at two sites mostly called
ConiferEvergreen. The best models successfully captured spatial pat-
terns, including roads, the calibration tarp, roads, creek beds, and trees.
Furthermore, the models successfully predicted more than 84 % of the
test set of pixels correctly.

Based on both the model statistics and qualitative assessment of full
image predictions, we identified an AdaBoost Model (see Table 3) as the
best performing model based on this; there were models with higher R?
and accuracy (AdaBoost model with R? = 0.53, accuracy = 0.87) or
lower RPD (AdaBoost, Accuracy = 0.70, rpd = 0.91) which appear to
produce output maps of lower quality. However, the highest R? values
do not coincide with the highest accuracy; rather for very high accuracy
models the R? is lower than that of models with lower accuracy. One
possible explanation for this discrepancy is that models overfit to the
pure pixels in training data and perform worse on pixels containing
mixtures in the large images. This overfitting theory is corroborated by
the higher complexity of the higher-R? models compared to the selected
model.

The stability of the training process was also investigated. Training
many models at different seeds suggests that the model training is
relatively stable even for small (4 weak learner) models. The results in
Table 7 suggest that while there is non-trivial variance in small model
accuracy and r-squared, the higher r-squared of the small models out-
weighs the slightly increased variance and accuracy tradeoff. It is hy-
pothesized that this tradeoff is due to model under/overfitting, with
significant bias introduced to the large models. Ultimately, the land-
scape maps produced by the large models appear significantly worse
than the small models.

4.2.2. Overfitting and the Bias-Variance tradeoff

The independent test of ground cover in the quadrats proved a more
difficult challenge (R?) than accuracy on a reserve test set of pixels,
leading us to conclude overfitting was a key problem to avoid. We
optimized accuracy and R? through our grid search of parameters, which
showed the less complex (not overfit) models were better overall.
Models were then selected based on the combination of accuracy and R?,
showing simple (lower number of components/trees) were better at
estimating the ground validation while still maintaining high (but not
the highest) accuracy. The relationship between accuracy, R? and model
complexity is shown in Fig. 8. Comparing predictions across quadrat
images and large area predictions, we noticed an increase in model bias
with the increase in accuracy; for example, ConiferEvergreen was
overpredicted across sites in many models.

Wider bands largely improved the RF models, which left the VIs as
the primary data in the model. However, there were many models with

Table 7

Accuracy, R? and Relative Percent Difference (RPD) model performance statis-
tics for 4 (small) and 1000 (large) tree random forest models across 15 seed
iterations.

Accuracy R? RPD

Mean Variance Mean Variance Mean Variance
Small model  0.8156  0.0007 0.3831 0.0035 1.0891 0.0028
Large model 0.882 0.0005 0.3296  0.0008 1.3478  0.001
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smaller bands that were nearly as good based on the ground validation
and test set of pixels. We were surprised that both coarse and narrow
band datasets could perform similarly, at least in the company of VIs. We
interpreted this to mean balancing different forms of error, such as
improved prediction of one PFT or overall PFT prediction site at the cost
of another PFT or site.

We expected more data (larger sample sizes) to bias models towards
abundant PFTs and reduce fit and accuracy. Our results show low sample
sizes (125-500 samples per PFT) balancing across PFTs were able to do
as well as models with more data. The bias associated with larger sample
sizes per PFT again presented a challenge and led to measures to reduce
this bias by balancing class frequencies within the training data, and the
use of class weights in models that support it. Importantly, the two
related model types, AdaBoost and RF, performed best with similar
hyperparameters. Both reached peak performance with 4 weak learners,
500 samples per class at most, 50 nm bandwidth, and the removal of the
most intercorrelated features. These results suggest good consistency in
training results.

4.2.3. Images artifacts among the best models guided selection

After selecting a few candidate models, predictions were made for
the complete datacubes (entire images) and visually assessed in com-
parison to the original images in RGB. Of the best models (R? > 0.5 and
accuracy > 0.8), we saw artifacts in some full image output that
dissuaded us from using them. Example model artifacts included
incorrectly estimating the calibration tarp and gravel road surface as
lichen or conifer tree shadows called a different PFT than the illumi-
nated conifer canopy. No single model was free of such artifacts but we
selected the best model based on the calibration tarp in the four sites
being mostly estimated to as Abiotic, gravel on two sites as Abiotic and
conifer tree canopies at two sites mostly called ConiferEvergreen.

