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Abstract—Hierarchical federated learning (HFL) has demon-

strated promising scalability advantages over the traditional

“star-topology” architecture-based federated learning (FL). How-

ever, HFL still imposes significant computation, communication,

and storage burdens on the edge, especially when training a

large-scale model over resource-constrained Internet of Things

(IoT) devices. In this paper, we propose hierarchical independent
submodel training (HIST), a new FL methodology that aims

to address these issues in hierarchical settings. The key idea

behind HIST is a hierarchical version of model partitioning,

where we partition the global model into disjoint submodels in

each round, and distribute them across different cells, so that

each cell is responsible for training only one partition of the

full model. This enables each client to save computation/storage

costs while alleviating the communication loads throughout the

hierarchy. We characterize the convergence behavior of HIST for

non-convex loss functions under mild assumptions, showing the

impact of several attributes (e.g., number of cells, local and global

aggregation frequency) on the performance-efficiency tradeoff.

Finally, through numerical experiments, we verify that HIST

is able to save communication costs by a wide margin while

achieving the same target testing accuracy.

I. INTRODUCTION

The past decade has witnessed a huge breakthrough in
various machine learning (ML) applications, from computer
vision to natural language processing. As training data for
these tasks are often collected by geographically separated
clients, developing efficient distributed training strategies has
become increasingly important [1]–[3]. In this context, feder-
ated learning (FL) is receiving significant attention nowadays
as it enables clients to collaboratively train a global model
without any raw data exchange [4].

In the traditional cloud-based FL [5], all clients in the
system directly communicate with a central cloud server for
model aggregations, resulting in communication scalability
issues as the size of the network grows. Hierarchical federated
learning (HFL) has been proposed as a solution [6]–[8], taking
advantage of the fact that clusters of clients (e.g., cells) may be
served by intermediate edge servers. The introduction of edge
servers in HFL reduces communication and scheduling com-
plexity, as the cloud server now only needs to communicate
with the edge servers.

This project was supported in part by NSF under grants CNS-2146171
CPS-2313109, and by ONR under grant N000142212305

However, as the size of the model increases, the HFL train-
ing process still suffers from scalability issues. These man-
ifest in several dimensions: (i) computation/storage costs at
individual clients, (ii) communication burden between clients
and the edge server, and (iii) communication load between
edge servers and the cloud server. These are fundamental
bottlenecks for the practical deployment of HFL, especially
when resource-constrained mobile and IoT devices aim to
collaboratively train a large-scale neural network model.

In this paper, we propose HIST, a new FL methodology that
integrates independent submodel training (IST) in hierarchical
networks to address the aforementioned challenges. The core
idea of HIST is to partition the global model into disjoint
submodels in each training round and distribute them across
different cells, so that devices in distinct cells are responsible
for training different partitions of the full model. Such a
submodel partitioning effectively reduces computation and
storage loads at local clients, and also alleviates communi-
cation burden on both the links between clients and the edge
server and between edge servers and the cloud server. The
main contributions of this paper are summarized as follows:

• We propose HIST, a hierarchical independent submodel
training methodology that successfully reduces computa-
tion, communication, and storage costs during the training
process of HFL.

• We analytically characterize the convergence bound of
HIST for non-convex loss functions, under milder as-
sumptions than those found in the literature. Based on
the result, we analyze the performance-efficiency tradeoff
induced by HIST, and provide guidelines on setting the
key system parameters of HFL.

• In simulations, we evaluate the effectiveness of the pro-
posed algorithm by training a neural network in two dif-
ferent data distribution setups for hierarchical networks.
We show that our proposed HIST achieves significant
resource savings for a target trained model accuracy
compared with the standard hierarchical FedAvg [8].

Related Works: The exploration of submodel training
commenced with the pioneering work [9], where the authors
introduced the concept of IST for fully connected neural
networks and provided theoretical analysis under centralized
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settings. Subsequently, submodel training was extended to
graph neural networks [10] and ResNets [11]. Due to its
effectiveness in addressing communication, computation, and
storage challenges, the concept of IST was subsequently
considered in distributed scenarios [12], where the authors
empirically show the effectiveness of submodel training in
FL. Additionally, several studies also characterized the con-
vergence behavior of distributed submodel training [13]–[15].
However, the aforementioned works either rely on restrictive
assumptions [13], [14] or narrow the focus to quadratic models
[15]. More importantly, existing works focus on cloud-based
FL with a single server, and thus do not provide insights into
the hierarchical case. To the best of our knowledge, HIST
is the earliest work to integrate IST with HFL and provide
theoretical analysis as well as experimental results.

