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Sparse Bayesian Learning for Sequential Inference of
Network Connectivity from Small Data

Jinming Wan, Jun Kataoka, Jayanth Sivakumar, Eric Pefia, Yiming Che, Hiroki Sayama, and Changqing Cheng

Abstract—While significant efforts have been attempted in the
design, control, and optimization of complex networks, most
existing works assume the network structure is known or readily
available. However, the network topology can be radically recast
after an adversarial attack and may remain unknown for
subsequent analysis. In this work, we propose a novel Bayesian
sequential learning approach to reconstruct network connectivity
adaptively: A sparse Spike and Slab prior is placed on connectivity
for all edges, and the connectivity learned from reconstructed
nodes will be used to select the next node and update the prior
knowledge. Central to our approach is that most realistic networks
are sparse, in that the connectivity degree of each node is much
smaller compared to the number of nodes in the network.
Sequential selection of the most informative nodes is realized via
the between-node expected improvement. We corroborate this
sequential Bayesian approach in connectivity recovery for a
synthetic ultimatum game network and the IEEE-118 power grid
system. Results indicate that only a fraction (~50%) of the nodes
need to be interrogated to reveal the network topology.

Index Terms— Network Reconstruction; Inverse Problem;
Network Inference; Spike and Slab; Sequential Node Selection

1. INTRODUCTION

HE past decades have witnessed the expanding

complexity of interconnected engineering systems to

accomplish sophisticated design functions. For instance,
manufacturing systems are becoming more complicated in the
context of globalization and the infiltration of renewable energy
sources has compounded the control of power grid systems. As
those systems are increasingly interconnected, the
interdependency in conjunction with the bewildering
complexity has brought network science into the spotlight. Yet,
the vast majority of network research is focused on the forward
problem: given the network topology and interaction between
constituent components, what emergent behaviors will the
system exhibit [1], and what is the shortest path to traverse the
network? While significant effort has been attempted to date on
optimization and control (e.g., resilience design [2] and optimal
control [3]) of networked systems for desired dynamics or
functionalities, most works hinge on the assumption that the
network topology is readily available or can be accurately
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estimated efficiently [4], [5]. However, direct access to network
structures remains elusive, leaving us with only a restricted set
of observable data [6]. For example, in contingencies of
malicious attack, natural disaster, or human misoperation,
connectivity of a significant portion of the power grid or
communication networks remains unknown at the onset of such
unexpected events, which could substantially crimp rescue
efforts. Moreover, the next-generation power grid system is
poised to become more sophisticated, such that the effective
transmission-line parameters can be actively controlled with
alternating-current transmission devices [7], which has
essentially made the whole system susceptible to misoperation.
Thus, network connectivity could be seriously altered in such
extreme events. Such circumstances underscore the imperative
for reconstruction approaches to unveiling the intricate network
structures with the wide availability of big data. The task of
network reconstruction is inherently formidable. This
complexity arises from the fact that structural information is
obscured within the measurable data in an enigmatic fashion.
Moreover, the solution space encompassing all conceivable
structural configurations is characterized by an exceedingly
high dimensionality, as in most inverse problem settings.

We seek to infer network topology and connectivity from a
paucity of sensing data in a timely and efficient fashion. This
inverse problem plays a quintessential role in anomaly
detection, root cause diagnosis, and timely deployment of
corrective actions. It is noted that most realistic networks
possess sparse connectivity, in that each node is only connected
to a small subset of the nodes. This sparsity in the connectivity
reconstruction translates into a sparse representation problem.
Accordingly, sparse learning or compressive sensing
techniques developed in the machine learning community have
been attempted in network reconstruction using small samples
of measurement data [7], [8], [9]. In those works, nodal
connectivity is reconstructed iteratively via sparse learning until
all nodes are looped through. However, the exhaustive
reconstruction strategy does not consider the redundant and
potentially conflicting information in the iterative process.
Specifically, the connectivity between nodes i and j is unveiled
from both nodes i and j separately and independently. This
inefficiency has stymied the widespread application to large-
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scale networks.

We developed a novel sequential Bayesian analysis
framework to reconstruct network connectivity from short time
series data recorded at the node level. The connectivity
recovered from one node is treated as the prior information of
the nodes that are not yet investigated, which will be updated
via a Bayesian framework. This resolves the issue of conflicting
information, particularly for 0-1 connectivity in unweighted
networks [8]. Further, leveraging the redundant information, a
sequential sampling scheme based on expected improvement
(EI) is adopted to adaptively select the most informative node
for recovery and maximally reduce the uncertainty in network
inference. This allows efficient reconstruction with only a
subset of pivotal nodes and has the potential to scale to massive
networks. The proposed methodology is corroborated in the
unweighted ultimatum game (UG) network and the weighted
IEEE-118 power grid network in this study. This approach
could potentially advance research in connectivity inference for
complex networks with small sets of sparse data and pave the
way for effective network design, optimization, and control.

