Remote Sensing of Environment 305 (2024) 114075

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

ELSEVIER

L)

Check for

Augmenting daily MODIS LST with AIRS surface temperature retrievals to |
estimate ground temperature and permafrost extent in High Mountain Asia

Kyung Y. Kim® , Ryan Haagenson b Prakrut Kansara“, Harihar Rajaram b
Venkataraman Lakshmi®

@ The Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA
Y The Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA

ARTICLE INFO ABSTRACT

Edited by Menghua Wang Permafrost in High Mountain Asia (HMA) is becoming increasingly vulnerable to thaw due to climate change.
However, the lack of either in situ ground surface or borehole temperature data beyond the Tibetan Plateau
prevents comprehensive assessments of its impact on the regional hydrologic cycle and local cascading hazards.
Although past studies have generated estimates of permafrost extent in Central Asia, many are limited to the
Tibetan Plateau, excluding the more remote reaches of the Tien Shan, Pamirs, and Himalayas. By leveraging
surface temperatures from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric
Infra-Red Sounder (AIRS), this study advances further understanding of remotely sensed permafrost occurrence
at high altitudes, which are prone to error due to frequent cloud cover. We demonstrate that the fusion of MODIS
and AIRS products can accurately estimate long-term thermal regimes of the subsurface, with reported corre-
lation coefficients of 0.773 and 0.560, RMSEs of 0.890 °C and 0.680 °C, and biases of 0.003 °C and 0.462 °C,
respectively, for the ground surface and the depth of zero annual amplitude, during a reference period of
2003-2016. Furthermore, we provide a range of possible permafrost extents based on established equations for
calculating the temperature at the top of the permafrost to demonstrate temperature sensitivity to soil moisture
and snow cover. The MODIS-AIRS product is recommended to be a robust source of ground temperature esti-
mates, which may be sufficient for inferring mountain permafrost presence in HMA. Incorporating the influence
of soil moisture and snow depth, although limited by biased estimates, also produces estimates of permafrost
regional areas comparable to previously reported permafrost indices. A total permafrost area of 1.69 (+ 0.32)
million km? is estimated for the entire HMA, across 15 mountain subregions.
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1. Introduction Thus, there is a need for a consistent method that may sufficiently
delineate permafrost conditions. Past efforts have been devoted to
determining permafrost occurrence at near global scales, but with dis-

crepancies in both distribution and likelihoods due to differing methods

1.1. Background

Permafrost is traditionally defined as soil, rock, or any other sub-
surface material that remains at or below 0 °C for a minimum of two
consecutive years (Harris et al., 2017). As the atmosphere warms under
climate change, permafrost regions worldwide are becoming more sus-
ceptible to thaw as the rising heat propagates down and into the ground
(Biskaborn et al., 2019), not only increasing the risk of infrastructure
collapse associated with thaw-induced land subsidence and slope failure
(Hjort et al., 2018; Li et al., 2022), but also threatening the balance of
greater ecosystem services with the rapid release of carbon reserves
(Christensen et al., 2004; Schuur et al., 2015; Turetsky et al., 2019).
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(Brown et al., 1997; Gruber, 2012; Obu et al., 2019; Ran et al., 2022).
Permafrost is an elusive component of the cryosphere because of the
complex interplay between controlling factors such as climate, hydrol-
ogy, geology, and vegetation; and inaccessibility of subsurface mea-
surement (Smith et al.,, 2022). Additional studies on permafrost
distribution are therefore warranted to generate not only a more
comprehensive understanding of permafrost itself, but its relationship to
near surface variables.

This is especially the case for the High Mountain Asia (HMA) region,
which spans the mid-latitudes from 26 to 44° N and is affected by
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microclimates at multiple scales due to the region’s steep mountainous
topography, resulting in ground surface temperatures that may vary
>10 °C within a single kilometer (Riseborough et al., 2008; Gruber et al.,
2017). HMA is also characterized by heterogeneity in precipitation re-
gimes, ranging from the summer monsoons that dominate the Eastern
Himalayas to the winter westerlies that impact the Hindu Kush and
Karakoram, contributing a pattern of bimodality, whose influence on
permafrost regimes is not fully understood (Gruber et al., 2017).
Maintaining the largest permanent ice cover after the North and South
Poles, this “water tower” supports over 10 major river basins for more
than one billion people, and therefore, is a critical area of interest
(Immerzeel et al., 2010; Bolch et al., 2019). Accounts of elevation-
dependent warming in this region only further strengthen the ratio-
nale for regular permafrost assessments now and into the future (Pepin
etal.,, 2015; Li et al., 2020a, 2020b). Unfortunately, very few systematic
studies on permafrost have been conducted outside the Tibetan Plateau
(e.g., in the Tien Shan, Pamirs, and Himalayas) (Ran et al., 2012; Wang
and French, 1995; Wu et al., 2013; Zou et al., 2017; Cao et al., 2019a;
Zheng et al., 2020)—in part due to hazardous terrain and weather
conditions that render in situ data collection extremely challenging
(Schmid et al., 2015; Gruber et al., 2017).

Thus, remote sensing technologies have become invaluable to many
surface observing studies on HMA (Stigter et al., 2017; Wan, 2014; Zou
et al., 2017; Lu et al., 2020). For example, the use of optical and mi-
crowave sensors onboard Earth observing satellites (e.g., the Landsat
series and the Advanced Spaceborne Thermal Emission and Reflection
Radiometer [ASTER]) have allowed for robust delineations and evolu-
tions of retreating and advancing glaciers (Kaab et al., 2005; Bolch et al.,
2012; Bolch et al., 2019; Shean et al., 2020). In the realm of permafrost
and seasonally frozen ground (SFG), the long-term availability of land
surface temperature (LST) data products from Moderate Resolution
Imaging Spectroradiometers (MODIS) on board NASA’s Terra and Aqua
satellites (Wan, 2014) at high spatial and temporal resolution (1 km;
twice daily) has become an established alternative to the use of mean
annual air temperature (MAAT) and its assumed relationships with the
mean annual ground temperature (MAGT) for permafrost delineation
(Hachem et al., 2009; Hachem et al., 2012; Westermann et al., 2015; Zou
et al., 2017; Cao et al., 2019a; Obu et al., 2019).

1.2. Permafrost maps for the northern hemisphere

In the absence of borehole measurements, the MAGT and permafrost
occurrence are typically evaluated with MAATSs based on air tempera-
tures from weather stations or model outputs and assumed thermal
offsets between the MAGT and MAAT. For example, Gruber (2012) of-
fers a global permafrost zonation index (PZI), which estimates the dis-
tribution of permafrost extent (PE), defined as the probability that the
MAGT within a pixel is less than or equal to 0 °C, or the fractional area of
that pixel in which permafrost occurs. Gruber (2012) calculation of the
PZI incorporates a MAAT based on monthly reanalysis data from the
National Centers for Environmental Prediction and National Center for
Atmospheric Research (NCEP/NCAR) and Climatic Research Unit grid-
ded Time Series (CRU TS) 2.0 from a reference period of 1961-1990,
resampled to a 30 arc-second gridded Shuttle Radar Topography Mission
(SRTM) elevation dataset. The PE is then calculated as a function of the
MAAT based on assumed empirical normal distributions for the offset,
MAGT-MAAT. It is important to note that Gruber (2012) PZI does not
directly incorporate the influence of either snow or land cover when
accounting for the offset between MAGT and MAAT. Seasonal snow
depth and vegetation are key components in process-based thermal
modeling, because of their insulating and cooling influences, respec-
tively, as barriers between the soil and air during the winter and summer
(Smith and Riseborough, 2002; Zhang, 2005; Zheng et al., 2020). In
addition, the reliance on MAAT and lapse rate calculations is unable to
capture localized cold pooling in valleys and temperature inversions,
which may be directly observed with remotely sensed data (Mutiibwa
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et al., 2015; Adolph et al., 2018; Collados-Lara et al., 2021; Noad and
Bonnaventure, 2022). Because the distribution of surface temperatures
varies diurnally, a constant lapse rate for modeling temperatures may
induce additional bias (Dutra et al., 2020; Karki et al., 2020; Sun et al.,
2022). MODIS can directly observe the energy of the radiating surface,
which may reveal such temperature inversions, during which the surface
air and ground surface temperature are effectively decoupled (Mutiibwa
et al., 2015; Adolph et al., 2018). However, validation is important to
assess the impact of microclimates and sub-pixel scale variability in the
MODIS LST product (Collados-Lara et al., 2021).

MODIS-based LST has become a popular dataset for inferring
permafrost probabilities using long-term averages of the ground sur-
face’s total freezing and thawing degree days (FDD [days - < 0 °C] and
TDD [days - >0 °C]) (Zou et al., 2017; Cao et al., 2019a; Obu et al.,
2019). Obu et al. (2019) leveraged daily MODIS Aqua (MYD11) and
Terra (MOD11) to estimate the MAGT using the CryoGrid 1 model
(Gisnas et al., 2013) based on a temperature-at-the-top-of-permafrost
(TTOP) approach, previously devised by Romanovsky and Osterkamp
(1995, 2000) and Smith and Riseborough (1996, 2002), using FDDs and
TDDs scaled by surface (nival) and thermal (conductivity) factors based
on snow depth and land cover, respectively. One of the major challenges
in using MODIS LST products is that they are only available for clear-sky
conditions, and so, the dataset in that study is gap-filled with European
Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis
(ERA)-Interim surface air temperatures (originally at a 0.75° spatial
resolution) that are downscaled to about 1 km using sub-grid atmo-
spheric lapse rates (Fiddes and Gruber, 2014). A permafrost occurrence
fraction was then generated based on 200 ensemble runs of the CryoGrid
1 model, which calculates the FDD and TDD based on randomly drawn
samples of land cover and mean annual snow depths to generate
semi-empirical adjustment factors. Their land cover input was primarily
based on the European Space Agency (ESA) Landcover Climate Change
Initiative [CCI] project, while the modeled annual snow depths were
converted from calculated mean annual snow water equivalents from a
snow model forced with ERA-interim precipitation and surface air
temperature fields and an empirical equation for estimating snow den-
sity (Obu et al., 2019).

