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Abstract—While significant efforts have been attempted in the 

design, control, and optimization of complex networks, most 

existing works assume the network structure is known or readily 

available. However, the network topology can be radically recast 

after an adversarial attack and may remain unknown for 

subsequent analysis. In this work, we propose a novel Bayesian 

sequential learning approach to reconstruct network connectivity 

adaptively: A sparse Spike and Slab prior is placed on connectivity 

for all edges, and the connectivity learned from reconstructed 

nodes will be used to select the next node and update the prior 

knowledge. Central to our approach is that most realistic networks 

are sparse, in that the connectivity degree of each node is much 

smaller compared to the number of nodes in the network. 

Sequential selection of the most informative nodes is realized via 

the between-node expected improvement. We corroborate this 

sequential Bayesian approach in connectivity recovery for a 

synthetic ultimatum game network and the IEEE-118 power grid 

system. Results indicate that only a fraction (~50%) of the nodes 

need to be interrogated to reveal the network topology.   

 
Index Terms— Network Reconstruction; Inverse Problem; 

Network Inference; Spike and Slab; Sequential Node Selection  

 

I. INTRODUCTION  

HE past decades have witnessed the expanding 

complexity of interconnected engineering systems to 

accomplish sophisticated design functions. For instance, 

manufacturing systems are becoming more complicated in the 

context of globalization and the infiltration of renewable energy 

sources has compounded the control of power grid systems. As 

those systems are increasingly interconnected, the 

interdependency in conjunction with the bewildering 

complexity has brought network science into the spotlight. Yet, 

the vast majority of network research is focused on the forward 

problem: given the network topology and interaction between 

constituent components, what emergent behaviors will the 

system exhibit [1], and what is the shortest path to traverse the 

network? While significant effort has been attempted to date on 

optimization and control (e.g., resilience design [2] and optimal 

control [3]) of networked systems for desired dynamics or 

functionalities, most works hinge on the assumption that the 

network topology is readily available or can be accurately 
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estimated efficiently [4], [5]. However, direct access to network 

structures remains elusive, leaving us with only a restricted set 

of observable data [6]. For example, in contingencies of 

malicious attack, natural disaster, or human misoperation, 

connectivity of a significant portion of the power grid or 

communication networks remains unknown at the onset of such 

unexpected events, which could substantially crimp rescue 

efforts. Moreover, the next-generation power grid system is 

poised to become more sophisticated, such that the effective 

transmission-line parameters can be actively controlled with 

alternating-current transmission devices [7], which has 

essentially made the whole system susceptible to misoperation. 

Thus, network connectivity could be seriously altered in such 

extreme events. Such circumstances underscore the imperative 

for reconstruction approaches to unveiling the intricate network 

structures with the wide availability of big data. The task of 

network reconstruction is inherently formidable. This 

complexity arises from the fact that structural information is 

obscured within the measurable data in an enigmatic fashion. 

Moreover, the solution space encompassing all conceivable 

structural configurations is characterized by an exceedingly 

high dimensionality, as in most inverse problem settings. 

We seek to infer network topology and connectivity from a 

paucity of sensing data in a timely and efficient fashion. This 

inverse problem plays a quintessential role in anomaly 

detection, root cause diagnosis, and timely deployment of 

corrective actions. It is noted that most realistic networks 

possess sparse connectivity, in that each node is only connected 

to a small subset of the nodes. This sparsity in the connectivity 

reconstruction translates into a sparse representation problem. 

Accordingly, sparse learning or compressive sensing 

techniques developed in the machine learning community have 

been attempted in network reconstruction using small samples 

of measurement data [7], [8], [9]. In those works, nodal 

connectivity is reconstructed iteratively via sparse learning until 

all nodes are looped through. However, the exhaustive 

reconstruction strategy does not consider the redundant and 

potentially conflicting information in the iterative process. 

Specifically, the connectivity between nodes ÿ and Ā is unveiled 

from both nodes ÿ  and Ā  separately and independently. This 

inefficiency has stymied the widespread application to large-
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scale networks. 

We developed a novel sequential Bayesian analysis 

framework to reconstruct network connectivity from short time 

series data recorded at the node level. The connectivity 

recovered from one node is treated as the prior information of 

the nodes that are not yet investigated, which will be updated 

via a Bayesian framework. This resolves the issue of conflicting 

information, particularly for 0-1 connectivity in unweighted 

networks [8]. Further, leveraging the redundant information, a 

sequential sampling scheme based on expected improvement 

(EI) is adopted to adaptively select the most informative node 

for recovery and maximally reduce the uncertainty in network 

inference. This allows efficient reconstruction with only a 

subset of pivotal nodes and has the potential to scale to massive 

networks. The proposed methodology is corroborated in the 

unweighted ultimatum game (UG) network and the weighted 

IEEE-118 power grid network in this study. This approach 

could potentially advance research in connectivity inference for 

complex networks with small sets of sparse data and pave the 

way for effective network design, optimization, and control. 

