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Abstract—Adaptive transmission of conventional video from a
UAV to the ground has been researched for various applications,
but the research topic of 360◦ video transmission from a UAV
for the specific application of first-person view (FPV) based
navigation is still nascent. In this work, we present adaptive
360◦ video compression and streaming methods to optimize the
perceptual quality of experience of a pilot, who navigates the
UAV in real time by viewing this immersive FPV feed, which
is sent wirelessly from the UAV to the pilot. This adaptation
of the 360◦ FPV feed is performed in response to the wireless
channel conditions and the pilot’s viewport, wherein each 360◦

frame is split into two regions of variable size, one meant to be
within the pilot’s viewport and the other outside. Each region
is encoded using different H.265 quantization parameters (QP)
and modulation orders. We model the scenario realistically by
generating probability distributions of the variation in frame
size and quality with QP, for aerial 360◦ videos. These models
are expressed using a two-term exponential function, whose pa-
rameters are also provided. This model achieves lower prediction
errors than the single-term exponential and power law functions.
Simulations on a set of aerial 360-degree videos demonstrate that
the adaptive approach achieves 9.73 dB (21.77%) greater QoE
than a baseline approach that utilizes throughput-based adaptive
bit rate algorithm (ABR) to tune QP per GoP, and a 5G new radio
adaptive modulation scheme (AMS) to tune modulation order.
Additionally, we present a deep reinforcement learning approach
to adapt FPV, which achieves an expected pilot QoE just 2.07 dB
lower than the adaptive approach, while being significantly faster
and requiring no prior knowledge of the environment.

Index Terms—360-degree video, quality of experience, first-
person view, UAVs, wireless communications

I. INTRODUCTION

UAV video applications can benefit greatly from 360◦ video
technology, which provides a more immersive experience than
conventional cameras. An on-board 360◦ camera on a UAV
enables the ground pilot to conveniently scan the UAV’s
surroundings simply by changing the viewing direction within
the head-mounted display (HMD) without changing the UAV’s
course, similar to how drivers check their surroundings when
driving a car. This enhanced situational awareness can enhance
first-person view (FPV) applications, wherein pilot on the
ground navigates a UAV by viewing the video provided by
the UAV’s on-board camera. FPV applications include search
and rescue missions to locate survivors, aerial surveillance to
monitor crowds or infrastructure, or for aerial videography to
cover live events.

The Insta360 Sphere camera [1] integrates with DJI Air 2
and Air 2S such that the drone itself does not appear in the cap-
tured frames, resulting in a truly flying 360◦ camera. Commer-
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Fig. 1. Scenario under consideration: Adaptation of a 360◦ FPV downlink
from a UAV to a ground pilot.

cial 360◦ cameras are designed to save video frames locally,
with limited live-streaming capabilities. Streaming over the
air, for real-time applications has its unique challenges. UAV
motion may result in rapid changes in the wireless channel
quality, in response to which the encoded video quality and the
radio modulation and coding must be tuned to ensure that the
frames are delivered both reliably and with sufficient quality.
An FPV downlink feed also needs to be adapted such that
the portion of the 360◦ video within the pilot’s continuously
changing viewport is of sufficient quality, where the viewport
is the region of the HMD currently being viewed by the pilot.

Various aspects of drone-based 360◦ video transmission
have been studied, such as the suitability of the WebRTC
transport protocol [2], resource (time, frequency, compute) al-
location to optimize the quality of experience (QoE) of ground
users [3]–[8], and the impact of region of interest coding on
pilot QoE [9] in low-bandwidth networks. Viewport adaptive
360◦ transmission has also been studied extensively [10]–[12],
however, for the general Internet, rather than for UAV navi-
gation applications. To the best of our knowledge, viewport-
adaptive techniques have not been studied in detail for the
scenario of 360◦ transmission from a UAV to a ground pilot,
taking into account the pilot head movements and changes in
the wireless air to ground communication channel, for real-
time UAV navigation. We address this gap as follows.