II. RELATED WORK

Mathematically, network topology inference is a high-
dimensional inverse problem. Most attempts assume prior
knowledge of network structure and emphasize concerns
regarding directed or undirected interactions, the existence of a
link, and the strength of interactions along with their temporal
and spatial scales. For instance, Timme and Casadiego [9]
revealed the interaction topology of a network from the
collective dynamics of its constituent nodes driven by a given
external force. Yu et al. [10] developed a network copy whose
topology can be continuously updated to mimic the dynamical
behaviors of the target network. With a priori functional form
to describe the dynamics of spatially extended networks,
topology estimation is achieved via a control signal for steady-
state stabilization [11]. Similarly, Ren et al. [12] found that
noise in dynamical correlation between nodal dynamics leads
to more accurate topology estimation, as the interaction
between nodes vanishes during synchronization, and the noise
brings an additional dimension to study the network topology.
Alternatively, the leap forward in smart sensing and Internet-
of-Things technologies has brought the proliferation of “big
data” to retrieve network topology. Donges et al. [13] combined
mutual information of nonlinear time series data and the
betweenness of the network systems to uncover global energy
and information flow in the climate network.

To handle the nonstationary time series data, transient
Granger causal interaction was explored to reveal the time-
varying connectivity of the stimulus-activated neural sources
[14]. Regression-based methods for connectivity identification
were reported in [15]. However, this requires a large amount of
data in the least-squares fitting. Variations of Granger causality
have also been developed to recover network connectivity from
time series measurements for each node, subject to stochastic
perturbation [16], [17].

A thorough review of data-driven reconstruction of complex

networks and dynamical processes is provided in [18].
Nevertheless, a “small data” issue is also omnipresent in the
scenario of rare or extreme events [19], [20]. For instance, the
power grid network connectivity is vulnerable to perturbations
owing to cascading failures. To rapidly roll out the rescue
measures and dispatch frontline staff, only a short duration of
phasor data can be collected [21]. This has posed a tremendous
challenge to the accuracy of network topology inference,
particularly considering the uncertainty and ambient noise
associated with data recording. Indeed, standard measures (e.g.,
information theory and correlation) may not decipher the
network interdependency with extremely short time series.

A recent line of research exploits compressive sensing on the
premise that realistic complex networks are sparse: the
connectivity degree of each node is considerably low compared
to the total number of nodes in the network. Thus, the
connectivity vector to be reconstructed is sparse with only a few
non-zero entities. Correspondingly, the observational or data
collection requirements can be relaxed, and compressive
sensing is powerful to reconstruct a sparse signal from small
data. For instance, capitalizing on compressive sensing theory,
Shen et al. [22] reconstructed the epidemic spreading networks
with highly stochastic dynamics from binary time series (e.g.,
infected or not).

A sparse learning framework for inference of network
connectivity was introduced in [8]. The construction process
entails the iterative estimation of the sparse adjacency matrix
X , and the connectivity vector X; = [x;1,...,x;y]7 is
successively obtained for each node i = 1, ..., N, which is in
essence an inverse problem: given nodal observation Y and a
measurement matrix ¢, the network connectivity matrix X is
sought after. More specifically, for node i, ¥; = ¢;X;. Here,
Y; = [yi(t), ..., y;(ty)]" is the nodal observation for t,, time

steps, and the measurement matrix ¢; =
$ir(t1) Gin (t1)
: : signifies the dynamic interactions
Gi1 (tw) Gin (tn)

between node i and all N nodes (including self-interaction) in
the network for t;, time steps. X; is the connectivity vector for
node i, which is sparse with only a few nonzero entities. For
unweighted networks, x;; € {0,1}:x;; = 0 implies that node i
andnode j (j = 1, ..., N) are not connected and x;; = 1 denotes
the existence of an edge in between. Since the number of
nonzero entities contained in the vector X; is significantly less
than N, the network is sparse. The sparse reconstruction
problem is treated as a regularized least-squares problem,
leveraging the acquired nodal observation data ¥; at each node
i and a measurement matrix ¢;:

Xrirg]gNIIYi—@XiII% + AIX:llo ()

where 1 > 0 is a regularization parameter, and the £0-norm
[1X;l|o directly controls the sparsity or the number of non-zero
elements in X;. As £0-norm optimization problem is NP hard, it
is typically relaxed via the £1-norm ||X;||;. The solution only
provides point estimates for the connectivity of node i to other
nodes in the network. This procedure is repeated N times until all
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the nodes are investigated.