II. SYSTEM MODEL AND FORMULATION

We consider a HFL system that consists of a single cloud
server, N edge servers indexed by {1, 2, . . . , N}, and

∑
N

j=1 nj

clients, where nj is the number of clients located in the j-th
cell. Edge server j is responsible for coordinating the training
of nj clients in cell j. The global server is in charge of model
aggregation over N geographically distributed edge servers.
Given the loss function l(x, ωi) which measures the loss on
sample ωi with model x → Rd, the training objective of this
HFL system can be formulated as

min
x

f(x) :=
1

N

N∑

j=1

fj(x) Global loss

fj(x) :=
1

nj

∑

i→Cj

Fi(x) Cell loss

Fi(x) := Eωi↑Di [l(x, ωi)] Client loss

(1)

where f : Rd
↑ R, fj : Rd

↑ R, and Fi : Rd
↑ R

represent the global, cell, and client losses, respectively. Cj

denotes the client set of cell j, and Di denotes the local data
distribution of client i. In this work, we mainly consider the
non-i.i.d. scenario, where data distribution is heterogeneous
among different clients, i.e., Dj ↓= Dj→ , ↔j

↓
↓= j.

In conventional HFL, all clients in the system are required
to train the full model. To support such model training, each
client needs to be equipped with enough computation, storage,
and communication resources. However, it is unaffordable for
resource-constrained clients to handle the training of large-
scale models. This motivates us to develop a more efficient
training framework for HFL, which will be discussed in the
next section.

III. HIERARCHICAL INDEPENDENT SUBMODEL
TRAINING ALGORTHM

In this section, we introduce our HIST algorithm tailored
to HFL and analyze the communication complexity to demon-
strate its efficiency.

edge 
trainingrounds 
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Fig. 1: Overview of proposed hierarchical independent sub-
model training (HIST). Each cell is responsible for training
only a specific partition of the full model, where the submodel
partitioning changes over global rounds.

A. Algorithm Description

Inspired by IST [9], we develop a hierarchical federated
submodel training algorithm termed HIST, by incorporating
hierarchical FedAvg and submodel partitioning. The overview
of HIST is presented in Fig. 1 and Algorithm 1. The global
cloud server periodically aggregates the models from the edge
servers, while each edge server periodically aggregates the
models from the clients within the corresponding cell. The
key difference with the conventional HFL is that, clients do not
need to store, update, and exchange the full model in HIST.

Specifically, in the beginning of t/E-th global round where
t represents the iteration number of clients and E denotes the
period of the global aggregation, the cloud server initiates the
training process by partitioning the current global model x̄t

into N disjoint submodels:

x̄t

j
= pt

j
↗ x̄t

, ↔j → {1, 2, . . . , N}, (2)

where ↗ denotes a Hadamard Product operation, x̄t

j
represents

the j-th submodel for cell j, and pt

j
is a mask that has either

0 or 1 in its element and satisfying

pt

j
↗ pt

j→ = 0, ↔j
↓
↓= j, and

N∑

i=1

pt

j
= 1. (3)

These submodels are then distributed to the edge servers, and
each edge server subsequently disseminates submodel x̄t

j
to

the clients within its coverage, such that xt

i
= x̄t

j
, ↔i → Cj .

Once the clients receive the most recent model from the server,
they start training with their local datasets. The essential steps
performed by clients, edge servers, and the global server in
our proposed algorithm are outlined as follows:

Clients: Clients first compute stochastic gradients with
respect to their corresponding submodels, and then update the
local models for H steps via the following iteration:

xt+1
i

= xt

i
↘ εpt

j
↗≃l(xt

i
, ωi), ↔i → Cj , ↔j. (4)
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Note that pt

j
keeps invariant during one global round, i.e.,

pmE+e

j
= pmE

j
, ↔e = {1, 2, . . . , E ↘ 1}, where m denotes

the number of the global rounds. Subsequently, clients upload
the updated submodels to the edge server for edge model
aggregation.

