
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Toward FPGA Intellectual Property (IP) Encryption from
Netlist to Bitstream
DANIEL HUTCHINGS, Brigham Young University, USA
ADAM TAYLOR, Brigham Young University, USA
JEFFREY GOEDERS, Brigham Young University, USA

Current IP encryption methods offered by FPGA vendors use an approach where the IP is decrypted during the
CAD flow, and remains unencrypted in the bitstream. Given the ease of accessing modern bitstream-to-netlist
tools, encrypted IP is vulnerable to inspection and theft from the IP user. While the entire bitstream can be
encrypted, this is done by the user, and is not a mechanism to protect confidentiality of 3rd party IP.

In this work we present a design methodology, along with a proof-of-concept tool, that demonstrates how
IP can remain partially encrypted through the CAD flow and into the bitstream. We show how this approach
can support multiple encryption keys from different vendors, and can be deployed using existing CAD tools
and FPGA families. Our results document the benefits and costs of using such an approach to provide much
greater protection for 3rd party IP.

ACM Reference Format:
Daniel Hutchings, Adam Taylor, and Jeffrey Goeders. 2024. Toward FPGA Intellectual Property (IP) Encryption
from Netlist to Bitstream. ACM Trans. Reconfig. Technol. Syst. 1, 1, Article 1 (January 2024), 28 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Modern field-programmable gate array (FPGA) design flow often consists of creating large complex
systems of many interconnected intellectual property (IP) blocks. These IPs could be obtained from
the FPGA vendor, from other departments within the designer’s organization, or licensed from
third parties. Whether for reasons of national security, maintaining trade secrets, or mitigating
risk of theft and unlicensed reuse, the IP designer may want to keep the IP confidential when
distributing it for use in a customer’s design.
While current commercial FPGA design tools follow an industry-standard method to encrypt

IP details (IEEE-1735-2014 [1]), this approach is not robust enough to prevent an attacker from
gaining access to the full details of the IP. For example, in [2], Speith et al. demonstrate weaknesses
in the IEEE-1735 approach that allow them to obtain the IP encryption keys for all major electronic
design automation (EDA) vendors, including the most popular FPGA vendors. Once these keys are
obtained, the authors are able to, "decrypt, modify, and re-encrypt all allegedly protected IP cores
designed for the respective tools, thus leading to an industry-wide break." Such an attack allows
the IP user to gain access to the full details of the IP, including the ability to reconfigure the IP,
modify it, or even sell it as their own.

Authors’ addresses: Daniel Hutchings, danh444@byu.edu, Brigham Young University, 450EB, Provo, Utah, USA, 84602; Adam
Taylor, adftaylo@byu.edu, Brigham Young University, 450EB, Provo, Utah, USA, 84602; Jeffrey Goeders, jgoeders@byu.edu,
Brigham Young University, 450EB, Provo, Utah, USA, 84602.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1936-7406/2024/1-ART1 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

HTTPS://ORCID.ORG/0009-0001-7712-5923
HTTPS://ORCID.ORG/0009-0009-7651-2129
HTTPS://ORCID.ORG/0000-0002-9822-6926
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0009-0001-7712-5923
https://orcid.org/0009-0009-7651-2129
https://orcid.org/0009-0009-7651-2129
https://orcid.org/0000-0002-9822-6926
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

Soft IP
</>

Customer RTL

IP

Hard IP

CAD Tools Bitstream

Hard IP

Key Recovery Attack

Soft IP
</>

IP Netlist

Customer RTL Custom Bitstream

Hard IP

IP

Hard IP

IP
Config

IP
Config

IP
Config

IP
Config

IP

Netlist Extraction Techniques

IP
Netlist

IP
Netlist

CAD Tools

IP IP

IP

(a) IP encryption approach used by current tools. IP is decrypted during the CAD flow, and remains unen-
crypted in the bitstream. The IP is vulnerable to inspection and theft from the IP customer, through either
key recovery attacks [2], or netlist extraction methods (Section 2.1).

Soft IP
</>

Customer RTL

IP

Hard IP

CAD Tools Bitstream

Hard IP

Key Recovery Attack

Soft IP
</>

IP Netlist

Customer RTL Custom Bitstream

Hard IP

IP

Hard IP

IP
Config

IP
Config

IP
Config

IP
Config

IP

Netlist Extraction Techniques

IP
Netlist

IP
Netlist

CAD Tools

IP IP

IP

(b) Proposed IP encryption approach. IP remains partially encrypted through the CAD flow and into the
bitstream. The IP is protected from inspection and theft from the IP customer. Multiple IP vendor keys can be
supported, although only hard (post-synthesis netlist) IP are supported.

Fig. 1. IP Encryption Approaches. In the diagrams above, both soft IP and hard IP are shown. Soft IP (illustrated
with the </> symbol) refers to RTL code that may be parameterizable to generate different Hard IP netlists.
Hard IP (illustrated with AND-gate symbols), refers to a post-synthesis structural netlist that contains a
collection of connected FPGA primitives.

Even if an IP customer does not have the capability for a sophisticated attack that recovers
encryption keys from program memory, current FPGA tools expose significant netlist information
of the encrypted IP, allowing a user of encrypted IP to reconstruct the post-synthesis netlist with
some simple Tcl scripting. Furthermore, recent bitstream-to-netlist tools provide a fully automated
way to obtain a plaintext netlist of encrypted IP [3]–[8]. These vulnerabilities are discussed in more
detail in Section 2.1, and illustrated in Figure 1a.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:3

In this work we explore a fundamentally different approach to IP protection. Rather than allowing
the CAD tools to decrypt the IP, we propose a method where the full details of the IP remain hidden
from the CAD tools, preventing IP theft from the attacks discussed above. This novel approach
centers around partially encrypting IP netlists in such a way that allows the CAD tools can still
operate on the netlist, while still preventing the user from uncovering the full details of the IP
netlist. The IP remains partially encrypted in the bitstream, and is only decrypted during FPGA
configuration. This approach is illustrated in Figure 1b.

1.1 Outline
This paper begins with Section 2 defining the threat model addressed by this work, with additional
details on vulnerabilities of existing IP protection methods, and bitstream encryption approaches.
Section 3 then discusses related work in the field of IP protection.
Section 4 presents our general approach of partially encrypting IP through the CAD flow. This

includes a discussion on trade-offs between how aggressively the IP is partially encrypted, with
the ease of creating CAD tools capable of operating on the partially encrypted IP. The section also
discusses approaches for decryption during FPGA configuration, including how to keep decryption
keys hidden from the user. This section also includes a discussion on motivating deployment
scenarios where the proposed approach would be useful.
Section 5 presents a proof-of-concept tool that demonstrates one possible implementation of

our proposed IP encryption framework. Our implementation provides a multi-vendor solution
(meaning IP from different vendors can be encrypted by different vendor keys), works with an
existing commercial FPGA tool (Xilinx Vivado), and can be deployed using an existing FPGA
device family (Xilinx 7-series). Section 6 provides experimental results of our proof-of-concept tool,
detailing resource overheads, CAD and configuration runtimes, and a verification strategy.
Preventing the CAD tools from having full observability of the IP provides strong security

benefits, but also comes with notable limitations to the tools available to the IP customer. We
discuss the limitations and considerations of our approach in Section 7. Despite these limitations,
we maintain that our proposed approach still provides substantially better IP protection than
current methods, and should be considered for security-sensitive organizations.