In the same vein, the sparse learning approach was adopted
in the reconstruction of power grid networks with node-level
sensing data [7]. The reduction in measurement of nodal
variables is achieved through compressed sensing that makes
use of structural properties of the grid network. In [23], a rank-
based nonlinear interdependence measure was developed to
infer the coupling strength and link density of the underlying
network, which addressed the problem associated with
correlations and mutual information. The measure was applied
to a system of coupled Lorenz dynamics as well as to
multichannel electroencephalographic recordings from an
epilepsy patient.

Improvements are possible when entering the Bayesian
domain. In [24], compressed sensing and the Bayesian
approach registered robust and accurate results in network
reconstruction from potentially incomplete and noisy data.
Huang et al. [25] incorporated a hierarchical prior model in
Bayesian learning for network reconstruction on evolutionary
game data, and the learning parameters were updated iteratively
as the reconstruction of nodes progresses. It is noteworthy that
the Bayesian approach is appealing in connectivity inference,
which offers a distribution as opposed to the point estimate in
the Lasso framework. However, accurate and robust inference
of large-scale complex networks is still a confounding pursuit,
especially considering the short and limited measurements
corrupted by the ambient or measurement noise and other
artifacts.

III. METHODOLOGY

Our network reconstruction framework consists of two parts:
sparse Bayesian learning for recovery of node connectivity and
sequential retrieval to select the next most informative node to
investigate.

A. Sparse Bayesian Learning for Node Connectivity Recovery

Sparse Bayesian learning has garnered tremendous traction
recently to account for the uncertainty associated with sparse
solutions [24], [25], [26]. The key is the sparsity-promoting
prior formulation, and different prior distributions have been
investigated in literature, including normal product [27],
Laplace [28], horseshoe [29], scale-mixture £1 norm [30] and
inverse Gamma [31]. It is noted that the €1 prior imposes
penalty on the sum of the magnitudes of estimated weights or
connections, as opposed to the constraint on each edge in the
spike-and-slab prior. Spike-and-slab and horseshoe priors also
offer advantages over Laplace and inverse Gamma priors,
particularly in enforcing sparsity. Unlike Laplace and inverse
Gamma priors, which either overly shrink all coefficients or
leave them largely unaffected due to their single scale, spike-
and-slab priors use a mixture of densities with different scales.
This mixture allows them to selectively shrink only a subset of
coefficients while leaving others largely unchanged. The spike-
and-slab priors distinguish between coefficients better modeled
by the slab (which remain almost unchanged) and those better

suited to the spike (which are heavily shrunk towards zero).
Moreover, as a flexible shrinkage method, Spike and Slab prior
allows user-specified sparsity [32]. Both spike-and-slab and
horseshoe priors exhibit similar selective shrinkage, but spike-
and-slab priors have additional benefits. They allow direct
adjustment of sparsity by modifying the spike weight, which
controls the proportion of coefficients expected to be zero.
Additionally, spike-and-slab priors can be expressed with latent
binary variables indicating whether each coefficient is assigned
to the spike or slab, facilitating the identification of relevant
features. Lastly, spike-and-slab priors offer a closed-form
convolution with the Gaussian distribution, an advantage for
approximate inference methods using Gaussian
approximations, unlike horseshoe priors [33], [34].

Here, the spike refers to the distribution with spike at X; =
0, and the slab determines the distribution of non-zero entities
of X;. On a side remark, the sparsity induced by the Spike and
Slab model has also been widely used in feature selection [32],
[33].

In this study, it is adopted to specify the prior distribution of
connectivity X;:

N
r(Xilz;) = 1_[ p(xijlzi;)
j=1

B U[(l - ;) 8(xy;) 2

+2;V (g [y, vij) ]

where §(+) is the point probability mass centered at the spike 0,
and m;; and v;; are the mean and variance of the slab
distribution (normal here). z; = [z;4, ..., Zyy], and z;; € {0,1} is
the latent binary variable indicating whether x;; attains the
deterministic value 0 (zl-j = 0) or is drawn from the slab
distribution (Zij = 1), where j = 1,...,N. In a hierarchical
prior setting, z;; follows a Bernoulli distribution, z;; ~
Bernoulli(zijlyij). The parameter y;; € [0,1] is the prior
probability that x;; deviates from zero. Therefrom, the
distribution of z; is the product of Bernoulli terms given y; =
Vi, - Vin]:

