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Abstract
Let C be a set of n axis-aligned cubes of arbitrary sizes in R

3 in general position. Let
U := U(C) be their union, and let κ be the number of vertices on ∂U; κ can vary
between O(1) and �(n2). We present a partition of cl(R3 \U) into O(κ log4 n) axis-
aligned boxes with pairwise-disjoint interiors that can be computed in O(n log2 n +
κ log6 n) time if the faces of ∂U are pre-computed. We also show that a partition of
size O(σ log4 n + κ log2 n), where σ is the number of input cubes that appear on
∂U, can be computed in O(n log2 n + σ log8 n + κ log6 n) time if the faces of ∂U

are pre-computed. The complexity and runtime bounds improve to O(n log n) if all
cubes in C are congruent and the faces of ∂U are pre-computed. Finally, we show that
if C is a set of arbitrary axis-aligned boxes in R

3, then a partition of cl(R3 \ U) into
O(n3/2 +κ) boxes can be computed in time O((n3/2 +κ) log n), where κ is, as above,
the number of vertices in U(C), which now can vary between O(1) and �(n3).
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1 Introduction

Decomposing the common exterior of a set of geometric objects is an important prob-
lem in motion planning [20] and solid modeling [15, 19]. In this paper we study a
natural instance of this problem in which each object is an axis-aligned cube in R

3.
Formally, let C := {C1, . . . ,Cn} be a set of n axis-aligned cubes in R

3 in general
position. By this we mean that no two vertices of any pair of distinct cubes have the
same x-, y-, or z-coordinate.

Let U := U(C) denote their union, and let K := cl(R3 \ U) denote the closure of
its complement, which we refer to as the free space. Denote by κ the complexity of U,
which we measure by the number of vertices of ∂U; the number of edges and faces
of ∂U is proportional to the number of its vertices. The value of κ can be anywhere
between �(1) and O(n2), and it is �(n2) in the worst case; see, e.g., [6]. However,
when the cubes ofC are all congruent, κ = O(n); again, see [6]. If the sizes of the cubes
are chosen randomly from an arbitrary probability distribution, the expected value of
κ is O(n log2 n) [3]. The question we study is whether K can be partitioned into a
collection of axis-aligned boxes with pairwise-disjoint interiors, so that the number
of boxes depends almost linearly on κ , and do so by a procedure with comparable
running time.

Background. Motivated by applications in various fields (e.g., physical simulation,
computer graphics, robotics), decomposing a complex geometric region into simply-
shaped regions, such as simplices or boxes, has been a central problem in computational
geometry for more than four decades. For example, there has been extensive work on
triangulating a polygonal region in 2D or a polyhedral region in 3D [5, 10, 16]. In
this line of work the region that needs to be decomposed is given explicitly. However,
in many applications, the region to be decomposed is specified implicitly, e.g., as
the arrangement of a set of geometric objects or as the common exterior of a set
of geometric regions — our problem of decomposing K is an instance of the latter.
The latter setting, as mentioned above, also arises in the context of collision-free
motion planning [20]. In either case, the combinatorial complexity of the region (K in
our case) and the complexity of its decomposition may differ significantly (see, e.g.,
[7]), making the decomposition task an even harder problem. A general solution to the
decomposition problem was given by Schwartz and Sharir [24] who described a general
decomposition scheme based on the so-called cylindrical algebraic decomposition of
Collins [11], but it leads to a decomposition with too many pieces.

A widely popular approach to decomposing a region of complex shape into simpler
regions, which is more parsimonious than the cylindrical algebraic decomposition, is
the “vertical decomposition;” see, e.g., [9, 25]. In our context, it will decompose K

into axis-aligned boxes. However, the size of the vertical decomposition of K could
be �(n2) even if κ = O(n). The known algorithms for triangulating non-convex
polyhedra into simplices also produce a triangulation whose size may be quadratic in
the complexity of the input polyhedron [8], and the known lower bounds show that one
cannot hope to do better [7]. The construction in [7] actually gives a set of n pairwise-
disjoint prisms in R

3 such that any convex decomposition of their common exterior has
�(n2) size. Paterson and Yao [23] construct a set of n pairwise-disjoint axis-aligned
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boxes in R
3 such that any decomposition of their common exterior into boxes (or any

convex decomposition for that matter) has size �(n3/2); note that κ = O(n) in this
case. So the only hope to obtain a decomposition of K in our setting into roughly κ

boxes is to exploit the geometry of axis-aligned cubes.
Another common technique called binary space partition (BSP), which divides the

space hierarchically into convex regions using local cuts by planes [2, 13, 17, 22, 23,
26], is a possible approach to decompose K into axis-aligned boxes, but its worst-case
complexity can be �(κ2). This can be improved, using the technique of [23], in which,
for a given set R of n pairwise-disjoint axis-aligned rectangles in R

3, the space can
be partitioned hierarchically into O(n3/2) boxes so that no rectangle of R intersects
the interior of any box [23]. By decomposing ∂U into O(κ) rectangles and using the
result just mentioned, K can be decomposed into O(κ3/2) axis-aligned boxes with
pairwise-disjoint interiors, still a far cry from our desired bound which is nearly linear
in κ . Agarwal et al.[2] and Tóth [26] have shown that a BSP of near-linear size can
be constructed if the rectangles in R are fat, i.e., they have bounded aspect ratio (the
ratio between the largest and smallest edge lengths). Unfortunately, the rectangles that
arise in a decomposition of the faces of ∂U need not have bounded aspect ratio, so it is
not possible to decompose ∂U into O(κ) fat rectangles and apply the results of [2, 26]
directly. Nevertheless, by exploiting the properties of cubes, we obtain a much simpler
decomposition scheme with the desired bound on the size of the decomposition.

Our results.The main result of the paper is an efficient algorithm that partitionsK into
O(κ polylog(n)) axis-aligned boxes with pairwise-disjoint interiors. By the general-
position assumption, every face of ∂U lies on a face of a single cube in C, which is an
important property to have for our algorithm and analysis. Concretely, our first result
is the following theorem:

Theorem 1.1 Let C be a set of n axis-aligned cubes in R
3 in general position, let κ be

the number of vertices on ∂U(C), and let t(n, κ) be the time to compute the faces of
∂U(C).

The free space of C can be partitioned, in time t(n, κ) + O(n log2 n + κ log6 n),
into O(κ log4 n) axis-aligned boxes with pairwise-disjoint interiors.

By further exploiting the structure at hand, we show that a slightly smaller decom-
position can be computed at the cost of a potentially slightly higher runtime:

Theorem 1.2 Let C be a set of n axis-aligned cubes in R
3 in general position, let κ

be the number of vertices on ∂U(C), let σ ≤ min{n, κ} be the number of cubes in C

that appear on ∂U, and let t(n, κ) be the time to compute the faces of ∂U(C). The free
space C can be partitioned, in time t(n, κ) + O(n log2 n + σ log8 n + κ log6 n), into
O(σ log4 n + κ log2 n) axis-aligned boxes with pairwise-disjoint interiors.

The depth of C is the size of the largest subset of C with non-empty intersection. If
the depth of C is bounded by a constant, then we obtain a slightly improved result.

Corollary 1.3 Let C be a set of n axis-aligned cubes in R
3 in general position and with

bounded depth, let κ be the number of vertices on ∂U(C), let σ ≤ min{n, κ} be the
number of cubes in C that appear on ∂U, and let t(n, κ) be the time to compute the
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faces of ∂U(C). The free space of C can be partitioned, in time t(n, κ)+ O(n log2 n+
κ log4 n) (resp., t(n, κ) + O(n log2 n + σ log6 n + κ log5 n)), into O(κ log2 n) (resp.,
O(σ log2 n + κ log n)) axis-aligned boxes with pairwise-disjoint interiors.

We remark that our algorithm can be extended to degenerate configurations of cubes
using symbolic perturbation (also known as simulation of simplicity [14]), but the run-
ning time will be proportional to the union-size of the perturbed configuration, which
may be larger than the original κ (depending on how the combinatorial complexity of
the union is defined for degenerate configurations).

We observe that a fat box B, namely a box with a bounded aspect ratio, can be
partitioned into a familyCB of O(1) possibly overlapping cubes such thatU(CB) = B,
so our algorithm also extends to a set of fat boxes. There is a technicality that the cubes
in CB are not in general position but if the input boxes are in general position, then
symbolic perturbation will increase the union complexity by only a constant factor.
Therefore we obtain the following result:

Corollary 1.4 Let C be a set of n fat axis-aligned boxes in R
3 in general position so

that the aspect ratio of every box is bounded by a constant α, let κ be the number of
vertices on ∂U(C), let σ ≤ min{n, κ} be the number of boxes in C that appear on ∂U,
and let t(n, κ) be the time to compute the faces of ∂U(C). The free space of C can be
partitioned, in time t(n, κ) + O(n log2 n + κ log6 n) (resp., t(n, κ) + O(n log2 n +
σ log8 n + κ log6 n)), into O(κ log4 n) (resp., O(σ log4 n + κ log2 n)) axis-aligned
boxes with pairwise-disjoint interiors. The constant of proportionality in the bounds
depends on α.

Agarwal and Steiger [1] described an output-sensitive algorithm to compute the
vertices of ∂U(C) in O(n log3 n + κ) time. Using standard line-sweep techniques, the
edges and faces of ∂U(C) can be computed from the vertices in O(κ log κ) time. Hence,
t(n, κ) = O(n log3 n + κ log κ) in the corollary above. Then the overall runtimes are
O(n log3 n + κ log6 n) and O(n log3 n + σ log8 n + κ log6 n), respectively.

If the cubes in U are congruent, then we obtain the following improved result:

Theorem 1.5 Let C be a set of n axis-aligned, congruent cubes in R
3 in general

position, and let κ = O(n) be the number of vertices on ∂U(C). The free space of C
can be partitioned into O(κ log κ) axis-aligned boxes with pairwise-disjoint interiors
in time t(n), where t(n) = �(n log n) is the time to compute the faces of ∂U(C).

Analogous to Corollary 1.4, we obtain the following corollary:

Corollary 1.6 Let C be a set of n axis-aligned boxes in R
3 in general position so that

the aspect ratio of every box is bounded by a constant α ≥ 1 and the ratio of the largest
to the smallest size box is bounded by a constant β, and let κ = O(n) be the number of
vertices on ∂U(C). Then the free space of C can be partitioned into O(κ log κ) boxes
with pairwise-disjoint interiors in time t(n), where t(n) = �(n log n) is the time to
compute the faces of ∂U(C). The constant of proportionality in the bounds depends
on α and β.

When the input cubes are congruent, the κ = O(n) vertices of ∂U(C) can be
computed in O(n log2 n) time [1]. Then the edges and faces of ∂U(C) can be computed
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from the vertices in O(n log n) time, and hence t(n) = O(n log2 n) in the corollary
above. Then the overall runtime is O(n log2 n).

At a high level, our partitioning techniques are inspired by the BSP construction
schemes described in [2, 23, 26], but their implementation exploits the geometry of
cubes and attains significantly improved performance bounds. The algorithms are quite
simple; only the notations and analyses are somewhat involved.

Lastly, we consider partitioning the free space of a set C of n arbitrary axis-aligned
boxes and obtain the following result:

Theorem 1.7 Let C be a set of n axis-aligned boxes in R
3 in general position, and let

κ be the number of vertices on ∂U(C). Then the free space of C can be partitioned into
O(n3/2 + κ) axis-aligned boxes with pairwise-disjoint interiors in time O((n3/2 +
κ) log n).

As mentioned above, there are instances where κ = O(n) but any partition of the
free space into convex regions has size �(n3/2). Therefore the size of the partition
constructed by our algorithm has optimal worst-case dependence on both n and κ . We
note that here κ can range between O(1) and �(n3).

Roadmap of the paper. We begin by giving a brief overview of balanced-box decom-
position trees [4], which is a key component of our algorithm for cubes of different
sizes. Next, we describe our first algorithm (given in Theorem 1.1) for cubes of arbi-
trary sizes in Sect. 2, and our second algorithm (given in Theorem 1.2) in Sect. 3. We
describe the more efficient algorithm for congruent cubes (given in Theorem 1.5) in
Sect. 4. Finally, we describe a simple algorithm for arbitrary boxes (given in Theo-
rem 1.7) in Sect. 5.

2 Decomposing the Free Space of Cubes of Arbitrary Sizes

Let C,U,K be as defined at the beginning of the Introduction. We assume that the
faces of ∂U := ∂U(C) have been pre-computed, e.g., by using the algorithm in [1]
to compute the vertices of ∂U and then using the vertices to compute the edges and
faces of ∂U with standard line-sweep techniques. Let � be a cube containing U. We
trivially partition the exterior of � into O(1) boxes, so we focus on partitioning K∩�
into O(κ log4 n) boxes.

The algorithm maintains a partition B of � into axis-aligned boxes with pairwise-
disjoint interiors. It successively refines the partition until the interior of each box in
B fully lies in U or in K. Each step of the algorithm picks a box B of B whose interior
intersects ∂U and splits B by a carefully chosen axis-aligned plane h, so that each
of the resulting two boxes lies in one of the two halfspaces bounded by h; we refer
to the rectangle B ∩ h as the cut that splits B into two boxes. For an axis-aligned
plane h : xi = a, we use h− (resp., h+) to denote the closed halfspace xi ≤ a (resp.,
xi ≥ a). When this refinement process terminates, we return the subset of boxes of B
that lie in K. We begin by a few preliminaries (Sect. 2.1), then describe the algorithm
(Sects. 2.3 and 2.4), followed by its analysis (Sect. 2.5).
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h1 h2 h3
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h4

C3
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C1

Fig. 1 In each 2D illustration,U is depicted as blue. (left) The dashed, green boxes are passive and compatible
with 	, the purple box with horizontal stripes is active and compatible with 	, and the red boxes with
diagonal stripes are active but not compatible with 	. (middle) A box B that is compatible with h1 and h4
but not compatible with h2 or h3. (right) A union of boxes C = {C1,C2,C3} such that only the dashed,
green boxes are void of C; e.g., the bottom, striped, red box is void of {C1,C2}, but not of {C3}, since it
intersects the boundary of C3 on ∂U

2.1 Preliminaries

A box B ∈ B is called active if int(B) ∩ ∂U �= ∅, and passive otherwise. Passive
boxes are not partitioned further and belong to the final decomposition B. For a 3D
region 	, which in our case will be a box or an annular region lying between two
nested boxes, let B	 ⊆ B be the set of boxes that intersect 	. Let A	 ⊆ B	 be the
subset of active boxes B that intersect ∂U inside 	, i.e., int(B) ∩ ∂U ∩ int(	) �= ∅;
B	 \ A	 may contain active boxes B for which int(B) ∩ ∂U ⊆ B \ 	. A box B is
compatible with 	 if int(B) ∩ ∂U ⊆ 	. See Fig. 1(left).

Abusing the notation a little, we say that B is compatible with a plane h if B is
compatible with one of the open halfspaces bounded by h, i.e., int(B) ∩ ∂U lies in
one of the two open halfspaces bounded by h; if B intersects h, then B does not
intersect ∂U in one of the two open halfspaces. We describe in Sect. 2.4 a procedure
GlobalCut(Z, h) that refines the boxes in Z to make them compatible with h. See
Fig. 1(middle) for an illustration of these notions in 2D.

Let X ⊆ C be a subset of input cubes. Let ∂UX denote the portion of ∂U that
appears on the boundary of cubes in X , i.e., ∂UX := ∂U(C)∩ ∂U(X). A box B ∈ B is
called void of X if int(B)∩∂UX = ∅, i.e., none of the cubes in X appear on ∂U inside
B. We extend the definition of compatible/void to a subset Z ⊆ B if the condition
holds for all boxes in Z. See Fig. 1(right).