1.2 Contributions
The key contributions of this work are:

• The novel strategy of partially encrypting IP from netlist to bitstream, using techniques
where the CAD tools can still operate on the netlist.

• A proof-of-concept implementation that demonstrates how this can be done with existing
FPGA tools and devices, including overcoming major challenges, such as:
– how to perform per-IP decryption using an existing FPGA device,
– how decryption keys can be kept hidden from the FPGA user, despite them having

access to the configuration circuitry and the physical FPGA, and
– dealing with optimizations performed by the CAD tool on the encrypted netlist.

• Experimental results documenting overhead costs for this approach, including impact on
resource usage, CAD runtime and configuration runtime.

2 THREAT MODEL
In this work we are assuming an attacker has access to encrypted IP, and is seeking to obtain the
original IP RTL, or the post-synthesis IP netlist. This attacker may be a designer at an organization
that has purchased or licensed the IP for use in their product, and is seeking to reverse-engineer

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

the IP for their own use. Throughout this paper we refer to this potential attacker as the IP User or
IP Customer. The end goal of this work is to prevent the attacker from being able to obtain the full
details of the IP netlist, which they could then use to reverse-engineer the IP, modify and/or re-sell
the IP, or gain secret internal details, such as trade secrets, algorithmic details, or cryptographic
keys.
To clarify, this work is not focused on protecting the deployed bitstream from a user of the

production system or product. Existing bitstream encryption methods are used to protect against
such an attack, which is a distinct problem from the one addressed by this work. To reiterate, we
are focusing on protecting the full IP details from a user that has legitimate access to use the IP in
their design.

2.1 IP Encryption and Extraction Methods
Current FPGA vendors support IP encryption, following the IEEE-1735-2014 standard. This standard
allows IP vendors to encrypt their IP, and distribute it to users of the CAD tool. The CAD tool
contains the necessary cryptographic keys in order to decrypt and operate on the IP. The tools
perform due diligence to ensure that the tool user is able to incorporate the encrypted IP into their
design, and compile the design to bitstream, without ever having access to the unencrypted IP. The
user is prevented from inspecting the IP netlist, and is only able to view the IP as a black box. While
the tools prevent the user from viewing the IP netlist, the decrypted IP details are still available
internally, allowing for full CAD optimizations, simulation, and bitstream generation.

In this paper we detail our proof-of-concept tool that is implemented with Xilinx FPGAs and the
Xilinx Vivado CAD tool suite. Given this, some of the details and terminology we use are specific
to Xilinx devices and tools; however, this is not meant to suggest that these are Xilinx-specific
vulnerabilities. Rather, the vulnerabilities we discuss relate to the fact that FPGA CAD is performed
on the unencrypted netlist, and that the bitstream is not encrypted. This is common to all FPGA
vendors.

Encrypted IP can be provided to the user in two forms: soft IP, and hard IP. Soft IP is provided
as RTL, and is encrypted by the CAD tool during synthesis. It may contain several configuration
options to enable or disable features of the IP, change data widths, bus protocols, etc. Many of the
IP provided as part of Vivado’s IP library fit into this category as they can be configured in the GUI,
but the RTL and resulting netlist remain encrypted (in fact, even the Tcl code to manage the logic
behind the configuration GUI is encrypted).
Hard IP is provided as a post-synthesis netlist, and cannot be further configured by the IP user.

However, the IP is still decrypted by the CAD tools, enabling it to be integrated into the overall
design, and enabling cross-boundary optimizations with the user’s own RTL.

While the current industry-standard approach makes some effort to hide the IP netlist from the
user, we know of three major methods that allow the user to obtain the encrypted IP, described in
the next subsections.

2.1.1 Key Recovery Attacks. With the IEEE-1735 approach, the CAD tools contain the necessary
decryption keys to decrypt the IP. If an attacker is able to recover these keys from the CAD tools,
they would be able to perform a full decryption of the IP. This would include not only obtaining
the post-synthesis netlist (ie. hard IP), but also being able to decrypt the original configurable soft
IP. Unfortunately, such attacks have already been demonstrated. In [9], Chhotaray et al. discuss
cryptographic vulnerabilities in the IEEE-1735 standard, exposing the keys to possible theft. In [2],
Speith et al. demonstrate the feasibility of such attacks, and successfully recover IP encryption keys
from seven different EDA vendors, including from the Intel, Xilinx and Lattice FPGA tools. The
attacks are performed through analysis of the CAD tool’s program memory. With these keys, the

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:5

authors are able to decrypt, modify, and re-encrypt all protected IP cores. This exposes not only
the threat model discussed in this paper (IP theft), but also the possibility of injecting hardware
Trojans into encrypted IP.

2.1.2 Tcl-Based Netlist Recovery. In our experience with the Vivado tool (version 2020.2), when
viewing an implemented design checkpoint containing encrypted IP, many details of the IP cells
are hidden from the user. For example, the cell properties, such as lookup table (LUT) equations, are
hidden, preventing the user from viewing the full netlist details of the IP. However, not all details
are hidden. Cell and hierarchal names appear to be visible, and in order to view placement and
routing information of the design, the user is able to see the types of cells that are instanced, and the
interconnections between them. While cell properties are hidden, with some programming effort,
additional information can be recovered. For example, the mapping of logical Cell to physical BEL
(eg. LUT, FF) is not hidden, and the physical configuration properties (eg. CONFIG.EQN property)
of the BELs are not encrypted. With some Tcl scripting, it is possible to utilize this information to
mostly reconstruct the netlist of the encrypted IP. This method would only recover the current
configuration of the IP (hard IP), not the original configurable RTL (soft IP). In addition, this
method is highly implementation-dependent, and different CAD tools may hide different amounts
of information.

2.1.3 Bitstream-to-Netlist Tools. While FPGA CAD tools could be patched to make the above
attacks more difficult (and perhaps newer versions of the tool already do this), the fact remains
that the IP is no longer encrypted in the final bitstream, and a capable user could still obtain the
IP netlist from the bitstream. Although bitstream formats have been historically kept proprietary,
many modern open-source tools have documented commercial bitstream formats, and even provide
automated bitstream-to-netlist tools [3]–[8]. Our experience has been that these tools are quite
straightforward to use; new research students in our lab have been able to use them with only a few
hours of learning. In fact, the tools are sufficiently accurate that in another project we have been
able to utilize them to prove design equivalence between netlists and bitstreams in two different
FPGA families [10], [11]. Given the bitstream format is tied to the physical FPGA device architecture,
there is no way to simply remove this vulnerability through updating the CAD tools.