N
p(z;) = ﬂBernoulli(Zijl)/ij) 3

j=1

Given nodal observation ¥; and measurement matrix ¢;, the
likelihood function is

pilXud) = | [ W oi@loX,ad) @

t=ty

where o¢ is the noise variance. The posterior distribution
p(X;, z;|Y;, @;) is given as
_ p(YilX;, )p(Xilz)p(z;)

p(Xi, z|Y;, @) = CALD) (5)
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Consequently, the marginal posterior distribution for X; can be
updated as

p(Xilz;, Yy, @) = fP(Xi'ZiWi' P)dz; (6)

As the integration here is intractable, numerical approximations
such as expectation propagation (EP) [32], [33], [34], which is
a general approach for approximating the integral of functions
factorized into multiple simple factors, can be used to estimate
the posterior. We factorize the integral part of (6) into multiple
simple factors, before using the EP method to approximate each
factor. Since the evidence p(Y;|¢;) is a normalizing constant,
we only need to factorize the numerator part
p(Y;|X;, p)p(X;|z;))p(z;) of (5). Thus, we obtain the
following representation for the joint distribution of X;, z;, and
Y; given ¢;:
p(Xi, 2, Yilg;) = P(tyi|Xi, ¢)p(Xi|z;)p(z;)

= 1_[ p(: (D)X, @) p(Xi|z)p(z;)
th @)

3
= 1_[ gn(Xi, 2;)
h=1

For ease of representation, we denote g,(X; 2;) =
H?z/ltlp(yi(t)lxi; ¢) . 9:(X;,z)=pX;lz;) , and
9:(X;,z;) =p(z)) . gn(X;,z;) can be approximated as a
simpler form gy, (X;, z;) by EP. Then we have

3 3

ngh(xi' z;) ~ ngh(xi' z;) = Q(X;, z;) (8)
h=1 h=1

Here, §;, (X, z;) (Gaussian and Bernoulli distributions) adheres
to the exponential distribution family [35], ensuring that their
product Q(X;, z;) is also exponential, as dictated by the
exponential closure property [34]. Consequently, the posterior
distribution p(X;, z;|Y;, ¢;) is obtained through the normalized
Q(X;, z;) with normalizing constant p(Y;|¢;).

Next, functions §;, §,,and §; are iteratively updated to
minimize the Kullback-Leibler (KL) divergence
DKL(ghQ\h||ghQ\h) between g, (X;, z;) Q\h(Xi:Zi) and
9n(X;,2) Q\"(X;, 2,) Here, QV'(X;z) = 2% 4nq

dnXypzy)
DKL(ghQ\h||ghQ\h) =
ghQ\h ~
> [ghQ\“ log ( ; Q\h> + 9,0V — ghQ\“] ax;.
p” In

The approximate form gy, (X;, z;) in (8) can be expressed as

- {_ (i = mli)z}

910z =5, | [ew (-0 ©a)

j=1

gz(Xi'NZi)
~ 2 ~
X — 1My ;
= §2nexp [— 7( - 2]) }exp {log< yzi >Zi
L | 27, 1=72;) ™" (9b)

+log(1 - sz)}

N -
~ < V3j
3:Xu2) =5 | [exp {log (1 = > 2
j=1 ¥ (%)
+ log(l — ]73j)}
where  {5}3-1 . (M= (T 0, Tipy), Uy =

T s o))y, - and Fa=Far o0 Fan)Fics
denote free parameters for the EP algorithm. For each iteration,
the free parameters are updated to minimize the KL divergence
Dy, (ghQ\h| |ghQ\h). When the change amplitude of all the free
parameters is less than a threshold (1 x 107° in this work) or
the number of iterations reaches a limit (1,000 here), estimate
of Q(X;,z;) in (8) is considered to have converged. Then,
Q(X;,z;)/p(Y;|¢;) is considered as the approximate posterior
distribution p(X;, z;|Y;, ;) in (5), which also has the
exponential form:
p(Xi, z;|Y;, @;)

N
= 1_[ N(xijlmij, vij)Bernoulli(ZUWU)

Jj=1

(10)

Here, m; = [mil, ...,ml-N] , UV = [U,:l, "'!viN] R and Vi =
[Vi1, -, Vin] are updated based on iy, fity, V1, V5, ¥,, and ¥3:

v = [t + 93] (11a)

~ o~ ~ ~_q11—1
myj = [y 95 + iy 757 (11b)
Vij = [Paj + P25l (11c)