Edge Servers: After every H steps of local submodel
updates, each edge server aggregates the local models within
its coverage as

x̄t+1
j

↑
1

nj

∑

i→Cj

xt+1
i

, ↔j. (5)

Subsequently, edge servers determine whether to upload the
aggregated model to the cloud server or disseminate it to the
clients. The criterion is whether the current iteration number
t + 1 of clients is divisible by E. If not, edge servers just
disseminate the edge models in (5) to the corresponding
clients; otherwise, edge servers upload their edge models to
the cloud server.

Cloud Server: If the client’s current iteration number t+1
is a multiple of E, the cloud server aggregates the edge models
from edge servers according to

x̄t+1 =
N∑

j

pt

j
↗ x̄t+1

j
. (6)

Subsequently, the cloud server partitions the global model x̄t+1

based on newly generated masks pt+1
j

x̄t+1
j

= pt+1
j

↗ x̄t+1
, ↔j → {1, 2, . . . , N}. (7)

Finally, x̄t+1
j

will be sent to edge server j for initiating the
next round of training. Here, it is worth emphasizing that x̄t

is defined on t → {mE | m → N} while x̄t

j
is defined on

t → {mH | m → N}.
With the proposed algorithm, clients and edge servers are

not required to store or manipulate the full model parameters.
This enables HIST to reduce the communication, computation,
and storage burdens of clients and edge servers compared to
the conventional HFL.

B. Communication Complexity Analysis

Let L0 denote the transmission load of a full model. Each
client sends its local model parameter to the corresponding
edge server every H iterations, where H denotes the number
of local updates. Assume that the mask size, defined as the
number of non-zero entries of pt

j
, is uniform among N cells.

In every H iterations, the total communication load of all the
clients within cell j becomes njL0

N
, which corresponds to the

communication complexity of edge server j. The average per-
iteration communication load of each client and edge server
is L0

NH
and njL0

NH
, respectively. Additionally, for the cloud

server, the communication complexity at every E iterations
is L0. Under the methodology of HIST, the communication
complexity of the cloud server is invariant to the number of
edge servers. In summary, HIST reduces the communication
consumption of the global server, edge server, and client to 1

N

of what would be required by the standard hierarchical FedAvg
algorithm.

Algorithm 1: Hierarchical Independent Submodel
Training Algorthm
Input: Initial masks {p0

1,p
0
2, . . . ,p

0
N
}, initial models

x̄0, and x0
i

= x̄0
j

= p0
j
↗ x̄0

, ↔i → Cj , ↔j,
learning rate ε

for t → {0, 1, . . . , T ↘ 1} do

for each cell and edge server in parallel do

for each client i → Cj in parallel do

Update local submodel xt+1
i

by (4)
end

if H | t+1 then

Update edge model x̄t+1
j

via (5)
if E | t+1 then

Upload x̄t+1
j

to the cloud server
else

Disseminate x̄t+1
j

to clients
end

end

end

if E | t+1 then

Update the global model x̄t+1 via (6)
Generate masks {pt+1

j
} under rule (3)

Partition the global model by (7) and send the
obtained submodels x̄t+1

j
to clients within cell

j, xt+1
i

= x̄t+1
j

, ↔i → Cj , ↔j

end

end

IV. CONVERGENCE ANALYSIS

In this section, we provide convergence analysis for the
proposed HIST algorithm. Although the proposed HIST al-
gorithm shares a similar training process with the hierarchical
FedAvg, we stress that the convergence proof for the latter one
cannot be directly extended to our case that adopts submodel

partitioning, due to the effect of the masks. Specifically,
when comparing pt

j
↗ ≃Fi(pt

j
↗ x) and ≃Fi(x), the mask

pt

j
compresses not only the gradient but also the model,

while many existing works only investigate compressing the
gradient. Theoretical analysis on the methods of compressing
the model [16] is quite limited. Even in the single-cell sce-
nario, existing proofs of IST [13], [14] rely on some stronger
assumptions. Finally, the hierarchical architecture with both
multiple steps of client update and multiple steps of edge
training we consider makes the analysis further complicated.

A. Assumptions

We focus on a general non-convex loss function and con-
sider a non-i.i.d data setting. Our theoretical analysis relies on
the following assumptions.

Assumption 1. The global loss function f(x) has a lower

bound f↔, i.e., f(x) ⇐ f↔, ↔x.
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Assumption 2. Fi is differentiable and L-smooth, i.e., there

exists a positive constant L such that for any x and y

⇒≃Fi(x) ↘≃Fi(y)⇒2 ⇑ L⇒y ↘ x⇒, ↔i,

Fi(y) ⇑ Fi(x) + ⇓≃Fi(x),y ↘ x⇔ +
L

2
⇒y ↘ x⇒2, ↔i.