2.2 Balanced-Box Decomposition (BBD) Trees

Let P ⊆ R
3 be a set of n points. Introduced by Arya et al. [4], the BBD tree T for P

is a binary tree that represents a hierarchical decomposition of P . Each node u of T is
associated with a region �u , which is the set-theoretic difference �O

u \�I
u of a pair of

axis-aligned boxes: an outer box �O
u and a (potentially empty) inner box �I

u ⊆ �O
u .

If u is not a leaf, then u is also associated with either a single splitting plane hu or a
splitting box �S

u , where neither of which cross the boundary of �I
u . Furthermore, if

u has a splitting box �S
u and �I

u �= ∅, then �I
u ⊆ �S

u ⊆ �O
u . The splitting planes

and boxes partition �u into the two sub-regions �v and �w associated with its two
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v w v

u

v w

w

uu

v w

u

Fig. 2 Two planar renderings of BBD subtrees with identical regions �u at the root nodes. On the left, �u
is partitioned into �v,�w by a splitting plane. On the right, �u is partitioned by a splitting box

O
u

I
u

B− B+

f

B

Fig. 3 (left) A 2D illustration of dashed, red, long cubes and solid, blue, short cubes (here squares) that
intersect an annular region �u . (right) An illustration of a box B with a free cut defined by some face f of
∂U, where B− := B ∩ span( f )− and B+ := B ∩ span( f )+

respective children, v and w. See Fig. 2. Any leaf u of T has |P ∩�u | ≤ 1. The height
of T is O(log n) and T can be constructed in O(n log n) time [4]. See Appendix A and
the original paper [4] for more details on BBD trees.

For our purposes, it is convenient to introduce the notation 
u , for each node u of
T, to be the set that contains either the single splitting plane hu at u, or the axis-aligned
planes that support the (at most 6) faces of the splitting box �S

u at u but not the faces
of �O

u . We refer to 
u as the set of separating planes at node u.
We establish the following property of BBD trees (cf.. Appendix A for the proof),

which is crucial for our application.

Lemma 2.1 Let u be a node of a BBD tree T for a point set P ⊆ R
3. There is a set Hu

of at most 24 planes that induces a subdivision of �u into O(1) axis-aligned boxes
such that any axis-aligned cube C that intersects �u (but where none of its vertices
lie in the interior of �u) contains an edge of each box that it intersects.

2.3 Overall Algorithm

We now describe the overall algorithm. Let V be the set of vertices of the input cubes;
|V | = 8n. We construct a BBD tree T on V with � as the region associated with
the root of T. Recall that each node u of T is associated with an annular region �u

lying between two nested boxes �O
u and �I

u (where the latter box may be empty) with
�u := cl(�O

u \ �I
u). A cube C ∈ C intersecting �u is called short at u if at least one

of the vertices of C lies inside �u , and long otherwise. Note that vertices of a long
cube C might lie in the inner box �I

u of �u . See Fig. 3(left).
Let Su (resp., Lu) be the subset of cubes in C that are short (resp., long) at u. Let

Cu := Lu \Lp(u), where p(u) is the parent of u, be the set of cubes that are long at u
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but short at p(u) (if u is the root, we have Cu = Lu = ∅). If a cube C ∈ Lu contains
�u , then �u ⊆ U and no refinement of �u is needed. Similarly if Lu ∪ Su = ∅,
then �u ⊆ K and there is no need to refine �u . So assume ∂U intersects �u . Set
Bu := B�u and Au := A�u .

A box B admits a free cut if there is a face f of ∂U that intersects the interior of B
and the edges of ∂ f do not, i.e., f ∩B = span( f )∩B, where span( f ) is the plane that
contains f . Since span( f ) ∩ B ⊆ f , such a cut does not cross any other face of ∂U

and f ∩ B does not lie in the interior of any box after B is split by this cut. Therefore it
is desirable to split a box by a free cut whenever it admits one. See Fig. 3(right). This
notion is similar to the one used in the construction of binary space partitions [22].

The algorithm visits the nodes of T in a top-down manner, i.e., performs a pre-order
traversal of T, and successively refines B. Initially B consists of a single box, namely
� itself. A node u of T is marked processed immediately after executing the steps (i)–
(iv) at u, as detailed below, and before proceeding recursively to the subtrees rooted
at the children of u. The algorithm maintains the following three invariants:

(I1) When the algorithm arrives at a node u of T, Au is compatible with �u . That is,
for any box B of Au , int(B) ∩ ∂U ⊆ �u . See Fig. 4(left).

(I2) When the algorithm finishes processing a node u of T in the sense defined above,
Au is void of Lu . If u is a leaf, then Au is void of Su as well, which implies that
Au is void of C (and hence ∂U does not intersect the interior of any box in Au).
See Fig. 4(right).

(I3) None of the boxes in B admit a free cut.

Assuming invariant (I2) holds after the algorithm completes the traversal of T, the
final set of boxes in B, of which only those contained in K are of interest, forms the
desired subdivision of �, because the regions associated with the leaves of T partition
�, and Az , for each leaf z, is void of C.

Next, we describe the steps taken by the algorithm at each node of T, to maintain
the invariants (I1)–(I3), as it traverses T. Suppose the algorithm has reached a node
u of T. Let Hu := {h1, . . . , hr } be the set of at most 24 planes obtained by applying
Lemma 2.1 to u, and let �u be the subdivision of �u consisting of O(1) boxes induced
by Hu . By Lemma 2.1, if a long cube C ∈ Cu intersects a box R ∈ �u , C contains an
edge of R. The algorithm performs the following steps at the node u:

(i) For each hi ∈ Hu , we call the procedure GlobalCut(�u, hi ) to refine Au so
that it becomes compatible with hi . By construction, after this step, for all boxes
R ∈ �u , AR is compatible with R, i.e., for each box B ∈ AR , int(B)∩ ∂U ⊆ R.

(ii) Fix a box R ∈ �u and an edge e ∈ R. Let CR,e ⊆ Cu be the set of long cubes
(that were short at the parent node) that intersect R and contain the edge e. We
call the procedure Staircase(R, e,CR,e) to ensure that AR becomes void of
CR,e. We repeat this procedure for all edges e of R and for all boxes R ∈ �u .

(iii) If u is a leaf, then we also ensure that Au is void of Su . If Su = ∅, there is
nothing to do. Otherwise �u contains one vertex, say, ξ , of one short cube C
and Su = {C}. Let g1, g2, g3 be the three planes supporting the faces of C that
contain ξ ; no other face of C intersects int(�u). We call GlobalCut(�u, gi ),
i = 1, 2, 3, to ensure that Au is compatible with gi . This step ensures that Au is
void of Su , which implies that Bu is void of C.
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B

C

Fig. 4 In both figures, a 2D box �u (black) and boxes of Au (grey) are shown; for better visualization,
the boxes are slightly shrunk towards their centers. (left) An example of invariant (I1): Au is compatible
with �u . ∂U is shown in blue. (right) An example of invariant (I2): Au is void of the three long (partially
depicted) squares Lu , but not of {C}, where C ∈ Su . The solid portions of the square boundaries are part
of ∂U, whereas the dashed portions lie in int(U). Note that the box B ∈ Au is indeed void of Lu , although
dashed portions of the long squares intersect its interior

(iv) If u is an interior node with v and w as its children, then let 
u be the set of at
most 6 separating planes at u. For each σ ∈ 
u , we call GlobalCut(�u, σ ) to
ensure that Au is compatible with each σ ∈ 
u , which in turn ensures that Au

becomes compatible with �v and �w.

This completes the description of the (non-recursive) processing of a node u of T.
If u is an interior node, the algorithm recursively visits the two children of u (in a
preorder fashion). The algorithm terminates when the recursion terminates, back at
the root � of T, and we output the subcollection of those boxes of B that are contained
in K.

2.4 The ProceduresGLOBALCUT and STAIRCASE

We now describe the two subroutines called by the main algorithm.

The GLOBALCUT procedure. Given an annular region (or box) 	 and a plane h,
GlobalCut(	, h) ensures that A	 is compatible with h, i.e., for each box B ∈ A	,
int(B) ∩ ∂U lies in only one of the two open halfspaces bounded by h. As a result,
no face of ∂U that lies on h intersects the interior of any box in A	 afterwards, i.e.,
int(B) ∩ ∂U ∩ h = ∅ for any box B ∈ A	.

We visit each box B ∈ A	 one by one and perform the following steps. If int(B)∩
∂U∩ h = ∅ and B is compatible with h, leave B as it is. Otherwise, we divide B into
two boxes B− := B ∩ h− and B+ := B ∩ h+ by splitting B by h. See Fig. 5. If either
of the boxes B−, B+ admits a free cut, we split it by the free cut. We perform this step
repeatedly until the resulting boxes have no free cuts.

We note that if B ∩ ∂U lies in one of the open halfspaces bounded by h, then
GlobalCut does not split B even if h intersects its interior. See box B4 in Fig. 5(left).
This simple rule is crucial in keeping the size of the decomposition small.

The STAIRCASE procedure. Given a box 	, where A	 is compatible with 	, an
edge e of 	, and a set X of cubes, each of which intersects 	 and contains e (and
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B1 B2 B3 B4

h

B− B+h
B

Fig. 5 (left) A 2D view of boxes B1, B2, B3, B4 ∈ A	 before (top) and after (bottom) the call
GlobalCut(	, h), where U ∩ 	 is depicted in blue. Boxes B1, B2, B3 are split by h during the call,
but not B4. After the call, sub-box of B1 admitted free cuts supporting each face of ∂U and was split by
them. The boundaries of the sub-boxes are shown slightly shrunk towards their centers for better visual-
ization. (right) An illustration of a box B ∈ A	 split by plane h during GlobalCut(	, h): int(B) ∩ U is
defined by two input cubes, one red and one blue. The portions of ∂U that lie strictly in the interior of the
boxes are shown
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Fig. 6 An illustration of Staircase(	, e, X)

thus it is long at 	), Staircase(	, e, X) refines A	 so that it becomes void of X .
Recall that for any call Staircase(	, e, x) made during step (ii) of the algorithm, 	

is indeed a box, not an annular region.
If 	 = ∅ or X = ∅, 	 is trivially void of X , and the procedure terminates. So

assume that both 	 �= ∅ and X �= ∅. We assume that each cube C of X appears on
∂U(X) ∩ int(	) because otherwise we can simply ignore C in the present invocation
of the procedure (removing C does not alter ∂U(X) ∩ int(	) because C is long at 	).
Suppose that 	 = [a−, a+] × [b−, b+] × [c−, c+] and e = [a−, a+] × {b−} × {c−}
for concreteness. For a cube Ci ∈ X , let [y−

i , y+
i ] (resp., [z−i , z+i ]) be its projection on

the y-axis (resp., z-axis). Let C1,C2, . . . ,Cr be the cubes in X sorted in increasing
order of their upper y-coordinates, i.e., y+

1 < y+
2 < · · · < y+

r . As we only consider
cubes in X that appear on ∂U(X) inside 	, we have z+1 > z+2 > · · · > z+r . Let gy be
the plane y = y+

	r/2
 and gz be the plane z = z+	r/2
. We partition 	 into four boxes
by the planes gy and gz . See Fig. 6(middle). The box lying in the quadrant g−

y ∩ g−
z

lies inside U and the box lying in the quadrant g+
y ∩ g+

z is disjoint from X , so neither
of these two boxes need to be processed further at this invocation of Staircase. We
first make A	 void of {C	r/2
}, and then solve the problem recursively in the two
remaining boxes that lie in the quadrants g−

y ∩ g+
z and g+

y ∩ g−
z , as follows.

We first call GlobalCut(	, gy) and GlobalCut(	, gz) to ensure that A	 is
compatible with both gy and gz , and hence no face of ∂U on gy or gz intersects the
interior of any box in A	; in particular, A	 is void of {C	r/2
}. Note that if r ≤ 2, we
could have y+

	r/2
 ≥ b+ or z+	r/2
 ≥ c+, in which cases A	 is already compatible with
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gy or gz , and so there is no need to call GlobalCut(	, gy) or GlobalCut(	, gz),
respectively.

Let 	− (resp., 	+) be the box 	− := 	 ∩ g−
y ∩ g+

z (resp., 	+ := 	 ∩ g+
y ∩ g−

z ),
let

e− := [a−, a+] × {b−} × {z+	r/2
}, and

e+ := [a−, a+] × {y+
	r/2
} × {c−},

and let X− := {C1, . . . ,C	r/2
−1} and X+ := {C	r/2
+1, . . . ,Cr }. By construc-
tion, ∂U(X−) ∩ int(	) ⊆ 	− and ∂U(X+) ∩ int(	) ⊆ 	+. See Fig. 6 again. We
recursively call Staircase(	−, e−, X−) and Staircase(	+, e+, X+) to ensure that
A	− andA	+ , and thusA	, become void of X . (Note that, indeed, immediately before
the recursive calls, 	− (resp., 	+) is void of X+ ∪ {C	r/2
} (resp., X− ∪ {C	r/2
}),
A	− (resp., A	+ ) is compatible with 	− (resp., 	+), and each box B ∈ X− (resp.,
B ∈ X+) contains the edge e− (resp., e+) of 	− (resp., 	+).)

2.5 Analysis

In this subsection we prove the correctness of the algorithm, bound the size of the
subdivision that it produces, and analyze its running time. We first introduce two
concepts that will be useful for the analysis.

History tree. We note that the GlobalCut procedure is the only procedure that
refines the subdivision B (the main procedure and Staircase refine B only through
calls to GlobalCut) by subdividing a box B of B into two boxes B−, B+ by a cut
(which is a rectangle of the form B ∩ h for some axis-aligned plane h); see Fig. 5.
Let B0,B1, . . . ,BF be the sequence of subdivisions that arise during the execution
of the algorithm, so that B0 = {�}, Bi+1 is obtained from Bi by splitting a box B of
Bi into two boxes B1 and B2, i.e., Bi+1 = (Bi \ {B}) ∪ {B1, B2}, and BF is the final
subdivision. We define a binary tree H := (V, E), which we refer to as the history tree
of the algorithm. V is the set of boxes that appear in at least one Bi . If a box B ∈ V
was split into two boxes B1, B2 by a cut, we add the edges (B, B1) and (B, B2) to H,
making B1 and B2 the children of B. The leaves of H are the set of boxes in the final
subdivision BF .

Fragments. A fragment is a maximal connected portion of a face of ∂U that is con-
tained in the interior of a box of some Bi . See Fig. 7 for an illustration. Fix a face
f of ∂U. The face f itself is a fragment because it is the unique maximal connected
portion of f lying in the interior of the initial box � of B0. Let ϕ be a fragment of f
lying in the interior of a box B of B. As the algorithm progresses and performs a cut
of B, either ϕ does not intersect the cut, or ϕ is divided into smaller fragments by the
cut, or ϕ is “trapped” by the cut, meaning that the cut contains ϕ. Once ϕ is trapped
by a cut, it stops being a fragment and is not divided further anymore; we refer to ϕ

as becoming eternal — see below. If ϕ does not touch ∂ f , then ϕ is rectangular and
corresponds to a free cut, so the box that contains ϕ is split by this cut as soon as ϕ

materializes, and ϕ is never subdivided again.
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Fig. 7 Examples of fragments that are alive in a common box (not shown) that is cut by plane h. ϕ1
becomes eternal, ϕ2 and ϕ3 die, and the maximally connected portions of ϕ2, ϕ3 in h−, h+ are newly
created fragments — two for ϕ2 and three for ϕ3

If α is the highest node of H at which ϕ appears, we say that ϕ is created at α (every
original face of ∂U is created at the root). Fragment ϕ continues to appear at nodes
along a (unique) path starting from α in H (because none of the cuts intersect ϕ) until
one of the following two events occurs at a descendant β of α, for which ϕ is still a
fragment in the box β:

(i) The box β is split by a cut orthogonal to ϕ that divides ϕ into multiple fragments,
each of which is created in one of the two children of β. In this case we say that
ϕ dies at node β.