With the estimated posterior distribution obtained from (10) by
importing the estimated m;, v;, and y;, an edge between node
i and j exists if p(zij|Yi,¢i) >0, where 0<p<1is a
prescribed threshold. With only small data corrupted by noise,
the estimated posterior distribution p(zi j|YL-, qbl-) could be
sensitive to the value of g, and ¢ = 0.5 is used in this study.
Next, the updated parameters m;;, v;;, and y;; derived from
node i are subsequently treated as the priors m;;, vj;, and y;; for
xj; of node j in (2) and (3), which will be further updated to
obtain X; given nodal observation ¥; and measurement matrix
¢;. This effectively eschews the pitfall of conflicting results in

the conventional sparse learning approaches reported in [7], [8].

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on October 10,2024 at 18:57:37 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3471852

>IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, TNSE-2024-03-0355<

B. Sequential Retrieval of Node Connectivity

Nonetheless, it is computationally daunting to retrieve
connectivity X; within a short time interval for networks with
large N. Ideally, we can evaluate only a subset of the nodes to
uncover the network connectivity with acceptable
reconstruction error, leveraging proceeding reconstruction
efforts. To select the optimal subset, the submodularity property
will be investigated.

For a network with a finite set of nodes Q = 1,2, ..., N, let 8,
denote the selected set of k nodes for connectivity
reconstruction, then the reconstruction error is manifested in
terms of the sum of square error (SSE), SSE(6,) = ||Yl- -

¢if(i||§. SSE(8,) embodies the sum of the discrepancy

between the nodal observation ¥; and its estimate, and X; is the

approximation of X; for node i via the proposed sparse

Bayesian learning approach. It is evident that the null set @

results in the maximum SSE without any knowledge of the

connectivity. Accordingly, a utility function f:2¢ - R can be
defined to map any subset of Q (conventionally represented as

29) to a real number. Herein, utility over a set 8, is defined as

f(6y) = SSE(®) — SSE(6;) . The larger the node set 6,

selected to reconstruct, the smaller SSE(6,) , leading to

monotonically increasing f(6,) . Therefore, f(0,) is a

monotonic submodular function with the following two

properties:

1) Monotonicity: f(8,) < f(0,) for all 8; € 8, € Q. That
said, addition of extra nodes always brings a non-negative
change of the utility function in the network level. It is
observed that the equality approximately holds when a
large number of nodes are included and the SSE(6))
almost converges (see Section IV).

2) Submodularity: For 68; € 8, € Q and any element s €
Q\y, f(6,) —f(6,Us) = f(6,)—f(O,Us) , where
Q\0, is the set of nodes in Q but not contained in the set
6,. This is also known as diminishing returns property, in
that addition of extra node s to a smaller set 8, delivers
larger utility than to a larger set 8, (also see Section IV).

Simple greedy algorithms prove effective for near-optimal
subset selection for maximization of monotonic submodular
functions [36]. Starting with a set 8, (here, 8, = 0), the next
node sy, is selected via

Sk+1 = argmax (6, U s)
SEQ\b

12)

and 0,1 = 0y U {si;1}. Here, the node with the largest nodal
observation Y; is selected initially without any connection
information. The physical implication is that this node usually
represents the most critical generator in the power grid system
or the most critical player in the UG network. To find the best
subsequent (most informative) node sj,, to maximize f (6, U
s), it is necessary to estimate f (6, U s) while incorporating the
uncertainty associated with the estimation for all s € Q\
0y, without computing the objective function. We tackle with
this via Bayesian optimization [37] and build a surrogate for
f (0, Us). Bayesian learning utilizes the surrogate function to

incorporate prior belief about the function and uses an
acquisition function to decide where to evaluate the surrogate
function next. Here, we define improvement by a utility
function over selecting new node s given the retrieval node set
Ok

Im(Slek) = max(O, €s — Emin) (13)

. o0
where  €,,;, = min (”Yl- - ¢ X;
L

k ”z) represents  the
Ys - ¢SX§ ¢
represents the predictive error of node s € Q\8, given the
retrieved information of the set 8. In such a manner, the most
informative node s can be identified and then the sparse
Bayesian learning algorithm is applied to reconstruct the
network connectivity.