Statistical models for permafrost delineation have also gained
prominence with the proliferation of machine learning algorithms. Ran
etal. (2022) incorporates an ensemble of such models, building upon the
work of Aalto et al. (2018), to estimate permafrost occurrence proba-
bility, MAGT, and active layer thickness (ALT) trained and validated on
1002 in situ borehole and 452 ALT measurements across the northern
hemisphere. The borehole measurements used in their analysis were
taken primarily at the depth of zero annual amplitude (DZAA) and
employed to produce permafrost zonation maps based on hydrothermal
conditions. Ran et al. (2022) adopts this classification method to not
only be more precise in characterizing permafrost types, but also
acknowledge the unique nature of mountain permafrost, which cannot
be easily categorized into the continuous, discontinuous, sporadic, and
isolated classes due to mountain morphology (Péwé, 1983; Harris et al.,
2017). Their input variables include climatological (precipitation and
solar radiation) data from WorldClim (1 km), MODIS-based FDD & TDD
(1 km) from Obu et al. (2019), half-monthly MODIS/Advanced Very-
High-Resolution Radiometer (AVHRR)-based snow cover duration
(0.05°), eight-day leaf area index (1 km) data, and soil properties (soil
organic content, bulk density, and coarse fragment content) from Soil-
Grids250. Approximately 300 of the borehole sites are in the HMA re-
gion, with the majority (>290) located in the Qinghai-Tibetan Plateau
and the remaining few in the Tien Shan. Therefore, the likelihood of
overfitting their MAGT in HMA to the Tibetan Plateau’s climate and
topography cannot be resolved without a more extensive spatial record
of in situ measurements across HMA’s remote southern and western
mountain regions.
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1.3. Motivation

A combination of poor retrievals and missing data during cloudy
conditions induces biases in MODIS LST datasets with prominent errors
(Westermann et al., 2015; Adolph et al., 2018). Therefore, MODIS-based
products must undergo some version of a gap-filling process to estimate
LST during periods of cloud cover (Westermann et al., 2015). The cur-
rent standard for gap-filling MODIS LST ranges from spatial and tem-
poral spline interpolations with the highest quality data (Metz et al.,
2017; Zhang et al., 2022) to supplementing missing pixels with down-
scaled modeled reanalysis surface temperature, which is the logic
behind incorporating ERA-Interim air temperatures by Obu et al. (2019)
and Ran et al. (2022). However, the coarse resolution of model outputs
(e.g., 0.75° for ERA-Interim) and the questionable accuracy of some
MODIS pixels in cloudy conditions prevent its full exploitation. Because
MODIS LST estimates can identify temperature inversions in areas
greater than or equal to 1 km (Mutiibwa et al., 2015; Adolph et al., 2018;
Collados-Lara et al., 2021), they are critical for monitoring ground
temperatures and estimating MAGT, which may exhibit different long-
term averages compared to MAATS at the same locations.

In this study, we provide robust estimates of permafrost zonation
across the HMA using MAGTs derived from the complementary inte-
gration of daily surface temperature estimates from MODIS and its sister
sensor onboard the Aqua satellite, the Atmospheric Infra-Red Sounder
(AIRS), which can estimate temperatures below fractional cloud cover
based on a well-established cloud-clearing algorithm (Susskind et al.,
2003; Susskind et al., 2011; Susskind et al., 2014; Smith and Barnet,
2023).

We propose an alternative and potentially more accurate approach,
which augments the MODIS LST data with AIRS surface skin tempera-
ture products, which have the same daily overpass times as MYD11. This
gap-filling approach is the more robust option to either interpolating
with contaminated and missing LST data or incorporating modeled
rather than observed outputs. AIRS estimates still have a coarse reso-
lution (1°) relative to MODIS LST (1 km), however, they may provide
more accurate near surface temperatures than modeled outputs because
they complement MODIS in real-time. The AIRS skin surface tempera-
ture observations below cloud cover provide important context due to
temperature inversions and localized cool pooling, which frequently
occur in mountainous and cold environments (Vitasse et al., 2017;
Hearty et al., 2018; Karki et al., 2020; Collados-Lara et al., 2021; Noad
and Bonnaventure, 2022). Although retrieved in infrared wavelengths
(4.0 to 3.76 pm), AIRS products have undergone a cloud-clearing algo-
rithm (initialized by an estimate generated from a neural net and
observed clear-column radiances) that determines surface skin temper-
atures below cloud cover (Susskind et al., 2003; Susskind et al., 2011;
Susskind et al., 2014).

As noted above, both snow depth and land cover exert a major in-
fluence on ground thermal regimes and permafrost occurrence. The
upper and lower bounds of permafrost regional areas are calculated
using offset factors based on monthly HMA-specific snow depths (Liu
et al., 2021) and volumetric soil moisture from both Global Land Data
Assimilation System (GLDAS)-v2.1 and ERA5-Land, which are further
assessed with in situ data. While the previously mentioned works have
either employed modeled mean annual snow depths (Obu et al., 2019)
or solely snow cover data (Ran et al., 2022), a customized snow depth
data product has recently become available (Liu et al., 2021), which
allows for a more thorough comparison across permafrost estimates
specific to HMA. The daily snow reanalysis data product (500 m spatial
resolution) developed by Liu et al. (2021) assimilates an ensemble of
remotely sensed data products from Landsat, MODIS, AVHRR, and
SRTM with meteorological forcing from Modern-Era Retrospective
analysis for Research and Applications, version 2 (MERRA-2) for water
years 2000 through 2017 using a Bayesian framework (Margulis et al.,
2019). Although an experimental product, this snow reanalysis dataset,
which is informed by remotely sensed retrievals, offers additional
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insight on permafrost extent in HMA, which suffers from a lack of in situ
observations.

Thermal conductivity is a key component in regulating the ground
thermal state, which is highly dependent on both soil moisture and
temperature conditions (Lunardini, 1981; Romanovsky and Osterkamp,
1995; Smith and Riseborough, 1996; Romanovsky and Osterkamp,
2000). Compared to previous approaches, which rely on land cover (Obu
et al., 2019), the Normalized Difference Vegetation Index (Cao et al.,
2019a), or a combination of gridded climatology, vegetation, soil
properties (Ran et al., 2022) to account for the thermal offset, we employ
soil moisture datasets from both GLDAS-v2.1 (Noah) and ERA5-Land,
which are cited to be consistent products relative to other available
reanalysis data, to represent dynamic thermal conductivities (Rodell
et al., 2004; Munoz-Sabater et al., 2021; Wu et al., 2021). Because
MODIS LST products are already informed by land cover through
emissivity values mapped to a specific class based on optical data, the
thermal conductivity ratios determined from modeled soil moisture
conditions are assumed to be more informative in estimating subsurface
temperatures than incorporating vegetation extent, especially because
of the lack of tall, dense vegetation at elevations where permafrost is
probable and the proportionally greater effect of seasonal snow depth on
the ground’s long-term thermal state (Smith and Riseborough, 2002).

The incorporated methodology is described in Section 2 with a
flowchart presented in Fig. 1 and datasets summarized in Tables 1 and 2,
which are described further in its subsections. We also present detailed
comparisons of our new PZI estimates for the HMA with the previously
reported indices mentioned above. Modern PZI estimates have yet to be
cross-compared for HMA, where MAGT estimates can vary greatly due
to not only topographically induced microclimates, but also because
previously reported MAGT estimates correspond to different depths.
Results from our alternative MODIS-AIRS based PZI estimates and pre-
vious PZIs are summarized in Section 3. In Section 4, we discuss how
remotely sensed LST and a few additional parameters may be sufficient
for robust permafrost zonation in high altitude regions with predomi-
nantly warmer permafrost such as HMA, and review the main conclu-
sions of our study in Section 5.

2. Datasets & methodology
2.1. MODIS-AIRS ground temperature

The primary dataset used in this study is the daily LST estimate
produced from Terra and Aqua MODIS sensors (MOD11 and MYD11,
respectively) (Table 1; Fig. 1). MOD11 and MYD11 are validated prod-
ucts that use a generalized split-window algorithm, which corrects for
atmospheric effects using differential absorption of brightness temper-
atures captured by MODIS bands 31 (11.03 pm) and 32 (12.02 pm) and
fixed surface emissivity based on a MODIS-derived land cover classifi-
cation, to retrieve LST pixel values under clear-sky conditions twice a
day (10:30 am/pm and 1:30 am/pm equator overpasses) (Li et al., 2013;
Wan and Dozier, 1996; Wan, 2014). It is documented to have a mean
error within £1.0 K in all validation sites, except for one in a bare soil
region with a mean error of +£1.9 K (Wan, 2014). Only pixels flagged
with <1 K error were selected at the cost of additional—potentially
invalid—observations for both MOD11 and MYD11.