However, this approach has limitations. The bitstream contains no hierarchy, signal, or instance
names, so the reversed netlist that is produced is a flat, nameless netlist. This makes it much more
difficult for an attacker to understand. However, there is also a growing body of research on gaining
higher level understanding of such netlists [12]–[16]. In addition, while the attacker would need
to separate the IP from the rest of the design logic, it would be trivial for them to generate a
design containing only the encrypted IP they were interested in obtaining. Finally, like the previous
method, this method would only gain access to a netlist of the IP as it has been configured, not
the original configurable RTL code. However, the attacker could reconfigure the IP and repeat the
process repeatedly to gain a netlist of any desired configuration of the IP.

2.2 Relevance of Bitstream Encryption
While FPGA vendors offer bitstream encryption technology, this is not designed to function as a
protection mechanism for third-party IP, and does not address the threat model discussed in this
paper. Bitstream encryption is applied by the system designer, and is used to protect a deployed
system. It prevents attackers who may gain access to the physical FPGA from obtaining the
unencrypted bitstream, and thus the netlist of the entire design. However, the IP customer who
is designing the system always has access to the bitstream in unencrypted form, since they are
the ones responsible for applying the bitstream encryption. There is currently no mechanism to
prevent the IP customer from obtaining the unencrypted bitstream.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

3 RELATED WORK
There is some related work in the field of protecting third party IP for FPGAs. Similar to our work,
these works focus on preventing the IP customer from being able to view the full details of the
IP netlist. Some works also focus on enforcing licensing restrictions on the IP, such as preventing
the IP from being used in more than a certain number of designs, or beyond an expiry date of the
license.

In [17], Kean discusses an IP protection scheme that also proposes encrypting the IP and generat-
ing an encrypted bitstream. However, the paper appears to be a conceptual proposal, and does not
contain any discussion or details on encryption schemes for the IP, or how the CAD flow would
successfully operate on the encrypted IP and incorporate it into the user’s design. In addition, the
encrypted bitstream is not designed to be decrypted by the FPGA device, but rather by a trusted
computer system that is connected to the internet and connected to the FPGA. This trusted system
contains the configuration keys to decrypt the design prior to programming the FPGA. While such
a system provides high flexibility (eg could enforce licensing restrictions), deploying such a system
in practice may be challenging. In addition, the system would be in control of the attacker, and
susceptible to the same key recovery attacks discussed in Section 2.1.
In [18], Gaspar et al. propose an approach that can be used in a multi-FPGA system. In their

work, each encrypted IP is used on a separate FPGA, negating the need for CAD tools to operate on
the encrypted IP and incorporate it into the user’s design. The work focuses on developing a secure
boot-up process on each FPGA that is able to retrieve the encrypted IP and configure it to the FPGA,
as well as a secure communication scheme between the various FPGAs. While this appears to be
an effective approach, the requirement of a separate FPGA per IP may be too restrictive for many
applications. In addition, it appears that the IP would need to be pre-compiled for a specific FPGA
device by the IP vendor.

In [19], [20], Kepa et al. also focus on protecting the IP from the user through encryption. Their
work proposes that IP vendors place and route their design for a specific partial reconfiguration
slot on the FPGA. This fully implemented IP can then be encrypted and distributed to the user. The
FPGA system contains a Secure Reconfiguration Controller (SeReCon), which is able to decrypt the
IP and reconfigure the partial region with the IP. The SeReCon is also designed to enforce licensing
restrictions, such as pay-per-use and time-limited licensing. While the SeReCon architecture
provides many IP protection features, the requirement of IP being pre-implemented for a specific
partial reconfiguration slot may be too restrictive for many applications. In addition, the work does
not discuss how IP decryption keys are securely transferred from the IP vendor to the SeReCon
trusted controller without interception by the IP user.

In comparison with these works, our work focuses on a substantially different approach where
IP does not need to be pre-implemented for a specific FPGA device or region, but can be compiled
into the user’s design using existing design methods. This provides a much more user-friendly
design experience, and is a similar design experience to existing IP encryption methods used by
the commercial CAD tools. This flexibility comes at a cost, as our approach requires only partially
encrypting the IP. Depending on how aggressively the framework encrypts the IP, cell types and
interconnect patterns may still be visible to the user. However, in the worst case, we are not exposing
any more information than is already readily visible when inspecting encrypted IP in current FPGA
CAD tools, while ensuring that the encrypted IP data is not vulnerable to the attacks discussed in
Section 2.1.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:7

User Logic Encrypted IP Logic

(a) Cell-level encryption, specifically encrypting LUT logic functions

User Tiles Encrypted Tiles

IP from different vendors could be encrypted with different keys

Normal Tiles Encrypted Tiles

Placement
algorithm swaps

CLB tiles

Intertile connectivity could be obfuscated by adding extra fake nets (ie nets
have multiple drives), that aren’t actually enabled on FPGA programming.

(b) Tile-level encryption

Fig. 2. Alternative approaches for partially encrypted FPGA IP. In this paper we demonstrate a proof-of-
concept of the LUT-level encryption approach.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

4 APPROACHES FOR PARTIALLY ENCRYPTED IP
In this section we describe our vision for an IP protection solution, which would support partial
encryption of IP, from netlist to bitstream. Later, in Sections 5 and 6 we present and evaluate our
proof-of-concept tool, which provides one possible implementation of these ideas, and is designed
to work with existing FPGA devices and CAD tools. However, in this section we provide a broader
description of our vision, independent of any specific implementation, or current FPGA devices.
Ideally, a solution supporting IP encryption would have the following properties:

(1) Netlist remains (partially) encrypted during the entire CAD flow, including placement,
routing, and bitstream generation.

(2) Support for multiple keys, allowing different IP vendors to encrypt their netlists with
different keys.

(3) The FPGA device can support a bitstream with per-IP encryption, and decrypt the design
during configuration.

These goals and requirements are described further in the following subsections.

4.1 Encryption during CAD flow
While ideally a third party would be able to provide a user with a completely encrypted version of
their IP, this would prevent the CAD tools from being able to operate on the design. Even for a
fully synthesized and technology mapped design, the CAD tools still need to be able to perform
packing, placement, routing, and bitstream generation. Thus, the IP must be encrypted in a way
that allows the CAD tools to operate on the design, while still preventing the user from being able
to uncover the full details of the IP.

4.1.1 Cell-Level Encryption. One approach to this problem is for the IP vendor to synthesize their
netlist, and then partially encrypt it. For example, the logic functions of the LUTs could be encrypted,
while the routing between the LUTs is left unencrypted. Other cells could also have properties
encrypted, such as RAM or flip-flop initialization values. With this information the CAD tools
could still perform packing, placement, and routing. Even bitstream generation could be performed,
provided that the properties could remain encrypted in the generated bitstream.
Figure 2a illustrates the concept of partially encrypting LUT values, and shows Xilinx-like

slices where LUTs maybe be a mixture of encrypted and unencrypted. Once challenge that can be
encountered is that modern LUTs are fracturable, allowing potentially two logic functions to be
mapped to the same physical LUT. As we demonstrate later in our proof-of-concept tool, as long as
this is accounted for, it is not an issue, and in fact the same physical LUT can be shared by different
IP encrypted with different keys.