We theoretically model the scenario of 360◦ video trans-
mission from a UAV for FPV-based navigation, taking into
account UAV motion, the pilot’s viewing pattern and field of
vision, rate-distortion characteristics of aerial 360◦ video, and
stochastic wireless channel characteristics. Each 360◦ frame
captured at the UAV, is split into two regions, one predicted to
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be within the pilot’s field of view and the other outside. These
two regions are then encoded using distinct QP values and
modulation orders, to maximize the instantaneous visual qual-
ity of the pilot, while satisfying constraints on the reliability
of the communication link, expressed in terms of probability
of frame reception, and on the latency of the FPV feed.
We compare the performance of various approaches: simple
exhaustive search, a solution based on deep reinforcement
learning, and a baseline that tunes QP using throughput-based
adaptive bit rate (ABR) and modulation order using 5G-NR
adaptive modulation scheme (AMS). Additionally, we generate
models for frame sizes and quality, obtained by encoding aerial
videos using H.265 codec at various QP values, using a two-
term exponential function.

II. MODELLING 360◦ FPV NAVIGATION

We consider a scenario as shown in Fig. 1, wherein a
UAV, equipped with a 360◦ camera, transmits the FPV feed
wirelessly to a pilot on the ground. The pilot views this FPV
feed in real-time on the HMD and navigates the UAV. The
pilot’s viewing direction and the signal to noise ratio (SNR)
of the wireless FPV link is fed back to the UAV continuously.
Using this feedback, the UAV adapts the 360◦ FPV feed to
maximize the instantaneous QoE within the pilot’s viewport.
We assume a constant frame resolution of hFr horizontal and
vFr vertical pixels, and a a target frame rate of fFr.

A. Wireless Connectivity

Wireless connectivity is provided by NB cellular base
stations (BSs) operating at millimeter (mmWave) frequencies,
each of which transmits at PB watts. For simplicity, we assume
that the UAV travels in a straight line between a start and end
waypoint, denoted as XU,S and XU,E, at a constant velocity
of v m/s. Xi,B denotes the position of the ith BS, and XU(t)
denotes the UAV’s position at time t. The distance between
the UAV and the ith BS, denoted as di(t) is:

di(t) = |XU(t)− Xi,B|2. (1)

We compute the probability of line of sight (LoS) between the
UAV and ith BS, denoted as PLoS,i(t), using a 3GPP model:

PLoS,i(t) =

{
1, �2D < k1(t),
k1(t)
�2D(t) + (1− k1(t)

�2D(t) )e
−�2D(t)

k2(t) , �2D > k1(t),

where �2D(t) is the two-dimensional (2D) distance between
the UAV at time t and the ith BS, and k1(t) and k2(t)
are functions of the height of the UAV at time t. The path
loss between the UAV and the ith BS, denoted as pi(t), is
calculated as [13]:

ρi(t) =32.4− 180log10(fc) + 10A
(
hU(t))

B log10(di(t)
)

+N (0, σN), (2)

where fc is the transmission frequency, and hU(t) is the
height of the UAV at time t. σN is the standard deviation of
the Gaussian-distributed shadow fading, and depends on the
environment, e.g. urban vs suburban. A and B are parameters
that depend on the environment and the presence of an LoS

path between the UAV and the BS, as calculated in (2). The
signal strength at the UAV from the ith BS is calculated as:

si(t) = ρi(t)PB. (3)

At any given time t, the UAV associates with the BS that has
the strongest received signal strength. The SNR of the FPV
link, denoted as γ(t), is then calculated as:

γ(t) =

(
maxi ρi(t)

)
PU

BNo
, (4)

where No is the noise spectral density, B is the transmission
bandwidth, and PU is the UAV transmission power.

B. Pilot’s Viewing Model
At time t, let the heading angle of the UAV be denoted

by the pair of horizontal and vertical angles: {θU(t), φU(t)}.
The pilot’s viewing direction is similarly represented by the
pair: {θP(t), φP(t)}. A study on the head movements of
pilots [14] found that pilots pre-dominantly viewed along
the aircraft heading direction. Pilots had symmetric head
movements along the horizontal plane and slightly skewed
head movements in the vertical plane, where pilots tend to
look down (towards south) more than up (towards north).
Accordingly, we assume a pilot viewing model as follows.