(ii) The box β is split by a cut supporting ϕ so that ϕ no longer appears in the interior
of any box of B, and is no longer further divided. In this case, we say that ϕ

becomes eternal at β; officially, ϕ is no longer a fragment, but we regard it as
staying alive. See ϕ1 in Fig. 7.

We note that while an eternal fragmentϕ is not further divided, a box B whose boundary
contains (a portion of) ϕ may be split by a cut orthogonal to ϕ. Although this cut may
intersect ϕ, it cannot cross ϕ — it terminates at ϕ and is not considered to subdivide
ϕ. Since the leaves of H are void of C, each fragment either dies or becomes eternal
during the execution of the algorithm. Let �F denote the set of eternal fragments
when the algorithm terminates, and let � be the set of vertices of fragments in �F . Set
μ := |�F | and ν := |�|. At most four fragments share any vertex in �, so we have
μ ≤ 4ν. Since the multiplicity of any element in � is at most four, with a slight abuse of
notation, we will use � to denote both the set and the multiset of vertices of fragments
in �F . We prove below that |BF | = O(μ) (cf.Lemma 2.3) and ν = O(κ log4 n)

(cf.Corollary 2.9). Together, these bounds imply the stated upper bound for |BF |.
Proof of correctness. We now prove the correctness of the algorithm.

Lemma 2.2 The algorithm maintains invariants (I1), (I2), (I3).

Proof Free cuts are created by theGlobalCut procedure, which is the only procedure
that refines B. Since GlobalCut splits boxes by free cuts as soon as they appear, (I3)
is maintained—none of the boxes of B admit a free cut.

First, we prove (I1) and (I2) by induction on the depth of the node v in T. (I1)
states that upon reaching a node u of T, Au is compatible with �u . It is trivially true

123



Discrete & Computational Geometry (2024) 72:407–450 419

at the root of T because � contains ∂U. Suppose the algorithm arrives at a node v. By
induction hypothesis, (I1) holds at p(v). If (I1) is not true at v, there is a box B ∈ Av

such that B intersects one of the separating planes σ ∈ 
p(v) and int(B) ∩ ∂U lies in
both open halfspaces bounded by σ , i.e., B is not compatible with σ . However, this
is impossible because step (iv) of the algorithm at p(v) calls GlobalCut(�p(v), σ )

with all planes in 
p(v), which would have made the cut along σ , exactly because
int(B)∩ ∂U lies in both open halfspaces bounded by σ . This in turn would have made
Ap(v), and thus Av , compatible with �v . Hence (I1) holds at v too.

We now prove (I2). Namely, upon finishing processing a node u of T, Au is void of
Lu (and of Su when u is a leaf). The invariant is trivially true at the root u of T because
Lu = ∅. Suppose the algorithm has processed a node v of T. Since p(v) is processed
before v, by induction hypothesis, Ap(v) was void of Lp(v) when the processing of v

began. Hence, it suffices to prove that Av is void of Cv = Lv \Lp(v). Since (I1) holds,
for any box B ∈ Av , B \ �v is void of Cv , so we only focus on portions that lie inside
�v . Let � be the subdivision of �u provided by Lemma 2.1.

It suffices to prove that A	 is void of Cv for each 	 ∈ �v . Step (i) ensures that for
each 	 ∈ �v , A	 is compatible with 	. Let C ∈ Cv be a (long) cube that intersects
the interior of a box 	 ∈ �v . By Lemma 2.1, C contains one of the edges of 	,
say, e. Then the call to Staircase(	, e,C	,e) makes 	 void of C . Hence, after the
procedure Staircase(	, e,C	,e) is invoked for all edges of 	, A	 is void of Cv .
After repeating this step for all boxes 	 ∈ �v , Av becomes void of Cv . Finally, if v is
a leaf then, in addition to the argument just given, step (iii) of the algorithm ensures
that Av is void of Sv as well.

Putting it all together, we conclude that the algorithm maintains the invariants (I1)–
(I3). ��

The decomposition size. The following sequence of lemmas bounds the size of BF .

Lemma 2.3 The size of the final subdivision BF is at most 2μ, where μ is the total
number of fragments that are alive (and eternal) at the end of the algorithm.

Proof The size of BF is the same as the number of leaves in the history tree H. Let B
be a leaf of H, and let B ′ be the parent of B in H, so B ′ was split into two boxes, B
and, say, B, by a plane h across B ′. We claim that h supported a live fragment ϕ lying
in int(B ′). Suppose h did not support a fragment inside B ′. Since B ′ was split by h,
∂U ∩ B ′ lies in both halfspaces h− and h+ bounded by h. Hence, either h divided a
live fragment in B ′ into two fragments, or int(B ′)∩ ∂U∩ h = ∅ (see Fig. 5). In either
case both int(B) and int(B) must intersect ∂U, or else the cut along h would not have
been made, which contradicts the assumption that B is a leaf, so our claim is true. We
charge the leaf B to the fragment ϕ ∈ �F , which becomes eternal after the node B ′
is processed and does not appear in the interior of any descendant of B ′. Hence, ϕ is
charged at most twice, namely, once for each child of B ′ that is a leaf. Furthermore,
ϕ ∈ �F . Hence, |BF | ≤ 2μ. ��

The next four lemmas bound the value of ν, the number of fragment vertices.
Specifically, we prove that a face f of ∂U with κ f vertices contains O(κ f log4 n)

fragment vertices. To prove this bound, we consider the evolving subdivision ˜� f of
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Fig. 8 A 2D view of the subdivision � f (red) of a face f of ∂U

f induced by the cuts that cross f throughout the execution of the algorithm, and
monitor how ˜� f evolves over time. (When a portion of f is trapped by a cut, that
portion becomes eternal and is not further subdivided.) In particular, whenever a box
B with f ∩ int(B) �= ∅ is split by an axis-aligned plane h that crosses f , each segment
(connected component) of f ∩(B∩h) creates a new edge of ˜� f . (Cuts that intersect f
but do not cross it do not subdivide f .) The endpoints of a new edge lie on the existing
edges of ˜� f (possibly on edges of f ), become new vertices of ˜� f , and subdivide
those existing edges.

Let � f denote the final subdivision of f when the algorithm terminates. The faces
of � f are the eternal fragments that lie on f . See Fig. 8. By definition, every edge
of � f is a portion of a segment γ corresponding to some cut that was applied during
the algorithm and that crossed f . Many edges of � f may lie on such a segment γ as
subsequent segments whose endpoints lie on γ may have subdivided γ . We say that an
edge of � f was created when its corresponding segment γ was created in ˜� f during
the execution of the algorithm. Additionally, we label an edge of � f with a node v of
the BBD tree T if the call to GlobalCut during which it was created was executed
while processing v.

We call an axis-parallel segment contained in a face of ∂U a mast (as in [26]).

Lemma 2.4 Let γ be a mast lying on a face f of ∂U. Let E	,h be the set of edges of
� f that were created by cuts made by some single call to GlobalCut(	, h). If γ is
parallel to h, then γ crosses no edge in E	,h; otherwise γ crosses at most one edge
of E	,h.

Proof By definition, none of the free cuts made by GlobalCut(	, h) cross any face
of ∂U, so they do not create any edges of E	,h . Hence, all the edges of E	,h created
by GlobalCut(	, h) lie on the line � := h ∩ span( f ). If γ is parallel to h, then γ is
parallel to � (and possibly contained in �) so γ crosses no edges in E	,h . Otherwise
γ crosses � at most once, so it crosses at most one edge of E	,h . ��
Lemma 2.5 Let γ be a mast lying on a face f of ∂U. Let E	,e,X be the set of edges
of � f that were created by cuts made by a single call of Staircase(	, e, X). Then
γ crosses O(log|X |) edges of E	,e,X .

Proof Following the notation in the description of the Staircase procedure, assume
that e is parallel to the x-axis, let gy and gz be the two “median” planes for which the
procedure called GlobalCut(	, gy) and GlobalCut(	, gz), and let 	− and 	+
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Fig. 9 A 2D view of the edges E	,e,X (red) created in subdivision � f on 	 ∩ span( f ) after calling
Staircase(	, e, X). The shaded regions (blue) form the cross section U∩ 	, which includes a long cube
that contains the top-left x-edge of 	 and a short cube on which an endpoint of mast γ lies. The boundaries
of 	−, 	+ in the initial call are shown slightly shrunk towards their centers for better visualization

be the two sub-boxes of 	 for which the Staircase procedure was called recursively,
as Staircase(	−, e−, X−) and Staircase(	+, e+, X+).

We first note that if γ is parallel to e, then γ does not cross any edge
of E	,e,X because all cutting planes with which GlobalCut is called inside
Staircase(	, e, X), including recursive calls, are parallel to e and thus to γ . By
Lemma 2.4, none of the edges of E	,e,X (which lie in these cutting planes) are crossed
by γ . So assume γ is orthogonal to e, say, γ is parallel to the y-axis; a symmetric
argument holds if γ is parallel to the z-axis.

Since γ is parallel to the y-axis, it is not crossed by the plane gz . By Lemma 2.4,
γ crosses no edge created by GlobalCut(	, gz) and at most one edge created by
GlobalCut(	, gy). See Fig. 9. Since γ misses gz , γ also misses 	+ (resp., 	−) if it
lies in the halfspace g+

z (resp., g−
z ). If γ misses 	+ (resp., 	−), it is only crossed by the

edges of E	,e,X that are created by the recursive call Staircase(	−, e−, X−) (resp.,
Staircase(	+, e+, X+)). Using the fact that |X−|, |X+| ≤ 	|X |/2
 − 1 ≤ |X |/2, a
simple recursive argument shows that γ crosses O(log|X |) edges of E	,e,X . ��
Remark 1 We note that if the depth of C is bounded by a constant, then |X | = O(1)

and the mast γ crosses O(1) edges of E	,e,X .

Lemma 2.6 Let γ be a mast lying on a face f of ∂U. For any node v of T, γ crosses
O(log n) edges of � f labeled v.

Proof Let Ev be the set of edges of � f that are labeled v. Consider the cuts made
by the algorithm while processing v. Step (i) calls GlobalCut O(1) times, and γ

crosses at most one edge of Ev created by each call, by Lemma 2.4. These calls split
γ into O(1) segments, each of which lies in one of the boxes of the subdivision �v

of �v . Fix a box R ∈ �v intersecting γ and let γR := γ ∩ R. For each edge e of R,
by Lemma 2.5, γR crosses O(log|CR,e|) = O(log n) edges of Ev that are created by
Staircase(R, e,CR,e). Summing over all O(1) such calls, γR is crossed by O(log n)

edges of Ev that are created at step (ii). Next, summing over the O(1) boxes R ∈ �v ,
γ is crossed by O(log n) edges of Ev created at step (ii).
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Fig. 10 (left) An illustration of � f clipped within ρ is shown in red, where the outer vertices, inner vertices,
and vertices of � f that are on edges of ∂ρ but not in �ρ are depicted as blue, red, and grey, respectively.
(right) An exposed face ϕ of ˜� is split by segment γ , where the solid blue edges (resp., dashed red edges)
lie on ∂ρ (resp., in int(ρ)). b is an outer vertex, which a charges, being an inner vertex

If v is a leaf, γ crosses at most three edges of Ev that are created at step (iii). Finally,
if v is an interior node, γ crosses O(1) edges of Ev that are created at step (iv).

Putting everything together, γ crosses O(log n) edges of Ev . ��
Lemma 2.7 A mast γ lying on a face f of ∂U crosses O(log2 n) edges of � f .

Proof Let C ∈ C be the cube whose boundary contains the face f . For a node v of
T, let iv ≤ F be the index such that Biv is the subdivision immediately before the
algorithm begins processing v. Let A<

v be the set of active boxes in Biv , i.e., for all
B ∈ A<

v , int(B)∩∂U∩�v �= ∅. By invariant (I1), int(B)∩∂U ⊆ �v for all B ∈ A<
v .

By invariant (I2), if f lies in the interior of a box of A<
v then C is short at p(v).

Since the interiors of the regions �u are pairwise disjoint for all nodes at a fixed level
of T, there are at most 16 nodes v (children of at most 8 nodes at a fixed level at which
C is short) at any level of T for which f intersects the interior of a box of A<

v , i.e.,
f contains a fragment that is alive at node v and may be further subdivided. Hence,
there are O(log n) nodes v of T for which A<

v is not void of {C}, and thus the edges of
� f have O(log n) distinct labels. By Lemma 2.6, γ crosses O(log n) edges of each
label, so γ crosses O(log2 n) edges of � f . ��

To bound the number of vertices of � f , we construct a standard 2D vertical decom-
position of the face f : Without loss of generality, assume that f is parallel to the
yz-plane. From each vertex q of f , we draw a ray in the (+z)-direction or in the
(−z)-direction within the interior of f until it hits another edge of f . (Only one of
the two rays lies in the interior of f in the neighborhood of q.) The resulting subdivi-
sion f || of f consists of a set of O(κ f ) axis-aligned rectangles with pairwise-disjoint
interiors. The subdivision of f || is constructed only for the analysis and is not part of
the algorithm. Consider any rectangle ρ of f ||. The y-edges of ρ are portions of ∂ f
but the z-edges may not lie in ∂ f or may partially overlap with ∂ f . Let �ρ be the
subdivision of ρ induced by � f by clipping � f in the interior of ρ and adding ∂ρ to
it; see Fig. 10(left). Each vertex of � f lying in ρ is a vertex of �ρ , so it suffices to
bound the number of vertices of �ρ . If a vertex ξ of � f lies in the interior of ρ, ξ

is a vertex of �ρ but if ξ lies on ∂ρ then it might not be a vertex of �ρ (e.g.the grey
vertices in Fig. 10(left)). However, ξ will be a vertex of �ρ′ for some other rectangle
ρ′ of f ||.

The following lemma, which is similar to Proposition 7 in [26], bounds the number
of vertices of �ρ .
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Fig. 11 (left) An exposed face ϕ of ˜� is split by segment γ , where the solid blue edges (resp., dashed red
edges) lie on ∂ρ (resp., in int(ρ)). a and b are both inner vertices and a (resp., b) charges the outer vertex ξa
(resp., ξb). ea , eb are the left and right vertical edges of ρ. (right) An illustration of a mast δp , all of whose
incident inner vertices (red) charge the outer vertex p

Lemma 2.8 For each rectangle ρ of f ||, �ρ contains O(log4 n) vertices.

Proof We call a vertex of �ρ lying in int(ρ) an inner vertex, and outer otherwise.
Since each edge ε of ρ is a mast and each outer vertex of �ρ on ε (except possibly
for its corners) is formed by the intersection of ε with an edge of � f , Lemma 2.7
implies1 that ε contains O(log2 n) vertices of �ρ . Hence, �ρ has O(log2 n) outer
vertices. See Fig. 10(left). We carefully charge each inner vertex to an outer vertex so
that each outer vertex is charged by only O(log2 n) inner vertices. This would imply
that the number of inner vertices in �ρ is O(log4 n), as claimed. We now describe the
charging scheme and argue that each outer vertex is indeed charged only O(log2 n)

times.
To analyze the charging of the inner vertices of �ρ , instead of viewing �ρ as a

static subdivision, we monitor the evolution of �ρ as the algorithm progresses and
the subdivision gets refined. Let ˜� denote this dynamic subdivision of ρ. Initially,
˜� = ρ, and ˜� = �ρ when the algorithm terminates. A face ϕ of ˜� lying completely
in the interior of ρ is a face of � f that lies completely in the interior of f , and thus ϕ

corresponds to a free cut in some box containing ϕ. Since the algorithm splits boxes
by free cuts as soon as they appear, ϕ becomes eternal (and is never further refined).