In concreteness, we initialize my;=0,v; =1 for i,j €
[T ,---, N], for the weight matrix m and variance matrix v
in specification of the priors for X in (2). Only the node i in the
retrieved set 8, are fully estimated by the sparse Bayesian
learning algorithm and the unretrieved node s € Q\@, are
partially recovered due to the symmetric of the networks. The

2
minimum estimated error for i € 8, and €; = |
2

fully estimated weight and variance for node i are ﬁl?" =
[ My]T and \729" = [Py Din]T; the partially
recovered (predictive) weight and variance for node s are
ﬁlfk =[0 - my - 0]F and \’759" =
[1 ﬁsi

normal distribution, and we derive the EI acquisition function
that strikes the tradeoff between local exploitation and global
exploration

117 . In (10), J?Z.k is parametrized as a

EI(s) = ep| —— |+ o8| r[——] s
Fe) e,
where € = ||¥, — g% " min |[v. - pm*| ). w0
2 4 2

and I'(-) are the CDF and PDF of standard normal distribution,
respectively. The most informative node s;,; to be selected is
determined based on EI(s) for s € Q\0,:

Sp41 = argmax EI(s)
SEQ\Og

5)

IV. NUMERICAL RESULTS

We demonstrate the performance of our reconstruction
framework in two representative cases: the synthetic
unweighted UG network and the weighted IEEE-118 power
grid system. The weight here represents the different
susceptance of the transmission lines. The UG network
topology is generated according to the Barabdsi-Albert (BA)
model. The BA model generates random scale-free networks
according to the preferential attachment principle. For a
network with ¢y nodes, new nodes are added one at a time and
connected to ¢ < ¢, existing nodes with a probability
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proportional to the node degree. Two different BA models (low
average degree with ¢ = 1 and high average degree ¢ = 2) are
utilized to generate the UG network, and the initial number of
nodes is ¢, = ¢ + 1. For both the UG and power grid cases, the
number of nodes in all network structures is N = 118 and the
timesteps is t,; = 60 for recording data.

For comparison, we include a baseline model Random Spike
and Slab (RandomSS), which uses the Spike and Slab prior in
the sparse Bayesian learning approach to reveal the node
connectivity but only randomly selects the next node for
reconstruction. By contrast, the proposed Sequential Spike and
Slab model (SeqSS) selects the next most informative node via
EI. For each network, we conduct the connectivity recovery
over 30 experiments with random noise on nodal observation
using the following metrics: the Frobenius norm for the
connectivity discrepancy
14 - 4|,

(16)
Al

Errorg =

where A and 4 denotes the true and estimated connectivity
matrices, respectively; and the Frobenius norm for the
observation and weight discrepancy

Errors = w (17)
! 1Yl
and
lm — m||
Errory = — (18)
" lm||

Here, 7 and 4 with entry z;; are estimated from (10) and
(I1c). z;; = 1 (an edge exists between node i and j) if y;; >
0.5, and otherwise z;; = 0. Y is indirectly estimated from (10):
Y, = ¢,m; for weighted network and Y; = ¢;A; for
unweighted network.

game, node i plays two games with a connected node j, in the
role of an offeror and a responder, respectively. As such, the
proposal of a player i is denoted by (0;, a;): it offers credit o; to
other interactive responders and accepts credit for at least a;
from other interactive offerors. Only when the responder
accepts the proposed strategy, the sum will be split accordingly.
The measurement matrix ¢p;, or more specifically, the payoff
¢;; (the entry of measurement matrix ¢b;) of player i with
strategy (0;, a;) playing against player j with strategy (0]-, a]-)
is represented as
{ 0; + 100 — o;,
Oj B
100 — o;,
0,

0; = ajand o; = q;
0;<ajando; = q;
o; = a;and o; < q;
0;<ajando; < q

i = (19)

Subsequently, the cumulative payoff y; (the entry of nodal
observation Y;) for player i with strategy (o;, a;) at each round
is ¥; = Xjeu, $ij> where Uj is the set of interactive node j with
i. In the evolutionary game, player i updates the strategy in a

randomized manner, ie., (o (t+1),alt+ 1)) =
(h(o(®), h(a(®)):
5+¢, § + & €[0,100]
() =1 100 [61:;05 , §+¢&e[0,100] 20)

Here, §~Uniform(—50,50) and || is a floor function
ensuring that the updated values of o and a are within the split
sum (100 in this study) in the updating policy.