As noted above, gap-filling was performed based on a fusion of AIRS
surface skin temperature and MODIS LST scenes. Given that MODIS LST
estimates are only available in clear sky conditions, nudging the surface
energy balance towards a warmer LST average, or erroneously capturing
cooler temperatures atop clouds that have not been appropriately
filtered out, a gap-filling technique is required to address both cold and
warm biases generated from daily MODIS LST estimates alone. The
downscaling method for AIRS surface temperature circumvents this
issue in two-ways: first, it eliminates out the discrepancies in daily LST
estimates due to cloud cover, and second, it reveals temperatures below
fractional cloud cover with its physics-informed cloud-clearing algo-
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Fig. 1. This workflow was used to generate the final PZIs (permafrost zonation indices). Complementary methods for the thermal offset were compared when
calculating the TTOP (temperature-at-the-top-of-permafrost) (MAGT-IIla,b) and snow depth-corrected MAGT (mean annual ground temperature) (MAGT-II). The
daily remotely sensed products from MODIS and AIRS included observations from both AM and PM overpasses. Four different PZIs were generated for comparing
across the MAGT estimates. The sub-grid variance of MERIT DEM and validation-based errors were incorporated in the final step to compute the variance associated

with the MAGT estimates (Eq. (8)).

Table 1
Data products used for this study’s MAGT (mean annual ground temperature) and PZI (permafrost zonation index) models.
Variable Product Availability Temporal Resolution Spatial Resolution Citation
MOD11 02/24/2000 — Present Wan, 2014
Land Surface Temperature MYD11 07/04/2002 — Present Daily (x2) 1 km ’
Gap-Filled MYD11 01/2003-12/2020 Zhang et al., 2022
Surface Skin Temperature AIRS ST 08/31/2002 — Present Daily (x2) 1° Susskind et al., 2014
Elevation MERIT DEM 01/01/1987-01/01/2017 - 90 m Yamazaki et al., 2017
Snow Depth HMA Snow Reanalysis 10/01/1999-09/30/2017 Daily 500 m Liu et al., 2021
Soil Moisture 0-200 cm GLDAS Noah 01/2000 - Present Monthly 0.25° Beaudoing and Rodell, 2020
0-289 cm ERA5-Land 01/1950 - Present Monthly 9 km Munoz-Sabater et al., 2021
MOD10A1 02/24/2000 — Present . .
Snow Cover MYD10A1 07,/04/2002 — Present Daily 500 m Riggs and Hall, 2015
Glaciers GLIMS Database 01/01/1850 - Present Varies Varies GLIMS and NSIDC, 2018
Lakes TP Lake Dataset 1960s, 2005, 2014 Varies Varies Wan et al., 2016

rithm (Susskind et al., 2014). Multivariate linear regressions were
generated on an overpass (am/pm) basis with the AIRS temperature
estimates against the Multi-Error-Removed Improved-Terrain (MERIT)
Digital Elevation Model (DEM) (Yamazaki et al., 2017)—noted to be the
most dependable elevation model for the HMA region by Liu et al.
(2019)—resampled to a 1° (approximately 111 km) resolution, and their
latitudes. The coefficients were then applied to a resampled 1 km MERIT
DEM to produce a downscaled AIRS surface skin product as represented
by Eq. (1).

AIRSgr = f, + f,elevation + f,latitude (@D)]

Where f3, is the skin temperature estimate for the 1° pixel, $; is the
coefficient for elevation (ie., the lapse rate), f, is the coefficient for
latitude, which provides information with respect to the distribution of
heat due to insolation or potentially mesoscale atmospheric circulation
in the linear model, and AIRSgr is the downscaled 1 km surface skin
temperature product used for gap filling the MYD11 data.

The AIRS surface skin temperatures were effectively downscaled

with a unique combination of coefficients for each retrieved overpass.
These coefficients may be interpreted as lapse rates fixed by both
elevation and latitude. Boxplots of the modeled coefficients of deter-
mination (Rz) and parameters for downscaling all PM and AM retrievals
are available in the supplementary text (Supplementary Fig. S1). The R?
values were higher for the nighttime than the daytime scenes, whose
medians were about 0.90 and 0.65, respectively. The 1 km surface
temperatures were then gap-filled for pixels with null values for each
matching overpass in the MYD11 dataset. The two MOD11 retrievals per
day were averaged with the gap filled MYD11 AM and PM retrievals to
retain additional information obtained by MODIS on a monthly
timestep.

Monthly averages of LST are used to standardize the dataset in terms
of sampling frequency. Although degree-days have traditionally been
used to generate annual freezing and thawing indices, monthly tem-
perature variations have been shown to adequately capture the inte-
grated thermal influence of climatology on subsurface temperatures,
especially in the context of limited data availability (Lunardini, 1981;
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Table 2
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In situ data sources used for accuracy assessments. The numbers left of the depth column denote the count of validation sites.

Network and Sources Snow Depth Soil Moisture Surface Air Ground Surface Borehole Depth (m) Time Period (frequency)
NOAA GHCN .

(Menne et al., 2012) 46 - 90 - - - 1915 - Present (Daily)
Wu et al., 2012 - - - - 27 12-15 2006-2010 (Average)
Wu et al., 2015 - - - - 10 0.5-15 2002-2012 (Average)
Qin et al., 2017 - - - - 46 10-15 2011-2013 (Average)
Wang et al., 2017 - - - - 2 14 2012-2014 (Average)
Luo et al., 2018a - - - 17+ 14 0.05-3 2011-2016 (Average)
Sun et al., 2018 - - - - 28 10-20 2006-2013 (Average)
GTN-P

(Biskaborn et al., 2019) B - B - 12 7:5-40 2007-2016 (Annual)
HiWAT 2013-2017

(Che et al., 2019) 1 9 9 9 B 0-2 (Half-Hourly)
Ma et al., 2020 - 6 6 6 - 0-2 2002-2019 (Hourly)
Wani et al., 2020 1 - 24 - 0.1 2016-2017 (Average)
ICIMOD and NVE, 2021a-d; ICIMOD, 2021 4 - 39 - 0 2014-2020 (Hourly)
ISMN

(Dorigo et al., 2021) - 118 (50) - 118 - 0.05 (80) 2008 — Present (Hourly)
i . 2002-2019
Zhao et al., 2021 - 11 5 11 84 0.1-20 (Hourly to Annual)
Total Sites 52 144 114 224 223

" The ground surface temperatures (GST) from this study were only included for the mean annual validations, and not daily or monthly GST validations.

Boyd, 1976; Wu et al., 2011; Wang et al., 2019). The monthly surface
temperatures (MST) derived from daily surface temperature products as
described in Eq. (2) were then averaged to the mean annual ground
temperature at the surface, denoted from now on as MAGT-Ia (see
Table 3 for all MAGT acronyms used).

S MYDI1AIRS gp,; +MYD11AIRSpy; +MOD11 4y ;+MOD11py;
MSTgr="="

n

(2)

All surface temperature products were validated at both a daily and
monthly frequency at a total of 114 surface air and 207 ground surface
sites from 2003 through 2016 (Table 2). The assessment was able to
compare errors across products and confirm the quality issues related to
MODIS-based LST products.

2.2. Stationary assumption and tests

Stationarity over the period 2003-2016 must be assumed to generate
a normally distributed probability density function for MAGT (Ia). If
inherent trends (e.g., warming) exist, calculated permafrost extents may
be less robust due to the shifting mean within the reference period. The
condition for stationarity of annual surface temperatures in HMA’s sub-
regions was therefore assessed using the Augmented Dickey-Fuller

Table 3

Calculated MAGTs (mean annual ground temperature) and their descriptions.
The following acronyms are used: MODMYD11-AIRS (MODIS Terra and Aqua
land surface temperature gap-filled with downscaled AIRS surface temperature),
HMA (High Mountain Asia), TTOP (temperature-at-the-top-of-permafrost),
DZAA (depth of zero annual amplitude), PZI (permafrost zonation index).

MAGT Datasets Notes
In MODMYD11-AIRS Land surface without any
offset
Land surf: ith nival
it MODMYD11-AIRS; HMA Snow Reanalysis O?f:ets”r ace with niva
lila MODMYD11-AIRS; HMA Snow Reanalysis; TTOP based on soil
GLDAS-Noah moisture
b MODMYD11-AIRS; HMA Snow Reanalysis; TTOP based on soil
ERAS5-L moisture
Illc Obu et al., 2019 TTOP based on land cover
v Ran et al., 2022 DZAA using training data
Air surface with assumed
b Gruber, 2012 offset

(only PZI available)

(ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. The ADF
test’s null hypothesis states that a given time series contains a unit root
suggesting non-stationarity, but is stationary post first-differencing
(Harris, 1992); the KPSS test’s null hypothesis is the opposite, i.e., the
time series is hypothesized to be trend-stationary with the absence of a
unit root (Kwiatkowski et al., 1992). If the null hypothesis is rejected
under the ADF test, the time series is stationary because a unit root re-
sults in residuals with non-constant mean and variance over time
without differencing. Spearman’s rank correlation coefficients were also
calculated to determine the strength of a monotonic trend if present.
Resulting metrics for the ADF, KPSS, and Spearman’s rank tests are
available in Table 4. Each mountain subregion was digitized based on
cursory elevation patterns with MERIT DEM and informed by the
boundaries used in Bolch et al. (2019) and Furian et al. (2021).

Stationarity statistics of the HMA regions based on the ADF and KPSS
tests are shown in Table 4. Most regions failed to reject the null hy-
pothesis at a 5% significance level, implying non-stationarity based on
the ADF values; however, the Tibetan Plateau interior and mountains to
the West (Hindu Kush, Pamir, Hissar Alay) exhibited stationarity. The
KPSS test implies stationarity for regions that rejected the null hypoth-
esis at a 5% significance level, which include the Hengduan and
Nyaingentanglha. The Spearman’s rank statistics determine that a sig-
nificant monotonic trend exists for the Hengduan and Nyainqentanglha,
but also the Tibetan Plateau, which had shown stationarity with the
previous two tests.