II. RELATED WORK 

Mathematically, network topology inference is a high-

dimensional inverse problem. Most attempts assume prior 

knowledge of network structure and emphasize concerns 

regarding directed or undirected interactions, the existence of a 

link, and the strength of interactions along with their temporal 

and spatial scales. For instance, Timme and Casadiego [9] 

revealed the interaction topology of a network from the 

collective dynamics of its constituent nodes driven by a given 

external force. Yu et al. [10] developed a network copy whose 

topology can be continuously updated to mimic the dynamical 

behaviors of the target network. With a priori functional form 

to describe the dynamics of spatially extended networks, 

topology estimation is achieved via a control signal for steady-

state stabilization [11]. Similarly, Ren et al. [12] found that 

noise in dynamical correlation between nodal dynamics leads 

to more accurate topology estimation, as the interaction 

between nodes vanishes during synchronization, and the noise 

brings an additional dimension to study the network topology. 

Alternatively, the leap forward in smart sensing and Internet-

of-Things technologies has brought the proliferation of <big 
data= to retrieve network topology. Donges et al. [13] combined 

mutual information of nonlinear time series data and the 

betweenness of the network systems to uncover global energy 

and information flow in the climate network. 

To handle the nonstationary time series data, transient 

Granger causal interaction was explored to reveal the time-

varying connectivity of the stimulus-activated neural sources 

[14]. Regression-based methods for connectivity identification 

were reported in [15]. However, this requires a large amount of 

data in the least-squares fitting. Variations of Granger causality 

have also been developed to recover network connectivity from 

time series measurements for each node, subject to stochastic 

perturbation [16], [17]. 

A thorough review of data-driven reconstruction of complex 

networks and dynamical processes is provided in [18]. 

Nevertheless, a <small data= issue is also omnipresent in the 
scenario of rare or extreme events [19], [20]. For instance, the 

power grid network connectivity is vulnerable to perturbations 

owing to cascading failures. To rapidly roll out the rescue 

measures and dispatch frontline staff, only a short duration of 

phasor data can be collected [21]. This has posed a tremendous 

challenge to the accuracy of network topology inference, 

particularly considering the uncertainty and ambient noise 

associated with data recording. Indeed, standard measures (e.g., 

information theory and correlation) may not decipher the 

network interdependency with extremely short time series.  

A recent line of research exploits compressive sensing on the 

premise that realistic complex networks are sparse: the 

connectivity degree of each node is considerably low compared 

to the total number of nodes in the network. Thus, the 

connectivity vector to be reconstructed is sparse with only a few 

non-zero entities. Correspondingly, the observational or data 

collection requirements can be relaxed, and compressive 

sensing is powerful to reconstruct a sparse signal from small 

data. For instance, capitalizing on compressive sensing theory, 

Shen et al. [22] reconstructed the epidemic spreading networks 

with highly stochastic dynamics from binary time series (e.g., 

infected or not).  

A sparse learning framework for inference of network 

connectivity was introduced in [8]. The construction process 

entails the iterative estimation of the sparse adjacency matrix ÿ , and the connectivity vector ÿÿ = [ýÿ1 , & , ýÿĂ]ÿ  is 

successively obtained for each node ÿ = 1,& , �, which is in 

essence an inverse problem: given nodal observation Ā and a 

measurement matrix �, the network connectivity matrix ÿ is 

sought after. More specifically, for node ÿ, Āÿ = �ÿÿÿ . Here, Āÿ = [þÿ(ā1), & , þÿ(āā)]ÿ is the nodal observation for āā time 

steps, and the measurement matrix �ÿ =[ÿÿ1(ā1) ï ÿÿĂ(ā1)î ⋱ îÿÿ1(āā) ï ÿÿĂ(āā)]  signifies the dynamic interactions 

between node ÿ and all � nodes (including self-interaction) in 

the network for āā time steps. ÿÿ is the connectivity vector for 

node ÿ, which is sparse with only a few nonzero entities. For 

unweighted networks, ýÿĀ * {0,1}:ýÿĀ = 0 implies that node ÿ 
and node Ā (Ā = 1,& , �) are not connected and ýÿĀ = 1 denotes 

the existence of an edge in between. Since the number of 

nonzero entities contained in the vector ÿÿ is significantly less 

than � , the network is sparse. The sparse reconstruction 

problem is treated as a regularized least-squares problem, 

leveraging the acquired nodal observation data Āÿ at each node ÿ and a measurement matrix �ÿ: minÿÿ*ℝþ‖Āÿ 2 �ÿÿÿ‖22 + �‖ÿÿ‖0 (1) 

where � > 0  is a regularization parameter, and ℓ0 norm‖ÿÿ‖0 controls the sparsity or the number of non-zero 

elements in ÿÿ. As ℓ0 norm optimization problem is NP hard, it 

is typically relaxed via the ℓ1-norm ‖ÿÿ‖1 . The solution only 

provides point estimates for the connectivity of node ÿ to other 

nodes in the network. This procedure is repeated � times until all 
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the nodes are investigated. 

In the same vein, the sparse learning approach was adopted 

in the reconstruction of power grid networks with node-level 

sensing data [7]. The reduction in measurement of nodal 

variables is achieved through compressed sensing that makes 

use of structural properties of the grid network. In [23], a rank-

based nonlinear interdependence measure was developed to 

infer the coupling strength and link density of the underlying 

network, which addressed the problem associated with 

correlations and mutual information. The measure was applied 

to a system of coupled Lorenz dynamics as well as to 

multichannel electroencephalographic recordings from an 

epilepsy patient. 

Improvements are possible when entering the Bayesian 

domain. In [24], compressed sensing and the Bayesian 

approach registered robust and accurate results in network 

reconstruction from potentially incomplete and noisy data. 