Extra care must be taken to ensure that once the IP vendor has synthesized and encrypted their
netlist, it remain largely unchanged through the CAD flow. We show in our proof-of-concept tool
that certain physical optimizations can be accounted for (eg. reordering LUT inputs); however, other
more aggressive optimizations, such as re-optimizing the logic across LUTs, or cross-boundary
optimizations between IP, may not be possible to handle.
This approach of encrypting cell properties may not be possible with every commercial FPGA

CAD flow, and may require a custom CAD tool to achieve; however, in Section 5 we show how it is
at least possible to achieve this with the Xilinx Vivado tool.

4.1.2 Tile-Level Encryption. While encrypting logic functions hides some details of the IP, exposing
the full connectivity pattern of the IP may not be desireable.

Another approach would be to have the IP vendor perform packing of their post-synthesis netlist
into tiles, along with intra-site routing, and then encrypt the entire tile. This approach is illustrated

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:9

in Figure 2b. Since many nets in a design are absorbed into routing internal to tiles, the connectivity
of these nets would be encrypted and hidden from the user.

While tile-level encryption would be better at hiding the details of the IP, it comes with several
drawbacks:

• LUTs from different IP would no longer be able to share the same physical LUT, or even the
same tile, likely degrading quality of results (QoR). The tile usage would likely increase due
to to fragmentation, and critical path may increase as a result. If the critical path crossed IP
boundaries, the QoR degradation would be even more significant.

• Certain physical optimizations would be prevented, such as reordering LUT inputs to ease
routing congestion. This would likely also lead to worse QoR.

• Finally, such an approach would also be much harder to achieve with a commercial CAD
tool. While fake tile information could be provided to the commercial CAD tool, it may not
be possible to prevent some of the physical optimizations that would break the approach.
A custom CAD tool could be used to support this approach, but of course this would
substantially increase the development effort.

4.1.3 Beyond Tile-Level Encryption. If security warranted even more aggressive optimization
beyond tile-level encryption, it may be possible, but would likely require even more drastic CAD
tool support and QoR cost. For example, one could encrypt multiple tiles together along with routing
channels between these tiles; however, it would likely prevent any other routes from passing through
these channels. Alternatively an encrypted IP could contain fake connections to better obscure the
connectivity pattern, which could be removed at decryption and configuration time, at the expense
of increased routing congestion. However, we believe that such drastic approaches would likely be
too expensive and complicated to implement. At that point it would likely be better to resort to
having encrypted IP be pre-implemented for entire partially reconfigurable regions, as has been
done in some previous works [19], [20].
In our proof-of-concept tool described in Section 5, we demonstrate the feasibility of the first

approach, cell-level encryption. While tile-level encryption would be interesting future work, it
would require more drastic CAD tool changes.

4.2 Support for Multiple Keys
Ideally a good framework for IP encryption would allow for different IP to be encrypted with
different encryption keys. This would allow a user to obtain encrypted IP from a variety of sources,
and would prevent these IP providers from being able to view each other’s IP.

4.3 FPGA Configuration and Decryption
While generating a bitstream with encrypted IP is useful, this is only half of the challenge. The
FPGA device must also be able to decrypt the IP during configuration. The decryption circuitry must
contain the various encryption keys, and metadata within the bitstream would need to indicate
which parts of the bitstream contents are encrypted by which vendor. In addition, it is not sufficient
to simply encrypt certain bits of the bitstream, as physical optimizations performed by the CAD
tool necessitate providing extra metadata along with the traditional bitstream bits. For example,
in our proof-of-concept tool, we need to capture and include optimizations such as LUT input
reordering, fracturable LUT combining, and other optimizations in the included metadata (more
details are provided later in the paper).
While current FPGAs typically support encrypted bitstreams, it is expected that the entire

bitstream is encrypted with a single key, and the decryption and configuration circuitry does not
support selectively decrypting different parts of the design with different keys. In addition, there is

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

no logic to receive the previously mentioned metadata of physical transformations, and update the
bitstream appropriately.

Given these limitations, we identify two possible approaches to support decryption of IP during
configuration:

(1) New FPGA Devices: One possible solutions is to design new FPGA devices where the
configuration circuitry is enhanced to support decryption of IP. While we do not explore
this approach in detail in this paper, we provide a brief discussion in the next subsection.

(2) A Static “Loader” Shell: An alternative approach that uses existing FPGA devices is to
build the required configuration circuitry into static logic in the FPGA fabric, restricting
the user’s design to a subset of the device. This approach is used in our proof-of-concept
tool, and discussed in the subsequent subsection.

4.3.1 Enhancing FPGA Architecture to Support Encrypted IP. The ideal solution to configuring
bitstreams with encrypted IP would be to have all of the required functionality built into the
configuration circuity of the FPGA itself. This would require the following modifications to the
FPGA architecture:

(1) Fine-gained decryption using multiple keys: Most FPGAs already contain a mecha-
nism for decrypting the bitstream during configuration, and contain hardware-accelerated
decryption. We believe this circuitry could largely be reused, with some modifications to
choose which key to use for decryption for different parts of the bitstream. Although the
area overhead of the changes may be small, the runtime overhead may be more significant.
Depending on the encryption scheme used, the interval at which the encryption needs to
switch keys may vary. For cell-based encryption, which is very fine-grained, the key may
need to change quite often, which would likely add latency to the configuration process.

(2) Transformation circuitry: Additional circuitry would be required to accommodate trans-
formations performed on the encrypted regions by the CAD tool post-synthesis. For example,
in our proof-of-concept tool, we detect when LUT inputs are re-ordered by the CAD tool
during implementation, and add this reordering information to metadata that is sent to
the FPGA along with the bitstream. After the original logic function (which was encrypted
post-synthesis before any input reordering) is decrypted by the configuration logic, it then
needs to use this metadata to update the logic function accordingly. There are other similar
transformations that we discuss later in the paper. Handling these transformations would
require additional circuitry in the FPGA configuration logic, although for some modern
FPGAs that contain dedicated configuration processors, this may be possible to implement
in software.

(3) Key storage: The FPGA device would need to contain a mechanism for inputting and
storing multiple keys. Many current devices use eFuses to store the bitstream decryption
key, which is a write-only, write-once mechanism. This same mechanism could be expanded
to support multiple keys.
The main difference is that with current technologies it is usually the system designer

that is loading the key onto the FPGA eFuses; however, with our proposed approach, the
IP vendors would be loading the keys. The write-only nature of the eFuses would ensure
that the user could not read the keys back from the FPGA. However, one would still need a
way for the IP vendor to physically perform the programming. This may necessitate the IP
vendor having physical access to the FPGA device, or having a trusted third party perform
the programming. We discuss some scenarios in Section 4.4 where this may be practical.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:11

FPGA

User
Partition

“Loader”
(Shell Config.