As shown in Fig. 2, the pilot is assumed to constantly scan
around the UAV’s heading angle, between θH degrees east
and west, and vertically between φN ∈ [0, π

2 ] (towards north)
and φS ∈ [−π

2 , 0] (towards south). We assume that |φS| >
φN, i.e. the pilot scans down towards south more than up
towards north. The horizontal viewing direction is assumed to
be a normal distribution with its mean along the UAV heading
direction, such that the 95% confidence interval is within a
deviation θH from the mean. Mathematically,

θP(t) = N
(
θU(t),

θH
1.96

)
, (5)

using the property that, in a normal distribution, 95% of all
values lie within 1.96 standard deviation of the mean.

In the vertical plane, the pilot views along the UAV heading
direction with a probability pφ, and deviates with a probability
1− pφ, in which case the vertical viewing angle is uniformly
distributed between φN and φS, around φU(t), as:

φP(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φU(t),with probability pφ

N (φU(t) +
φN+φS

2 , |φN−φS|
3.92 ),

with probability 1− pφ

(6)

C. Viewport Adaptive Video Encoding
Let t denote the time instant at which the UAV is about to

encode the captured 360◦ panorama. Based on the knowledge
of the pilot’s viewing angle {θP(t), φP(t)}, the FPV system
at the UAV partitions the sphere into two regions, one meant
to be within the pilot’s viewport and other outside. This
partitioning is performed on the basis of two horizontal and
two vertical angles: θ′H(t) east, θ′H(t) west, φ′

N(t) north, and
φ′
S(t) south. We assume equi-rectangular projection, wherein

constant increments in the horizontal and vertical angles in the
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Fig. 2. Selecting a region of interest from the 360◦ viewport based on the
UAV heading, θH, φS, and φN.

spherical plane correspond to constant increments along the x
and y axes in the two dimensional (2-D) Cartesian plane. After
equi-rectangular projection, let there be pI(t) pixels inside the
viewport and pO(t) pixels outside the viewport:

pI(t) =
hFrθ

′
H

180◦
× vFr(φ

′
N + |φ′

S |)
360◦

(7)

pO(t) = hFrvFr − pI(t)

For the assumed pilot viewing model, if θ′H(t) = θH, φ′
N(t) =

φN, and φ′
S(t) = φS(t), then there is 95% probability that

the viewport chosen by the FPV system contains the pilot’s
viewing direction.

The region within the viewport chosen by the FPV system
is encoded using H.265 codec at a QP of qI(t), while the
region outside at qO(t). The size of the encoded frame, and its
quality, measured in peak signal-to-noise ratio (PSNR), both
depend on the QP. For the frame encoded at a QP of q, we use
FFrSz(q) to denote the cumulative distribution function (CDF)
of the encoded frame size, and FFrQ(q) to denote the CDF of
the encoded frame quality. We derived these CDFs for aerial
360◦ videos by compressing videos from [15] using H.265 at
various QP values (10 to 50 in steps of 5), for a constant group
of pictures (GOP) size of 50. Bipredictive frames (B-frames)
were disabled and videos were downloaded in either 4K or 8K
resolution. The list of evaluated videos is in Table I, and their
Youtube URLs are shared in the Appendix. For each video set
and at each QP value, we measured the frame size and PSNR
of each resultant encoded frame. The variation in frame size
and frame quality with QP was modelled as an exponential
function of the form y = a ∗ e−bx + c ∗ e−dx, different from
the single-term exponential and power law functions used
to model rate-distortion characteristics in [16]. An intuitive
understanding is presented as follows.

Fig. 3 shows the CDF of encoded frame sizes for various QP
values, for aerial 360◦ videos of Chicago and Huangshan (a
mountain range in Eastern China). The distribution is similar at
higher QP, implying that both videos have similar compression
characteristics. At lower QPs, the distibutions begin to vary
slightly, though the mean values are similar. Fig. 4 shows the
CDF of PSNR values of the luminance (Y) component as a
function of QP. Both locations have similar PSNR values, as
the QP is increased from 5 to 25. At lower QP values, the

TABLE I
DATASET OF EVALUATED AERIAL 360◦ VIDEOS

Location Resolution Frame Rate Environment
Chicago 7680x3840 30 Urban

Lucerne 3840x2048 24 Urban

San Francisco 7680x3840 30 Urban

Zurich 3840x2048 30 Urban

Bryansk Forest 7680x3840 30 Nature

Hawaii 7680x3840 30 Nature

Huangshan 7680x3840 50 Nature

Lake Hibara 7680x3840 30 Nature
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Fig. 3. CDF of encoded frame sizes for various QP values, for aerial 360◦
videos of Chicago and Lake Hibara.