We call a face ϕ of ˜� exposed if at least one of its edges lies on ∂ρ. At each step,
˜� either remains unchanged or is refined by splitting an exposed face ϕ of ˜� into two
rectangles ϕ−, ϕ+ by a segment γ . The endpoints of γ , denoted by a and b, create
new vertices of ˜�. If an endpoint of γ is an outer vertex, it is already accounted for
in the sense that we have already bounded the number of outer vertices ever created
by O(log2 n), so assume that at least one of a and b is an inner vertex. There are two
cases to consider. The first case is when a is an inner vertex and b is an outer vertex
(or vice versa). In this case, we charge a to the newly created outer vertex b. Each
outer vertex is charged at most once by this case. See Fig. 10(right).

The second case is when both a and b are inner vertices. Let ϕ be the face of �ρ that
is split by γ , which is a rectangle. Let ea (resp., eb) be the edge of this rectangle that
contains a (resp., b). Note that ea (resp., eb) may contain vertices of ˜� in its interior;
see Fig. 11(left). Neither ea nor eb lies on ∂ρ. Since ϕ is exposed, at least one of the
other two edges of (the rectangle) ϕ lies on ∂ρ. Let ξa (resp., ξb) be an endpoint of ea

1 Since vertices of � f that are not vertices of �ρ might lie on ε, we should apply Lemma 2.7 to the segment
ε′ that is the slight translation of int(ε) into int(ρ); the number of edges of � f crossed by ε′ correspond to
the outer vertices on ε, which is what we want to bound here.
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(resp., eb) lying on ∂ρ, i.e., ξa , ξb are outer vertices in ˜�. We charge a (resp., b) to the
outer vertex ξa (resp., ξb). See Fig. 11(left).

We claim that each outer vertex p is charged by O(log2 n) inner vertices. Indeed,
let δp be the segment connecting p to its opposite point on ∂ρ. (Note that at least part
of δp, but not necessarily all of it, is covered by edges of �ρ .) See Fig. 11(right).
Each inner vertex charged to p lies on δp and is an intersection point of δp with an
edge of � f (which is orthogonal to δp). By Lemma 2.7,2 δp contains O(log2 n) such
intersection points. Hence, p is charged by O(log2 n) inner vertices, as claimed. This
completes the proof of the lemma. ��
An immediate corollary of the above lemma is the following:

Corollary 2.9 A face f of ∂U with κ f vertices is split into O(κ f log4 n) eternal frag-
ments.

Putting everything together, we conclude that the size ofBF is O(κ log4 n), thereby
proving the size bound in Theorem 1.1. If the depth of C is bounded by a constant
then using Remark 1, we can conclude that a mast γ lying on a face f of ∂U crosses
O(log n) edges of � f , which implies that f contains O(κ f log2 n) fragment vertices.
This in turn implies the first size bound in Corollary 1.3.

Runtime analysis. We now show that the algorithm described above can be imple-
mented in O(n log2 n + κ log6 n) time by carefully maintaining some auxiliary
information.

Recall that, at any time during the execution of the algorithm, B and � denote the
current set of boxes and fragments, respectively. Let ϕ ∈ � be a fragment. For each
connected component of ∂ϕ, we store the sequence of its vertices in cyclic order in
a doubly linked list. Let Lϕ be this list. For each box B ∈ B, let �B ⊆ � be the
set of fragments that lie in the interior of B, and let �B be the multiset of vertices
of fragments in �B ; since at most four fragments share any vertex, each element in
�B has multiplicity at most four. For each box B, we maintain the set �B and three
lists XB, YB ,ZB storing the points of �B sorted by their x-, y-, and z-coordinates,
respectively. We store Lϕ ,XB , YB , and ZB as doubly linked lists and store cross pointers
among them so that for a vertex in one of the lists, we can locate it in the other lists
in O(1) time. In addition, whenever we make a call GlobalCut(	, h), we ensure
that we have the set A	 of active boxes at our disposal, so that the procedure does not
have to compute A	 from scratch.

Since GlobalCut is the only procedure that modifies B, we sketch how to imple-
ment GlobalCut(	, h) efficiently, omitting various tedious details:

1. Without loss of generality, assume that h : z = z0 is parallel to the xy-plane.
For each box B ∈ A	, we scan ZB and find the last vertex ξ− with z-coordinate
less than z0. Next, we scan the set �B of the fragments in B. For each fragment
ϕ ∈ �B , by scanning the list Lϕ , we test in O(|ϕ|) time whether ϕ intersects h,
where |ϕ| is the number of vertices of ϕ. If the answer is no, we determine in O(1)

time whether ϕ lies in h− or in h+.

2 As similarly remarked earlier, to use the lemma, we choose a mast parallel and very close to δp .
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2. If a fragment intersects h or if both h− and h+ contain fragments, we split B into
two boxes B− := B ∩ h− and B+ := B ∩ h+.

3. If B is split into B+ and B−, then we perform the following steps:

(a) By scanning the list Lϕ , for each fragment ϕ ∈ �B , we first generate the
intersection points of h with the edges of ϕ. Using ξ− and cross pointers, we
can store each new vertex in the lists XB, YB , and ZB in O(1) time.

(b) After having computed all new fragment vertices in B, we scan the lists XB

and YB and compute the new fragment edges that lie on h.
(c) We then split the fragments intersecting h and create the lists Lϕ for each

newly created fragment ϕ. A fragment ϕ may be split into many fragments
(see Fig. 7). Each fragment now either lies in B− or in B+.

(d) By scanning the lists �B , XB , YB , and ZB we construct the lists �B− , �B+ ,
XB− , XB+ , YB− , YB+ , ZB− , and ZB+ .

(e) We identify fragments in �B− ,�B+ that induce free cuts. All these fragments
are parallel to each other and orthogonal to h, i.e., all of them are parallel to
the xz-plane or to the yz-plane. For each newly created box D, we split D by
each free cut and construct the lists �D,XD, YD , and ZD . The fragments that
become eternal — either because they lie on h or they become free cuts — are
discarded.

4. Finally, set 	+ := 	 ∩ h+ and 	− := 	 ∩ h−. GlobalCut ensures that A	+
(resp., A	− ) is compatible with 	+ (resp., 	−). The procedure partitions the
modified set A	 into A	+ and A	− and returns them.

Next, we analyze the total time spent by GlobalCut(	, h). Let νB := |�B | denote
the number of vertices of the fragments that lie in box B ∈ A	, when the procedure
is called. Note that �B is a multiset here, and we count its elements with multiplicity.
For each box B ∈ A	, at most one new fragment vertex is created on any edge of
a fragment in �B during the execution of the procedure, namely in step 3(a). Thus,
for each box B ∈ A	, steps 1–4 are performed in O(|�B |) time. It follows that the
total running time of GlobalCut(	, h) is O(ν	), where ν	 := ∑

B∈A	
νB is the

number of vertices in the fragments that lie in a box of A	 when the procedure was
called.

Next, we note that Staircase(	, e, X) spends O(|X |) time to compute the cut-
ting planes gy and gz , and then calls GlobalCut(	, gy) and GlobalCut(	, gz),
each of which takes O(ν	) time, where ν	 is the number of vertices in 	

when GlobalCut is called. Then it recursively calls Staircase(	−, e−, X−) and
Staircase(	+, e+, X+). Using the list of active boxes returned by the two calls of
the GlobalCut procedure, A	− and A	+ can be computed in O(ν	) time. Each call
to GlobalCut creates new fragment vertices, so the value of ν	 increases after each
call. To handle this increase in the value of ν	, for a region 	, we define ν̃	 := |�∩	|
to be the number of vertices of the eternal fragments that lie inside 	 at the end of the
algorithm, counted with multiplicity. Then ν	 ≤ ν̃	 and ν̃	− + ν̃	+ ≤ ν̃	. Using the
fact that |X−|, |X+| ≤ |X |/2, a simple recurrence shows that Staircase(	, e, X)

takes O((|X | + ν̃	) log n) time.
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B

S

1

2
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Fig. 12 A 2D view of a boundary square S of some cube that induces a free cut, by the new definition, in
the dashed box B (green), but none of the fragments ϕ1, ϕ2, ϕ3 (grey with stripes) on S ∩ B induce a free
cut in B by the old definition. S ∩ int(U) is shaded in blue

For a node u ofT, let νu := |�∩�u | and nu := |Su |+|Cu |. We note that
∑

u∈T νu =
O(ν log n) = O(κ log5 n) by Lemma 2.3 and Corollary 2.9. The analysis in Arya
et al.[4] implies that

∑

u∈T nu = O(n log n). A straightforward analysis shows that
steps (i)–(iv) of the overall algorithm at a nodeu can be performed in O((nu+νu) log n)

time as a result of the O(1) calls made to Staircase and GlobalCut. Summing over
all nodes of T, the total running time is O(n log2 n+κ log6 n). This proves the running
time bound in Theorem 1.1. If the depth of C is bounded by a constant then using the
improved bound on the size of the decomposition we conclude that the running time
is O(n log2 n + κ log4 n), which proves the first running time bound of Corollary 1.3.

3 A Smaller Decomposition for Arbitrary Cubes

In this section we show that a small modification of the previous algorithm improves
the size of the decomposition to O(σ log4 n + κ log2 n), where σ ≤ min{n, κ} is the
number of input cubes that appear on ∂U. The only difference in the new algorithm is
how we define a free cut for a box B of the current decomposition. Recall that a box B
admits a free cut if there is a face f of ∂U that intersects int(B) but ∂ f ∩ int(B) = ∅,
i.e., f ∩ B = span( f ) ∩ B. The algorithm splits B along span( f ) ∩ B as soon as f
induces a free cut in B because such a cut does not cross any fragments and f ∩ B
no longer lies in the interior of the resulting boxes (and thus the name free cut). We
observe that this property of “free” cuts holds even under a weaker condition. Namely,
we say that B admits a free cut if B contains a fragment ϕ that lies on a boundary
square3 S of an input cube and ∂S ∩ int(B) = ∅, i.e., S ∩ B = span(S) ∩ B. Note
that, unlike the previous definition, ∂ϕ may lie in the interior of B (see Fig. 12), and
S may cross the interior of U. If we split B using the plane span(S), ϕ will no longer
lie in the interior of the resulting boxes and span(S) ∩ B will not cross any face of ∂U

(though (a) it may meet the boundary of such a face, and (b) it may cross a portion of a
boundary square that is disjoint from ∂U). We run the algorithm described in Sect. 2.3
but use this definition of a free cut in the GlobalCut procedure.

3 To distinguish from the face of the union U, we call the boundary face of an input cube a boundary square.
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We postpone the discussion on an efficient implementation of the modified Glob-
alCut until the runtime analysis given later in this section, and we first bound the size
of the resulting decomposition BF . It is easily seen that Lemmas 2.2 and 2.3 still hold;
the proof of the latter relies crucially on the fact that the splitting plane corresponding
to a free cut contains a fragment. As in Sect. 2, it suffices to bound the number of
eternal fragments, which we estimate by bounding the number of fragment vertices.
In particular, we show that if a boundary square S of an input cube contains κS > 0
vertices of ∂U then S contains O(log4 n + κS log2 n) fragment vertices, which will
lead to the desired bound on the size of BF . (If S contains no vertices of ∂U then
S ⊂ int(U) and no fragment vertices are created on S.)

The overall structure of the proof is similar to that in Sect. 2.5 except that we use
a more global argument. For a boundary square S, let KS := ∂K ∩ S = ∂U ∩ S be
the (possibly disconnected) portion of S that does not lie in int(U). Throughout the
execution of the algorithm, the splitting of boxes B with S∩ int(B) �= ∅ by any plane
h crossing S induces an evolving (rectangular) subdivision ˜�S of S. Specifically, we
have ˜�S = S at the start (i.e., it consists of only the edges of S), and whenever such
a split occurs, the axis-aligned segment γ := S ∩ (B ∩ h) creates a new edge of ˜�S .
The endpoints of γ that lie on orthogonal edges of ˜�S become new vertices of ˜�S

and subdivide those edges.
We color the features of ˜�S as follows: Initially, we color the edges of ˜�S = S

as black. When a segment γ is created on S, we color (the interior of) γ as red if it
intersects KS , and color it as black otherwise. Then we color each new vertex of ˜�S

induced by the endpoints of γ as red if it is incident to a red edge (which could be
γ ), and color it as black otherwise. When an edge of ˜�S is subdivided, the sub-edges
inherit the same color.

Let �S be the final (rectangular) subdivision of S when the algorithm terminates.
By definition, every edge of the subdivision �S lies on a segment γ once created on
˜�S , and many edges may lie on the same γ as subsequent cuts may have subdivided
γ further. We say that an edge of �S was created when its containing segment γ was
created during the execution of the algorithm, and note that its color is that of γ when
it was created.

Next, let �∇
S be the subdivision of KS obtained by overlaying �S with KS and

clipping it within KS . The faces of �∇
S are eternal fragments. See Fig. 13. We color

the edges of �∇
S that lie on ∂KS as blue and the edges that lie in the interior of KS

(i.e., the clipped red edges of �S) as red. Note that a red edge of �∇
S is a red edge

of �S or is contained in a red edge of �S , and that the black edges of �S lie in the
interior of S∩ int(U) and do not intersect �∇

S . Each vertex in �∇
S is one of three types:

a vertex of ∂KS , a vertex of �S lying in the interior of KS (all edges incident to it
are red), or an intersection point of an edge of ∂KS and an edge of �S which is not
a vertex of ∂KS ; such a vertex is incident to both red and blue edges. We color the
vertex as blue, red, or purple, respectively. We note that the vertices of �S lying in
the interior of KS , which are also vertices of �∇

S , were colored red. (�S may have red
vertices lying outside KS , namely the endpoints of black edges incident on red edges;
see the red vertex incident on edge γ3 in Fig. 14.) The number of blue vertices is κS ,
by definition, so we need to bound the number of red and purple vertices.
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Fig. 13 A 2D view of �S (left) and �∇
S (right) on a square S; S∩ int(U) is shaded blue and its interior does

not belong to �∇
S (only its blue boundary edges belong to �∇

S ). On the left, the red edges are dashed, and
the black edges are thick. On the right, the red edges are dashed, the blue edges are solid, and the purple
vertices are shown as crosses

�1

�2

�3

�1
�2

3

q

21

4

s t

p

5 6

Fig. 14 A 2D view of ˜�S that illustrates the various cases for new edges with segments γ1, γ2, γ3. We
assume that all other segments were created before them. S ∩ int(U) is shown in blue. γ1 intersects blue
edges of KS , γ2 lies in KS , and γ3 lies in S ∩ int(U). Immediately before the edges are created on �S ,
all faces of �S are exposed; afterwards, the resulting faces ρ1 and ρ2 are the only shielded faces of �S .
Vertices 2, 4, 5, and 6 are charged to q, p, s, and t , respectively

We define a mast to be an axis-aligned segment contained in S. Note that unlike
Sect. 2 where a mast lies on ∂U, a mast may now intersect int(U). The following
lemma is analogous to Lemma 2.4.

Lemma 3.1 Let γ be a mast in S. Let E	,h be the set of red edges of �S created by
a single call to GlobalCut(	, h). If γ is parallel to h it does not cross any edge of
E	,h. If γ is orthogonal to h then it crosses at most one edge of E	,h.

Proof During GlobalCut(	, h), for each box B ∈ A	, B is possibly split by the
plane h, and if so, the resulting sub-boxes of B are split by free cuts until none admit a
free cut. Recall that a free cut cannot cross KS . Therefore, while a free cut may cross
S and generate edges of �S , these edges do not lie on an edge that intersects KS , and
hence are black. Thus, any red edges created during the call lie on h ∩ S. The proof
now follows from the same argument as in Lemma 2.4. ��
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Using Lemma 3.1 and following the same arguments as in the proofs of Lemmas
2.5–2.7, we obtain the following:

Corollary 3.2 A mast in S crosses O(log2 n) red edges of �S.