Huang et al. [25] incorporated a hierarchical prior model in 

Bayesian learning for network reconstruction on evolutionary 

game data, and the learning parameters were updated iteratively 

as the reconstruction of nodes progresses. It is noteworthy that 

the Bayesian approach is appealing in connectivity inference, 

which offers a distribution as opposed to the point estimate in 

the Lasso framework. However, accurate and robust inference 

of large-scale complex networks is still a confounding pursuit, 

especially considering the short and limited measurements 

corrupted by the ambient or measurement noise and other 

artifacts.  

III. METHODOLOGY 

Our network reconstruction framework consists of two parts: 

sparse Bayesian learning for recovery of node connectivity and 

sequential retrieval to select the next most informative node to 

investigate.  

 

A. Sparse Bayesian Learning for Node Connectivity Recovery 

Sparse Bayesian learning has garnered tremendous traction 

recently to account for the uncertainty associated with sparse 

solutions [24], [25], [26]. The key is the sparsity-promoting 

prior formulation, and different prior distributions have been 

investigated in literature, including normal product [27], 

Laplace [28], horseshoe [29], scale-mixture ℓ1 norm [30] and 

inverse Gamma [31]. It is noted that the ℓ1  prior imposes 

penalty on the sum of the magnitudes of estimated weights or 

connections, as opposed to the constraint on each edge in the 

spike-and-slab prior. Spike-and-slab and horseshoe priors also 

offer advantages over Laplace and inverse Gamma priors, 

particularly in enforcing sparsity. Unlike Laplace and inverse 

Gamma priors, which either overly shrink all coefficients or 

leave them largely unaffected due to their single scale, spike-

and-slab priors use a mixture of densities with different scales. 

This mixture allows them to selectively shrink only a subset of 

coefficients while leaving others largely unchanged. The spike-

and-slab priors distinguish between coefficients better modeled 

by the slab (which remain almost unchanged) and those better 

suited to the spike (which are heavily shrunk towards zero). 

Moreover, as a flexible shrinkage method, Spike and Slab prior 

allows user-specified sparsity [32]. Both spike-and-slab and 

horseshoe priors exhibit similar selective shrinkage, but spike-

and-slab priors have additional benefits. They allow direct 

adjustment of sparsity by modifying the spike weight, which 

controls the proportion of coefficients expected to be zero. 

Additionally, spike-and-slab priors can be expressed with latent 

binary variables indicating whether each coefficient is assigned 

to the spike or slab, facilitating the identification of relevant 

features. Lastly, spike-and-slab priors offer a closed-form 

convolution with the Gaussian distribution, an advantage for 

approximate inference methods using Gaussian 

approximations, unlike horseshoe priors [33], [34]. 

Here, the spike refers to the distribution with spike at ÿÿ =ÿ, and the slab determines the distribution of non-zero entities 

of ÿÿ . On a side remark, the sparsity induced by the Spike and 

Slab model has also been widely used in feature selection [32], 

[33].  

In this study, it is adopted to specify the prior distribution of 

connectivity ÿÿ: Ć(ÿÿ|�ÿ) =∏Ć(ýÿĀ|ÿÿĀ)                     Ă
Ā=1    

=∏[(1 2 ÿÿĀ)ā(ýÿĀ)Ă
Ā=1+         +ÿÿĀ�(ýÿĀ|ăÿĀ , ÿÿĀ)] 

(2) 

 

where ā(∙) is the point probability mass centered at the spike 0, 

and ăÿĀ  and ÿÿĀ  are the mean and variance of the slab 

distribution (normal here). �ÿ = [ÿÿ1, & , ÿÿĂ], and ÿÿĀ * {0,1} is 

the latent binary variable indicating whether ýÿĀ  attains the 

deterministic value 0 (ÿÿĀ = 0)  or is drawn from the slab 

distribution (ÿÿĀ = 1) , where Ā = 1,& , � . In a hierarchical 

prior setting, ÿÿĀ  follows a Bernoulli distribution, ÿÿĀ ∼�ÿÿĄąĂĂĂÿ(ÿÿĀ|Ā ÿĀ) . The parameter ĀÿĀ * [0,1]  is the prior 

probability that ýÿĀ  deviates from zero. Therefrom, the 

distribution of �ÿ is the product of Bernoulli terms given �ÿ =[Āÿ1, & , ĀÿĂ]:  Ć(�ÿ) =∏�ÿÿĄąĂĂĂÿ(ÿÿĀ|ĀÿĀ) Ă
Ā=1  (3)

 

Given nodal observation Āÿ  and measurement matrix �ÿ , the 

likelihood function is Ć(Āÿ|ÿÿ, �ÿ) =∏�(þÿ(ā)|�ÿÿÿ, �02)āý
ā=ā1  (4) 

 

where �02  is the noise variance. The posterior distribution Ć(ÿÿ, �ÿ|Āÿ, �ÿ) is given as  Ć(ÿÿ, �ÿ|Āÿ, �ÿ) = Ć(Āÿ|ÿÿ, �ÿ)Ć(ÿÿ|�ÿ)Ć(�ÿ)Ć(Āÿ|�ÿ)   (5) 
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Consequently, the marginal posterior distribution for ÿÿ  can be 

updated as  Ć(ÿÿ|�ÿ, Āÿ, �ÿ) = ∫Ć(ÿÿ, �ÿ|Āÿ, �ÿ)þ�ÿ (6) 