Circuitry)

Custom Bitstream

IP
Config

IP
Config

Fig. 3. Loader Shell

4.3.2 A Static “Loader Shell". While we advocate for adding the above features to the configuration
circuitry of future FPGA devices, we also explore the more practical scenario of targeting existing
devices. The additional configuration features described above can be implemented in a static
region of FPGA logic, which we refer to as a “Loader Shell”, with the user’s design being loaded
into a reconfigurable partition of the FPGA via partial reconfiguration. This concept is illustrated
in Figure 3. The loader design contains the functionality to receive the custom bitstream over a
communication channel (eg. UART, USB), decrypt and patch the bitstream, and configure the user
partition.
The loader design must contain the decryption keys, and as such, must be kept hidden from

the user. This can be achieved by leveraging existing FPGA bitstream encryption features, which
allows for the entire loader design to be encrypted and unreadable by the user. The loader shell,
along with the decryption keys, would need to be maintained by a trusted third party.

While the Loader shell approach allows our encrypted IP framework to be deployed on existing
FPGA devices, the restriction of the user logic to a partition, as well as the need for a trusted
third party are notable disadvantages versus a custom FPGA device with enhanced configuration
circuitry.
In addition to the broad requirements mentioned here, several subtle implementation details

must be carefully considered in order to ensure that the keys stored in the loader shell cannot be
easily recovered by the user. Our proof-of-concept Loader Shell discussed in Section 5.3 discusses
many of these details.

4.4 Motivating Deployment Scenarios
While we believe our approach for IP encryption is effective at protecting IP details, we recognize
that the effort required to deploy such a solution may be substantial, and the limitations (which
we discuss later in Section 7) are not trivial. As such, we do not expect that this would be used in
all design scenarios. However, as motivation, we describe a couple scenarios where our proposed
framework would work well.

(1) Government/Defense IP Repository: In the case of a large state government, there may be
several organizations that create IP and may want to share and collaborate with other
organizations. To limit exposure of sensitive designs to fewer parties, it may be desireable
to encrypt IP before distribution. In addition, if the IP were to contain cryptographic keys
(for example, in communications systems), it may be necessary to allow other organizations
to use the IP in their systems without disclosing the underlying keys. In this scenario,
each organization may have their own key to encrypt their IP, with a central organization
maintaining the keys and programming them into the FPGA devices.

(2) Cloud service provider (CSP): An FPGA cloud provider may want to distribute useful IP to
their customers in order to make their cloud offerings more attractive, but may not want

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

to expose the details of the IP. In this case, the CSP could encrypt the IP with their own
key, and distribute the IP to their customers. FPGA cloud providers already operate with
a shell/user region model, where the CSP provides a shell design that is loaded into the
FPGA, and the user places their design in a reconfigurable region. In this case it would be
straightforward to add the Loader logic to the shell, along with the keys for the CSP’s IP. A
shell with the decryption keys stripped out can be used by the customer to implement their
design. Given that the CSP maintains ownership of both the FPGA and the shell design that
contains the decryption keys, there is very minimal risk of IP theft.

5 PROOF-OF-CONCEPT TOOL
This chapter describes our proof-of-concept flow that partially encrypts IP all the way through
placement, routing, and bitstream generation. It demonstrates, beyond basic plausibility, how to deal
with challenges such as the optimizations the CAD tools make on the encrypted design, how to
decrypt the vendor IP, and how to keep the encryption keys hidden from the user.

Our general approach is to remove and encrypt LUT INIT properties in the protected IP, thereby
hiding significant internal details of the IP, while still allowing a commercial CAD tool to operate
on the IP. The produced bitstream will not contain the correct LUT INIT values, so intelligent
configuration logic is required to decrypt LUT INIT values and correct them on a per-LUT basis.
Our tool consists of three main components:

(1) Vendor Flow: Allows the IP designer to partially encrypt the IP, as described in Section 5.1.
(2) User Flow: Allows the user to instantiate one or more encrypted IP in their design, and

generate a partially encrypted bitstream. This is detailed in Section 5.2.
(3) Loader: A static region that contains the decryption and configuration circuitry, and hides

the decryption keys from the FPGA user. Described in Section 5.3.

5.1 Vendor Flow: IP Encryption
The IP vendor flow is shown in Figure 4, and involves the IP vendor first performing standard
Vivado Synthesis on their RTL to produce a synthesized design checkpoint, which contains the
design netlist. The synthesis is performed out-of-context, and with full hierarchy flattening enabled.
The vendor then runs a provided Python script that takes the design checkpoint, along with a
vendor-selected AES encryption key. The script then performs the following steps:

• RapidWright [21] is used to load the design checkpoint and locate all LUTs in the design.
• For each LUT, the script:

– encrypts the INIT property, padded with a random nonce to prevent identical LUTs
from having the same ciphertext,

– writes out the unique hierarchal LUT name and INIT ciphertext to a file, and
– modifies the original INIT to be a logical-AND of all the LUT inputs. This keeps any

inputs from being optimized away later on in the design flow.

AES Encryption Key

IP Post-Synth
Netlist

(no LUT INIT)

LUT INIT
Names &

Ciphertext

IP
RTL

Synthesized
Design

Checkpoint

Vivado
Synthesis

En
cr

yp
ti

o
n

Sc

ri
p

t

Fig. 4. IP Vendor Flow

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:13

Note: It is not sufficient to simply encrypt the INIT properties in place. As the CAD tools
perform implementation of the IP, they may re-order LUT inputs, causing a shuffling of the
INIT bits. It is not valid to perform this shuffling on the ciphertext, as it would corrupt the
data. Instead, the ciphertext must be kept separate and untouched.

• The new netlist is written out to a Verilog file (all INIT properties have now been effectively
removed), and the DONT_TOUCH property is applied to the module via in-code pragma.
This way, wherever the netlist is instantiated by the user, the module hierarchy and LUT
names will remain the same, and not merged with other logic. An example snippet from an
encrypted netlist in shown in Listing 1.

(∗ DONT_TOUCH = " yes " ∗)
module d e s 3 _p e r f (

desOut ,
des In ,
dec ryp t ,
key ,
c l k

) ;
. . .

LUT3 # (
. INIT (8 ' h0) # INIT r e p l a c e d to AND
) LUT_instance_name (

. I 0 (s i g n a l 1) ,

. I 1 (s i g n a l 2) ,

. I 2 (s i g n a l 3) ,

.O(s i g n a l 4)
) ;

. . .
endmodule

Listing 1. Code snippet illustrating a portion of an encrypted IP netlist.

The final produced netlist, along with the LUT names/ciphertext file, is provided to the IP user.
Although our tool does not rename and anonymize LUT names, it would be trivial to do so, and
would remove any details of the IP that the user could obtain by knowing internal instance names.