The derivation of PZIs assumes a stationary climate and some caution
must be exercised in the use of MODIS LST and air temperature data due
to contemporary warming. A detailed evaluation of stationarity in
MODIS LST is presented in Section 3.2 below.

2.3. Temperature offset corrections

The LST as detected by MODIS is a function of the observed surface
emissivity and therefore cannot estimate surface temperatures below
snow, whose emissivity varies with depth, grain size and density (Wan
and Dozier, 1996). However, the MAGT calculation is a first step in the
refined estimation of ground temperatures to account for the influence
of snow cover and at various depths. To represent the insulating effect of
snow cover, a reliable snow depth dataset is necessary. Liu et al. (2021)
offers a daily snow reanalysis product (500 m) specific to the HMA re-
gion based on a spatially distributed land surface model-snow depletion
curve by Margulis et al. (2019), which assimilates remotely sensed
Landsat and MODIS-derived fractional snow cover area with an
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Table 4
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Stationarity tests of mountain regions based on MAGT-Ia (2003-2016). Metrics for rejected null hypotheses are bolded.

Region ADF Test KPSS Test Spearman’s Rank

statistic | p-value | 5% statistic | p-value | 5% statistic | p-value
Hengduan —2.432 0.133 -3.127 0.555 0.029 0.463 0.631 0.016
Hindu Kush —3.877 0.002 -3.127 0.160 0.100 0.463 0.218 0.455
Hissar Alay —4.195 0.001 —-3.127 0.166 0.100 0.463 0.297 0.303
Himalaya —2.107 0.242 —-3.290 0.259 0.100 0.463 0.284 0.326
Altun -1.125 0.705 —3.290 0.364 0.093 0.463 0.442 0.114
Qilian 1.699 0.998 —3.290 0.458 0.052 0.463 0.525 0.054
Tien Shan —1.527 0.520 —3.367 0.215 0.100 0.463 0.305 0.288
Bayan Har —2.759 0.064 -3.127 0.290 0.100 0.463 0.468 0.091
Nyaingentanglha —2.543 0.105 -3.127 0.498 0.042 0.463 0.547 0.043
Pamir —3.249 0.017 -3.127 0.388 0.083 0.463 0.508 0.064
Kunlun 1.873 0.998 —3.290 0.352 0.098 0.463 0.516 0.059
Gandise —1.080 0.723 —3.290 0.279 0.100 0.463 0.358 0.208
Tanggula —2.507 0.114 -3.127 0.420 0.069 0.463 0.464 0.095
Tibetan Plateau —3.206 0.020 -3.127 0.347 0.100 0.463 0.543 0.045
Karakoram —0.587 0.874 -3.290 0.317 0.100 0.463 0.459 0.098

ensemble of meteorological forcing, topographic (SRTM and ASTER),
and land cover data (AVHRR). An accuracy assessment was also per-
formed with available monthly snow depth measurements at 52 sites,
with most data sourced from the National Oceanic and Atmospheric
Administration’s (NOAA) Global Historical Climatology Network
(GHCN) (Menne et al., 2012). Although data over areas where only
seasonal snow is present are reportedly more accurate, pixels containing
more persistent snow cover were included in the analysis to achieve
maximal coverage (Liu et al., 2021). Glaciers were masked out based on
a rasterized inventory from the Global Land Ice Measurements from
Space (GLIMS) database (GLIMS and NSIDC, 2018).

Daily snow depth estimates were averaged to a monthly time step,

linearly resampled to the 1 km resolution of the MODIS LST, and ulti-
mately used as inputs for the two MAGT equations based on the TTOP
approach. The first method only incorporates the snow depth-dependent
winter scaling factor, i.e., the nival offset, to estimate MAGT influenced
by snowpack (MAGT-II, Table 3), as shown in Eq. (3):

() + (nf*1f)
P

MAGT —1I = 3

Where If equals the frozen degree index (in month-degrees, or the
cumulative sum of MSTgr < 0), It equals the thawing degree index (in
month-degrees, or the cumulative sum of MSTgr > 0), and, nf (nival
offset) is a snow depth-dependent winter scaling factor based on MAGT-

Snow Depth Factor for MAATSs
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Fig. 2. The nival factors (nf) for the winter season (snow depth correction) were estimated by fitting curves from Smith and Riseborough (2002). A double
exponential function was selected to be the best fitting curve, and four parameters (a, b, ¢, d) were calculated for each MAAT (mean annual air temperature, °C) curve
(Eq. (4)). However, given that this study uses monthly gap-filled surface temperatures to correct for the snow depth, MAGT-Ia was substituted in place of the

designated MAAT.
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Ia (Fig. 2), and P equals the period, or 12 for monthly means.

a (elrmu ) + & (ef.mn) (4)

nfusr = €

Where q, b, c, d are parameter values (Table 5) fitted to the nf curves
from Smith and Riseborough (1996, 2002) shown in Fig. 2, and MSD is
the monthly averaged snow depth given a binned MAGT-Ia threshold;
for example, temperatures >5 °C were binned to the 5 °C curve, tem-
peratures >2 °C & <5 °C were binned to the 2 °C curve, ... temperatures
> —12°Cand < —10 °C or < —12 °C were binned to the —12 °C curve.
From Fig. 2, note that the nf at the same snow depth is lower in areas
with higher MAATs. Therefore, snow depths have a greater effect on
ground temperature in areas with higher mean annual temperatures.

The thermal conductivity ratio of unfrozen to frozen conditions (rk)
can approximate the thermal offset between the ground surface and
permafrost table caused by seasonal, transient heat transfer (by con-
duction) and soil moisture conditions. This value is largely influenced by
unfrozen water, which is only about a quarter as thermally conductive as
ice and hinders heat transport in thawed conditions (Lunardini, 1981;
Smith and Riseborough, 2002).

Eq. (5) is the method for calculating the MAGT at the top of the
permafrost (MAGT-III), which includes a thermal conductivity ratio in
addition to the nival offset to account for the transfer of heat between
the frozen and unfrozen subsurface layers in permafrost regions.

12 12
<z rk*MSTgr > o> + (znf*MSTGF < 0)
MAGT — III = ~=! 5 '

i=1

)

Thermal conductivity ratios were calculated with a simple relation-
ship (Eq. (6)) that directly relates the thermal conductivities of water
(0.56 W m! °C’1) and ice (2.24 W m~! °C’1) to the thermal conduc-
tivity ratio, given a volumetric water content (Kersten, 1949; Lunardini,
1981; Smith et al., 2015).

U ke (ke )"
7= () ©
Where rk; is the monthly thermal conductivity ratio, kr and kr are the
effective thermal conductivities of the ground, given frozen and thawed
conditions, respectively, and 6; is the monthly soil moisture estimate.
Modeled soil moisture estimates from both GLDAS-Noah (IIla) and
ERAS-L (IIIb) were assessed using outputs against the corresponding in
situ monthly soil moisture at depth, primarily from the International Soil
Moisture Network (ISMN) (Su et al., 2011; Dente et al., 2012; Yang et al.,
2013; Dorigo et al., 2021). However, weighted averages from each
dataset across all available depths (0-10 ¢cm, 10-40 cm, 40-100 cm,
100-200 cm for GLDAS; 0-7 ¢cm, 7-28 c¢cm, 28-100 cm, 100-289 cm for
ERAS5-L) were used for the thermal conductivity ratio estimates.

2.4. Eyvaluation of MAGT estimates

A total of 223 borehole and 224 seasonally frozen ground MAGTs
were used to assess the accuracy of all mean annual temperatures: at the
surface as detected by remote sensing (Ia), at the ground surface below
seasonal snow cover (II), and at the top of the permafrost table (III).

Table 5

Fitted double exponential parameters for nf values.
MAGT-la (°C)  a b c d R?
5 —0.40568 11.28589 —1.21495 1.41858 0.9977
2 —0.45102 10.99399 —1.12629 1.17477 0.9963
0 —0.48263 10.03079 —1.08481 1.07625 0.9960
-2 —0.47117 9.19220 —1.07925 0.89888 0.9966
—4 —0.50442 7.33974 —1.00556 0.88235 0.9967
-6 —0.54750 5.70432 —0.91973 0.85459 0.9975
-8 —0.70372 3.90016 —0.73267 0.90727 0.9983
-10 —0.63919 0.67973 —0.80309 2.91896 0.9988
—-12 —0.55206 0.62161 —0.90099 2.64386 0.9986
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Again, the MAGTs of the in situ data were assumed to be stationary for
the purposes of comparing the modeled values against the observed.
Ordinary least squares regression models were used to plot the data
along a 1:1 line, and correlation coefficients, root mean square errors
(RMSE) and biases were used as metrics for comparison.

2.5. Permafrost region estimation

All MAGTs were transformed to PE (permafrost extent) probabilities
by assuming a normal distribution with standard deviation ¢ for the true
MAGT to calculate the probability that MAGT < 0:

@)

1 MAGT
Fuacr<o = 2 erfc( )

V202

In (7), erfc is the complementary error function, and ¢ is the total
variance associated with the calculated MAGTs (Eq. (8)).

=0l +0l+ (Aog)? 8)

The three components included in quantifying the uncertainty of
MAGT are the climatological variance of the MAGT across the 14-year
period (¢?), the total error based on the data accuracy assessments
(62), and the uncertainty due to variations of elevation within the pixel
(Aog)?. The last component is calculated as the variance of the sub-grid
(90 m) elevation derived from MERIT DEM (%), multiplied by the
square of the mean lapse rate based on the distribution of calculated
lapse rates when downscaling AIRS surface skin temperature product (4;
Fig. S1).