 

As the integration here is intractable, numerical approximations 

such as expectation propagation (EP) [32], [33], [34], which is 

a general approach for approximating the integral of functions 

factorized into multiple simple factors, can be used to estimate 

the posterior. We factorize the integral part of (6) into multiple 

simple factors, before using the EP method to approximate each 

factor. Since the evidence Ć(Āÿ|�ÿ) is a normalizing constant, 

we only need to factorize the numerator part Ć(Āÿ|ÿÿ, �ÿ)Ć(ÿÿ|�ÿ)Ć(�ÿ)  of (5). Thus, we obtain the 

following representation for the joint distribution of ÿÿ, �ÿ, and Āÿ given �ÿ: Ć(ÿÿ, �ÿ, Āÿ|�ÿ) = Ć(Āÿ|ÿÿ, �ÿ)Ć(ÿÿ|�ÿ)Ć(�ÿ)=∏Ć(þÿ(ā)|ÿÿ, �ÿ)āý
ā=ā1 Ć(ÿÿ|�ÿ)Ć(�ÿ)

=∏ā/(ÿÿ, �ÿ)3
/=1  

(7) 

 

For ease of representation, we denote ā1(ÿÿ , �ÿ) =/ Ć(þÿ(ā)|ÿÿ , �ÿ)āýā=ā1 , ā2(ÿÿ , �ÿ) = Ć(ÿÿ|�ÿ) , and ā3(ÿÿ , �ÿ) = Ć(�ÿ) . ā/(ÿÿ, �ÿ)  can be approximated as a 

simpler form ā�/(ÿÿ, �ÿ) by EP. Then we have             ∏ā/(ÿÿ, �ÿ)3
/=1 j∏ā�/(ÿÿ, �ÿ)3

/=1 = Ā(ÿÿ, �ÿ)  (8) 

 

Here, ā�/(ÿÿ, �ÿ) (Gaussian and Bernoulli distributions) adheres 

to the exponential distribution family [35], ensuring that their 

product Ā(ÿÿ, �ÿ)  is also exponential, as dictated by the 

exponential closure property [34]. Consequently, the posterior 

distribution Ć(ÿÿ, �ÿ|Āÿ, �ÿ) is obtained through the normalized Ā(ÿÿ, �ÿ) with normalizing constant Ć(Āÿ|�ÿ). 
Next, functions ā�1, ā�2, and ā�3  are iteratively updated to 

minimize the Kullback-Leibler (KL) divergence ÿÿĀ(ā/Ā\/||ā�/Ā\/)  between ā�/(ÿÿ , �ÿ) Ā\/(ÿÿ , �ÿ)  and ā/(ÿÿ , �ÿ) Ā\/(ÿÿ , �ÿ)  . Here, Ā\/(ÿÿ , �ÿ) = �(ÿÿ,�ÿ)ý�/(ÿÿ,�ÿ)  and ÿÿĀ(ā/Ā\/||ā�/Ā\/) = ∑∫[ā/Ā\/ log (ā/Ā\/ā�/Ā\/) + ā�/Ā\/ 2 ā/Ā\/]�ÿ þÿÿ .
The approximate form ā�/(ÿÿ, �ÿ) in (8) can be expressed as ā�1(ÿÿ, �ÿ) = s�1∏exp {2 (ýÿĀ 2ă�1Ā)22ÿ�1Ā }N

Ā=1  (9a) 

                                                                         

ā�2(ÿÿ, �ÿ)= s�2∏exp {2 (ýÿĀ 2ă�2Ā)22ÿ�2Ā } exp {log ( Ā�2Ā1 2 Ā�2Ā) ÿÿĀN
Ā=1+ log(1 2 Ā�2Ā)} 

(9b) 

 ā�3(ÿÿ, �ÿ) = s�3∏exp {log ( Ā�3Ā1 2 Ā�3Ā) ÿÿĀN
Ā=1+ log(1 2 Ā�3Ā)} 

(9c) 

 

where {Ā̃�}�=13 , {�� � = (ă��1 , ï , ă��Ă), �� Ā =(ÿ��1 , ï , ÿ��Ă)}�=12
, and {��� = (Ā��1 , ï , Ā��Ă)}�=23  

denote free parameters for the EP algorithm. For each iteration, 

the free parameters are updated to minimize the KL divergence ÿÿĀ(ā/Ā\/||ā�/Ā\/). When the change amplitude of all the free 

parameters is less than a threshold (1 × 1026 in this work) or 

the number of iterations reaches a limit (1,000 here), estimate 

of Ā(ÿÿ, �ÿ)  in (8) is considered to have converged. Then, Ā(ÿÿ, �ÿ)/Ć(Āÿ|�ÿ) is considered as the approximate posterior 

distribution Ć(ÿÿ, �ÿ|Āÿ, �ÿ)  in (5), which also has the 

exponential form:                       Ć(ÿÿ, �ÿ|Āÿ, �ÿ)=∏�(ýÿĀ|ăÿĀ , ÿÿĀ)�ÿÿĄąĂĂĂÿ(ÿÿĀ|ĀÿĀ)Ă
Ā=1   (10) 

 