In our tool, each LUT is encrypted separately. This is done because our Loader system (described
later in Section 5.3), performs configuration in a streaming fashion, and does not have enough
memory to receive the entire user bitstream. As such, when the LUTs are decrypted in the device,
they need to be decrypted individually, potentially in a different order than they were encrypted.

5.2 User Flow
The user flow is shown in Figure 5, and details the steps required for an IP customer to instantiate
encrypted IP in their design, and generate a special bitstream that can be loaded onto the FPGA.

The encrypted IP netlist created as described previously is still a valid Verilog netlist (albeit LUT
INIT properties are meaningless); as such, the user can instance it in their design in the same they
would with regular IP.

Since our Loader Shell architecture requires the user to target a partial region of the FPGA, the
user would follow a standard partial reconfiguration design flow. This involves the user synthesizing

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

their RTL to produce a design checkpoint, which is then assigned to the reconfigurable partition.
The static portion of the FPGA (the Loader Shell) is provided to the user as a pre-implemented
design checkpoint. This Loader Shell is identical to the one that will be present on the deployed
FPGA, except that the encryption keys have been removed from memory. Standard implementation
and bitgen can then be run by the user to produce a partial bitstream. The INIT bits in the bitstream
corresponding to encrypted IP will still be invalid and meaningless at this point, meaning that even
with bitstream-to-netlist reverse engineering tools, the user cannot obtain the protected IP.

It should be noted that although the user is targeting a reconfigurable partition, there is no
restriction to place separate IP in different partitions, like in [19], [20]. Rather, the partition is one
large region that contains all of the user’s design, and would be made as large as possible on the
device to maximize the resources available to the user.
Next, the user runs a provided Python script, providing the LUT INIT ciphertext they received

from the IP vendor, along with the implementation checkpoint and partial bitstream produced by
Vivado. The script uses RapidWright [21] to read the implementation checkpoint, and locate all
encrypted LUTs based on their hierarchal name provided in the ciphertext file. The script then uses
RapidWright to generate a collection of implementation metadata that is packaged along with the
partial bitstream and ciphertext. The metadata is required for the Loader to patch the bitstream at
configuration time, and contains the following for each encrypted LUT instance:

(1) Vendor ID: Indicates which IP this LUT belongs to, and thus which key the Loader Shell
should use for decryption.

(2) Logical to Physical Pin Mapping:Mapping of logical LUT inputs to the physical LUT
pins. During implementation Vivado may reorder the LUT inputs to optimize the routing
solution, which requires the INIT property to be shuffled accordingly. This shuffling can
only be done post-decryption, so this pin mapping is provided to the Loader to account for
this optimization before patching the bitstream.

User RTL Top Module

Partial
Bitstream
(Invalid INIT)

Partial
Bitstream

LUT Metadata
Bitstream frame locations,
LUT pin order, Vendor ID

Implemented
Loader

Reconfigurable
Partition

LU
T

IN
IT

C

ip
h

e
rt

ex
t

IP #1
(No INIT)

IP #2
(No INIT)

Synthesized
Design

Checkpoint

Impl. &
Bitgen

Vivado
Synthesis

Custom Bitstream Generator Script

LUT INIT
Cyphertext

Custom Bitstream

Checkpoint

Fig. 5. User Flow, where encrypted IP is instantiated in the user’s design, and a partially encrypted bitstream
is generated.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:15

(3) LUT Sharing Information: The Xilinx 7-series LUT primitive (LUT6_2) can implement
a six-input logic function, or two five-input (or smaller) logic functions provided there
are five or fewer unique input signals. Given this LUT fracturability, a logical LUT can be
assigned to either half (O6 or O5 output) of the LUT6_2 primitive. This affects whether the
LUT utilizes the entire 64-bit INIT value, or just the lower or upper 32 bits. Special care
must be taken here since the LUT6_2 primitive could be shared with other LUTs from the
same encrypted IP, a different encrypted IP, or even non-encrypted user logic.

(4) Physical Location: The tile location of the LUT, along with the base address and word
offset of the LUT’s configuration bits within the bitstream. This information is gathered
using the tilegrid.json file from Project X-Ray [3] for our specific FPGA part.

In most cases, the logical LUTs from the netlist can be found in the implemented design using
RapidWright to do simple name matching. However, certain special cases arise due to optimizations
performed by the CAD tool, that require extra care. One such case arose due to LUT routethrus,
which are LUTs that are used by Vivado in the implemented design to route a net to a flip-flip, but
are not reported as logical LUTs in the netlist. However, they still need to be accounted for in the
produced metadata as they may share a LUT6_2 with an encrypted LUT, and care must be taken to
not overwrite the half of the INIT property that contains the routethru logic.

A similar challenge can occur with constant generating LUTs, which are LUTs that Vivado inserts
in the implemented design to generate a constant value when routing to a traditional constant-
generating primitive may be difficult. Again, care must be taken to include this information in the
metadata to ensure the LUT behavior is preserved.
The final output of the Python script is a custom bitstream shown in Figure 6. The standard

bitstream frames are augmented with additional information, and each frame indicates whether it
can be directly configured to the FPGA (Write Only), or whether the frame contains encrypted LUT
metadata (Write Edit), in which case the frame data is augmented with the necessary ciphertext
and metadata discussed above.

5.3 Loader Shell
Once the user has created the modified bitstream containing the metadata necessary for patching,
the Loader Shell can be used to load the bitstream onto the FPGA. In our implementation we
chose to use a MicroBlaze soft processor to handle the decryption and bitstream patching, as
implementing the functionality in software is much faster to prototype than in hardware. However,
the performance of our Loader is quite slow, and in a real deployment, the decryption and patching
could likely be implemented much faster with custom hardware.

Our Loader Shell architecture is shown in Figure 7, and contains a MicroBlaze processor, a UART
core to receive the bitstream from the user, the decryption keys stored in BRAM, and interface
logic to the Internal Configuration Access Port (ICAP). We tested our system on a Nexys4DDR
development board, containing an Artix-7 100T FPGA.

5.3.1 Configuration Process. Our configuration process proceeds by having a script on the host
computer send portions of the bitstream to the FPGA over UART. The MicroBlaze memory is
limited, and it cannot receive and store the entire bitstream in one transmission, so the bitstream
must be send in pieces, with each piece processed and configured before the next is sent. Bitstream
data for Xilinx FPGAs is broken into frames, which for the Artix-7 family are 101 32-bit words in
length. While it may seem logical to send one frame at a time, this is actually not possible as each
LUT’s 64 INIT bits are spread across four different frames, and we need to be able to decrypt and
patch the entire LUT’s INIT bits at once. We actually elect to send 36 frames (14,544 bytes of frame

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

Modified Bitstream

Header Data
Various Config Register Writes

FAR Write
Frame Address
FDR Write
Frame Data

…
Frame Data

End of Bitstream

Write Only
Number of Config Bytes

Header Data
Various Config Register Writes

FAR Write
Frame Address
FDR Write

Write Edit
Number of Config Bytes

Number of LUT Metadata Bytes
Frame Data

LUT Metadata

Write Only
Number of Config Bytes

Frame Data
End of Bitstream

Stop

Fig. 6. Custom bitstream format that contains a mixture of standard bitstream frames, and custom frames
that contain encrypted LUT metadata.

data plus the metadata shown in Figure 6) at a time, as this represents all of the frame data for a
CLBLL tile.
The loader receives the frames into memory, and must first verify that the frame locations

belong to the region of the FPGA allocated to user logic. This is necessary to prevent the user from
overwriting any Loader logic. Next, the Loader software iterates through all LUT metadata objects,
and:

• Decrypts the INIT value and discards the nonce, using the vendor ID to choose which key
to decrypt it with.