(8)

Assumption 3. The stochastic gradient ≃l(x, ωi) is an unbi-

ased estimate of the true gradient, i.e., Eωi↑Di [≃l(x, ωi)] =
≃Fi(x), ↔x.

Assumption 4. The variance of the stochastic gradient

≃l(x, ωi) is bounded as

Eωi↑Di⇒≃l(x, ωi) ↘≃Fi(x)⇒2 ⇑ ϑ
2
, ↔x. (9)

Assumption 5. The gradient dissimilarity between the global

loss and each edge loss fj can be bounded by a constant ϖ
2
1 ,

i.e.,

1

N

N∑

j=1

⇒≃fj(x) ↘≃f(x)⇒2 ⇑ ϖ
2
1 , ↔x. (10)

Assumption 6. The gradient dissimilarity between the edge

loss fj and each client loss Fi(x) can be bounded by a

constant ϖ
2
2 , i.e.,

1

nj

∑

i→Cj

⇒≃Fi(x) ↘≃fj(x)⇒2 ⇑ ϖ
2
2 , ↔x, ↔j. (11)

Assumptions 1-4, have been widely adopted in the context
of stochastic non-convex and smooth settings [2]. Assumptions
5 and 6 serve to characterize the degree of data heterogene-
ity between different cells and clients, which is a common
characteristic within the HFL literature [8].

B. Theoretical Results

When implementing HIST in practice, x̄t will not be
computed unless t is a multiple of E as the global synchroniza-
tion occurs every E iterations. We establish the convergence
properties of the proposed algorithm by characterizing the
evolution of ⇒≃f (x̂t)⇒2, x̂t :=

∑
N

j=1 p
t

j
↗

1
nj

∑
i→Cj

xt

i
, t =

{0, 1, 2, . . . , T ↘ 1}, to see how fast the model converges to
the stationary point of the general non-convex loss function.
The sequence {x̂t

| t = 0, 1, 2, . . . , T ↘ 1} we use for
analysis serves as a virtual global model, which is commonly
employed to monitor the convergence of distributed algorithms
with delayed global synchronization [17]. Now we state the
following main theorem. Due to space limitation, all proofs
are provided in our technical report [18].

Theorem 1. Suppose that Assumptions 1-6 hold, the masks

{pt

1,p
t

2, . . . ,p
t

N
} are uniformly and randomly generated

based on (3), N ⇐ 2, and the step size satisfies

ε ⇑min

{
1

32E
↖

N ↘ 1L
,

Ñ

NHL
,

1

NH2L
,

1

(N + 1)EL

}
.

(12)

Then, HIST achieves the following convergence behavior for

non-convex loss functions:

1

T

T↗1∑

t=0

E
∥∥≃f(x̂t)

∥∥2 ⇑ 4
f(x̄0) ↘ f↔

ε
+ 50εÑLϑ

2

+24εLϖ
2
2+12ϖ

2
1+24(N↘1)L2E

T

T/E↗1∑

m=0

E
∥∥x̄mE

∥∥2 , (13)

where Ñ =
∑

N

j=1
1
nj

, and x̄mE is the synchronized global

model generated by our HIST algorithm.

Theorem 1 presents the optimality gap for the time-averaged
squared gradient norm. The first term in this upper bound
exhibits the influence of the initial optimality gap on con-
vergence performance. The second term reveals the impact
of the variance of stochastic gradients on convergence, which
can be mitigated by increasing the batch size when computing
stochastic gradients. The third and fourth terms indicate that
the non-i.i.d. characteristics within the cell and across cells
affect convergence performance. The last term demonstrates
that the norms of synchronized global models also influence
the optimality gap. Note that the last two terms are induced
by submodel partition. In addition, the step size ε is a
configurable parameter that impacts the first three terms of
the derived upper bound. Plugging an appropriate step size
into Theorem 1 gives rise to the following corollary.