We are now ready to prove the main lemma, which is analogous to Lemma 2.8.

Lemma 3.3 �∇
S has O(log4 n + κS log2 n) vertices.

Proof It suffices to estimate the number of red and purple vertices. Each edge of ∂KS

is a mast, so by Corollary 3.2, each edge of ∂KS contains O(log2 n) purple vertices.
(As in the proof of Lemma 2.8, strictly speaking, we choose a mast parallel and very
close to the edge so as to use Corollary 3.2). Hence, the total number of purple vertices
is O(κS log2 n). Next, we bound the number of red vertices of �∇

S . We note that each
such vertex is also a vertex of �S .

We charge each red vertex of �∇
S to a purple vertex of �∇

S or to a red vertex of �S

lying on ∂S. To describe the charging scheme, it will be more convenient to work with
the dynamic subdivision ˜�S of S that was refined as the algorithm progressed and pay
attention to the creation of the red vertices of �∇

S . Recall that ˜�S = S initially and
˜�S = �S at the end. We call a face of ˜�S exposed if one of its edges lies on an edge
of S and shielded otherwise. (For example, in Fig. 14, ρ1 and ρ2 are shielded faces
of �S , and the rest are exposed.) If a shielded face ρ intersects KS , then by the new
definition of free cut, B admits a free cut (along S). The algorithm splits boxes by
free cuts as soon as they become available. Thus, ρ is not further refined, ρ becomes
a face of �S , and all fragments on ρ become eternal. Therefore no red vertex of �∇

S
lies inside ρ. If ρ does not intersect KS , then ρ does not contain any vertex of �∇

S , so
it suffices to focus on how a vertex of �∇

S is created inside an exposed face of ˜�S .
Suppose an exposed face ρ of ˜�S , which we view as a rectangle, was split into

two faces by the creation of an axis-aligned segment γ with endpoints a and b, which
become vertices of ˜�S . There are three cases. First, if γ ⊆ S \ KS , then a and b are
not vertices of �∇

S . Next, assume that γ � S \ KS and γ � KS . If a (resp., b) lies in
the interior of KS , it is a red vertex of �∇

S (and thus of �S). We charge a (resp., b) as
follows: We walk from a (resp., b) on γ until we reach a point η on ∂KS and charge
a (resp., b) to η, which is a blue vertex of �∇

S (if it is a vertex of KS , e.g.vertex 4 is
charged to p in Fig. 14), or a purple vertex of �∇

S (if η lies in the relative interior of an
edge of KS , e.g.vertex 2 is charged to q in Fig. 14). It is easily seen that η is charged
at most twice4 in this way, so the number of such red vertices of �∇

S is O(κS log2 n).
Finally, assume that γ ⊆ KS , i.e., both a and b are red vertices of �∇

S . If at least
one of a and b lies on ∂S, say a for concreteness, we charge both a and b to a. At
most two vertices are charged to a in this way. Next, we assume that both a and b lie
in the interior of S. As in the proof of Lemma 2.8, let ea (resp., eb) be the edge of
ρ that contains the endpoint a (resp., b); e.g., segments 2s and 3t for γ2 in Fig. 14.
Neither ea nor eb lies on ∂S. Since ρ is an exposed face of S, at least one of the other
two edges of the rectangle ρ lies on ∂S, and hence at least one endpoint ξa (resp.,

4 A purple vertex of �∇
S lying on an edge of S is a red vertex of �S and this red vertex may be charged

O(log2 n) times by a later stage.
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B

S1
S4S2

S3

B′ B′′

Fig. 15 A 2D view of a 3D shaded box B whose interior is intersected by three cubes (squares from this
view) that are long at B (i.e., their vertices lie outside B). By the old definition of free cuts, there are no
available free cuts in B since the boundary squares S1, S2, S3, S4 (segments from this view) of the long
cubes intersect each other in the interior of B. However, by the new definition of free cuts, the boundary
square S1 induces a free cut in B. By splitting B by this cut, S2 induces a newly available free cut in resulting
sub-box B′. By splitting B′ by this cut, boundary squares S3 and S4 induce newly available free cuts in the
resulting sub-box B′′

ξb) of ea (resp., eb) lies on ∂S. Note that the edge ea (resp., eb) of ˜�S may be later
subdivided by subsequent cuts, but since ea (resp., eb) intersects KS , all edges of the
final subdivision �S lying on it will be colored red, so ξa (resp., ξb) is a red vertex of
�S . We charge a (resp., b) to ξa (resp., ξb). Following the same argument as in the
proof of Lemma 2.8, and using Corollary 3.2, any red vertex of �S on ∂S is charged
O(log2 n) times. Finally, using Theorem 3.2, only O(log2 n) red edges of �S have
any endpoint incident on an edge ω of S, which implies that ω contains O(log2 n) red
vertices of �S . Hence, the total charge to the red vertices on an edge of S is O(log4 n).
This completes the proof of the lemma. ��

Putting everything together, the total number of fragments created by the algorithm
is O(σ log4 n + κ log2 n). This proves the size bound in Theorem 1.2. If the depth
of C is bounded by a constant then the same observation as in Remark 1 implies that
a mast in S crosses O(log n) red edges of �S , which in turn implies that �∇

S has
O(log2 n + κS log n) vertices. This proves second size bound in Corollary 1.3.

Runtime analysis. Since the modification lies strictly in GlobalCut, it suffices to
describe how to modifyGlobalCut to identify and split by the new free cuts. We then
bound the resulting runtime by adapting the previous analysis at the end of Sect. 2.5.

In the GlobalCut procedure, we replace only step (3.e) of the original procedure;
all other steps are performed as stated there. We also maintain the same auxiliary
information as before, including the lists �B,XB, YB , and ZB for each box B ∈ A	.
Recall that �B denotes the list of fragments that lie in box B, each represented by a
list of its vertices in cyclic order, and that �B is the multiset of the vertices of these
fragments, represented as a list. In the original implementation of step (3.e), all free
cuts in B are available in the beginning of this step, and no free cuts become newly
available after being split by a free cut. In contrast, with the new definition of free cuts,
splitting B by a free cut may create new free cuts in the resulting sub-boxes B−, B+
that did not exist in B (see Fig. 15). We therefore carefully find free cuts, one at a time,
in a recursive manner. We sketch the process, as follows.

Consider a newly created box D with set of fragments �D; initially, D is either B−
or B+. Then we iterate from each end of the sorted lists XD, YD, and ZD in a lock-step
manner; each full iteration consists of six steps (two per list). We do the following at
each step: For concreteness, assume we are at a vertex v while scanning the list ZD

from left to right. If the fragment ϕv containing v lies in a xy-plane (i.e., span(ϕv)
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is orthogonal to the z-axis), we test whether the boundary square Sv supporting ϕv

induces a free cut in D. If the answer is yes, we pause the scan at v. We split D into D−
and D+ by the free cut g := D∩span(Sv) lying below and above g, respectively. Next,
we split the lists �D,XD, YD , and ZD to create the lists for D− and D+, as follows.
Let �

g
D ⊆ �D denote the set of (xy-)fragments that lie on g, and let �

g
D be the list of

vertices of these fragments. Then �D = �D−∪�
g
D∪�D+ and �D = �D−∪�

g
D∪�D+ .

By breaking ties in the lists XD , YD , and ZD carefully, we can ensure that all vertices
in �D− (resp., �D+) appear before (resp., after) the vertices in �

g
D in ZD . We resume

the scan of ZD from the vertex v to the right until a vertex v+ of a fragment in �D+
(or the end of ZD) is reached. We remove the vertices of ZD− and ZgD from ZD . The
remaining list is Z+

D . We reconstruct the list ZD− . Next, we delete the corresponding
fragments from �D and fragment vertices from XD and YD , and we reconstruct the
lists �D− ,XD− , and YD− ; the last two lists require sorting the vertices of �D− in the
x- and y-order.

We recursively call the procedure to find free cuts in D− and D+. On the other
hand, if no free cut was found in D while scanning XD, YD , and ZD , we are done with
box D.

Next, we analyze the total time spent in splitting D by free cuts with this recursive
procedure. Recall that splitting by free cuts do not create any new fragment vertices. Let
νD := |�D| immediately before step (3.e), where D = B− or D = B+. If no free cut
was found in D, then we spend O(νD) time at D. Assuming that a free cut was found
while scanning ZD from left to right, then the procedure spends O(νD− log νD− +ν

g
D)

time in splitting D and constructing the lists for D− and D+, where νD− := |�D−|
and ν

g
D := |�g

D−|. Because we scan the lists in lock-step manner, we can conclude
that νD− ≤ νD+ , where νD+ := |�D+|. Then the time spent in splitting D into D−
and D+ is O(νD− log νD− + ν

g
D). The time spent in the symmetric case where a

free cut was found while scanning ZD from right to left is O(νD+ log νD+ + ν
g
D)

with νD+ ≤ νD− . Therefore, the time spent in any case is always O (̂ν log ν̂ + ν
g
D),

where ν̂ := min{νD− , νD+}. Let τ(νD) be the total time spent in splitting by free cuts
in D, including the time taken by the recursive calls. Then we obtain the following
recurrence:

τ(νD) ≤ τ(νD−) + τ(νD+) + O (̂ν log ν̂ + ν
g
D),

where νD− + ν
g
D + νD+ ≤ νD , and τ(νD) = O(νD) if no free cut was found. By

induction on νD , we can prove that the solution to above recurrence is τ(νD) =
O(νD log2 νD). Summing this quantity over all sub-boxes B−, B+ for each B ∈
A	, the total running time of GlobalCut(	, h) is O(ν	 log2 ν	), where ν	 :=
∑

B∈A	
νB is the number of vertices of the fragments that lie in a box of A	 when

the procedure was called, counted with multiplicity.
For a node u of T, let νu := |� ∩ �u | and nu := |Su | + |Cu |. Following the

analysis in Sect. 2.5, each of the O(1) calls to Staircase at u now take O((nu +
νu log2 νu) log n) = O((nu +νu log2 n) log n), using the fact that log ν = O(log κ) =
O(log n). It follows that processing any node u of T during the overall algorithm takes
O((nu + νu log2 n) log n) time. Therefore, by summing over all nodes of T and using
the fact that

∑

u∈T nu = O(n log n) and
∑

u∈T νu = O(ν log n) = O(σ log5 n +
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κ log3 n), the total running time is O(n log2 n + σ log8 n + κ log6 n). This proves the
running time bound in Theorem 1.2. If the depth of C is bounded, the running time
is O(n log2 n + σ log6 n + κ log5 n), which proves the second running time bound in
Corollary 1.3.

4 Decomposing the Free Space of Congruent Cubes

In this section, we describe an improved decomposition scheme for a set of axis-aligned
congruent cubes in R

3.

4.1 Overall Algorithm

Let C := {C1, . . . ,Cn} be a set of n axis-aligned congruent cubes, say, unit cubes, in
R

3 in general position. Recall that κ = O(n) in this setting. As before, we assume that
the faces of ∂U := ∂U(C) have been pre-computed in time t(n) = �(n log n), e.g., by
using the algorithm in [1] to compute the vertices of ∂U and then using the vertices to
compute the edges and faces of ∂U with standard line-sweep techniques. Unlike the
setup in Sect. 2, where we have enclosedU in some sufficiently large box � and focused
on constructing the decomposition of K within �, here it is more convenient to treat
the unbounded version ofK. Let G be the 3D integer grid, which partitions R

3 into unit
cubes. For i, j, k ∈ Z, let ξi, j,k denote the grid cell [i, i + 1]× [ j, j + 1]× [k, k + 1].
Let G

↓ be the 2D integer grid on the xy-plane, and let ξ
↓
i, j denote the unit square

[i, i + 1] × [ j, j + 1]. For a pair (i, j), let �i, j := ξ
↓
i, j × R denote the unbounded

prism erected on the square ξ
↓
i, j and extending along the z-axis, and let Gi, j :=

{ξi, j,k | k ∈ Z} denote the column of grid cells stacked on ξ
↓
i, j ; Gi, j partitions �i, j

into a “stack” of unit cubes. Let G ⊂ G denote the set of non-empty grid cells, i.e.,
the ones that intersect a cube of C, and let X be the set of pairs (i, j) such that �i, j

intersects a cube of C; U(C) ⊂ U(G) ⊂ ⋃

(i, j)∈X �i, j and |G|, |X| = O(κ).

We partitionK into boxes in three stages. First, we decompose cl(R3\⋃(i, j)∈X �i, j )

into a family B1 of O(κ) boxes, as follows. We partition cl(R2 \ ⋃

(i, j)∈X ξ
↓
i, j ) into

O(κ) axis-aligned rectangles, using, say, the standard 2D vertical decomposition. For
each rectangle ρ in the decomposition, we add the unbounded prism ρ ×R to B1. See
Fig. 16.

Next, for each pair (i, j) ∈ X, let Gi, j := G∩Gi, j denote the set of non-empty grid
cells in column (i, j). We partition the union of empty grid cells in column (i, j), i.e.,
cl(�i, j \U(Gi, j )), in a straightforward manner, into a family Bi, j of at most |Gi, j |+1
boxes. See Fig. 17. Set B2 := ⋃

(i, j)∈X Bi, j . For any (i, j) ∈ X, there is exactly one
box in Bi, j that is unbounded in the (−z)-direction. Furthermore, for any grid cell
ξ ∈ Gi, j , there is a vertex of ∂U in the interior of ξ since the cubes of C are in general
position. Hence, for any box B ∈ Bi, j bounded in the (−z)-direction, there exists a
vertex of ∂U in the grid cell immediately below B. It follows that
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Fig. 16 A view from above of G
↓ with the set of cubes C (grey), and the partition of cl(R2 \⋃

(i, j)∈X ξ
↓
i, j )

into axis-aligned rectangles (red)

Fig. 17 A 2D view of a prism �i, j crossed by cubes of C (grey), (i, j) ∈ X. cl(�i, j \U(Gi, j )) is partitioned
into axis-aligned boxes (red)

∑

(i, j)∈X
|Bi, j | ≤

∑

(i, j)∈X
|Gi, j | + 1 ≤ |G| + |X| = O(κ).

B1 ∪ B2 partitions cl(R3 \ U(G)) into O(κ) axis-aligned boxes.
Finally, we partition K∩ξ , for all non-empty grid cells ξ ∈ G, into boxes. Fix a cell

ξ ∈ G. LetKξ := K∩ξ , and let κξ be the number of vertices ofK that lie in the interior
of ξ ; we have

∑

ξ∈G κξ = O(κ). Below we describe the main part of our procedure, a
recursive algorithm that partitionsKξ into a collectionBξ of O(κξ log κξ ) axis-aligned
boxes, in O(κξ log κξ ) time (cf.Corollary 4.6). Repeating this procedure for all grid
cells ξ ∈ G, we decompose U(G)∩K into a total of

∑

ξ∈G O(κξ log κξ ) = O(κ log κ)

boxes.
Putting everything together, B1 ∪B2 ∪⋃

ξ∈GBξ partitions K into O(κ log κ) axis-
aligned boxes. Moreover, as we will show, our algorithm runs in overall O(κ log κ) =
O(n log n) time. The time t(n) to compute the faces of ∂U is �(n log n), so the overall
runtime is t(n). This completes the proof of Theorem 1.5.

Decompositionwithin a single unit grid cell.Let � := [xL , xR]×[yL , yR]×[zL , zR]
be an axis-aligned box in R

3, each of whose side-lengths is at most 1, that intersects
K. We describe a recursive algorithm for partitioning K� := K∩� into axis-aligned
boxes. Let E� be the set of edges of K� that lie in int(�) (these are the edges of K
that intersect the interior of �, clipped within �), and let V� be the set of vertices of K
that lie in int(�). If E� = ∅, then K� is a single box, bounded by portions of ∂� and
faces of ∂U (the fact that there is only one such box follows from the fact that all the
side lengths of � are at most 1). We output {K�} and stop. So assume that E� �= ∅.