• Inflates the INIT value to 32 or 64 bits (depending on whether the LUT is shared). This is
necessary because the LUTs in the post-synthesis netlist that were originally encrypted
may have had fewer inputs (eg. LUT2, LUT3, etc.), and thus fewer INIT bits. The INIT value
must be inflated to the correct number of bits before it can be patched into the bitstream. In
a standard unencrypted IP flow, an IP instanced in a user’s design would have INIT values
inflated during implementation of the user’s design. This is not possible in our encrypted
flow, as there is no way to apply this inflation transformation on encrypted data. As such,

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:17

Custom Bitstream

User Design
PartitionAES Key

AES Key

IC
A

P

UART

Microblaze

Loader

Fig. 7. Loader architecture, which receives the encrypted bitstream from the user, decrypts the INIT values,
and patches the bitstream before writing it to the ICAP.

the INIT inflation must take place during decryption on the device. Technically, in our flow,
Vivado will inflate the INIT bits of the AND gate we used as a placeholder; however, this
data is meaningless and discarded by the loader.

• Reorders the INIT value based on the logical to physical pin mapping.
• Checks whether another LUT from the netlist shares the same physical LUT. If so, this

second LUT is also processed, and the two resulting 32 bit INIT values are combined into
the two halves of the 64-bit INIT value for the physical LUT.

• Writes the now correct INIT value into the appropriate bit locations in the bitstream.
The locations are determined using the data provided by the segbits_clbll_l.db or
segbits_clblm_l.db files in Project X-Ray [3]. This differs for CLBLLs and CLBLMs so
the tile number field is used to indicate which bits to write to specifically.

When all LUT metadata objects have been processed, the patched 36 frames of configuration data
are written to the ICAP.

It is worth noting that if the Loader functionality were to be implemented in hardware as part of
the FPGA configuration circuitry, the above transformation steps would need to be implemented in
hardware as well. This would add additional hardware costs that may be prohibitive, depending on
the application. Unfortunately we have not yet explored a hardware implementation of the Loader,
and as such, do not have a good estimate of the area overhead.

5.3.2 Key Management. Perhaps the most challenging portion of this project was ensuring that
the decryption keys stored in the loader design remain hidden and inaccessible to the IP user. This
would be easier to accomplish if the FPGA was designed with this requirement in mind; however,
accomplishing this objective on an existing FPGA device is more challenging.

Our solution to this problem is to use the following approach:
• The encryption keys are stored within the software that runs on the MicroBlaze (BRAM

memory in the static Loader bitstream). This BRAM memory is not initialized in the imple-
mented loader design checkpoint that is provided to the user as part of the user flow shown
in Figure 5. Rather, the software is part of the static Loader bitstream that is provided to the
user for device configuration.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

• The static Loader bitstream, which contains the decryption keys in its BRAM, is encrypted
using traditional bitstream encryption methods. The key for this bitstream encryption is
not provided to the user, or to the IP vendors. Rather, in our proof-of-concept tool we rely
on a trusted third-party key holder which would distribute this encrypted Loader bitstream.

• In order for the Loader bitstream to be configured onto the FPGA (when the user does not
know the encryption key), the key must be pre-programmed into the appropriate FPGA
eFUSE register, again by the trusted key holder. The user may send their FPGA to the trusted
key holder, or they may obtain their FPGA from the key holder, who could serve as the
hardware distributor.

In Section 4.4 we discussed two motivating scenarios where our proposed framework would work
well. In the first case, where this framework was used by a government defense organization, a single
government agency would need to serve as the trusted key holder. This agency would be responsible
for creating the trusted Loader design, embedding the various keys into the Loader, encrypting the
Loader bitstream, and pre-setting the FPGA eFUSEs to accept the Loader bitstream. This agency
would then serve as the distributer of FPGA devices to other government organizations or defense
contractors, along with providing organization-specific encryption keys that each organization
could use to encrypt their own IP. This would provide compartmentalization between different
government organizations and contractors, following the principle of least privilege (PoLP).
The other motivating example in Section 4.4 was a cloud service provider (CSP) that could

encrypt their IP and provide it to customers for embedding into their designs. In this case there
would only need to be a single encryption key (belonging to the CSP), and the CSP would distribute
their encrypted IP to the client. There would be no need to encrypt the Loader bitstream or program
the FPGA eFUSE registers, as the CSP would maintain full control of Loader static region, and the
FPGA hardware.

The CSP could elect to support encrypted IP from third parties; however, the CSP would need to
serve as the trusted key holder, and be privy to the key and full IP details of the third-party IP. This
would be in the best interest of the CSP, since they typically have strict requirements on scanning
the bitstream for any malicious content before deploying on their systems, and it would not be
possible to detect, for example, power wasting attacks [22], [23], without viewing unencrypted
LUT values.
In both of these scenarios, the trusted key holder would be capable of creating IP encrypted

with any of the various organization-specific keys. While it may be possible to prevent this with a
public-private key system, this would need to be properly explored in future work.

5.3.3 eFUSE Settings. It should be noted that the hardware distributor would also set the following
eFUSE values to eliminate any method of the user accessing the Loader design and decryption keys:

CFG_AES_Only: Forces the use of AES key stored in eFUSE and disables device readback. This bit
must be set as the FPGA must only accept the Loader bitstream, and not another bitstream
created by the user to access the IP decryption keys.

AES_Exclusive: Disables partial reconfiguration from external configuration interfaces but still
allows partial reconfiguration via the ICAP. This bit must also be set for the same safety
concern as the previous bit.

W_EN_B_Key_User: Disables programming of AES key. This bit must also be set to prevent the
IP user from overwriting the AES key.

R_EN_B_Key, R_EN_B_User: Disables reading and reprogramming of AES key.
W_EN_B_Cntl: Disables any further changes to the eFUSE registers.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:19

We note that we were fortunate that the Xilinx 7-series devices supported the above functionality
in their eFUSE registers. In particular, we rely on the ability to continue to perform internal partial
reconfiguration via ICAP with unencrypted partial bitstreams, while disabling external partial
reconfiguration via JTAG, and forcing external configuration to only accept a single encrypted
bitstream. We are not sure how widespread this functionality is on other FPGA device families and
vendors, so our proof-of-concept may be limited in which devices it can be deployed on.