Here, �ÿ = [ăÿ1, & ,ăÿĂ] , �ÿ = [ăÿ1, & , ăÿĂ] , and �ÿ =[Āÿ1, & , ĀÿĂ] are updated based on �� Ā, �� ā, ��Ā, ��ā, ��ā, and ��Ă: ÿÿĀ = [ÿ�1Ā21 + ÿ�2Ā21]21 (11a) 

 ăÿĀ = [ă�1Āÿ�1Ā21 +ă�2Āÿ�2Ā21]21 (11b) 

 ĀÿĀ = [Ā�1Ā + Ā�2Ā] (11c) 

 

With the estimated posterior distribution obtained from (10) by 

importing the estimated �ÿ, �ÿ, and �ÿ, an edge between node ÿ  and Ā  exists if Ć(zÿĀ|Āÿ , �ÿ) > Ā , where 0 f Ā f 1  is a 

prescribed threshold. With only small data corrupted by noise, 

the estimated posterior distribution Ć(zÿĀ|Āÿ , �ÿ)  could be 

sensitive to the value of Ā, and Ā = 0.5 is used in this study. 

Next, the updated parameters ăÿĀ , ăÿĀ , and ĀÿĀ  derived from 

node ÿ are subsequently treated as the priors ăĀÿ , ăĀÿ , and ĀĀÿ for ýĀÿ  of node Ā in (2) and (3), which will be further updated to 

obtain ÿĀ given nodal observation ĀĀ and measurement matrix �Ā. This effectively eschews the pitfall of conflicting results in 

the conventional sparse learning approaches reported in [7], [8]. 
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B. Sequential Retrieval of Node Connectivity 

Nonetheless, it is computationally daunting to retrieve 

connectivity ÿÿ  within a short time interval for networks with 

large �. Ideally, we can evaluate only a subset of the nodes to 

uncover the network connectivity with acceptable 

reconstruction error, leveraging proceeding reconstruction 

efforts. To select the optimal subset, the submodularity property 

will be investigated. 

For a network with a finite set of nodes ℚ = 1,2,& , �, let �ā 

denote the selected set of ā  nodes for connectivity 

reconstruction, then the reconstruction error is manifested in 

terms of the sum of square error (SSE), ��Ā(�ā) = ‖Āÿ 2�ÿÿ� ÿ‖22 . ��Ā(�ā)  embodies the sum of the discrepancy 

between the nodal observation Āÿ and its estimate, and ÿ�ÿ  is the 

approximation of ÿÿ  for node ÿ  via the proposed sparse 

Bayesian learning approach. It is evident that the null set ∅ 

results in the maximum ��Ā  without any knowledge of the 

connectivity. Accordingly, a utility function Ā: 2ℚ → ℝ can be 

defined to map any subset of ℚ (conventionally represented as 2ℚ) to a real number. Herein, utility over a set �ā is defined as Ā(�ā) = ��Ā(∅) 2 ��Ā(�ā) . The larger the node set �ā 

selected to reconstruct, the smaller ��Ā(�ā) , leading to 

monotonically increasing Ā(�ā) . Therefore, Ā(�ā)  is a 

monotonic submodular function with the following two 

properties: 

1) Monotonicity: Ā(�1) f Ā(�2)  for all �1 ⊆ �2 ⊆ ℚ . That 

said, addition of extra nodes always brings a non-negative 

change of the utility function in the network level. It is 

observed that the equality approximately holds when a 

large number of nodes are included and the ��Ā(�ā) 
almost converges (see Section IV).  

2) Submodularity: For �1 ⊆ �2 ⊆ ℚ  and any element Ā *ℚ\�2, Ā(�1) 2 Ā(�1 ∪ Ā) g Ā(�2) 2 Ā(�2 ∪ Ā) , where ℚ\�2 is the set of nodes in ℚ but not contained in the set �2. This is also known as diminishing returns property, in 

that addition of extra node Ā to a smaller set �1  delivers 

larger utility than to a larger set �2 (also see Section IV). 

Simple greedy algorithms prove effective for near-optimal 

subset selection for maximization of monotonic submodular 

functions [36]. Starting with a set �ā (here, �0 = ∅), the next 

node Āā+1 is selected via Āā+1 = argmaxĀ*ℚ\�ā Ā(�ā ∪ Ā) (12) 

 

and �ā+1 = �ā ∪ {Āā+1}. Here, the node with the largest nodal 

observation Āÿ  is selected initially without any connection 

information. The physical implication is that this node usually 

represents the most critical generator in the power grid system 

or the most critical player in the UG network. To find the best 

subsequent (most informative) node Āā+1 to maximize Ā(�ā ∪s), it is necessary to estimate Ā(�ā ∪ s) while incorporating the 

uncertainty associated with the estimation for all Ā * ℚ\�ā, without computing the objective function. We tackle with 

this via Bayesian optimization [37] and build a surrogate for Ā(�ā ∪ s). Bayesian learning utilizes the surrogate function to 

incorporate prior belief about the function and uses an 

acquisition function to decide where to evaluate the surrogate 

function next. Here, we define improvement by a utility 

function over selecting new node Ā given the retrieval node set �ā �ÿ(Ā|�ā) = max(0, �Ā 2 �ÿÿĀ) (13) 

 

where �ÿÿĀ = minÿ (‖Āÿ 2 �ÿ��ÿ�ā‖22)  represents the 

minimum estimated error for ÿ * �ā and �Ā = ‖ĀĀ 2 �Ā��Ā�ā‖22 

represents the predictive error of node Ā * ℚ\�ā  given the 

retrieved information of the set �ā. In such a manner, the most 

informative node Ā  can be identified and then the sparse 

Bayesian learning algorithm is applied to reconstruct the 

network connectivity. 