The observable data for any player i in the UG problem are
time series (oi ®),a; (t)) and y; (t) during t € [t;, ty]. We add
noise € = [¢t Etm ¢y, ]T to the cumulative payoff
Y. Here, &, ~ N (g, |0, (B x max (Y))?), ty, =tq, .., ty.
where B = {0.01,0.02,0.03} is the scale to the maximum
absolute value in Y. Thus, ¥; = ¢; X; + €.

yi(ty) ¢ (t1) din(t) ] [*in €ty
A. UG Network " = . =, i 21
In a UG, one player (the offeror) proposes how to split a sum v; (tm) b1 (En) oin ()] Lxin Etpy
(e.g., money or credits), and another player (the responder)
decides whether to accept or reject the offer. Here, we have N
players or nodes in the UG network, and two nodes play with
each other if an edge exists in between. In each round of the
1.00  SeqSS 1.00 4 o SeqsS 1.00 b SeeSS
+— RndSS RndSS RndSS
0.75 0.75 0.75
& My
O 050 50 0.50 1
-
]
0.25 4 i it i 0.25 i 0.25 4
0.00 it st 00 4 ' 0.00 4
50

100 0

100 100
(64|

(c)

Fig. 1. Connectivity discrepancy of UG network for SeqSS and RandomSS algorithms with different noise levels (a) f =
0.01, (b) B = 0.02, and (¢) f = 0.03 with ¢ = 1 in the BA model.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on October 10,2024 at 18:57:37 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3471852

>IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, TNSE-2024-03-0355<

Errory

0.00 4

—— SeqSS
+— RndSS

0.50 4

0.00 4

—+— SeqSS
RndSS

1.00 4

0.75 9

0.50 4

0.25 4

0.00 4

—— SeqSS
. +— RndSS

||
(a)

0 50 100
16|
(b)

0 50
Oy
(c)

Fig. 2. Observation discrepancy of UG network for SeqSS and RandomSS algorithms with different noise levels (a) § = 0.01,

(b) f =0.02, and (c) f = 0.03 with ¢ = 1 in the BA model.

Here, x;; = 1if j € U;, otherwise x;; = 0. ¥; is generated by
randomized repetitions of 30 experiments at each scale level
for the two BA network structures.

We compare the performance of SeqSS and RandomSS in
terms of the connectivity discrepancy Error; and the
observation discrepancy Errory with different cardinality |6y |
of the selected node set 8,. The Errorz of the UG network
with ¢ = 1 in the BA model is depicted in Fig. 1. An error bar
is also provided at each point denoting the standard deviation
from the 30 experiments. SeqSS registers the same accuracy as
RandomSS with edge construction for only ~50% of the nodes.

cardinality |6,| increases, the Errory edges down
continuously. While a higher noise level renders a larger
Errory, SeqSS is overall robust to such perturbations.

The Errory and Errory of the UG network with ¢ = 2 in
the BA network are displayed in Figs. 3 and 4, respectively.
SeqSS has consistent performance on different network
topologies.

It bears mentioning that the discrepancy variance
(represented by the error bar) in SeqSS is notably smaller than
that observed in RandomSS. This minor variability is attributed
to the EI algorithm in SeqSS that consistently selects the most
informative nodes.

1.00 4

1004

—— SeqsS —4— SeqSS 100 1 = —— SeqSS
+ RndSS RndSS +— RndSS
0.75 1 i 0.75 ; 0.75
o
= ™
Q .50 M| 0.50 4 0.50
= M
=
= L W
0.25 4 ik 0.25 - 0.25
| .f_‘ | ‘
0.00 4 [ — 0.00 4 [ — 0.00 4
0 0 100 0 50 100 0 50 100
16, 10, 10,
(a) (b) (c)

Fig. 3. Connectivity discrepancy of UG network for SeqSS and RandomSS algorithms with different noise levels (a) § = 0.01,

(b) B =0.02, and (c) B = 0.03 with ¢ = 2 in the BA model.

The observation discrepancy Errory of the UG network
with ¢ = 1 in the BA model is depicted in Fig. 2. As the

The topology of the power grid system could remain

B. Power Grid System

00 1
100 ) . —— SeqSS Lo [ —4+— SeqSS
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o) ™
] i
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- \
=
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Fig. 4. Observation discrepancy of UG network for SeqSS and RandomSS algorithms with different noise levels (a) § = 0.01,

10y|
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(2]
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(b) B = 0.02, and (c) f = 0.03 with ¢ = 2 in the BA model.
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unknown at the onset of blunt perturbations, such as inclement
weather or operation glitches. With the simplified direct current
(DC) approximation, the power flow P;; from node i to j (e.g.,

voltage magnitude |V;| is set to the unit value for all nodes for
simplicity. Thereby, the effective power balance at node i is
)

delineated as y; = Yjey, Pij = Xjev, %, where U; is the

generator or load) over the transmission line with reactance 7;;
set of connected node j with i. The sensing data from the phasor