PSNR of Huagshan is marginally higher, and the difference
reduces at higher QPs. The similarity in video characteristics
can be explained by considering that, at the high altitude from
which the UAV captures the video scene, majority of the scene
is static, and the compression statistics are thus similar. The
rate-distortion characteristics of all videos is shown in Fig. 5.

Using this dataset, we generate the distribution of frame
sizes specifically for key frames (I-frames) and non-key frames
(B-frames and P-frames). Such granular distributions are use-
ful when considering the real-time latency constraints involved
in FPV navigation, i.e. depending on the GoP size, the current
frame is classified as a key or a non-key frame and the
corresponding frame-size distribution is used. We use bI(t) to
denote the number of bits used to represent the region inside
the viewport encoded at a QP qI(t), and bO(t) for the number
of bits outside the viewport, encoded at qO(t). bI(t) and bO(t)
are both random variables, whose distribution can be obtained
from FFrSz(q).

D. Video Transmission and Reception
We assume that a modulation order of mI(t) is used for the

region within the viewport and mO(t) for the region outside
the viewport. For signal bandwidth of B Hz, the symbol rate
is B

2 , and the transmission bit rate is:

rI(t) =
B log2 (mI(t))

2
, rO(t) =

B log2 (mO(t))

2
. (8)
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Fig. 4. CDF of the PSNR of the encoded frame, for various QP values, for
aerial 360◦ videos of Chicago and Lake Hibara.
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Fig. 5. Average encoded video quality, measured in PSNR (dB), vs. average
encoded video bit rate (Mbps), for all considered aerial 360◦ videos.

The propagation delay of the encoded frame from the UAV to
the associated BS, denoted as TP(t) is calculated as:

TP(t) =
dBS(t)

c
, (9)

where c is the speed of light and dBS(t) is the distance
of the UAV from its associated BS. The networking delay
encountered by the encoded frame as it is forwarded from the
BS to the pilot is denoted as TN. For simplicity, we assume
that the communication link between the BS and the pilot has
sufficient capacity and thus, TN is constant. We define frame
latency, denoted as TFrL(t) as the time interval between the
instant at which the frame is captured at the UAV and the

instant at which it is displayed to the pilot:

TFrL(t) = TEnc(t) +
1

rC

( bI(t)
rI(t)

+
bO(t)

rO(t)

)
+ TN + TP(t),

(10)

where rC is the channel coding rate and TEnc(t) denotes the
time required to encode the frame:

TEnc(t) =
pI(t)

p(t)
TEnc(qI(t)) +

pO(t)

p(t)
TEnc(qO(t)). (11)

Expected encode time duration, as a function of QP, measured
during the encoding process, are used to calculate (11). Since
bI(t) and bO(t) are random variables, TFrL(t) is also a random
variable. Let the probability distribution of TFrL be denoted
as PFrL(t). Then, the expected frame latency is calculated as:

EFrL(t) =

∫
τPFrL(TFrL = τ)dτ, (12)

where τ denotes the domain of the frame latency values,
over which its expected value is calculated. We utilize LDPC
channel coding, as also used in 5G NR. The variation in bit
error rate, as a function of the given LDPC coding rate and the
modulation scheme, has been presented in literature [17]. For
simplicity, we assume that all bits of the encoded frame must
be successfully received at the receiver for successful decod-
ing. Additionally, for non-key frames, the previous predictor
frame must also be successfully received. Accordingly, for
non-key frames, the probability that the frame is successfully
received, denoted as PFrRx(t) is calculated as follows:

PFrRx(t) = (1− eI(t))
bI(t)(1− eO(t))

bO(t)
PFrRx(t− TFrL).

Independent receipt probabilities are assumed for key frames.