In concreteness, we initialize ăÿĀ = 0, ÿÿĀ = 1  for ÿ, Ā *[1 ,ï , �], for the weight matrix � and variance matrix � 

in specification of the priors for ÿ in (2). Only the node ÿ in the 

retrieved set �ā  are fully estimated by the sparse Bayesian 

learning algorithm and the unretrieved node Ā * ℚ\�ā  are 

partially recovered due to the symmetric of the networks. The 

fully estimated weight and variance for node ÿ  are �� ÿ�ā =[ă� ÿ1 ï ă� ÿĂ]�  and ��ÿ�ā = [ă�ÿ1 ï ă�ÿĂ]� ; the partially 

recovered (predictive) weight and variance for node Ā  are �� Ā�ā = [0 ï ă�Āÿ ï 0]�  and ��Ā�ā =[1 ï ă�Āÿ ï 1]� . In (10), ý�ÿĀ�ā  is parametrized as a 

normal distribution, and we derive the EI acquisition function 

that strikes the tradeoff between local exploitation and global 

exploration 

Ā�(Ā) = ��( �‖��Ā�ā‖22) + ‖��Ā�ā‖22 �( �‖��Ā�ā‖22) (14) 

 

where � = ‖ĀĀ 2 �Ā�� Ā�ā‖22 2minÿ (‖Āÿ 2�ÿ�� ÿ�ā‖22) , �(⋅) 
and �(⋅) are the CDF and PDF of standard normal distribution, 

respectively. The most informative node Āā+1 to be selected is 

determined based on Ā�(Ā) for Ā * ℚ\�ā: Āā+1 = argmaxĀ*ℚ\�ā Ā�(Ā) (15) 

 

IV. NUMERICAL RESULTS 

We demonstrate the performance of our reconstruction 

framework in two representative cases: the synthetic 

unweighted UG network and the weighted IEEE-118 power 

grid system. The weight here represents the different 

susceptance of the transmission lines. The UG network 

topology is generated according to the Barabási-Albert (BA) 

model. The BA model generates random scale-free networks 

according to the preferential attachment principle. For a 

network with ý0 nodes, new nodes are added one at a time and 

connected to ý f ý0  existing nodes with a probability 
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proportional to the node degree. Two different BA models (low 

average degree with ý = 1 and high average degree ý = 2) are 

utilized to generate the UG network, and the initial number of 

nodes is ý0 = ý + 1. For both the UG and power grid cases, the 

number of nodes in all network structures is � = 118 and the 

timesteps is āā = 60 for recording data.  

For comparison, we include a baseline model Random Spike 

and Slab (RandomSS), which uses the Spike and Slab prior in 

the sparse Bayesian learning approach to reveal the node 

connectivity but only randomly selects the next node for 

reconstruction. By contrast, the proposed Sequential Spike and 

Slab model (SeqSS) selects the next most informative node via 

EI. For each network, we conduct the connectivity recovery 

over 30 experiments with random noise on nodal observation 

using the following metrics: the Frobenius norm for the 

connectivity discrepancy Āÿÿąÿ�� = ‖� 2 ��‖�‖�‖�  (16) 

 

where �  and ��  denotes the true and estimated connectivity 

matrices, respectively; and the Frobenius norm for the 

observation and weight discrepancy Āÿÿąÿ�� = ‖Ā 2 Ā�‖�‖Ā‖�  (17) 

 

and Āÿÿąÿÿ� = ‖� 2��‖�‖�‖�  (18) 

 

Here, ��  and ��  with entry ÿÿĀ  are estimated from (10) and 

(11c). ÿÿĀ = 1 (an edge exists between node ÿ  and Ā) if ĀÿĀ >0.5, and otherwise ÿÿĀ = 0. Ā� is indirectly estimated from (10): Ā�ÿ = �ÿ�� ÿ  for weighted network and Ā�ÿ = �ÿ��ÿ  for 

unweighted network.  

 

A. UG Network 

In a UG, one player (the offeror) proposes how to split a sum 

(e.g., money or credits), and another player (the responder) 

decides whether to accept or reject the offer. Here, we have � 

players or nodes in the UG network, and two nodes play with 

each other if an edge exists in between. In each round of the 

game, node ÿ plays two games with a connected node Ā, in the 

role of an offeror and a responder, respectively. As such, the 

proposal of a player ÿ is denoted by (ąÿ , �ÿ): it offers credit ąÿ  to 

other interactive responders and accepts credit for at least �ÿ 
from other interactive offerors. Only when the responder 

accepts the proposed strategy, the sum will be split accordingly. 