We call an edge of E� short if one of its endpoints lies in the interior of �, and long
otherwise. Let κ� := |V�| and m� be the number of long edges in E�. We further
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classify the edges of E� into three families: an edge is an x-edge (resp., y-edge, z-edge)
if it is parallel to the x-axis (resp., y-axis, z-axis).

We assume that � satisfies the following invariant, and we will enforce the main-
tenance of this invariant throughout the recursive execution of the algorithm.

2- Family Invariant: E� contains at most two families of long edges, i.e., there
is at least one axis among the x-, y-, and z-axes such that E� has no long edge
parallel to that axis.

In particular, the above invariant will hold initially, when � is a unit cell of G,
because, by the general position assumptions, such a cell does not contain any long
edge. Let us assume, without loss of generality, that E� has no long z-edges. The next
two lemmas lie at the heart of our decomposition procedure.

Lemma 4.1 Let e be a long x-edge (resp., y-edge) of E�, and let γ1, γ2 be two long
y-edges (resp., x-edges) of E�. Then either both γ1, γ2 lie above e (in the z-direction)
or both of them lie below e.

Proof Suppose to the contrary that, say, γ1 passes above e and γ2 passes below e.
Denote by p1 and q1 the respective points on e and γ1 that lie vertically above each
other (with p1 lying below q1). Similarly, denote by p2 and q2 the respective points
on e and γ2 that lie vertically above each other (with p2 lying above q2). See Fig. 18.

The edge e is either a concave edge,5 namely a portion of an original edge of some
cube C ∈ C, or a convex edge, which is a portion of an edge formed by the intersection
of two non-parallel faces of two distinct cubes C,C ′ ∈ C. In the former case, e is
adjacent to an xy-parallel face and to an xz-parallel face of C . In the latter case, we
take C to be the cube for which e lies on one of its (top or bottom) xy-parallel faces.
In either case, let f be the xy-parallel face of C that contains e, and assume, without
loss of generality, that f is the bottom face of C .

Denote the xy-projection of an object a as a↓. In the case where e is a concave
edge, move q1 slightly along γ1 so as to make q↓

1 be contained in f ↓, and move p1
along f to make it co-vertical with q1. In the case of a convex edge, p1 and q1 remain
unchanged. Now the fact that � is a box of side-lengths at most 1 implies that the
vertical segment p1q1 is fully contained in the interior ofC . In particular, q1 lies inside
C , contradicting the fact that it lies on an edge of the union. The case where f is the
top face of C is handled symmetrically, using γ2 instead of γ1. ��

The proof of the following corollary is now straightforward.

Corollary 4.2 Either all long x-edges of E� lie above all the long y-edges of E�, or
all of them lie below all the long y-edges.

Proof Let e be a long x-edge in � and let γ be a long y-edge in �. Suppose that e
lies above γ in the z-direction. Then by Lemma 4.1, e lies above all long y-edges,
and similarly γ lies below all long x-edges. By applying Lemma 4.1 again, we can
conclude that all the long x-edges in � lie above all long y-edges in �. The case where
e lies below γ is handled in a fully symmetric manner. ��
5 The terminology comes from treating the edges as edges of K; it would be reversed if we were to regard
them as edges of U.
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Fig. 18 An illustration of the proof of Lemma 4.1
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Fig. 19 An illustration of Lemma 4.3 for a box � with two families of long edges. (left) The undecomposed
scenario. (middle) Separating the two families with a plane π that contains the highest long y-edge in �.
(right) Decomposing the portion of �∩K above π into O(mx ) axis-aligned boxes, where mx is the number
of x-edges in �. The figure shows a yz-cross section of the decomposition

Similar claims hold for the other possible combinations of long edges.

Lemma 4.3 If V� = ∅, i.e., E� does not have any short edges, then K� can be
partitioned into O(m�) axis-aligned boxes.

Proof Suppose, without loss of generality, that all long x- edges of E� lie above all
the long y-edges. Let z0 be the maximum z-coordinate of a long y-edge in �. We first
partition � into two boxes �x ,�y by drawing the plane π : z = z0, with �x (resp.,
�y) lying above (resp., below) π . If there are no x-edges (resp. y-edges) then we set
�y := � (resp., �x := �) and �x := ∅ (resp., �y := ∅). Since there are no z-edges
inside B, π does not cross any edge of E�, and all the x-edges (resp., y-edges) lie
inside �x (resp., �y). Let mx (resp. my) denote the number of x-edges (resp. y-edges)
in �. We describe how to partition Kx := K�x into O(mx ) boxes.

Let ϕ be one of the two faces of �x parallel to the yz-plane (it is a portion of a
face of �), and let Kϕ := K ∩ ϕ; it is a rectilinear polygonal region. Since all the
edges of E� that lie in �x are x-edges, it easily follows that Kx = Kϕ × [xL , xR].
We partition Kϕ into O(mx ) axis-aligned rectangles by the standard planar vertical-
decomposition method, as at the beginning of this section (see Fig. 19(right)). We
extend each rectangle R in the decomposition of Kϕ to a prism (within �) in the
x-direction, i.e., we generate the box R↑ := R × [xL , xR], resulting in the desired
partition of Kx into O(mx ) boxes.

In a fully symmetric manner, K ∩ �y can be partitioned into O(my) axis-aligned
boxes. Hence, K� can be partitioned into O(m�) boxes, as claimed. ��

123



436 Discrete & Computational Geometry (2024) 72:407–450

The next lemma suggests a recursive procedure for decomposing K� into boxes
when V� �= ∅.

Lemma 4.4 The box � can be partitioned into at most three cubes �1,�2,�3 such
that each �i satisfies the following properties. For i = 1, 2, 3, let κi , mi denote
κ�i ,m�i , respectively.

(i) κ1 + κ2 + κ3 ≤ κ�,
(ii) κi ≤ 	κ�/2
 for every i = 1, 2, 3,
(iii) m1 + m2 + m3 ≤ m� + 2κ�, and
(iv) each �i satisfies the 2-family invariant.

Proof If � contains both long x-edges and long y-edges, then, similar to the analysis
in the proof of Lemma 4.3, we partition � into two boxes �x and �y , such that the
long x-edges (y-edges) of E� lie in �x (resp., in �y), by drawing the horizontal plane
π1 : z = z�, where z� is the maximum z-coordinate of a long y-edge in � (assuming,
as above and without loss of generality, that the long y-edges lie below the long x-
edge); if � contains only long x-edges (resp., long y-edges), we set �x (resp., �y) to
�, and �y (resp., �x ) is then ∅.

If the interior of each of �x ,�y contains at most 	κ�/2
 vertices of K�, then we
have obtained a partition of � into two boxes �1 := �x and �2 := �y , and there is no
need for the third box �3. Otherwise, the interior of one of them, say, of �x , contains
more than 	κ�/2
 vertices, and we partition �x further into two boxes by drawing
some suitable plane orthogonal to the z-axis that partitions �x into two sub-boxes,
each containing at most 	κ�/2
 vertices. In either case, we obtain a partition of �
into at most three boxes �1,�2,�3.

We now prove that �1,�2,�3 satisfy the properties (i)–(iv). Clearly, (i) and (ii)
follow from the construction. Concerning (iv), each �i contains either long x-edges
or long y-edges in �, but not both. Since the partition is only by horizontal planes,
no new long x- or y-edge can be produced. The only new long edges, in any �i are
portions of original short z-edges in E�. This implies (iv).

Finally, each long (x- or y-)edge of E� lies in the interior of at most one box
�i . Furthermore, each short z-edge of E� is split into at most two long z-edges (and
possibly a third short z-edge), so the total number of long edges in the three boxes �i ,
i = 1, 2, 3, is at most m� + 2κ�, thereby proving (iii). ��

Let ψ(m�, κ�) be the maximum number of boxes into which K� is partitioned,
where the maximum is taken over all the sets of unit cubes such that |V�| = κ� and
|E�| = m�. Lemmas 4.3 and 4.4 imply the following recurrence:

ψ(m�, κ�) ≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if m� = κ� = 0,

c1m� if m� > 0, κ� = 0,

3
∑

i=1

ψ(mi , κi ) if m� ≥ 0, κ� > 0,

where κi ≤ 	κ�/2
, κ1 + κ2 + κ3 ≤ κ�, m1 +m2 +m3 ≤ m� + 2κ� and c1 > 0 is
an absolute constant. A solution to the above recurrence is ψ(m�, κ�) = O(m� +

123



Discrete & Computational Geometry (2024) 72:407–450 437

κ� log κ�). We also note that the total time spent in constructing the decomposition
of K� into boxes can be shown to be O((m� + κ�) log κ�). In conclusion, we have
obtained the following result.

Lemma 4.5 If K� contains at most two families of long edges, then K� can be par-
titioned into O(m� + κ� log κ�) boxes in O((m� + κ�) log κ�) time.

Returning to the overall algorithm, let ξ be a cell in G. Since ξ is a unit cube
with integer vertex coordinates, our assumption of vertices of C not having integer
coordinates implies that no face of K lies on ∂ξ , which in turn implies that Kξ does
not have any long edge, and thus trivially satisfies the 2-family invariant. Hence, by
Lemma 4.5,Kξ can be partitioned into a familyBξ of O(κξ log κξ ) axis-aligned boxes
in O(κξ log κξ ) time, where κξ is the number of vertices of U that lie in the interior of
ξ .

Corollary 4.6 For any cell ξ ∈ G, Kξ can be partitioned into O(κξ log κξ ) boxes in
O(κξ log κξ ) time.

5 Decomposing the Free Space of Boxes

In this section we consider partitioning the free space of a set C of n axis-aligned
boxes in general position into boxes. Let V be the set of vertices of the boxes in C.
For a set A of axis-aligned objects, let U(A ) denote the union of the objects in A .
Set U := U(C). For a box D ⊂ R

3, let CD ⊆ C be the subset of boxes intersecting the
interior of D. For a box B, let z(B) be its projection onto the z-axis. A box B ∈ CD is
long in D if z(B) ⊇ z(D), and is short otherwise. (Note that these definitions of long
and short differ from those in the previous sections.) Let LD (resp., SD) be the subset
of boxes of CD that are long (resp., short) in D. Let B↓ denote the xy-projection of a
3D object B. For any set A of 3D objects, let A ↓ := {A↓ | A ∈ A }.

5.1 Algorithm

Let � be an axis-aligned box containing U in its interior. We partition � by horizontal
planes into r = ⌈

8
√
n
⌉

boxes �1, . . . ,�r , which we refer to as slabs, so that each
slab �i contains at most

√
n vertices of V . Since we assume that the boxes of C are

in general position, we can ensure that the boundaries of the slabs do not contain any
vertex of V . We partition R

3 \ � into O(1) boxes as before, and need to partition
� \ U(C).

For all 1 ≤ i ≤ r , set Ci := C�i , Ui := U(Ci ) ∩ �i , Ki := cl(�i \ Ui ),
Li := L�i , Si := S�i , and Ji := z(�i ). Since no vertices of V lie on the faces
of �i , we have L1 = Lr = ∅ and Li ⊆ Ci−1,Ci+1 for all 1 < i < r . Fix a slab
�i . Let ∇i := cl(�↓

i \ U(C
↓
i )) and 
i := cl(U(S

↓
i ) \ U(L

↓
i )). These are rectilinear

regions in the xy-plane that are interior-disjoint, may be disconnected, or may have
many holes. See Fig. 20a–c. Clearly ∇i ⊆ K

↓
i and ∇i ∪ 
i ⊇ K

↓
i ; the latter follows

because cl(�↓ \ (∇i ∪ 
i )) = U(L
↓
i ) and thus it is interior-disjoint from K

↓
i . Let

∇↑
i := ∇i × Ji , 


↑
i := 
i × Ji , and �i := cl(
↑

i \ U(Si )). We have Ki = ∇↑
i ∪ �i .
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(a) (b)

C

(c) (d)

Fig. 20 In all figures, ∂�↓
i is shown in black. For the purpose of illustration, the boxes of Ci are not in

general position in this example. (a) U(Li
↓) in blue. (b) U(Si

↓) in red. (c) ∇i in white and 
i in red. ∇i has

a single trivial component C . The vertices of ∇i are colored as described in the analysis for partitioning ∇↑
i ,

with the primitive (resp., composite) blue vertices shown as solid (resp., hollow). (d) The white rectangles
compose the 2D vertical decomposition �i of the non-trivial components of ∇i

Our algorithm partitions
⋃r

i=1 ∇↑
i and �i for 1 ≤ i ≤ r separately. Sects. 5.2 and 5.3

describe the decomposition of
⋃r

i=1 ∇↑
i and of �i , respectively.

5.2 Partitioning
⋃r

i=1 ∇↑
i

We partition
⋃r

i=1 ∇↑
i in two stages, as follows. We call a component C of some ∇i

trivial if it is a rectangle (with no holes) whose edges are the xy-projections of long
boxes in Li , and non-trivial otherwise; see Fig. 20c. First, for each i ≤ r , we do
the following. We construct a partition �i of the non-trivial components of ∇i into
rectangles using standard 2D vertical decomposition; see Fig. 20d. We then lift every
rectangle ρ ∈ �i into the box ρ × Ji , which becomes part of our final decomposition.

Next, we treat the trivial components differently and decompose them globally
across the slabs. For each trivial component C ∈ ∇i , let j, k be the extremal indices
with 1 < j ≤ i ≤ k < r such that C is also a trivial component of ∇ j , . . . ,∇k but not
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�

�

�

k+1

C↑

C
k

k−1

Fig. 21 Illustrations of ∇k−1, ∇k , ∇k+1, depicted in three dimensions on the bottom xy-faces of the slabs.

The shaded blue (resp., red) portion of each ∇i is contained in U(L
↓
i ) (resp., U(S

↓
i ) \ U(L

↓
i )). The white

component C common to ∇k−1, ∇k is trivial and does not appear in ∇k+1 since the xy-projection of the
red short box intersects the interior of C . The box C↑ constructed for C is depicted with its z-edges as
dashed and its top xy-face lying on the bottom xy-face of slab �k+1. The long boxes are not shown for
readability

of ∇ j−1 or of ∇k+1. We add the single box C↑ := C × (
⋃

j≤m≤k Jm) that straddles
these k − j + 1 contiguous slabs to our decomposition. See Fig. 21. These two steps
together partition

⋃r
i=1 ∇↑

i into boxes.

Analysis. We now bound the size of the resulting decomposition. We begin with some
notation and simple geometric observations. Fix a slab �i . We color each edge e ∈ ∇i

as blue if e lies on the projection of a vertical face of �i or a long box in Li , and red
otherwise (i.e., if e lies on the projection of a vertical face of a short box in Si and is
contained in an edge of 
i ). We color a vertex v ∈ ∇i as red if both incident edges are
red, blue if both incident edges are blue, and magenta otherwise. We further classify
blue vertices v ∈ ∇i as primitive if v is the projection of a vertex of a long box in Li ,
and composite otherwise (i.e., v is the intersection of orthogonal edges of rectangles
in Li ∪ {�↓

i }). See Fig. 20c for examples of the four types of vertices; the magenta
vertices are depicted as crosses for readability.

For a component C ∈ ∇i , let pbC , cbC , rC , and mC be the number of primitive
blue, composite blue, red, and magenta vertices of C . Set pbi := ∑

C∈∇i
pbC , and

define cbi , ri ,mi similarly. Let κi be the number of vertices of ∂U inside �i .

Lemma 5.1 pbi , ri = O(n) and mi ≤ κi .

Proof By definition, a primitive blue vertex is the projection of a z-edge of �i or of a
box in Li . Since there are O(|Li | + 1) such edges, the bound on pbi follows.