Permafrost regions were then calculated by classifying the perma-
frost extent based on standard zonation down to 0.05, below which are
not considered due to the minimal likelihood and high uncertainty of
permafrost cover at such percentages (Brown et al., 1997; Gruber,
2012): continuous (90% to 100%), discontinuous (50% to <90%),
sporadic (10% to <50%), and isolated (5% to <10%). The zonation
indices were then reprojected on the Equal-Area Scalable Earth (EASE)
Grid, and all pixels were summed according to their zonation. The sums
were then converted to area (kmz), based on a ratio factor associated
with the EASE Grid. Finally, PZIs of the HMA region modeled by Gruber
(2012), Obu et al. (2019), Ran et al. (2022), and this study were
compared using a cutoff of all PE > 0.05, to compare total permafrost
regional areas obtained from the varying definitions of permafrost
zonation across these studies.

3. Results
3.1. Preliminary surface temperature validations

Fig. 3 affirms the accuracy of our novel gap-filling method for regions
with scarce data availability. The integrated MODMYD11-AIRS surface
temperature product outperforms even the most up-to-date 1 km MODIS
gap-filled product produced by Zhang et al. (2022) for estimating
ground surface temperature. A marginal warm bias of 0.2 °C exists
through the validation period (2003-2016); however, it is a result of
offsetting a cold bias from the downscaled AIRS product alone with
additional MODIS observations. The MODMYD11-AIRS estimates also
perform well during the monsoon season with respect to ground surface
temperatures, with the least bias (0.50 °C) and highest correlation co-
efficient (0.83). However, this product does exhibit a warm bias in the
context of surface air temperatures, which is especially high in the
monsoon season (Table 6). The Zhang et al. (2022) product, while
consistent, has a cold bias, likely due to the aforementioned causes of
cloud contamination, that appears to perform better as a near surface air
product. Validations at the daily scale are available in the supplemen-
tary text (Table S1; Fig. S2).

Figs. S3 and S4 in the supplementary material provide accuracy as-
sessments of the soil moisture and snow depth products used to model
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Fig. 3. Monthly averaged temperatures for two gap-filled (GF) products are validated with in situ ground surface temperatures (GST) using 207 sites. The tem-
peratures generated with the combined MODIS-AIRS observations from this study perform better than the latest available gap-filled MODIS daily land surface
temperature product from Zhang et al. (2022), with both lower biases and higher correlation coefficient during either the monsoon season (June—August) or for the
entire year. Daily validations are provided in the Supplementary Text (Fig. S2). The dark purple to yellow gradient represents the density of points, from least to
greatest. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 6

Monthly surface temperature product validation. The RSME and bias are in units of °C. The highest performing metrics are bolded.

All Year Monsoon Season All Year Monsoon Season
Ground Surface Temperature r RMSE bias r RMSE bias Air Temperature r RMSE bias r RMSE bias
AIRS GF (downscaled) 0.923 0.801 —0.431 0.555 3.001 0.119 0.962 2.445 2.415 0.889 3.708 3.586
MODMYD11 0.914 2.330 2.180 0.755 2.779 2.770 0.909 2.953 2.948 0.791 3.937 3.625
MODMYD11-AIRS 0.946 0.210 0.197 0.834 1.704 0.503 0.968 2.668 2.650 0.933 3.519 3.461
Zhang et al., 2022 0.910 0.962 -0.923 0.676 1.444 —-1.180 0.946 0.882 0.875 0.884 1.021 1.020

the MAGT at different depths. The soil moisture estimates from ERA5-
Land and GLDAS exhibited a wet bias of 0.11 m®/m? and 0.02 m®/m?,
respectively. The daily HMA Snow Reanalysis from Liu et al. (2021) also
had positive bias, of about 0.08 m, which offers context for the dataset’s
application for modeling ground temperatures, since ground tempera-
tures are known to be sensitive to the insulating property of snow cover
(Zhang, 2005). Although reasonable performance was demonstrated
when validated against snow water equivalent estimates from the Tuo-
lumne River Watershed (elevation range of 1600-3500 m) in the Sierra
Nevada of California, further studies are required to better constrain
snow depth estimates for HMA (Margulis et al., 2019).

3.2. Stationarity and transect assessments

Fig. 4a shows a map of the gap-filled MAGT-Ia (2003-2016) for the
HMA region, labeled with the mountain region names and in situ loca-
tions displayed by their associated source or study. Fig. 4b is a histogram
of three (2013-2016) and four-year averages (2003-2007; 2008-2012)
of the gap-filled MAGT (Ia), which shows a minor shift to warmer
temperatures over time. Fig. 4c shows the annual time series of spatially
averaged LST estimates for each mountain region, ordered by decreasing
MAGT. Some regions appear to exhibit warming, as determined by the
ADF test. Estimates from the Hengduan, Karakoram, Himalayas, Kunlun,
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Fig. 4. a) Map of the gap-filled MAGT-Ia. b) A qualitative assessment of stationarity in MAGT-Ia time series based on frequency distributions in different periods. The
MAGT (mean annual ground temperature) for 2013-2016 shows a marginal shift to the right, compared to the previous time periods (Table 4; Section 3.2). ¢) A time
series of the gap-filled annual surface temperature from which MAGT-Ia was derived. An augmented Dickey Fuller test results in stationarity for only the Hindu Kush,
Hissar Alay, Pamirs, and interior Tibetan Plateau (in light blue), however, the KPSS test resulted in stationarity in all regions except the Hengduan and Nyain-
gentanglha (red). Dotted lines are regions in which a significant monotonic (increasing) trend was determined by the Spearman’s rank correlation coefficient, with
the maximum trend occurring in the Hengduan. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

Altun, Gandise, Bayan Har, Tanggula, Nyaingentanglha, Qilian, and
Tien Shan fail to reject the null hypothesis of the ADF test at a 5% sig-
nificance level (Table 4). However, the KPSS test led to an inference of
trend-stationarity for most regions, except the Hengduan and Nyain-
gentanglha, implying these two regions are indeed warming within this
period, with monotonic trends confirmed by the Spearman’s rank cor-
relation coefficients (Table 4).

Ground temperatures along transects shown in Fig. 5b are displayed
as the upper subplots in Fig. 5a to compare the remotely sensed (Ia) and
modeled MAGTs (including Obu et al.’s TTOP-based MAGT-IIIc [Obu
et al., 2019] and Ran et al.’s MAGT-IV at the DZAA [Ran et al., 2022]).
which also provide elevation data from MERIT DEM for context. Nearby
glaciers coincide with points where the mean annual snow depths spike
in the lower subplots of Fig. 5a with the remotely sensed (mean annual)
fractional snow cover from MODIS, which the snow reanalysis product
incorporated. The juxtaposition of these plots confirms three key as-
sumptions. First, the nival and thermal offset equations from Smith and

Riseborough (2002) adjust for the influence of snow cover on the land
surface temperature, which is clearly shown along the transects for both
the Tien Shan and Southern Himal. In contrast, shallower snow depths
along the Qilian have a much more muted effect on the modeled surface
ground temperature. Second, elevation has a direct effect on the
modeled ground temperatures. The DEM of each transect mirrors the
changes in the MAGT. Third, the depths at which the ground tempera-
tures are modeled are discernible in the temperature profiles, with TTOP
MAGTs (III) mostly exhibiting colder temperatures, compared to either
the MAGT at the surface or DZAA. While ground temperatures begin to
warm up with depth at the DZAA (IV) due to the geothermal gradient,
the TTOP MAGT (III) is typically colder than the surface MAGT (Ia, II)
because of the thermal conductivity of frozen soils at the permafrost
table which causes ground temperatures to cool with depth in the active
layer, creating possible subsurface conditions for permafrost even in
areas where the MAAT is warmer than 0 °C (Smith and Riseborough,
2002; Smith et al.,, 2022). An additional transect and map for the
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Fig. 5. a) Modeled temperature estimates along transects shown in (b): downscaled AIRS product used for GF (gap-filling) (Eq. (1)); MODMYD11-AIRS MAGT-Ia (Eq.
(2)); MAGT-II (Eq. (3)); MAGT-Illa,b (GLDAS, ERA5-L) (Eq. (5)); MAGT-IlIc (Obu et al., 2019); MAGT-IV (Ran et al., 2022), elevation (MERIT DEM), masked glaciers
from GLIMS, mean annual snow depths (Liu et al., 2021), and MODIS-based fractional snow cover are plotted for the Tien Shan, Southern Himal, and Qilian transects.
The subplot below each temperature plot provides context for the discrepancy between the modeled and observed temperatures due to snow. B) Inset elevation maps
on the right show the transects accompanying the subplots to the left. An additional map for Western Himal is provided in the Supplementary Text (Fig. S5).

Western Himalayas are available in the supplementary material (Fig.
S5).