E. Quality of Experience (QoE) Metric

The human visual span can be categorized into three re-
gions, based on the used the distribution of retinal cones [18].
The most detailed is the foveal region, with a radius of 1◦
around the viewing direction. The second region, termed the
central region, has a span of 30◦ around the viewing direction.
This region provides visual information and location of most
objects in the line of sight, while the region outside 30◦,
termed the peripheral region, provides general awareness of
larger objects and motion cues. Accordingly, we define the
QoE of the pilot, denoted as QP(t), as follows:

QP(t) = WCQFr,C(t) +WPQFr,P(t) +WNPQFr,NP(t),

where QFr,C(t), QFr,P(t), and QFr,NP(t) denote the quality
of the encoded frame within the central region, within the
peripheral region excluding the inner central region, and
within the non-peripheral region of the pilot, respectively.
WC,WP, and WNP are weights assigned to these quality
measures such that WC > WP > WO encourages the
FPV adaptation algorithm to prioritize maximizing the video
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frame quality within the central region. The qualities QFr,C(t),
QFr,P(t), and QFr,NP(t) are calculated as follows:

QFr,C(t) =
|RC ∩RI(t)|

|RC| qI(t) +
|RC ∩RO(t)|

|RC| qO(t),

QFr,P(t) =
|(RP −RC) ∩RI(t)|

|(RP −RC)| qI(t)+

|(RP −RC) ∩RO(t)|
|RP −RC| qO(t),

QFr,NP(t) =
|RNP ∩RI(t)|

|RC| qI(t) +
|RNP ∩RO(t)|

|RC| qO(t),

where RC, RP, RNP, RI, and RO denote the regions:
central, peripheral, outside the peripheral, inside the estimated
viewport, and outside the estimated viewport, respectively. The
operator |.| denotes the area of a region.

III. 360◦ FPV ADAPTATION

We define the FPV adaptation problem as a discrete-time
decision process which takes place at the FPV system of the
UAV. For each captured frame at time t, the UAV chooses the
QP and modulation order for the regions within and outside the
pilot’s viewport, as known by the UAV at time t, to maximize
the QoE of the pilot, subject to constraints on the frame latency
and probability of frame reception. Mathematically,

max︸︷︷︸
θ′H(t),φ′N (t),φ′S(t)

qI(t),qO(t),mI(t),mO(t)

QP(t+ TFrL)

such that: c1 : E
(
TFrL(t)

)
<=

1

fFr
c2 : PFrRx(t) > α

c3 : θ′H(t) ∈ θ,

c4 : φ′
N (t) ∈ Φ, φ′

S(t) ∈ Φ,

c5 : qI(t), qO(t) ∈ q,

c6 : mI(t),mO(t) ∈m, (13)

where α is the guarantee to be provided on the probability of
frame reception and E

(
TFrL(t)

)
is the expected frame latency.

θ,Φ,q,m represent the search range for the horizontal view-
port limit, vertical viewport limits, QPs, and modulation order.
Constraint c1 ensures that the expected frame latency matches
the target bit rate requirement, while constraint c2 guarantees
successful frame reception. Constraints c3 − c6 capture the
discrete optimization search space.

A. FPV Adaptation using Exhaustive Search
To solve this optimization problem, we iterate over all

parameter combinations exhaustively to first prune combi-
nations that disobey the constraints. From the combinations
that remain, we choose those that maximize the QoE. In
practice, computation delays can be minimized by storing
these optimum parameters values as a function of channel SNR
and pilot viewing direction as a look-up table on memory, or
they may be provided by a trained neural network. Studies [14]
have shown that a pilot’s scanning rate does not exceed 120◦
per second. For simplicity, we assume QP(t+ TFrL) = QP(t)
for the considered frame rates. For instance, the pilot’s viewing

angle will not change by more than approximately 4◦ between
consecutive frames, at 30 frames per second. This optimization
approach utilizes models of the variation in expected frame
latency and frame size with QP, derived from the offline
analysis of general aerial 360◦ videos, as presented in our
supplementary data-set. Thus, the performance of the online
optimization depends on the accuracy of the generated offline
models. Exhaustive search is computationally expensive and
its time complexity is: O(|θ|2 × |Φ|2 × |q|2 × |m|2).