Corollary 1. Suppose that Assumptions 1-6 hold, the masks

{pt

1,p
t

2, . . . ,p
t

N
} are uniformly and randomly generated

based on (3), N ⇐ 2, and let the step size ε = (TÑ)↗
1
2

in which T is large enough to satisfy (12). Then, the HIST

algorithm satisfies

1

T

T↗1∑

t=0

E
∥∥≃f(x̂t)

∥∥2 ⇑ O

(
Ñ

1
2 T

↗ 1
2

)
+ O

(
T

↗ 1
2

)

+ 12ϖ
2
1 + 24(N ↘ 1)L2E

T

T/E↗1∑

m=0

E
∥∥x̄mE

∥∥2 , (14)

where Ñ and x̄mE
are described in Theorem 1.

Remark 1. In Corollary 1, the retention of Ñ within the

convergence rate expression is motivated by the possibility of

an arbitrary relationship between the number of clients in each

cell, denoted as nj , and the total number of cells, denoted as

N . When the number of clients in each cell is of a comparable

magnitude or greater than the total number of cells, the

convergence rate of the diminishing terms in the derived

upper bound is primarily determined by O

(
T

↗ 1
2

)
. However,

if the number of clients in each cell is significantly smaller in

relation to the total number of cells, Ñ becomes influential,

and the convergence rate is dominated by O

(
Ñ

1
2 T

↗ 1
2

)
.

C. Discussions

Non-diminishing bound: With the step size chosen in Corol-
lary 1, the first three terms in (13) will diminish to zero as
long as the number of total iterations, i.e., T , is large enough.
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The rest two terms are non-diminishing parts that arise due
to submodel training. One can claim that HIST can converge
to the neighborhood of a stationary point of the non-convex
loss function under the aforementioned conditions. A similar
phenomenon has also been reported in the single-cell case [9],
[13], [15]. The bound enables us to explore the performance-
resource trade-off, where more detailed discussions will be
provided in the next paragraph.

The choice of N : As N increases, i.e., as the overall clients
in the system are divided into more cells during training,
the size of the submodels gets smaller, providing a more
lightweight model to the edge servers and clients. As a result,
the training costs including computation, communication, and
storage will be reduced at each iteration. However, as observed
in Corollary 1, a large N causes the sequence to deviate
further from the stationary point. Overall, there is a trade-
off between the convergence performance and computation,
communication, and storage costs.

The optimal values of H and E: The choices of H and
E impact the communication frequency. As H increases, the
aggregation frequency at the edge servers will become smaller,
reducing the communication load between clients and the
edge server. On the other hand, a large E induces fewer
global synchronizations, which releases the communication
burden between edge servers and the cloud server. However,
these values cannot be infinitely large. The maximum value
of H and E can be derived from the condition of the step
size ε. Specifically, to make the step size ε = (TÑ)↗

1
2

in Corollary 1 satisfy (12), H and E can be set as on
the order of min

{
O

(
(ÑT )

1
4 N

↗1
2

)
,O

(
Ñ

3
2 T

1
2 N

↗1
)}

and

O

(
(ÑT )

1
2 N

↗1
)

at most, respectively.

V. SIMULATIONS

In this section, we conduct experiments to evaluate the
performance of the proposed HIST algorithm.

A. Simulation Settings

We consider an image classification task on Fashion-MNIST
using a two-layer fully connected neural network. In this
model, we configure the input layer to have 784 neurons,
corresponding to the size of the input image, and the output
layer to have 10 neurons, which matches the number of
classes. Additionally, we employ a hidden layer with 300
neurons. The cloud server partitions these hidden neurons to
construct different submodels. Let the submodels share the
same size with each other, which can be achieved by uniformly
and randomly partitioning the hidden neurons.

We consider a setup with 60 clients evenly distributed across
N cells, where N → {2, 3, 4, 5}. We consider two practical
data distribution settings: (i) the fully non-i.i.d. case and (ii)
the case with i.i.d data across cells but non-i.i.d data across the
clients within the same cell. For the former case, the client’s
dataset construction follows the approach outlined in [2].
The process begins by sorting the training samples based on
their corresponding labels. Following this, the training dataset
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gence performance.

N = 2 N = 3 N = 4
0

100

200

300

C
o
m

m
u
n
ic

a
ti

o
n

C
o
st HFedAvg

HIST

(a) Fully non-i.i.d.
N = 2 N = 3 N = 4

0

20

40

60

80

C
o
m

m
u
n
ic

a
ti

o
n

C
o
st HFedAvg

HIST

(b) Cell i.i.d., client non-i.i.d.