The measurement matrix �ÿ, or more specifically, the payoff ÿÿĀ  (the entry of measurement matrix �ÿ ) of player ÿ  with 

strategy (ąÿ , �ÿ) playing against player Ā with strategy (ąĀ , �Ā) 
is represented as  

ÿÿĀ = {  
  ąĀ + 100 2 ąÿ ,ąĀ , ąÿ g �Ā  �Ąþ ąĀ g �ÿąÿ < �Ā  �Ąþ ąĀ g �ÿ100 2 ąÿ ,0,  ąÿ g �Ā  �Ąþ ąĀ < �ÿ ąÿ < �Ā  �Ąþ ąĀ < �ÿ  (19) 

 

Subsequently, the cumulative payoff þÿ  (the entry of nodal 

observation Āÿ) for player ÿ with strategy (ąÿ , �ÿ) at each round 

is þÿ = 3 ÿÿĀĀ*Āÿ , where ýÿ is the set of interactive node Ā  with ÿ. In the evolutionary game, player ÿ updates the strategy in a 

randomized manner, i.e., (ą(ā + 1), �(ā + 1)) =(/(ą(ā)), /(�(ā))):  /(ā) = { ā + Ā , ā + Ā * [0, 100]100 × ⌊ā + Ā100 ⌋ , ā + Ā + [0, 100] (20) 

 

Here, ξ~ýĄÿĀąÿă(250,50)  and +∙,  is a floor function 

ensuring that the updated values of ą and � are within the split 

sum (100 in this study) in the updating policy.  

The observable data for any player ÿ in the UG problem are 

time series (ąÿ(ā), �ÿ(ā)) and þÿ(ā) during ā * [ā1, āā]. We add 

noise � = [Ăā1 & Ăā� & Ăāý]ÿ to the cumulative payoff Ā. Here, Ăā�~ �(Ăā�  | 0,  (ÿ × max (Ā))2), āÿ = ā1,   & ,  āā , 

where ÿ = {0.01, 0.02, 0.03}  is the scale to the maximum 

absolute value in Ā. Thus, Āÿ = �ÿÿÿ + �.  [þÿ(ā1)îþÿ(āM)] = [ÿÿ1(ā1) ï ÿÿĂ(ā1)î ⋱ îÿÿ1(āā) ï ÿÿĂ(āā)] [ýÿ1îýÿĂ] + [
Ăā1îĂāý] (21)

Fig. 1. Connectivity discrepancy of UG network for SeqSS and RandomSS algorithms with different noise levels (a) ÿ =0.01, (b) ÿ = 0.02, and (c) ÿ = 0.03 with ý = 1 in the BA model. 
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Here, ýÿĀ = 1 if Ā * ýÿ , otherwise ýÿĀ = 0. Āÿ is generated by 

randomized repetitions of 30 experiments at each scale level ÿ 

for the two BA network structures. 

We compare the performance of SeqSS and RandomSS in 

terms of the connectivity discrepancy Āÿÿąÿ��  and the 

observation discrepancy Āÿÿąÿ��  with different cardinality |�ā| 
of the selected node set �ā.  The Āÿÿąÿ�� of the UG network 

with ý = 1 in the BA model is depicted in Fig. 1. An error bar 

is also provided at each point denoting the standard deviation 

from the 30 experiments. SeqSS registers the same accuracy as 

RandomSS with edge construction for only ~50% of the nodes.  

The observation discrepancy Āÿÿąÿ��  of the UG network 

with ý = 1  in the BA model is depicted in Fig. 2. As the 

cardinality |�ā|  increases, the Āÿÿąÿ��  edges down 

continuously. While a higher noise level renders a larger Āÿÿąÿ�� , SeqSS is overall robust to such perturbations. 

The Āÿÿąÿ��  and Āÿÿąÿ��  of the UG network with ý = 2 in 

the BA network are displayed in Figs. 3 and 4, respectively. 

SeqSS has consistent performance on different network 

topologies.  

It bears mentioning that the discrepancy variance 

(represented by the error bar) in SeqSS is notably smaller than 

that observed in RandomSS. This minor variability is attributed 

to the EI algorithm in SeqSS that consistently selects the most 

informative nodes.  

 

B. Power Grid System  

The topology of the power grid system could remain 

Fig. 2. Observation discrepancy of UG network for SeqSS and RandomSS algorithms with different noise levels (a) ÿ = 0.01, 

(b) ÿ = 0.02, and (c) ÿ = 0.03 with ý = 1 in the BA model. 

 

Fig. 3. Connectivity discrepancy of UG network for SeqSS and RandomSS algorithms with different noise levels (a) ÿ = 0.01, 

(b) ÿ = 0.02, and (c) ÿ = 0.03 with ý = 2 in the BA model. 

 

Fig. 4. Observation discrepancy of UG network for SeqSS and RandomSS algorithms with different noise levels (a) ÿ = 0.01, 

(b) ÿ = 0.02, and (c) ÿ = 0.03 with ý = 2 in the BA model. 
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unknown at the onset of blunt perturbations, such as inclement 

weather or operation glitches. With the simplified direct current 

(DC) approximation, the power flow ÿÿĀ  from node ÿ to Ā (e.g., 

generator or load) over the transmission line with reactance ÿÿĀ  
is given as: ÿÿĀ = |þÿ| ∙ |þĀ|ÿÿĀ sin(φÿ 2φĀ) (22) 