3.3. MAGT validations

Fig. 6 shows the validation results for the generated MAGTs in this
study, along with the two from literature (Illc [Obu et al., 2019], IV [Ran
etal., 2022]), against all ground measurements, including both borehole
data and MAGT at different depths near the ground surface. The TTOP
MAGTSs (III) all show a bias towards cooler temperatures, while the
MAGT-II resulting from only the snow depth correction shows a warm
bias of about 0.82 °C. The MAGT-Ia without any modeled correction and
the MAGT-IV from Ran et al. (2022) exhibited the lowest errors, with a
total RMSE of about 0.77 °C and 1.21 °C respectively. A 0.23 °C bias
exists in the MAGT-Ia product, but the MAGT-IV bias is even lower at
about —0.01 °C, which is expected when validating with trained data

10

(Ran et al., 2022). Table 7 has the validations separated by depth, with
the MAGT depth of seasonally frozen ground ranging between 0.5 and 2
m across 224 sites. Most of the borehole temperatures are taken at the
DZAA (between 10 and 20 m deep), except for TTOP measurements from
the Luo et al. (2018a) study, which were sampled at a depth of 3 m.
Against the in situ borehole measurements, all of the MAGTs fared
worse. The TTOP (MAGT-IIIc) from Obu et al. (2019) exhibited the
poorest metrics, with the largest bias of —1.12 °C, an RMSE of 1.29 °C,
and a weak statistically significant correlation coefficient of 0.36.
However, it performed better against the seasonally frozen ground
measurements with a stronger linear relationship (r = 0.78), despite a
similar cold bias (—1.14 °C) and error metric (RMSE = 1.51 °C). Of the
MAGTs from this study, the remotely sensed MAGT (Ia) product
consistently outperformed the others with respect to seasonally frozen
ground measurements, rivaling the results of the MAGT-IV validation
with its very low bias (< 0.01 °C) and RMSE at 0.91 °C, which implies
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Fig. 6. All in situ ground temperature measurements, including those near the seasonally frozen ground surface and at the depth of zero annual amplitude or top of
permafrost, were used for the validations in this figure. The MAGT (mean annual ground temperature) with the least bias was Ran et al. (2022) that was fitted to the
ground measurements, but the MAGT with least variance (RMSE of about 0.8 °C) was the MAGT-Ia without any corrections. The TTOP (temperature-at-the-top-of-
permafrost)-based MAGT-IIIc from Obu et al. (2019) had the strongest linear relationship; however, all MAGTs performed similarly. MAGT-II had a positive bias,
while the TTOP MAGTs (III) all had negative biases, the least of which is based on soil moisture estimates from GLDAS. The dark purple to yellow gradient in each
plot represents a kernel density distribution based on the total number of points. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

comparable estimates between the temperature at the DZAA and surface
MAGT (Luo et al., 2018a). On the other hand, the wet bias of the ERA5-L
soil moisture averages is evident in the colder temperatures of the
modeled TTOP (IIIb). The GLDAS-based TTOP performed better across
all metrics, and the results are instructive for demonstrating the sensi-
tivity of ground temperatures to soil moisture conditions. Nevertheless,
the performance of all MAGTs were comparable, with all biases and
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RMSEs less than an absolute value of 1 °C when validated against
borehole measurements, apart from MAGT-IIIb (ERA5-L) and Illc (Obu
et al., 2019), whose estimates were less accurate.

Table 7 shows that the gap-filled MAGT (Ia) omitting the influence of
snow cover or soil moisture conditions performed the best, relative to
the modeled MAGT: of this study. Although these metrics may largely be
caused by the inherent errors of the applied snow depth and soil
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Table 7
Validation of MAGTSs (mean annual ground temperatures). The RSME and bias are in units of °C. The highest performing metrics are bolded, while the lowest are
italicized.
Seasonally Frozen Ground Borehole All Sites
MAGT r RMSE bias r RMSE bias r RMSE bias
Ia 0.773 0.890 0.003 0.560 0.680 0.462 0.812 0.762 0.225
I 0.743 1.927 0.844 0.519 0.963 0.791 0.801 1.378 0.818
IIIa (GLDAS) 0.726 2.271 —0.621 0.504 0.698 —0.306 0.786 1.556 —0.469
1IIb (ERAS5-L) 0.690 2.488 —1.055 0.495 1.015 —0.770 0.767 1.778 -0.917
IIIc (Obu et al., 2019) 0.783 1.509 -1.135 0.362 1.293 —1.121 0.821 1.316 -1.128
IV (Ran et al., 2022) 0.641 1.779 —0.225 0.670 0.563 0.020 0.728 1.205 —0.099

moisture datasets, they also indicate the reliability of the remotely
sensed surface temperature product. Because the MAGTs of this study
were not fitted to any available in situ dataset, unlike the Ran et al.

(2022) estimates, these results are encouraging, showing the practicality
of remotely sensed MAGTs across locations in High Mountain Asia
where no prior data is available. Accounting for the persistent cold bias
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associated with a modeled total variance of the MAGT (Eq. (8)). c¢) Histograms of the total permafrost region, as defined by the extent of the four permafrost zones
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in MAGT-IIIc from Obu et al. (2019) and the limitation of MAGT-IV (Ran
et al., 2022) in data scarce mountain regions, the MAGTs based on the
fusion of MODIS and AIRS temperature estimates demonstrate compa-
rable, if not better, performance.

3.4. PZIs and estimated permafrost regions

The PZIs produced from this study exhibit similar spatial distribu-
tions as the other permafrost indices for HMA (Gruber, 2012; Obu et al.,
2019; Ran et al., 2022). Fig. 7a is the categorized PZI map based on the
MAGT-Ia, with most of the “continuous” (or alternatively, most likely,
from 90 to 100%) permafrost concentrated around the Tibetan Plateau,
Kunlun, Qilian, Gandise, Tien Shan, and east of the Karakoram. Eastern
HMA exhibits decreasing permafrost extent, classified by lower proba-
bilities. Fig. 7b shows the cumulative distribution of permafrost extent
plotted against the MAGT-Ia, with the likelihood of permafrost presence
approaching 5% (the assumed limit of permafrost zonation in this study)
and below at about 2 °C. Fig. 7c is the histogram depicting the cumu-
lative frequency of the permafrost region of HMA, distinguished by the
four permafrost zones, against elevation. The clustering of permafrost
between 3000 and 6000 m.a.s.l. suggests an optimal elevation range,
below or above which permafrost is unlikely to develop or exist. Since
direct solar radiation and aridity increases with higher elevations, this
result agrees with previous works that suggest an elevation dependence
for alpine permafrost in HMA (Marchenko et al., 2007; Gruber et al.,
2017). Cold-arid climatologies as determined by precipitation patterns
and soil moisture conditions, and minimal snow cover are likely to be
the deciding factor for permafrost presence at these lower altitudes; for
example, in the Tien Shan, whose permafrost regions are detected at
lower elevation bands relative to other regions (Fig. 8). Additional his-
tograms and CDFs of all PZIs are available in the supplementary text
(Figs. S6 and S7).

Mean Zonation Height
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Fig. 9 shows a comparison of permafrost presence as determined by
regional area between the MAGT-Ia and the DZAA-based MAGT-IV from
Ran et al. (2022) and the MAAT-based MAGT-Ib PZIs from Gruber
(2012). Its comparison against the MAGT-IV PZI reveals a similar
pattern in permafrost extent, in which the PZI based on the DZAA-
targeted MAGT (IV) exhibits a similar geographic distribution to the
surface retrievals solely based on remotely sensed data (Fig. 9a). How-
ever, its comparison with the MAGT-Ib PZI, which is based on an
assumed offset between the MAAT and MAGT (Gruber, 2012), shows
noticeable decreases across central and eastern HMA, but also a distinct
increase in the Tien Shan and West of the Himalayas (Fig. 9b).

Fig. 10a shows the relative permafrost regional areas across all the
mountain ranges of HMA. The PZIs from Gruber’s MAAT-based MAGT
(Ib) (Gruber, 2012) and TTOPs (III) from this study are comparable,
while the permafrost extents predicted by MAGT-Ia, MAGT-1I, MAGT-IV
(Ran et al., 2022) and even the MAGT-IIIc PZI from Obu et al. (2019) are
lower. However, the MAGT-Ia PZI does predict more permafrost across
the northwestern mountain ranges. Fig. 10b shows the distribution of
estimated permafrost regions according to the calculated PZIs of this
study as well as the previously published PZIs. Regions with more
persistent snow cover to the West have the least variability in relative
permafrost extent. The greatest variability, relative to their total areas,
exists for the Hengduan and Himalayas, with coefficients of variation
(CV) of about 52% and 44%, respectively. All permafrost regional areas
and CVs are presented in Table 8.

The calculated regional areas for the MAGT-Ia, MAGT-II, and MAGT-
III PZIs (GLDAS [a] and ERA5-L [b]) result in about 1.50 million, 1.47
million, 1.93 million, and 2.15 million km? of permafrost cover,
respectively. These totals vary as much as the estimates calculated with
the TTOP MAGT-IIIc permafrost index by Obu et al. (2019) at about 1.56
million km? and the MAGT-Ib PZI by Gruber at about 1.95 million km?
(Gruber, 2012). However, the total regional estimate based on the
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Fig. 8. The altitude range (maximum to minimum) of permafrost zonation across all calculated PZIs (permafrost zonation indices) are plotted for the mountain
ranges of HMA (High Mountain Asia), from the northwest (left) to the northeast (right), alongside spatially averaged monthly snow depth means, maximums, and
minimums for the 2003-2016 study period based on the HMA Snow Reanalysis dataset (Liu et al., 2021). The gray line in the center denotes the elevation range of

each region.
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Fig. 9. The MAGT-Ia PZI (permafrost zonation index) without either the snow depth or thermal offset correction is compared with the PZIs derived from (a) the
DZAA (depth of zero annual amplitude)-based MAGT-IV (Ran et al., 2022) and (b) MAGT-Ib (Gruber, 2012). Less permafrost was estimated across most of central and
eastern High Mountain Asia between the MAGT-Ia and MAGT-Ib PZIs, while similar permafrost regional extents exist between MAGT-la and the MAGT-IV

based estimates.