A magenta vertex is the projection of a z-edge e of Ki formed by the intersection
of a vertical face of a box in Si and an orthogonal vertical face of a box in Li . At least
one endpoint of e lies inside �i . Hence mi ≤ κi .

Finally, since a red vertex of ∇i is the projection of the intersection segment of a
pair of vertical faces of two (not necessarily distinct) boxes of Si , the number of red
vertices is O(|Si |2) = O(n), as claimed. ��
Lemma 5.2 For any component C of ∇i , cbC ≤ pbC + rC + mC + 4.
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Proof The boundary of C consists of an outer rectilinear polygonal chain and possibly
a set of inner rectilinear polygonal chains. We refer to them as outer and inner cycles,
respectively. For such a cycle ω, let |ω| be the number of vertices in ω, let pbω be
the number of primitive blue vertices on ω, and define cbω, rω, and mω similarly. Set
|C | = ∑

ω∈∂C |ω| (where ω ∈ ∂C means that ω is a cycle of ∂C). A planar rectilinear
cycle with α ≥ 0 reflex vertices has α + 4 convex vertices. Composite blue vertices
of C on an inner cycle are reflex vertices and they are convex on the outer cycle; see
Fig. 20c again. Let ω be a component of C . If ω is an inner (resp., outer) cycle then
cbω ≤ pbω + rω +mω − 4 (resp., cbω ≤ pbω + rω +mω + 4). Since C has only one
outer cycle, summing over all cycles of ∂C ,

cbC =
∑

ω∈∂C

cbω ≤ 4 +
∑

ω∈C
(pbω + rω + mω) = 4 + pbC + rC + mC

as desired. ��
Lemma 5.3 The decomposition of

⋃r
i=1 ∇↑

i has size O(n3/2 + κ).

Proof First, any non-trivial component C of ∇i has at least one vertex that is not
composite blue, i.e., pbC + rC +mC ≥ 1. By Lemma 5.2, cbC ≤ pbC + rC +mC +4,
and therefore any non-trivial component has O(pbC + rC + mC ) vertices. Hence ∇i

has O(pbi + ri +mi ) vertices on its non-trivial components. Summing over all slabs
and using Lemma 5.1, the number of boxes created from lifting the rectangles in the
partitions �i is

r
∑

i=1

O(pbi + ri + mi ) =
r

∑

i=1

O(n + κi ) = O(n3/2 + κ),

where the last inequality follows because r = ⌈

8
√
n
⌉

.
Next, we show that the number of boxes created for the trivial components is O(κ).

Consider a box C↑ created for a trivial component C for ∇ j , . . . ,∇k , 1 < j ≤ k < r .
Then C is not a trivial component of ∇ j−1 or ∇k+1. Let B1, B2, B3, B4 ∈ Lk be the
four distinct boxes whose xy-projections support the edges of C . Since the top face
of �k does not contain any xy-face of an input box, B1, . . . , B4 ∈ Ck+1.

We claim that there exists a vertex wC of Kk+1 in �C := C × Jk+1 (possibly on
a vertical face of �C ). To prove the claim, we sweep an xy-rectangle ρ with ρ↓ = C
in the z-direction from the bottom face of �C to its top face. During the sweep, we
maintain K|ρ := ρ ∩ int(K). The sweep stops as soon as ρ intersects the xy-face f
of a box in Ck+1 (including the top faces of B1, . . . , B4). Hence, during the sweep,
K

↓
|ρ = int(C). Since C is not a trivial component of ∇k+1, the sweep stops before

reaching the top face of �C . Let K0 := K
↓
|ρ when the sweep stops. If f is the top

face of one of B1, . . . , B4, K↓
0 = int(C) and one of the vertices of K0 is a vertex of

K as it is the top endpoint of the intersection segments of the vertical faces of two of
these boxes. On the other hand, if f is the bottom face of a box in Sk+1, then a vertex
of f ∩ �C is a vertex of K. Hence, when the sweep stops, the rectangle ρ contains a
vertex wC of K.
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The vertex wC is charged by at most one box in this way, as no other trivial com-
ponent C ′ of ∇k can intersect C in ∇k (including its boundary). Thus, the total charge
to any vertex of K is at most one, which implies that trivial components lead to O(κ)

boxes in the partition.
Summing the bounds for trivial and non-trivial components,

⋃r
i=1 ∇↑

i is partitioned
into O(n3/2 + κ) boxes. ��
An efficient implementation. We now describe an efficient implementation of the
above algorithm for computing the decomposition of

⋃r
i=1 ∇↑

i . Note that we cannot
afford to compute ∇i for each slab �i since each ∇i may have �(κ) trivial components
and computing all of them over all slabs would take O(κ

√
n) time. Instead we process

�1, . . . ,�r in order. For each �i , we compute (i) the non-trivial components of ∇i , and
(ii) the trivial components of ∇i that are not trivial components of at least one of ∇i−1 or
∇i+1. Before processing the slabs, we compute the vertices of ∂U in O(n3/2 log n+κ)

time by adapting the Overmars-Yap algorithm [21] in a straightforward manner. We
maintain a dynamic data structure � that stores a set A of rectangles and supports the
following queries. A = C

↓
i while processing the slab �i .

1. Contained?(p): Given a point p ∈ R
2, return Yes if p lies in int(U(A)), and No

otherwise.
2. Exposed(g): Given an x- or y-segment g, return g \ int(U(A); g may lie on an

edge of a rectangle in A. For each connected component h of g \ int(U(A)), two
edges of the rectangles (other than g) that contain the endpoints of h (and lie on
∂U(A)) are also reported.

3. Shoot(ρ): Given an axis-parallel ray ρ whose starting point does not lie in
int(U(A)), return the first edge of a rectangle of A intersected by ρ if there exists
one. Otherwise return Null.

4. Insert(R)/Delete(R): Insert into A or delete from A a rectangle R.

The first two queries can be answered using the dynamic data structure described
by Overmars and Yap [21], and the third can be answered using the orthogonal ray-
shooting dynamic data structure described by Giora and Kaplan [18]. Both of these
data structures support insertions and deletions to A. Contained? and Shoot queries
can be answered in O(log n) time, Exposed takes O(

√
n log n + λ) time, where λ is

the output size, and Insert/Delete takes O(
√
n) time.

Suppose we have processed �1, . . . ,�i−1 and we now process �i . We color a
rectangle of C↓

i red (resp., blue) if it is the projection of a short (resp., long) box of
Ci . Recall that the components of ∇i may have holes and are represented by an outer
cycle and possibly a set of inner cycles. We call a cycle (of a component) of ∇i trivial
if it is composed of only composite blue vertices and non-trivial otherwise; i.e., they
have at least one primitive blue, red, or magenta vertex. A non-trivial component of
∇i may have a trivial outer cycle but then it has at least one inner cycle, and trivial
components are components with a trivial outer cycle and no inner cycles. As argued
in the proof of Lemma 5.3, if a trivial component C of ∇i is not a trivial component
of ∇i−1 (resp., ∇i+1), then C contains the projection of a vertex of U ∩ �i−1 (resp.,
U∩ �i+1). Thus, our goal is to efficiently report all cycles ω of ∇i that satisfy at least
one of the following four conditions:
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(i) ω contains a red edge,
(ii) ω contains a primitive blue vertex,

(iii) ω is an outer cycle and int(ω) contains a primitive blue, a red, or a magenta
vertex, or

(iv) ω is an outer cycle and int(ω) contains a projection of a vertex of U ∩ (�i−1 ∪
�i+1).

where int(ω) is the bounded region lying inside ω. Let �i denote the set of boundary
cycles of ∇i that satisfy at least one of the conditions (i)–(iv). We note that a cycle
may satisfy more than one condition. In particular, non-trivial cycles satisfy at least
one of the conditions (i) or (ii), and trivial cycles that we want to compute satisfy at
least one of (iii) and (iv). Before computing the desired cycles of types (i)–(iv), we
perform the following three steps:

I. We delete the rectangles of C↓
i−1 \C↓

i from � and insert the rectangles of C↓
i \C↓

i−1

into �, so that � now stores C↓
i .

II. For each edge γ of a rectangle in S
↓
i , we perform the query Exposed(γ ), which

returns the connected components of γ \ int(U(C
↓
i )), i.e.the set of red edges of ∇i

that lie on γ . Note that for each red edge e, the procedure returns the two other
edges of U(Ci ) incident on the endpoints of e. By repeating this step for all edges
of rectangles in S

↓
i , we have the set R of red edges of ∇i at our disposal.

III. For each vertex p of a rectangle in L
↓
i , we perform Contained?(p) query to

determine whether p is a primitive blue vertex of ∇i . By repeating this step for all
rectangles of L↓

i , we compute the set P of all primitive blue vertices of ∇i .

We construct each cycle ω of �i by first computing a “seed” vertex of ω, and then
by tracing it in clockwise direction. At each step, we are at a vertex u of ω and we have
the segment γ of a rectangle in C

↓
i that contains the edge eu of ω next to u in clockwise

direction. If γ lies on a red rectangle then we already know the other endpoint of eu
since we have computed all red edges of ∇i . Otherwise (if γ lies on a blue rectangle)
we perform a Shoot(γu) query, where γu is the ray emanating from u in the desired
direction along γ , and obtain the next vertex of ω in clockwise direction. We repeat
this process of tracing ω until we get back to the seed vertex. To ensure that we do
not trace the same cycle more than once, we store all the vertices of ∇i that we have
traced so far in a red-black tree [12]. When we get a seed vertex v, we first check in
the red-black tree whether v already has been traced. The total time spent in tracing
ω is O(|ω| log n).

It thus suffices to describe how we compute seeds of cycles in �i . We use the
endpoints of red edges in R as the seeds of type (i) cycles and the set P for type (ii)
cycles. We compute the seeds of type (iii) cycles, as follows. First, recall that the
faces of �i do not intersect any boxes of C, so ∂�↓

i is an outer cycle of a non-trivial

component of ∇i . Hence, ∂�↓
i is a type (iii) cycle and we trace it. Let V be the set

of vertices on type (i) and (ii) cycles. Let ω be a type (i) or (ii) inner cycle, which we
already have computed, let v be a vertex of ω with the maximum y-coordinate, and let
ηv be the ray emanating from v in the (+y)-direction. We perform Shoot(ηv). If the
query returns Null, then the outer cycle of the same non-trivial component as ω is
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p1 u1

p2 u2

v2

v1

�1

Fig. 22 Searching for type (iii) cycles with Shoot queries. v1 and v2 lie on type (i) inner cycles, u1 lies
on a type (iii) cycle, and u2 lies on the same cycle as v1

∂�↓
i , which we already traced, and we are done with ω. Otherwise, the query returns

a segment σ of a rectangle in C
↓
i hit by ηv . The intersection point p := ηv ∩ σ lies on

the boundary of the same connected component of ∇i that contains ω. By performing
another Shoot query along the segment σ , we find an endpoint u of the edge of ∇i

that contains ηv ∩ σ . See Fig. 22. Next, we check whether u ∈ V . If u /∈ V then u
lies on the outer cycle of the same component of ∇i as ω and hence is a seed of a type
(iii) cycle. For at least one of the inner cycles of a non-trivial component (for which
∂�↓

i is not its outer cycle), this ray-shooting procedure will reach a vertex on its outer
cycle. Hence, repeating this for all type (i) and (ii) inner cycles computes seeds of all
type (iii) cycles.

Finally, we compute the seeds of type (iv) cycles. Let Xi be the set of the xy-
projections of vertices of U that lie in �i−1 or �i+1. For each point p ∈ Xi , we
do the following. First by performing a Contained?(p) query, we check whether
p ∈ int(U(C

↓
i )). If the answer is No, by performing two Shoot queries as above, we

compute a vertex u of the component of ∇i that contains p. Next, we check whether u
has been traced. If not then u is a seed of a type (iv) cycle that has not been computed
so far. From the proof of Lemma 5.3, repeating this step for all points in Xi computes
seeds of all type (iv) cycles.

Let χi be the total number of vertices in type (i)–(iv) cycles. Then comput-
ing the seeds and tracing the cycles takes O((χi + |Xi |) log n) time. We spend
O(|Si |√n log n + |Ci | log n) = O(n log n) time in steps I–III. Hence, the total time
spent in processing �i is O((n + χi + |Xi |) log n). We have

∑r
i=1|Xi | = 2κ , and by

Lemma 5.3,
∑r

i=1|χi | = O(n3/2 + κ). Therefore the total time spent over all slabs is
O((n3/2 + κ) log n).

5.3 Partitioning9i

For each i ≤ r , we partition �i independently. Roughly speaking, we compute a (3D)
vertical composition of �i . However, because many edges of �i may be coplanar
and we do not wish to perform a symbolic perturbation to bring them into general
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e1 e2

vis+(e1) vis+(e2)

p

p1

p2p0

p+0

�

f1

f2

Fig. 23 (left) A 2D view of curtains vis+(e1), vis+(e2) (hatched) erected upwards from convex edges
e1, e2 which lie on a common edge e′ of a box in C. The xy-face of the slab �i is shown at the top, which
is partially visible from e2. The boxes of Si above e′ are red. The segment vis+(p) for a point p on e2
is shown. (right) A 2D view of the proof of Lemma 5.4. The dashed vertical segments are vis+(p j ) for
j ∈ {0, 1, 2}

position, we cannot use a generic vertical decomposition construction (e.g., see [9,
25]). Therefore we need to be more careful. The construction consists of two stages.

For any point p ∈ Ki , let vis−(p) (resp., vis+(p)) be the z-segment composed of
the points of Ki that are visible from p within Ki in the (−z)-direction (resp., (+z)-
direction). For any x-segment (resp., y-segment) s inKi ,vis−(s) := ⋃

p∈s vis−(p) and
vis+(s) := ⋃

p∈s vis+(p) are x-monotone (resp., y-monotone) rectilinear polygons
in a plane parallel to the xz-plane (resp., yz-plane).

Let γ1, . . . , γt be the horizontal (x- or y-)edges of boxes of Si that lie in �i . We
process them in an arbitrary order. Processing an edge γ j is done as follows. Suppose
γ j lies on the top (resp., bottom) face of a box. For each connected component e of
γ j ∩∂K, which appears as a reflex edge of �i , we draw the rectilinear polygon vis−(e)
(resp., vis+(e)), which we refer to as a curtain erected from e. See Fig. 23(left). We
describe below how this step is implemented efficiently. After we have processed all
γ j ’s, we obtain a decomposition of �i , which we refer to as a curtain decomposition

�
||
i of �i .

We prove below in Lemma 5.4 that each cell 	 of �
||
i is a prism of the form

	 = G×δ, whereG ⊆ R
2 is a rectilinear polygon (possibly with holes), δ ⊆ Ji is its z-

extent; see Fig. 24. In the second stage, for each prism 	 ∈ �
||
i of the form 	 = G×δ,

we partition G into rectangles ρ1, . . . , ρq using the 2D vertical decomposition, and
then lift each rectangle ρ j into the box ρ j × δ. These boxes partition 	. By repeating

this step for all prisms of �
||
i , we obtain a partition of �i into boxes. We repeat this

construction for all slabs. This decomposition of the �i ’s along with the decomposition
of

⋃r
i=1 ∇↑

i gives the desired partition of K into boxes.

Lemma 5.4 Each cell 	 of the curtain decomposition �
||
i of �i is a prism of the form

	 = G × δ, where G ⊆ R
2 is a rectilinear polygon (possibly with holes), δ ⊆ Ji is

its z-extent, at least one of its top or bottom faces lies on a xy-face of a box of Si and
the other on a xy-face of a box of Si ∪ {�i }, and a vertical wall of 	 is composed of
at most one face of �i and at most two curtains.