B. Deep Reinforcement Learning-Based FPV Adaptation

The applicability of the exhaustive search is limited to the
environments for which its analytical models were derived. To
adapt the 360◦ FPV feed in previously unseen environments,
we also evaluate the use of a deep reinforcement learning
(DRL) algorithm approach. DRL does not require such prior
knowledge and learns the relationships the optimal parameter
combinations through training. Unlike conventional reinforce-
ment learning techniques, DRL approaches can handle large
action and state spaces, since they use a neural network as
a functional approximation of the Q-table, and they are not
affected by the curse of dimensionality. While the training
process of a deep RL agent is time-consuming, its deployment
only requires a single forward pass through the neural network,
such that it can handle dynamic environments and operate in
real-time. The action set of the DRL agent is formed by the
set of optimization parameters

a(t) = {θ′H(t), φ′
N (t), φ′

S(t), qI(t), qO(t),mI(t),mO(t)},
(14)

the state set is formed by the instantaneous SNR and pilot
viewing direction

s(t) = {γ(t), θU(t), φU(t)}, (15)

while the reward function is the instantaneous QoE of the
pilot, QP(t), with negative rewards for actions that lead to
constraints being violated. At time t, the reward of taking
action a in state s at time is defined as follows:

r(s, a) =

{
QP(t), if constraints are satisfied,

−∞, if constraints are not satisfied
(16)

The interaction of the reinforcement learning agent with the
environment is shown in Fig. 6. Value-based DRL algorithms
evaluate the value of each action at a given state and the
optimal policy, termed as the Q value:

Qn(s, a)← (1− η)Qn(s, a) + η
[
rn + βmax

a
Qn(s

′, a)
]
,

(17)

where η, the learning rate, is the agent’s willingness to learn
from the UAV FPV resource allocation environment, β is
the discount factor, rn is the reward at timestep n, and s′
is the next state. The agent learns the Q function in the
training phase, by exploring the impact of all possible QP and
radio parameter combinations, in various states, i.e., at various
channel SNRs and pilot viewing directions, on the pilot QoE.
Once the Q function has been properly learned, the parameter
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combination to maximize the QoE in a given state, is obtained
by choosing the action with the highest Q value:

a∗ = argmax
a

Q(s, a). (18)

We compare two DRL architectures: deep deterministic
policy gradient (DDPG) and duelling deep queue learning
(DDQN). DDQN uses a target and an online neural network.
DDPG improves on DDQN by using two types of networks -
an actor network and a critic network. The actor is responsible
for learning the policy of choosing optimal actions in a given
state, while the critic evaluates the actor’s policy and gives
feedback on the selected actions. The actor and critic networks,
in turn, consist of a target and an online network. We utilized
a neural network with an input layer (which receives the state
set), a middle layer with 64 densely connected neurons (which
functions as the intelligent optimizer), and an output layer
(which yields the action set). The actor is parameterized by
θ, such that πθ(s) denotes a unique action policy. The critic
is denoted by parameter ω, such that Qω(s, a) denotes the
Q function approximator used by the critic to calculate the
value of taking action a in state s. Qπ(s, a) denotes the target
Q function network used by the critic. The parameter w is
chosen to minimize the mean square error as follows:

ε(ω) = Es∼ρπ,a∼πθ

[(
Qω(s, a)−Qπ(s, a)

)2]
(19)

The actor network is updated by taking the gradient of the
expected return as follows:

ΔθJ(πθ) = Es∼ρπ,a∼πθ

[
Δθ log πθ(a|s)Qω(a, s)

]
(20)

C. Baseline and Static Resource Allocation

The performance of our proposed approach is compared
with a baseline approach, which utilizes a throughput-based
ABR algorithm for video adaptation combined with 5G-
NR AMS, proposed in [19], for modulation order selection.
This baseline algorithm transmits only the portion of 360◦
feed within the pilot’s viewport. The ground station (client)
measures the received throughput over a GoP, and feeds this
information back to the UAV (server). The FPV system at the
UAV then uses a look-up table to select the optimum QP values
for the next GoP to match the observed channel throughput.
Three non-adaptive approaches were also evaluated, designed
to cover representative strategies: 1) Maximize frame quality
while using the lowest available modulation order, to ensure a
low frame error rate, 2) Minimize frame quality while using
the highest available modulation order, to ensure largest data
rates and hence a low frame latency, and 3) A compromise
between these two extremes, wherein intermediate values are
chosen for QP and the modulation scheme.