4.2.4. Variable importance

Vegetation indices were by far the most important predictors of PFTs.
So, one may ask “Are vegetation indices useful in the Arctic?”, which is
the title of a paper written over 25 years ago (Rees et al., 1998). While
that paper was about NDVI, we can say “yes”, vegetation indices were
broadly effective means in our study to reduce the dimensionality while
preserving predictive power in our classification models of PFTs. Certain
areas of the electromagnetic spectrum were included in many of the
indices that were most important in the RF and AdaBoost models. Both
the models use similar parts of the electromagnetic spectrum, utilizing
bands 800, 680/682 and 550/553. They also use a band in the visible
range, either 430 or 470. Overall, while combined differently to create
different band ratios, they utilize similar information.

While our goal was not to understand why PFTs were different
spectrally, we can look at the importance of VIs and reflectance bands
selected in the models to start. AdaBoost had one very important band,
Vogelmann (740/720) (Vogelmann et al., 1993), followed by PSND,
(800-680/800 + 680) (Blackburn 1998) and NDVI3, (682-553/682 +
553) (Gandia et al., 2004), which were half as important. While inter-
preting the magnitude of importance should be done with caution, the
relative importance of Vogelmann is indicative that the red edge holds a
lot of information for separating PFTs (Fig. 3). In contrast, variable
importance in RF showed a gradual decline from most to least impor-
tant. DWSI4, a very important index in the RF models, included bands
outside the bandpass of the instrument. Instead, this infrared band was
approximated from the available data by the hsdar R package using the
nearest bands. Datt5 was nearly as important in the RF models, which is
calculated as 672/550. Taken together, data reduction by VIs seems a
simple, effective means to separate PFTs despite that not being their
purpose.

4.3. PFTs spectra are transferable across sites

We aimed to make a transferable model for classifying PFTs across
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sites. Our initial observations of reflectance of PFTs showed differences
that were consistent across sites (Fig. 2), indicating pooling spectra
across sites may be appropriate. PFTs were strongly different from each
other but when site was included in our test, there was no interaction
between site and PFT. We therefore felt comfortable using our PFT
classes as distinguishable in our imagery.

Overall separability of the PFTs varied widely, as some PFTs were
very similar and overlapping in reflectance signatures, at least when a
linear model of data reduction is used (Fig. 3). Fortunately, PFTs were
more separable when non-linear methods, such as RF and Adaboost,
were used to recover relationships between the large number of pre-
dictors with relatively simple models.

4.4. Sources of error

4.4.1. Ubiquitous mixed pixels

Pixels at 4 cm GSD from the UAS image clearly are mixtures of many
different PFTs when compared to the ground photos used for estimating
validation PFT cover. This effect is potentially compounded by the fact
that the models were trained only with data from pure pixels —- that is,
data that was digitized by a human ecologist with high confidence that
the pixel contains a single, known PFT. This leads to a so-called
“training/serving skew” in the data when creating predictions across
the landscape. In other words, the distribution of features in the data
from quadrats or large site images may be significantly different than the
training data. Based on the high-resolution ground photography, many
pixels were clearly mixtures even at a 4 cm resolution.

4.4.2. Geometric and radiometric error between image and ground

Inaccuracies in global positioning systems and coordinate reference
systems introduce additional error, such as the difference between the
DEM used in orthorectification and GPS/IMU on the UAS. Many sources
of radiometric noise also still exist in our data, such as atmospheric ef-
fects between and within flights/sites, bidirectional reflectance (BRDF)
both at the landscape (hillslope) and plant canopy-level. These correc-
tions are commonly applied to imaging spectrometer data, especially
when using physical based models to retrieve plant traits. The instru-
ment used for this study also has a variable signal/noise ratio, where
there is more noise especially at the longer wavelengths.