Proof Let 	 be a cell of �
||
i . We claim that the top (resp., bottom) endpoint of vis+(p)

(resp., vis−(p)) for all points p ∈ int(	) lies on the same xy-face of a box in Si ∪{�i }.
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v
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v

u

fu

v

u

1 2

fu

f1 f2
f2

f1

f2

e2

1 2� �����1 2

u

f1

Fig. 24 Examples of edge e = uv of a prism R of �
||
i incident to vertical faces ϕ1, ϕ2, where u lies

on the top xy-face fu of a short box. Shaded (resp., transparent) portions of ϕ1, ϕ2 lie on ∂U (resp., on
curtains). (left) ϕ1, ϕ2 lie on faces f1, f2 of ∂U, respectively. (middle) ϕ1 is contained in face f1 of ∂U

and ϕ2 intersects the curtain vis−(e2) erected downwards from edge e2 of face f2 of ∂U. (right) ϕ1 and ϕ2
intersect both curtains erected from the horizontal edges of faces f1 and f2 of ∂U, respectively

Suppose to the contrary there are two points p1, p2 ∈ int(	) such that the top endpoint
of vis+(p j ) lies on an xy-face f j , j = 1, 2, and f1 �= f2. Among all such pairs, we
choose p1, p2 for which there is a path π ⊂ int(	) from p1 to p2 such that the top
endpoint of vis+(p) for all p ∈ π initially lies on f1 then switches to f2 and remains
on f2. Without loss of generality, assume that z( f1) > z( f2). Let p0 ∈ π be the
first point such that the vertical segment vis+(p0) intersects f2 (and f1). Let p+

0 be
the point on vis+(p0) ∩ f2. See Fig. 23(right). Then p+

0 lies on an edge of f2. Since
z( f1) > z( f2), this edge is a reflex edge of �i , which is an edge of the bottom face of
a box in Si . But the algorithm erected the curtain vis−(e) on e and p0 lies on vis−(e),
contradicting the assumption that π ⊂ int(	).

Hence, the claim is true and 	 is a prism whose top and bottom faces are rectilinear
polygons. Since 	↓ ⊂ U(S

↓
i ), both the top and bottom faces of 	 cannot lie on

∂�i and at least one of them lies on a xy-face of a box of Si . The general-position
assumption ofC implies that no two vertical faces of boxes inC are coplanar. Therefore
each vertical wall of 	 consists of at most one vertical face of a box in Si ∪ {�i } and
at most two curtains — one erected from the top edge of a vertical face of a box and
another from the bottom edge of that face; see Fig. 24. ��

The next two lemmas bound the size of the decompositions of the �i ’s over all
slabs.

Lemma 5.5 The rectilinear prisms in the curtain decomposition�
||
i of�i have a total

of O(n + κi ) vertices.

Proof We call a vertex of a prism of �
||
i pure if it is a vertex of �i , otherwise we call

it mixed. By Lemma 5.1, there are O(n + κi ) pure vertices, so it suffices to bound the
number of mixed vertices. Each mixed vertex lies on a curtain. We bound the number
of vertices lying on the curtains erected from an edge γ j of a box of Si . Without loss of
generality, assume that γ j lies on the top face of the box; the other case is symmetric.

Let T ||
j be the semi-unbounded strip obtained by drawing a vertical ray in the (+z)-

direction from each point of γ j . That is, T ||
j = γ

↓
j × [z(γ j ),∞). For each bottom
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xy-face ft of a box in Si ∪ {�i+1} that lies in �i and intersects T ||
j , let gt := ft ∩ T ||

j ;
gt is a segment parallel to γ j . Let G j be the resulting set of horizontal segments (blue
segments in Fig. 23(left)), and let � j be the lower envelope of G j (thick blue segments
in Fig. 23(left)), i.e., the portion of segments of G j that are visible from γ j . Since the
segments in G j are parallel, � j has O(|Si |) = O(

√
n) breakpoints. Now consider

the curtain erected from an edge e = pq of �i that lies on γ j . Each vertex of vis+(e)
is either a breakpoint of � j or an endpoint of vis+(p), vis+(q). Note that p, q are
vertices of �i . Let χ j be the number of vertices of �i that lie on γ j . Then the curtains
erected from the edges of �i lying on γ j have a total of O(

√
n + χ j ) vertices. Since

∑

j χ j = O(κi ), summing over all γ j ’s, the total number of mixed vertices of prisms

in �
||
i is O(|Si |√n + κi ) = O(n + κi ). ��

Lemma 5.6 The decomposition of
⋃r

i=1 �i has size O(n3/2 + κ).

Proof Fix a slab �i . The second stage partitions each rectilinear prism R in the curtain
decomposition of �

||
i into O(|R|) boxes, where |R| is the number of vertices of R.

By Lemma 5.5, the total number of vertices of the prisms, and hence the number
of resulting boxes, is O(n + κi ). Summing over all slabs, the overall size of the
decomposition is

∑r
i=1 O(n + κi ) = O(n3/2 + κ), using the fact that r = ⌈

8
√
n
⌉

. ��

An efficient implementation. We now describe how we construct the vertical
decomposition of �i efficiently. We only consider the construction of the curtain
decomposition �

||
i of �i , as the second stage is straightforward. By Lemma 5.4, the

top and bottom faces of the prisms in �
||
i are rectilinear polygons (possibly with holes)

that lie on the xy-faces of the boxes in Si ∪ {�i }. Let �t be the subdivision of ft ∩�i

induced by the prisms of �
||
i for each xy-face ft of the boxes in Si ∪{�i }. It suffices to

first compute the polygons of the �t ’s and then identify which pairs of these polygons
are the top and bottom faces of the same prisms, as follows.

�t is induced by a set Et of curtain edges that lie on ft , so �t is the arrangement
of Et . We compute Et as follows. Let γ1, . . . , γs be the horizontal edges of boxes of
Si that lie in �i , and fix one of these edges γ j . Without loss of generality, assume
γ j is on the top face of a box in Si . As described in the proof of Lemma 5.5, we
compute the associated lower envelope � j in O((|Si | log|Si |) = O(

√
n log n) time

[25]. By merging the breakpoints of � j with the vertices of �i on γ j , we can compute
in O((

√
n + χ j ) log n) time the curtains vis+(e) drawn from the edges e of �i lying

on γ j . If a top edge g of vis+(e) lies on a face ft , we add g to Et . After repeating this
for all γ j ’s, we have the set Et for all faces ft lying in �i . Next, we compute �t , the
arrangement of Et , in O(|�t | log n) time by a sweep-line algorithm. Summing over
all faces, the total time in computing the �t ’s is O((n + κi ) log n).

Finally, we report the prisms. Let G+ (resp., G−) be the set of polygons that lie on
bottom (resp., top) faces of boxes in Si ∪{�i+1} (resp., Si ∪{�i−1}), and let V− be the
multiset of vertices of polygons in G−, sorted in lexicographic order. Fix a polygon
Gt ∈ G+. The goal is to find the polygon Gs ∈ G− that is the bottom face of the
prism whose top face is Gt . Note that G↓

s = G↓
t and z(Gs) < z(Gt ). We first pick

a vertex vt of Gt and compute the set Vt ⊂ V− of vertices that are below vt and
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whose projections are v
↓
t . Let Gt ⊂ G− be the set of polygons with vertices in Vt .

Then Gs is the highest polygon in Gt such that the edges incident to v
↓
t in G↓

s and G↓
t

are identical and int(G↓
s ) and int(G↓

t ) lie on the same sides of those edges. Hence,
we can identify Gs in O(|Vt |) time, and then report Gt × [z(Gs), z(Gt )] as a prism.
The boxes of C are in general position, so |Vt | = O(1) and hence Vt and Gs takes
O(log n) time. We repeat this process for all polygons in G+, reporting all prisms of
�

||
i . By Corollary 5.6, |� ||

i | = O(n + κi ). Therefore the entire algorithm to compute

�
||
i takes O((n + κi ) log n) time.
Summing this bound over all slabs and adding the time spent in decomposing

⋃r
i=1 ∇↑

i , we construct a partition of K into O(n3/2 + κ) axis-aligned boxes in
O((n3/2 + κ) log n) time, thereby proving Theorem 1.7.

6 Conclusion

We have described algorithms to compute a partition of the complement of the union
of axis-aligned 3D cubes (or fat boxes) into boxes where the runtimes are near-linear in
the input and output size. In particular, let n be the number of input cubes, let U be the
union of the cubes, and let κ be the number of vertices on ∂U. If the input cubes have
different sizes then a decomposition of size O(κ log4 n) (resp., O(σ log4 n+κ log2 n)),
where σ ≤ min{n, κ} is the number of input cubes that appear on ∂U, can be computed
in t(n, κ)+O(n log2 n+κ log6 n) (resp., t(n, κ)+O(n log2 n+σ log8 n+κ log6 n))
time, where t(n, κ) is the time to compute the faces of ∂U. If all cubes have the same
size, then a decompositon of size O(κ log κ) can be computed in t(n) time, where
t(n) = �(n log n) is the time to compute the faces of ∂U. Currently, the best runtimes
are t(n, κ) = O(n log3 n + κ log n) for arbitrary cubes and t(n) = O(n log2 n) for
congruent cubes [1]. We also described an algorithm to compute a partition of the
complement of the union of n arbitrary axis-aligned boxes in R

3 into O(n3/2 + κ)

boxes, where κ is the number of vertices on their union, which has worst-case optimal
dependence on n and κ .

We conclude by mentioning two natural open problems: Can the complement of
the union of a set of axis-aligned cubes in R

3 be decomposed into O(κ) boxes? Can
our results be extended to higher dimensions?

Acknowledgements We thank Boris Aronov and Mark de Berg for helpful discussions.

Appendix A: Balanced-Box Decomposition (BBD) Trees

In this appendix we prove Lemma 2.1, but we first review additional properties of
BBD trees that were not required to describe our algorithms but are needed for the
proof here. For the full details of BBD trees and their construction, we refer the reader
to [4].

For a box B, let x(B), y(B), z(B) denote its projection on the x-, y-, and z-axis,
respectively, and we refer to them as its x-span, y-span, and z-span, respectively.
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Consider two nested boxes �O and �I such that �I ⊆ �O . For each axis q ∈
{x, y, z}, let [q−

I , q+
I ] (resp., [q−

O , q+
O ]) be the q-span of �I (resp., �O ). Using the

terminology from [4], �I is said to be q-sticky for �O if each of q−
I −q−

O and q+
O −q+

I
is either 0 or at least q+

I − q−
I , and �I is said to be sticky for �O if �I is q-sticky for

all axes q ∈ {x, y, z}.
Let P ⊆ R

3 be a set of n points, and let T be a BBD tree constructed on P . The
following additional properties hold for each node u of T: (i) �I

u is sticky for �O
u (if

�I
u exists), and (ii) �O

u and �I
u have aspect ratio at most three, i.e., the length of the

longest span (edge length) of �O
u (resp., �I

u) is at most three times the length of the
shortest span of �O

u (resp., �I
u).

Using these properties, we establish Lemma 2.1:

Lemma 2.1. Let u be a node of a BBD tree T for a point set P ⊆ R
3. There is a set

Hu of at most 24 planes that induces a subdivision of �uinto O(1) axis-aligned boxes
such that any axis-aligned cube C that intersects �u but none its vertices lie in the
interior of �u contains an edge of each box that it intersects.

Proof Let C be an axis-aligned cube that intersects the interior of �u and has all
vertices outside �u = cl(�O

u \ �I
u). The proof is trivial if �O

u ⊆ C , so assume
otherwise. For concreteness, we also assume �I

u �= ∅; the proof for the other case is
similar.

For each axis q ∈ {x, y, z}, let [q−
I , q+

I ] := q(�I
u) be the q-span of �I

u , let
[q−

O , q+
O ] := q(�O

u ) be the q-span of �O
u , and let [q−

C , q+
C ] := q(C) be the q-span of

C . Let q1
I := (q+

I − q−
I )/3 and q2

I := 2(q+
I − q−

I )/3 be the points that trisect q(�I
u),

and let q1
O := (q+

O −q−
O )/3 and q2

O := 2(q+
O −q−

O )/3 be the points that trisect q(�O
u ).

Set TI ,q := {q−
I , q1

I , q
2
I , q

+
I } and TO,q := {q−

O , q1
O , q2

O , q+
O }.

Let Hu be the set of planes of the form q = t for each t ∈ TI ,q ∪ TO,q and
q ∈ {x, y, z}. Clearly |Hu | ≤ 24. Let �u be the set of boxes in the subdivision of �u

induced by Hu , and let B ∈ �u be a box whose interior intersects C . We prove that C
contains an edge of B.

First observe that if q(C) � q(B) for all q ∈ {x, y, z} then a vertex of C lies inside
B, which contradicts the assumption that no vertex of C lies in �v . Hence, assume
that x(C) ⊇ x(B). To prove that an x-edge of B lies inside C , we will prove that for
each q ∈ {y, z}, at least one of the endpoints of the q-span q(B) = [q−

B , q+
B ] lies in

q(C), as this will imply that both endpoints of an x-edge of B lie inside C . Note that
q−
B , q+

B ∈ TI ,q ∪ TO,q , by construction.
We claim that for each q ∈ {y, z}, q(C) contains at least one element of TI ,q ∪TO,q .

Assuming that the claim is true, let qi ∈ (TI ,q ∪ TO,q) ∩ q(C). If qi is q−
B or q+

B , we
are done so assume that qi �= q−

B , q+
B . On the other hand, by construction, qi /∈ q(B),

so we conclude that q(C) � q(B). But q(B) ∩ q(C) �= ∅. Hence, at least one of the
endpoints of q(B) lies in q(C), as desired. What now remains is to prove the above
claim.

The proof of the claim consists of two parts. We first consider the case where
no vertex of C lies in �I

u . Then all of the vertices lie outside �O
u . If no span q(C)

contains q(�O
u ), a vertex of C lies in int(�O

u ), which is a contradiction. Without
loss of generality, assume that x(�O

u ) ⊆ x(C). By property (ii) of T, we have that
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3|x(�O
u )| ≥ |y(�O

u )|, |z(�O
u )|. Since C is a cube, |x(C)| = |y(C)| = |z(C)|, so

|y(C)| ≥ |y(�O
u )|/3 and |z(C)| ≥ |z(�O

u )|/3. It follows that at least one point
yi ∈ TO,y (resp., zi ∈ TO,z) lies in y(C) (resp., z(C)), thereby proving the claim in
this case.

Next, suppose at least one vertex of C lies in �I
u . For each axis q ∈ {x, y, z},

if q(C) ⊆ q(�I
u) we say q(C) is enclosed, and crossing if q(C) ⊇ [q−

O , q−
I ] or

q(C) ⊇ [q+
I , q+

O ]. If all spans ofC are enclosed,C is contained in �I
u , a contradiction.

Hence, there is a crossing span of C , say, x(C). Without loss of generality, assume
each crossing span q(C) contains [q−

O , q−
I ]. In particular, |x(C)| ≥ x−

I −x−
O and x(C)

contains x−
I ∈ TI ,x and x−

O ∈ TO,x . By property (i) of T, we have x−
I − x−

O ≥ |x(�I
u)|,

and by property (ii) of T, we have 3|x(�I
u)| ≥ |y(�I

u)|, |z(�I
u)|. Since C is a cube,

|x(C)| = |y(C)| = |z(C)|, so |y(C)| ≥ |y(�I
u)|/3 and |z(C)| ≥ |z(�I

u)|/3. Hence,
if y(C) is enclosed, then it contains either y1

I or y2
I ; otherwise, y(C) is crossing and

contains y−
O and y−

I . In either case, at least one point yi ∈ TI ,y ∪ TO,y lies in y(C).
By a symmetric argument, some point zi ∈ TI ,z ∪ TO,z lies in z(C). This completes
the proof of the claim and of the lemma. ��
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