MAGT-IV by Ran et al. (2022) is comparatively lower, at about 1.28
million km?2. Table 9 shows the resulting confusion matrix of a pixel-to-
pixel analysis, with percentages of total shared permafrost (or non-
permafrost) regions. The MAGT-Ia PZI without additional offset cor-
rections had the most agreement across the reviewed PZIs, agreeing with
about 93-94% of the PZIs from Obu et al. (2019) and Ran et al. (2022).
However, the MAGT-III PZI with GLDAS (a) soil moisture estimates had
good agreement (93%) with the MAGT-Ib PZI from Gruber (2012).

4. Discussion

Our methodology implements a novel, robust approach for gap-
filling MODIS-based land surface temperature estimates with the com-
plementary skin surface temperature retrievals from AIRS onboard the
Aqua satellite. The bias towards clear sky estimates in MODIS products is
addressed with the AIRS’ ability to rigorously determine temperatures
below cloud cover and allows for sufficient filtering when assessing
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quality control for the MODIS retrievals, especially during the monsoon
season, which frequently captures temperatures of the cloud surface.
With some land surface temperature estimates approaching —10 °C in
the middle of summer, even established gap-filling procedures are
vulnerable to propagated errors and biases (Figs. 3 and S2; Table 6).
Furthermore, our PZIs highlight the sensitivity of permafrost conditions
to snow depth and soil moisture by using products that needed to be
further assessed with respect to permafrost mapping. Although biased,
as shown in the validations with available monthly in situ observations
(Supplementary Figs. S3 and S4), the final PZI comparisons contextu-
alize the practicality of incorporating modeled products. Without a more
continuous set of data across the complex topography of HMA, these
products suggest adequate performance when investigating the range of
possible permafrost conditions and stability. Furthermore, the cross-
comparisons emphasize the key idea that TTOP-based (MAGT-III) ex-
tents may overestimate permafrost presence. The snow depth corrected
(MAGT-II) PZI, however, shows that only correcting the insulating layer
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Fig. 10. a) Fractional permafrost regional areas for the different mountain ranges of the HMA (High Mountain Asia). Relatively, the largest permafrost areas were
estimated with the TTOP-based MAGT-III models (and Gruber’s MAAT-based MAGT-Ib PZI) and the least with either the MAGT-Ia without any offset calculations, the
MAGT-II (only the nival factor), or MAGT-IV (Ran et al., 2022). b) A boxplot of the calculated permafrost regional areas was produced to compare the distribution of
estimates across mountain ranges. The green triangle and line denote the mean and median, respectively. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

of snow cover may lead to a warmer MAGT, underestimating total
permafrost area. This is an important facet of this study, as the knowl-
edge on permafrost extent is limited beyond the scope of the Tibetan
Plateau, across the difficult-to-access regions of the northwest and
southeast, which have different climatologies despite similar elevations.
For example, although the Hengduan and Nyaingentanglha are in a
wetter climate regime with higher MAGTs, more permafrost was
consistently estimated with the TTOP-based PZIs because of a potential
thermal offset due to the coexistence of water and ice and their con-
trasting thermal conductivities in the subsurface, allowing for
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permafrost even in regions where the surface MAGT is >0 °C. However,
given the limited record of in situ ground temperature measurements
with both snow depth and soil moisture data, this study’s accuracy
assessment may not fully represent the range of snow and moisture
conditions across the entirety of High Mountain Asia. Furthermore,
vegetation could still be an overlooked component, as MODIS LST
products may retrieve temperatures above the canopy, which is denser
to the east of the Tibetan Plateau (Cao et al., 2019a; Cao et al., 2019b).
Therefore, the geographic differences between possible maximal and
minimal permafrost coverage across a topography as complex as HMA
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A comparison of permafrost regions (in km?) is presented across all PZIs (permafrost zonation indices) assessed in this study. The coefficient of variance (CV) is defined

as the percentage of sample standard deviation divided by the mean.

Mountain Range Ia I Illa 11b 1llc (Obu) I\ b (Gruber) Average St. Dev. cv
(Ran)
Tien Shan 9.36 x 10* 5.10 x 10* 8.85 x 10* 1.14 x 10° 9.49 x 10* 8.01 x 10* 1.05 x 10° 8.96 x 10* 2.02 x 10* 22.6%
Hissar Alay 2.73 x 10* 1.20 x 10* 3.05 x 10* 3.60 x 10* 1.99 x 10* 2.17 x 10* 2.66 x 10* 2.49 x 10* 7.79 x 10° 31.3%
Pamir 7.72 x 10* 6.02 x 10* 8.82 x 10* 9.41 x 10* 6.11 x 10* 6.82 x 10* 8.40 x 10* 7.61 x 10* 1.34 x 10* 17.6%
Hindu Kush 2.03 x 10* 8.33 x 10° 1.96 x 10* 2.67 x 10* 1.23 x 10* 1.64 x 10* 1.90 x 10* 1.75 x 10* 5.93 x 10° 33.8%
Karakoram 5.34 x 10* 4.50 x 10* 7.29 x 10* 7.43 x 10* 5.77 x 10* 5.83 x 10* 5.71 x 10* 5.98 x 10* 1.05 x 10* 17.5%
Kunlun 3.60 x 10° 3.71 x 10° 3.56 x 10° 3.71 x 10° 3.42 x 10° 3.16 x 10° 3.88 x 10° 3.58 x 10° 2.35 x 10* 6.56%
Altun 3.31 x 10* 3.67 x 10* 2.90 x 10* 2.90 x 10* 2.42 x 10* 1.90 x 10* 4.65 x 10* 3.11 x 10* 8.93 x 10° 28.7%
Tibetan Plateau 3.64 x 10° 3.98 x 10° 4.92 x 10° 5.02 x 10° 3.87 x 10° 3.22 x 10° 5.06 x 10° 4.24 x 10° 7.48 x 10* 17.6%
Gandise 1.03 x 10° 1.15 x 10° 1.69 x 10° 1.82 x 10° 1.05 x 10° 8.02 x 10* 2.04 x 10° 1.37 x 10° 4.74 x 10* 34.6%
Himalaya 7.70 x 10* 6.44 x 10* 1.76 x 10° 1.96 x 10° 1.08 x 10° 9.38 x 10* 9.12 x 10* 1.15 x 10° 5.04 x 10* 43.8%
Nyaingentanglha 4.36 x 10* 4.39 x 10* 7.58 x 10* 8.98 x 10* 5.16 x 10* 3.28 x 10* 5.60 x 10* 5.62 x 10* 2.00 x 10* 35.5%
Tanggula 6.36 x 10* 6.81 x 10* 7.70 x 10* 8.54 x 10* 5.52 x 10* 3.56 x 10* 8.04 x 10* 6.65 x 10* 1.71 x 10* 25.7%
Hengduan 2.76 x 10* 2.64 x 10* 4.62 x 10* 7.12 x 10* 2.87 x 10* 1.24 x 10* 4.90 x 10* 3.74 x 10* 1.95 x 10* 52.1%
Bayan Har 7.42 x 10* 8.11 x 10* 1.02 x 10° 1.45 x 10° 8.16 x 10* 4.30 x 10* 1.17 x 10° 9.21 x 10* 3.30 x 10* 35.8%
Qilian 8.11 x 10* 8.55 x 10* 1.07 x 10° 1.29 x 10° 1.06 x 10° 7.93 x 10* 1.17 x 10° 1.01 x 10° 1.93 x 10* 19.1%
TOTAL 1.50 x 10° 1.47 x 10° 1.93 x 10° 2.15 x 10° 1.54 x 10° 1.28 x 10° 1.95 x 10° 1.69 x 10° 3.19 x 10° 18.9%
Table 9

A confusion matrix showing shared and un-shared permafrost (non-)regions between the permafrost indices. The values are all shown as percentages, with the greatest
overlap bolded per row. The total common areas (Permafrost, P, and Non-Permafrost, N) are italicized in the corresponding column and row.

Ia 1 Illa (GLDAS) IiIb (ERAS-L) ilc (Obu) IV (Ran)
P N P N P N P N P N P N

i 94.8%
P 30.5 3.0
N 2.2 62.3
HI?GLD AS) 88.0% 88.6%
P 32.3 0.5 325 0.0
N 1.6 55.7 11.4 56.1
b

(ERAS.L) 83.9% 83.7% 94.9%
P 32.8 0.0 325 0.0 43.8 0.1
N 16.1 51.1 16.3 51.2 5.0 51.1
11

(CObu et el 2019) 92.8% 92.6% 89.2% 85.8%
P 30.3 26 30.0 2.5 34.0 9.9 34.8 14.0
N 47 62.5 4.9 62.6 0.9 55.2 0.1 51.0
IV(Rm e al. 202 93.7% 91.6% 84.4% 80.1% 91.3%
P 27.8 5.0 26.6 5.9 28.7 15.2 29.0 19.8 27.6 7.3
N 1.3 65.9 2.5 65.0 0.4 55.7 0.0 51.1 1.4 63.7
Ib(Gmber 2012) 87.8% 88.2% 93.3% 91.0% 88.0% 84.4%
P 32.4 11 32.2 0.5 40.6 15.2 42,0 7.4 335 2.0 28.8 0.8
N 111 55.4 11.3 56.0 0.4 55.7 1.6 49.0 10.0 54.5 14.7 55.6

are informative for highlighting the opposing influences surface vari-
ables have on ground temperatures. Because snow depth and soil
moisture in mountain environments are historically difficult to estimate,
their associated PZIs are presented to demonstrate sensitivity to these
variables. Fortunately, current avenues of research based on active radar
retrievals and a growing record of observations (both in situ and
remotely sensed) appear to be promising (Babaeian et al., 2019; Lievens
et al., 2019).