4.4.3. Observer error in validation data

Validation cover estimation has observer error due to ocular cover
estimation. More precise methods like validation per pixel but these are
labor intensive and require highly precise co-registration of UAS and
quadrat photos. The use of multiple observers with a set of iteratively
refined estimates across observers may increase accuracy, mitigate
human error, and allow for variance estimates. Others have used Al to
build validation datasets from ground photos (Lovitt et al., 2022), which
seems very promising for both increasing accuracy, decreasing observer
bias and enabling rapid generation of labeled data. We opted for a single,
expert observer who had estimated ground cover of Arctic and boreal
plants in central Alaska in hundreds of quadrats the same style and size
(1 m?) used in this study. Nonetheless, the precision of any expert
observer has bias and error, which we did not measure.

4.4.4. Systematic sampling error

Sampling methodologies in this sample were not purely random. It
was necessary to select training pixels that corresponded well with the
high-resolution aerial photographs and were recognizable by sight to
create labeled training data. This systematic, rather than random, se-
lection of the included pixels for training may lead to bias in the data,
resulting in a sampling distribution not representative of the population
of pixels by PFT in an image. However, pure patches of any PFT were
rare except for the largest size individuals, such as trees or large shrubs.
In many cases, pixels were mixtures even at 4 cm resolution thus the
pool of patches we could sample for training data may be much smaller
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than at first glance. Transects for the quadrat images were also selected
systematically, based on road access and then fixed at 10 m spacing once
a random azimuth was selected for the transect. This potentially creates
further bias in the data as well, since these 100 m long transects only
sampled a very small fraction and spatial extent of each image. Several
validation quadrat transects randomly per image would be much more
representative of the large image footprint.

5. Conclusions

The overall goal of the analysis and modeling is to provide high
quality maps of PFTs in different sites in Arctic and boreal biomes, which
we demonstrated was possible within an acceptable level of error. To do
this, we generated spectra of different PFTs to test whether they were
statistically different based on their VNIR reflectance spectra. Median
reflectance was indeed distinctly different between PFTs while within a
PFT, reflectance was consistent in four sites across central Alaska, USA.
Our classification models overfit when even moderately complex,
reducing performance for the independent validation (R?) but improves
the accuracy on the test set of pure pixels. For these reasons, we selected
a simple model that could separate test pixels and have high validation
accuracy with independent ground cover estimation..

We demonstrated transferable approaches to PFT mapping across
different images, sites, dates, and mixtures of vegetation by pooling
pixels with known labels collected across VNIR images. While the model
is transferable across our four sites, we also observed strong algorithmic
differences in classification fit and accuracy. The best models, while
similar statistically, varied in their prediction of some large features (e.g.
Abiotic tarp estimated to be lichen). All models showed the importance
of vegetation indices in reducing the dimensionality of the reflectance
spectra.

Future studies should explore sampling vegetation using points on
pure patches located opportunistically rather than quadrats arrayed in a
rigid sampling. While this would change the statistical sample of the
validation, we expect a better transfer of image-based models with this
approach for generating training spectra from images by target (e.g.
PFT). Even with the opportunistic sampling, the patch size of many PFTs
is often not large enough for easy geolocation.

Our PFT maps from these UAS images provide ground validation for
AVIRIS\-NG imagery that was flown near the same for most of our
flights. We aim to expand our PFT mapping to the entire archive of
AVIRIS-NG imagery in the Arctic and boreal biomes of Alaska and
northwestern Canada. To do this, we hope to partner with other teams of
scientists who have ground validation of PFT cover under AVIRIS to
extend our knowledge of PFT reflectance spectra and associate spatial
patterns we can observe and interpret with imaging spectroscopy.

5.1. Data and code availability

The R code and the spectral library of training pixels by PFT available
to the public for image classification of any hyperspectral imagery based
on a spectral library at https://github.com/nelsopet/lecospec. Full
bandpass image data is available to the public at ORNL DAAC
(https://doi.org/10.3334/0ORNLDAAC,/1980).
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