IV. SIMULATION RESULTS

A. Models of Frame Size and Frame Quality vs QP

As described in Section. II-C, we generate models for the
variations in expected frame size and expected frame quality
as a function of QP, using a two-term exponential function.
The performance of this two-term exponential function was
compared with two other models widely used to model rate

Fig. 6. Interaction of the deep reinforcement learning (DRL) agent with the
environment for FPV adaptation.

TABLE II
SIMULATION PARAMETERS

Parameter Symbol Value
Transmission frequency fFr 28 GHz

Transmission bandwidth B 400 MHz

UAV transmission power PU 0.1 Watts

Noise spectral density No 1.380649 ×
10.0−23

Horizontal limit of pilot’s viewing angle
(95% confidence bound)

θH 100◦

Vertical South limit of pilot’s viewing
angle (95% confidence bound)

φS 70◦

Vertical North limit of pilot’s viewing
angle (95% confidence bound)

φN 10◦

Size of group of pictures GOP 50
Weight assigned to frame quality within
the pilot’s central field of view

WC 0.6

Weight assigned to frame quality within
the pilot’s peripheral field of view

WP 0.35

Weight assigned to frame quality outside
the pilot’s field of view

WO 0.05

Guarantee on constraint satisfaction α 95%

distortion characteristics [16]: a single-term exponential func-
tion of the form a∗e−bx and a single term power law function
of the form a ∗ xb. A two-term power law function, of the
form a ∗ xb + c, was also evaluated. The parameters of these
prediction models are found using non-linear least squares
curve fitting. Fig. 7 shows the absolute error in predicting
Y-PSNR and frame size for the aerial 360◦ video of Chicago,
illustrating that the two-term exponential function achieves the
lowest error among all considered models.

B. FPV Adaptation Scenarios

The algorithms were evaluated for the simulation parameters
listed in Table II, to provide a guarantee (α) of 95% on
frame latency and probability of frame reception. A constant
LDPC coding rate of 1

3 was used. The horizontal viewport
(θ′H), north viewport (φ′

N), and south viewport (φ′
S) estimates

were adapted in magnitude from 0◦ to 180◦ in steps of 30◦.
The modulation orders (mI,mO) were varied in a similar
manner to 5G NR (2, 4, 16, 64, or 256), while the QPs
(qI, qO) were varied from 10 to 50 in steps of 10. All urban
and natural scenarios listed in Table I were evaluated. Two
scenarios were considered - a hypothetical scenario in which
the channel SNR was gradually increased from 0 to 40 dB over
a time duration of 240 seconds. The SNR was increased by
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Fig. 7. Absolute error in predicting encoded frame Y-PSNR (measured in
dB) and frame size (measured in kB) as a function of QP, for exponential and
power law models, with one/two terms, for the aerial 360◦ video of Chicago.
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Fig. 8. Expected pilot QoE for: exhaustive resource allocation, static resource
allocation approaches, and the baseline of adaptive bit-rate and 5G-NR adap-
tive modulation scheme, when UAV is flying over cities (urban environment).

1 dB every second. This scenario was designed to evaluate the
algorithm performance over a comprehensive range of possible
system inputs. The pilot viewing angle was varied as per (5)
and (6). In the second scenario, we consider a more realistic
variation in the channel SNR. The UAV was assumed to fly
in a straight line from (0, 0, 50) m to (500, 500, 25) m at a
velocity of 5 m/s, while being served wirelessly by mmWave
BSs located on the ground, evenly distributed at intervals of
50 m along the x and y axes, at a height of 10 m.