Fig. 3: Communication cost for achieving an accuracy of 75%.

is partitioned into 120 shards, with each shard containing
500 samples. Subsequently, each client is assigned 2 shards,
ensuring that each client’s dataset comprises 1000 samples. For
the latter, we first uniformly and randomly divide the entire
training set into N parts, corresponding to N cells, and then
distribute each part to the clients within the respective cell in
a non-i.i.d. manner following the former case.

B. Experiment Results and Discussions

Comparison with Baselines: In Fig. 2, we compare our
proposed HIST algorithm with the traditional hierarchical
FedAvg (denoted as HFedAvg in our figures) where the
full model is communicated over the network. We compare
their performance in terms of testing accuracy under different
numbers of cells, N → {2, 3, 4, 5}. The x-axis here repre-
sents the communication load which quantifies the volume of
parameters transmitted by each client, where the unit is set
to the load of a full-model transmission. For each client, the
communication cost per global round is equal to 1

N

E

H
times the

load of a full-model transmission. Here, E/H represents the
number of edge aggregations per global round. We set H and
E to 40 and 200, respectively. As shown in Figs. 2a and 2b, the
proposed HIST algorithm outperforms hierarchical FedAvg in
terms of testing accuracy at the same levels of communication
consumption for both data distribution settings. Additionally,
as N increases, the non-i.i.d. extent of data among clients
becomes more pronounced, leading to performance degrada-
tion for hierarchical FedAvg. In contrast, the proposed HIST

achieves a higher testing accuracy when N increases from
N = 2 to N = 4. This is because, for HIST, the per-round
communication cost per client decreases as the number of cells
increases. However, when we increase the number of cells to
N = 5, HIST also suffers performance degradation. This can
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Fig. 4: The impacts of aggregation periods H and E on the
convergence performance.

be attributed to the submodel getting too small to effectively
handle the task, highlighting the trade-off between training
costs and testing accuracy.

Fig. 3 compares the communication cost of HIST and
hierarchical FedAvg for achieving the desired accuracy under
both data distribution scenarios. This experiment was carried
out with H = 40 and E = 200. The desired testing accuracy
is set to be 75%. The Y-axis measures the size of parameters
transmitted by each client during the training process as in the
x-axis of Fig. 2. It is observed that HIST needs less communi-
cation to achieve the preset accuracy, which demonstrates the
efficiency of the proposed algorithm over hierarchical FedAvg.
In addition, as the number of cells increases from N = 2 to
N = 4, the communication cost shows a decreasing trend,
which forms a sharp comparison with hierarchical FedAvg.
This further demonstrates the advantage of HIST.

Effects of System Parameters: The impacts of the periods
of the edge aggregation H and the global synchronization
E/H on the convergence behavior are demonstrated in Fig.
4. The x-axis represents the number of global model synchro-
nizations at the cloud server. We consider the 3-cell case (i.e.,
N = 3) where 60 users are uniformly distributed across these
cells without overlapping. As E/H increases from 5 to 10
to 15, HIST attain a better convergence performance, which
is witnessed by both Figs. 4a and 4b. This is because a large
E/H gives rise to a lower communication load for each round.
When H increases from 20 to 40, and from 40 to 60, Fig.
4b shows that the convergence speed of HIST first enjoys an
acceleration and then a degradation, where the latter is induced
by data heterogeneity. This phenomenon also fits well with our
theory, where we show that there is an upper bound for the
number of local updates. Fig. 4b shows that HIST has a better
performance as H increases from 40 to 60. This is because
this data distribution exhibits lower data heterogeneity, which
allows for a larger number of local updates.

VI. CONCLUSION

In this paper, we developed a hierarchical federated sub-
model training algorithm termed HIST, that is efficient in
terms of communication, computation, and storage by inte-
grating independent model training with local training. We
investigated its convergence behavior with uniform submodel

partitioning under non-convex loss functions and non-i.i.d.
data settings, and characterized the impacts of non-i.i.d. extent,
the number of periods of edge and global aggregations, and the
number of cells on the convergence performance. We show that
HIST converges with rate max

{
O

(
Ñ

1
2 T

↗1
2

)
,O

(
T

↗1
2

)}
to

a neighborhood of a stationary point of the global loss func-
tion. Simulation results show that HIST is able to achieve the
target accuracy much faster with less training costs, compared
to the standard hierarchical FedAvg.
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