 

where |þÿ| and |þĀ| are the voltage magnitudes, and �ÿ and �Ā 
are the phase angles of node ÿ  and Ā, respectively. Here, we 

simulate the phase angle variation on the power grid system: the 

phase angle φÿ(ā) = (ω + Δωÿ)ā , where � = 2� × 50 is the 

angular frequency of grid operation and Δωÿ  ~ �(0, 20) is the 

random frequency perturbation for node ÿ . Moreover, the 

voltage magnitude |þÿ| is set to the unit value for all nodes for 

simplicity. Thereby, the effective power balance at node ÿ  is 

delineated as þÿ = 3 ÿÿĀĀ*Āÿ = 3 sin(φÿ2φĀ)ÿÿĀĀ*Āÿ , where ýÿ is the 

set of connected node Ā with ÿ. The sensing data from the phasor 

measurement units for node ÿ include the phase angle φÿ  and 

power flow þÿ  during ā * [ā1, āā]. Similarly, we include noise � =  [Ăā1 & Ăā� & Ăāý]ÿ  to the power flow Ā , and Ăā�~ �(Ăā�  | 0,  (ÿ × max (Ā))2) , ÿ = {0.01, 0.02, 0.03} . 

Likewise, Āÿ = �ÿÿÿ + � 

Fig. 5. Connectivity discrepancy of the power grid system for SeqSS and RandomSS algorithms with different noise levels (a) ÿ = 0.01, (b) ÿ = 0.02, and (c) ÿ = 0.03 under IEEE-118 network. 

 

Fig. 6. Observation discrepancy of the power grid system for SeqSS and RandomSS algorithms with different noise levels (a) ÿ = 0.01, (b) ÿ = 0.02, and (c) ÿ = 0.03 under IEEE-118 network. 

 

Fig. 7. Weight discrepancy of the power grid system for SeqSS and RandomSS algorithms with different noise levels (a) ÿ =0.01, (b) ÿ = 0.02, and (c) ÿ = 0.03 under IEEE-118 network. 
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 [þÿ(ā1)îþÿ(āM)] = [ÿÿ1(ā1) ï ÿÿĂ(ā1)î ⋱ îÿÿ1(āā) ï ÿÿĂ(āā)] [ýÿ1îýÿĂ] + [
Ăā1îĂāý]  (23) 

 

Here, ÿÿĀ(t) = sin(φÿ(ā) 2 φĀ(ā)) and susceptance ýÿĀ =1ÿÿĀ > 0 if Ā * ýÿ , otherwise ÿÿĀ =∞ and ýÿĀ = 0. Thus, ýÿĀ  is 

the weight of edge in the grid network. Āÿ  is generated by 

randomized repetitions of 30 experiments at each scale level ÿ 

for the IEEE-118 network structure.  

In this case, in addition to the connectivity discrepancy Āÿÿąÿ�� and observation discrepancy Āÿÿąÿ�� , we also include 

the weight discrepancy Āÿÿąÿÿ�  to compare SeqSS and 

RandomSS. In Fig. 5, we show that SeqSS reaches the same 

level of  Āÿÿąÿ��  as RandomSS with only a fraction of the 

recovered nodes.  

The observation discrepancy Āÿÿąÿ��  is shown in Fig. 6. 

Same level of Āÿÿąÿ��  is attained in SeqSS as that of 

RandomSS, with around half of the nodes interrogated. 

Similarly, the discrepancy variance in SeqSS is significantly 

smaller than that in RandomSS. In Fig. 7, the Āÿÿąÿÿ�  of the 

IEEE-118 network structure is exhibited. Here, with only a 

fraction of the recovered nodes, the weight discrepancy of 

SeqSS approaches the same level as RandomSS. Furthermore, 

different from the unweighted UG network, estimate of the 

weight matrix in the grid network entails more nodes to 

converge, and the accuracy is sensitive to the noise.  

V. CONCLUSION AND DISCUSSION 

In this study, we develop a sparse Bayesian approach based 

on the Spike and Slab prior for sequential reconstruction of 

network connectivity. We corroborate this approach on an 

unweighted UG network (with two different BA structures) and 

a weighted power grid system (the IEEE-118 network). 

Extensive studies imply that our proposed SeqSS algorithm 

identifies the network connectivity in an efficient fashion  

compared to RandomSS. Owing to the EI algorithm to select 

the most informative node, the SeqSS algorithm notches 

smaller discrepancy variance than that of RandomSS.  

Note that the computational bottleneck in Bayesian solution 

for large-scale networks consists in the Bayesian approximation 

and node-by-node iteration. Our method is leaned towards the 

node iteration: we only utilize approximately 50% of nodes to 

recover the network structure, thereby reducing the 

computational burden associated with the Bayesian learning 

process. This study has the potential to significantly scale up 

connectivity reconstruction for massive networks, radically 

transform the monitoring and operation for various realistic 

networked systems, including the power grid, transportation 

and communication. This provides a new robust and efficient 

foundation for operational decision making, such as the 

monitoring and maintenance of the transportation or 

communication network or power grid system. We will also 

investigate innovations to accelerate approximation of 

Bayesian posterior in our future study. 

Another important area for future investigation is the 

problem of data distribution shifts in dynamic networks. This 

present study addresses connectivity recovery for static 

networks within a short time interval. Hence, only small data 

are recorded and they shall follow the same distribution. 

Remarkably, data distributions may shift in the regime of 

dynamic networks, which entails out-of-distribution 

generalization, as discussed in recent studies [38], [39], [40], 

[41], for accurate network inference. Expanding our focus to 

dynamic networks will improve the applicability and robustness 

of this study, offering new insights and capabilities in network 

inference. 
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