Vil - |V] | . measurement unit§ for node i incluc.ie .the phase 'angle ®; apd
fsm((pi - 9)) (22)  power flow y; during t € [ty, ty]. Similarly, we include noise
Y e= [t €t €y]T to the power flow Y, and
&, ~ N (g, 10, (B x max (¥))?) , B ={0.01,0.02,0.03} .
Likewise, Y; = ¢;X; + €

is given as:

Pij =

where |V;| and |V]| are the voltage magnitudes, and ¢; and ¢;
are the phase angles of node i and j, respectively. Here, we
simulate the phase angle variation on the power grid system: the
phase angle @;(t) = (w + Aw;)t, where w = 2 X 50 is the

1.00 g T 5 1.00 § = 1.00 § T
0.75 N ¢ RndSS 0.75 1 ¢ RndSS 0.75 1 _—%— RndSS
] g ] . ({ .
= o M e & .
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0 50 100 0 50 100 0 50 100
(6| (6| ||
(a) (b) (c)

Fig. 5. Connectivity discrepancy of the power grid system for SeqSS and RandomSS algorithms with different noise levels (a)
B =0.01, (b) § = 0.02, and (c) § = 0.03 under IEEE-118 network.

angular frequency of grid operation and Aw; ~ N (0, 20) is the
random frequency perturbation for node i. Moreover, the
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Fig. 6. Observation discrepancy of the power grid system for SeqSS and RandomSS algorithms with different noise levels (a)
B =0.01, (b) § = 0.02, and (c) f = 0.03 under IEEE-118 network.
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Fig. 7. Weight discrepancy of the power grid system for SeqSS and RandomSS algorithms with different noise levels (a) § =
0.01, (b) B = 0.02, and (¢) B = 0.03 under IEEE-118 network.
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Here, ¢;;(t) = sin((pl-(t) - (p,-(t)) and susceptance Xx;; =
%j > 0if j € U;, otherwise 1;; = = and x;; = 0. Thus, x;; is
the weight of edge in the grid network. Y; is generated by
randomized repetitions of 30 experiments at each scale level
for the IEEE-118 network structure.

In this case, in addition to the connectivity discrepancy
Errorj; and observation discrepancy Errory, we also include
the weight discrepancy Errory to compare SeqSS and
RandomSS. In Fig. 5, we show that SeqSS reaches the same
level of Errorz as RandomSS with only a fraction of the
recovered nodes.

The observation discrepancy Errory is shown in Fig. 6.
Same level of Errory is attained in SeqSS as that of
RandomSS, with around half of the nodes interrogated.
Similarly, the discrepancy variance in SeqSS is significantly
smaller than that in RandomSS. In Fig. 7, the Errory of the
IEEE-118 network structure is exhibited. Here, with only a
fraction of the recovered nodes, the weight discrepancy of
SeqSS approaches the same level as RandomSS. Furthermore,
different from the unweighted UG network, estimate of the
weight matrix in the grid network entails more nodes to
converge, and the accuracy is sensitive to the noise.

V. CONCLUSION AND DISCUSSION

In this study, we develop a sparse Bayesian approach based
on the Spike and Slab prior for sequential reconstruction of
network connectivity. We corroborate this approach on an
unweighted UG network (with two different BA structures) and
a weighted power grid system (the IEEE-118 network).
Extensive studies imply that our proposed SeqSS algorithm
identifies the network connectivity in an efficient fashion
compared to RandomSS. Owing to the EI algorithm to select
the most informative node, the SeqSS algorithm notches
smaller discrepancy variance than that of RandomSS.

Note that the computational bottleneck in Bayesian solution
for large-scale networks consists in the Bayesian approximation
and node-by-node iteration. Our method is leaned towards the
node iteration: we only utilize approximately 50% of nodes to
recover the network structure, thereby reducing the
computational burden associated with the Bayesian learning
process. This study has the potential to significantly scale up
connectivity reconstruction for massive networks, radically
transform the monitoring and operation for various realistic
networked systems, including the power grid, transportation
and communication. This provides a new robust and efficient
foundation for operational decision making, such as the
monitoring and maintenance of the transportation or
communication network or power grid system. We will also
investigate innovations to accelerate approximation of
Bayesian posterior in our future study.

Another important area for future investigation is the

problem of data distribution shifts in dynamic networks. This
present study addresses connectivity recovery for static
networks within a short time interval. Hence, only small data
are recorded and they shall follow the same distribution.
Remarkably, data distributions may shift in the regime of
dynamic networks, which entails out-of-distribution
generalization, as discussed in recent studies [38], [39], [40],
[41], for accurate network inference. Expanding our focus to
dynamic networks will improve the applicability and robustness
of this study, offering new insights and capabilities in network
inference.
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