For the Tien Shan and its neighboring mountains, similar permafrost
regional areas were estimated by this study’s and previous PZIs. This
shows that available methods for permafrost mapping are reaching
similar regional estimates (Fig. 10). On the other hand, an unrecognized
bias may exist, which the snow-corrected MAGT-II PZI suggests. When
only accounting for snow cover, much less permafrost is estimated due
to the region’s climatology, in which the westerlies contribute to sig-
nificant snow accumulations (Li et al., 2020a, 2020b). Of the estimated
continuous permafrost subregions, the Tien Shan’s relatively lower
elevation threshold is an important but confounding component
(Fig. 10). Another observation is the discrepancy of permafrost extent

for two basin-like features in the Tien Shan. MAGT-Ia, III, IV PZIs esti-
mate high probabilities; however, both MAGT-II and MAGT-Ib (Gruber,
2012) PZIs have conflicting conclusions with lower permafrost proba-
bilities. MAGT-Ia appears to reveal a long-term temperature inversion in
such locations. For example, the intercomparison of PZIs for the Tibetan
Plateau by Cao et al. (2019b) determined that Gruber (2012) may un-
derestimate permafrost in valleys because cold air pooling is ignored.
With respect to the MAGT validations in Fig. 6 and Table 7, all
MAGTs were similar in performance when assessed against the tem-
peratures at the ground surface or active layer depths, with the MAGT-Ia
of this study being the most robust. However, when validated against the
borehole measurements, MAGT-II exhibited a warm bias, while the
MAGT-III had cold biases. TTOP estimates from Obu et al. (2019) per-
formed with the lowest accuracy (Table 7). In fact, Romanovsky and
Osterkamp (2000) have noted that soils containing large amounts of
unfrozen water exhibit decreased thermal offsets, which the TTOP
approach may overestimate in discontinuous permafrost (Smith and
Riseborough, 2002). This observation, along with the wet bias in
available gridded soil moisture datasets, confirms these comparisons.
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The variation between the different estimates is largely due to dif-
ferences in the representation of snowpack, soil moisture and vegetation
influence, and exhibits systematic regional trends (Table 8; Figs. 8 and
10). The CV (7-29%) is lowest in the central region (Altun, Kunlun and
interior Tibetan Plateau), where snow cover is minimal year-round. In
the north-western regions (Tien Shan, Hissar Alay, Pamir, Hindu Kush
and Karakoram), where the snow cover is more persistent but variable
than in the central region due to the influence of the westerlies, the CV is
moderately low (18-31%). The CV is marginally higher (19-36%) in the
Qilian, Tanggula and Bayan Har regions in the east, where there is
greater heterogeneity in soil moisture and vegetation, in addition to the
influence of snow. The CV is highest (26-52%) in the south (Nyain-
gentanglha, Hengduan, Himalayas, Gandise), where the significant in-
fluence of both snowpack and vegetation canopy is further complicated
by warming trends (Table 4).

A surprising result is the robust performance of the MAGT-Ia esti-
mate alone against the borehole temperatures. Despite a correlation
coefficient of 0.56 and an RMSE of 0.68, it had the next best metrics of
the group, behind only Ran et al. (2022), whose MAGTs were fitted to in
situ measurements primarily recorded at the DZAA. This suggests a
relationship between the MAGT on the land surface (Ia) and the MAGT
at the DZAA which could be further monitored by satellite-based surface
temperature products alone. In fact, a study by Luo et al. (2018a) rea-
ches a related conclusion that minimal thermal offset exists between the
MAGT within the active layer and DZAA MAGT in warm-dry permafrost,
which could allow for accurate permafrost mapping with just the MAGT
alone at a depth of 0-5 cm, after accounting for air temperature offsets
(Luo et al., 2018a). Based on their comparison of the TTOP and DZAA
MAGTSs to the surface MAGTs in the headwaters of the Yangtze and
Yellow Rivers by the Bayan Har region, they suggest that thermal con-
ductivities of thawed and frozen ground do not need to be known for
such permafrost layers. Given the nature of mountain permafrost, the
distinction between DZAA and TTOP MAGT may be less important,
especially in arid environments. However, neglecting the thermal in-
fluence of surface variables in ground temperature simulations forced
with only in situ air or land surface temperature has also been docu-
mented to lead to cold biases in the MAGT by as much as 3 °C at depth in
the same region (Luo et al., 2018b).

This implication must be contextualized in the era of anthropogenic
climate change. Some regions are experiencing a statistically significant
warming trend (e.g., the Hengduan and Nyainqentanglha) as determined
by preliminary results for non-stationarity in Table 4. Because ground
temperatures lag air temperatures at different frequencies based on
depth, it may be possible for the remotely sensed surface temperatures to
erroneously infer warmer MAGTs. However, the study by Biskaborn
et al. (2019) did reveal that permafrost in warmer thermal regimes ex-
periences warming more slowly than their northern latitude counter-
parts. A more comprehensive study that compares historical and modern
surface temperatures for HMA is necessary to better characterize the
uncertainty associated with warming at depth. For example, one caveat
of this study’s comparisons against Gruber’s MAGT-Ib PZI is that their
MAGT was based on the MAAT of an older (and therefore presumably
colder) period from 1961 to 1990, muddling the permafrost extent
comparisons with a more recent period, from 2003 to 2016.

Another uncertainty associated with the comparisons is regarding
the boundary between glaciated and non-glaciated regions. As perma-
frost tends to form in more arid climates, glaciers are the norm in humid
regions like the Eastern Himalayas, which is indeed experiencing drastic
ice loss due to warming air temperatures (Lee et al., 2021; Shean et al.,
2020). However, the transition from permafrost to glacier is unclear at a
resolution of 1 km, and the consequences of meltwater from retreating
glaciers would impact subsurface temperatures, not unlike the rela-
tionship between the permafrost table and thermokarst lakes. Investi-
gating the interaction between glacial melt and permafrost formation is
therefore required to better understand the true probability of perma-
frost occurrence in such areas (Gruber and Haeberli, 2009; Waller et al.,
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2012; Etzelmiiller, 2013).

Finally, a comment must be made regarding permafrost zonation.
Although this study used the commonly used terminology of “contin-
uous,” “discontinuous”, “sporadic”, and “isolated” permafrost to cate-
gorize and compare the calculated permafrost extents, the approaches
Ran et al. (2021, 2022) incorporated in their methods, by either hy-
drothermal zonation or stability type, offer important context. Given the
heterogeneity in climate, topography, surface area, and solar radiation
at high altitude, most of the permafrost in such areas range from “iso-
lated” to “discontinuous,” as mapped by Brown et al. (1997). By cate-
gorizing permafrost regimes in terms of climate and stability in addition
to areal extent, a more nuanced discussion of mountain permafrost is
possible (Ran et al., 2021).

5. Conclusions

This study produced a set of permafrost indices for HMA using
monthly averages and a novel gap-filling procedure that leverages the
availability of accurate remotely sensed observations onboard the Terra
and Aqua satellites with the most up-to-date datasets. Though biased in
validation, the modeled snow depth and soil moisture estimates
demonstrated the influence of subsurface components on ground tem-
perature variants, as shown through the sampled transect and in situ
comparisons, highlighting that modeled temperatures at different
depths must be investigated with nuance for delineating permafrost
extent and potentially, stability. Building upon the work of previous
studies, this research methodology emphasizes the importance of
contextualizing MAGT validations at different depths for permafrost
zonation.

The total permafrost extent for HMA as calculated with each index
are 1.50 million (MAGT-Ia), 1.47 million (MAGT-II), 1.93 million
(MAGT-IIIa [GLDAS]), 2.15 million (MAGT-IIIb [ERAS5-L]), 1.54 million
(MAGT-IIIc [Obu et al., 2019]), 1.28 million (MAGT-IV [Ran et al.,
20221), and 1.95 million (MAGT-Ib [Gruber, 2012]) km? On average,
approximately 1.69 (+ 0.32) million km? of land in HMA is underlain
with permafrost. The density of mountain permafrost is concentrated
within a 4 to 6 km elevation band, with permafrost predicted to exist at
an even lower limit of about 2.5 km in the Tien Shan. Geographically,
the greatest discrepancy in permafrost regional estimates was to the
south or east of the Tibetan Plateau, with the highest coefficients of
variation (CVs) in the Hengduan (52%), Himalayas (44%), Bayan Har
(36%), and Gandise (36%). Permafrost regions with the most agreement
and lowest CVs were the Kunlun Mountains (7%), Pamirs (18%) and
interior Tibetan Plateau (18%).

The findings based on our MODIS-AIRS gap-filled dataset agree well
with the trained MAGT-IV estimates of Ran et al. (2022) and have shown
that this method is a promising option for retrieving ground surface
temperatures in data sparse, topographically complex areas such as
HMA, improving upon even the most recent gap-filled MODIS LST
product from Zhang et al. (2022). The new estimates for permafrost
extent in HMA offers an increased level of confidence in the ability of
remotely sensed products to monitor permafrost regimes, but not
without the context of climate non-stationarity and microclimate factors
finer than a 1 km scale. Therefore, we recommend the continued utili-
zation of MODIS (MOD11/MYD11) and AIRS surface temperature
products in the absence of more extensive data records.

Code availability

Algorithms for validations, gap-filling MODIS with AIRS temperature
products, and calculating MAGT, PZIs, thermal conductivities, and snow
depth corrections will be made available on the corresponding author’s
GitHub account.
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