C. Performance of Baseline and Static Resource Allocations

The expected value of the pilot QoE, is shown in Fig. 8
for UAV flights over cities and in Fig. 9 for UAV flights over
nature. It can be seen that our proposed approach, represented
by the blue bar, achieves the largest expected pilot QoE in all
scenarios. Interestingly, the static resource allocation approach,
which uses intermediate values for QP (20) and modulation
order (16), outperforms the baseline method (5G-NR AMC
and throughput-based ABR) in almost all scenarios. The delay
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Fig. 9. Expected pilot QoE achieved by exhaustive resource allocation, static
resource allocation approaches, and the baseline of adaptive bit-rate and 5G-
NR adaptive modulation scheme, when the UAV is flying over nature.

in control of the ABR results in a performance loss. This
implies that, while the principles of AMC are still applicable
to aerial video transmissions, the specific AMC table designed
for terrestrial communications can be improved upon for aerial
video transmission. Over all considered videos, the proposed
approach achieves a pilot QoE which is 9.46 dB (22%) higher
than the baseline, and 6.89 dB (15.14%) higher than the closest
static resource allocation. The CDF of the pilot QoE in the
instantaneous QoE in the second scenario, where the UAV flies
between two waypoints, is shown in Fig. 10, demonstrating the
performance gains of our proposed approach.

D. Performance of Deep Reinforcement Learning

Here, we assess the performance of the deep RL framework
for resource allocation. The DRL agent was implemented us-
ing Intel Coach [20], in both DDPG and DDQN architectures
and evaluated for the videos of Chicago and Huangshan. The
DRL agent requires intensive offline training, using simula-
tions, to allow the neural network optimizer to all explore pos-
sible combinations of actions (optimization parameter values)
in various states (channel SNR and pilot viewing directions).
While this training process is time consuming, deploying the
trained neural network online results in quick optimization,
i.e. choosing the best parameter combinations for a given
state requires only a single forward pass through the trained
neural network network. The exhaustive search approach, on
the other hand, does not require any offline training but results
in slower online performance, since it has to search through
all the possible parameter combinations. As shown in Fig. 11,
the expected pilot QoE achieved by DDPG, averaged over
the two scenarios, is just 2.074 dB lower than that achieved
by the proposed adaptive approach. The DDQN architecture’s
performance is slightly worse than DDPG, achieving 2.57 dB
less than the adaptive approach.

V. CONCLUSION

In this work, we theoretically modelled the transmission
of 360◦ FPV from a UAV to the ground, and compared the
performance of adaptive 360◦ transmission with a baseline
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Fig. 11. Comparison of deep reinforcement learning (DRL) based FPV
adaptation and resource allocation using exhaustive search, in terms of
expected pilot QoE and standard deviation of pilot QoE.

approach using throughput-based ABR for QP selection and
5G-NR AMS for modulation order selection, to maximize the
instantaneous QoE within the pilot’s viewport. Non-adaptive
approaches were also evaluated. We also formulated a DRL
algorithm to optimize FPV with no prior knowledge of the
environment. These approaches were evaluated on a wide
dataset of videos of UAV flights over cities and nature and, in
the considered scenarios, the adaptive approach was found to
achieve 9.73 dB (21.77%) higher QoE than the baseline. The
DRL-based algorithm achieves within 2.07 dB of the adaptive
approach. We also utilized a two-term exponential function
to model the variation in frame size and frame PSNR with
QP. This model achieved lower prediction errors, compared to
the single-term exponential and power law models generally
used for rate-distortion characteristics. Our work can be used
to improve UAV navigation applications, enabling the pilot to
navigate the UAV with high immersion fidelity and increased
responsiveness and safety.
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APPENDIX

The YouTube URLs of the aerial 360◦ videos we used are:

• Chicago: https://www.youtube.com/watch?v=IfQ7Bjg823M
• Lucerne: https://www.youtube.com/watch?v=uzk0q5eoBY0
• San Francisco: https://www.youtube.com/watch?v=tjQGnXBn1WA
• Zurich: https://www.youtube.com/watch?v=P3jyeihhCWk
• Bryansk Forest: https://www.youtube.com/watch?v=dKVdgnK9Zsw
• Hawaii: https://www.youtube.com/watch?v=yagTn5Cud I
• Huangshan: https://www.youtube.com/watch?v=0YwaAgB -

nw.
• Lake Hibara: https://www.youtube.com/watch?v=VUVDXSJqYbM
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