6 EXPERIMENTAL RESULTS
In this section we describe the evaluation of our proof-of-concept tool, which includes both an
analysis of the costs associated with the technique, as well as a discussion of our verification
methodology to ensure the design is correctly implemented.
We evaluated our proof-of-concept tool using a collection of benchmark circuits, measuring

impact on resource utilization, CAD runtime, and configuration runtime.

6.1 Benchmarks
Our testing is performed using nine different user circuits, comprised of 24 different IP obtained
from Open Cores. The top-level circuits are synthetic designs that stitch together the Open Cores IP
to create a larger design. To stress our design flow, and obtain results in the worst-case scenario, all
of these IP are treated as encrypted IP, leaving very little unencrypted user logic at the top-level. The
circuit details are included in Table 1, which show that the top-level designs range from containing
one to five different IP, including some cases where multiple instances of the same IP are used.

6.2 Resource Overheads
In our proposed flow, there are two sources of resource overhead:

(1) By encrypting the IP and marking them as DONT_TOUCH, the CAD tools are prevented from
performing optimizations across the boundary of the encrypted IP. This overhead will be
present regardless of whether configuration is done using a custom FPGA, or using the
Loader Shell approach. This is analyzed in Section 6.2.1.

(2) When using the Loader Shell approach, the user design is restricted to a smaller portion of
the FPGA, as the Loader Shell must be placed in a static region. This overhead is discussed
in Section 6.2.2.

6.2.1 Resource Overhead of Encrypted IP. Table 1 provides results detailing the resource overheads
due to encrypting the IP. The left side fo the table, Regular CAD Flow, shows the resource usage of
the design when running a standard Vivado flow on the entire RTL design, without encrypting
any IP. The right side of the table, Encrypted IP CAD Flow, shows the resource usage of the design
when using our proposed flow, and encrypting all IP. The LUT and FF overhead is included in the
right-most columns (no change in RAMBs or DSPs were observed).
The table includes resource breakdown between the IP cores; however, it should be noted that

when cross-boundary optimizations are enabled (such as in the Regular CAD Flow), the values
reported by Vivado can be very skewed between the IP. As such, we do not directly compare the
resource usage of the IP cores between the two flows, but rather focus on the overall resource usage
of the design.

The overhead of encrypting the IP ranged from -1.3% to 13.7% increase for LUTs, and 0.0%–3.3%
increase for FFs.

6.2.2 Resource Overhead of Loader Shell. Our test system consists of a Digilent Nexys4DDR
development board, containing a Xilinx Artix-7 100T FPGA. This FPGA consists of eight clock

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

Table 1. Resource overhead on user’s design when using encrypted IP

Design
Regular

CAD Flow
Encrypted IP
CAD Flow* Overhead*

LUTs FFs R/D LUTs FFs R/D LUTs FFs

Synth1 (top) 2629 (4%) 1421 0/0 2989 (19%) 1445 0/0 13.7% 1.7%
↳ pid_0 654 385 0/0 742 391 0/0
↳ divider_dshift_1 640 351 0/0 742 351 0/0
↳ divider_dshift_2 672 351 0/0 742 351 0/0
↳ divider_dshift_3 663 333 0/0 742 351 0/0

Synth2 (top) 709 (1%) 390 0/0 755 (5%) 391 0/0 6.5% 0.3%
↳ pid_simple_0 708 390 0/0 742 391 0/0

Synth3 (top) 3326 (5%) 3028 0/0 3526 (23%) 3118 0/0 6.0% 3.0%
↳ mem_ctrl_0 1482 926 0/0 1026 990 0/0
↳ ac97_0 901 1019 0/0 930 1032 0/0
↳ ac97_1 901 1019 0/0 930 1032 0/0
↳ des3_area_0 42 64 0/0 623 64 0/0

Synth4 (top) 5654 (9%) 5952 0/0 5579 (36%) 6008 0/0 -1.3% 0.9%
↳ des3_perf_0 5654 5952 0/0 5540 6008 0/0

Synth5 (top) 164 (0%) 224 0/0 165 (1%) 224 0/0 0.6% 0.0%
↳ int_mul_inst 70 32 0/0 71 32 0/0
↳ display_inst 94 192 0/0 94 192 0/0

Synth6 (top) 1067 (2%) 1207 2/2 1073 (7%) 1207 2/2 0.6% 0.0%
↳ gng_0 659 797 0/2 697 797 2/2
↳ uart2spi_0 407 410 0/0 374 410 0/0

Synth7 (top) 3090 (5%) 1065 1/43 3232 (21%) 1067 1/43 4.6% 0.2%
↳ fixed_pt_sqrt_0 472 18 0/24 460 18 0/24
↳ graphiti_0 1262 665 0/19 1223 668 1/19
↳ hight_0 329 134 0/0 502 134 0/0
↳ lfsr_randgen_0 8 4 0/0 2 4 0/0
↳ cpu8080_0 1019 243 0/0 1020 243 0/0

Synth8 (top) 3056 (5%) 2231 2/2 3187 (20%) 2272 2/2 4.3% 1.8%
↳ pci_mini_0 224 290 0/0 263 332 0/0
↳ pic_0 144 106 0/0 164 107 0/0
↳ potato_0 2433 1664 2/0 2434 1664 2/0
↳ pwm_0 159 145 0/0 189 145 0/0
↳ quadratic_func_0 105 24 0/2 109 24 0/2

Synth9 (top) 7686 (12%) 2220 0/0 8504 (55%) 2293 0/0 10.6% 3.3%
↳ random_pulse_generator_0 4 33 0/0 4 33 0/0
↳ sha3_high_throughput_0 7634 2157 0/0 8268 2230 0/0
↳ simon_core_0 48 27 0/0 47 27 0/0

Average 5.1% 1.2%

R/D=RAMB/DSP. For the Regular CAD Flow, LUT percentage represents fraction of entire device.
For the Encrypted CAD Flow, it represents fraction of user logic region. *Note: This does not

include the fixed cost of the Loader static design.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:21

ICAP

CLK

Fig. 8. Partitioning of the FPGA for the Loader Shell and User Design.

Table 2. Resource overhead of our Loader Shell design

Module LUT FF RAMB DSP

Loader Shell 2052 2701 34 0
↳ MicroBlaze 1321 1159 32 0
↳ AXI HWICAP 575 1367 2 0
↳ AXI Interrupt Controller 68 65 0 0
↳ AXI UartLite 93 110 0 0

regions. Unfortunately, the constraints of this small FPGA and development board are not ideal for
our Loader Shell architecture. The ICAP primitives, which are used to configure the FPGA, and
of which the FPGA only contains two, are both located in the center of the FPGA, requiring our
Loader Shell to be placed in the center of the FPGA. In addition, the clock input, which also needs
to be located within the static region, is located diagonally across the chip from the ICAP. This
results in our Loader Shell needing a large region located in the center of the chip, and the user
design being relegated to the bottom of the chip, as shown in Figure 8.

The actual logic utilization of the Loader Shell is quite small, as shown in Table 2, requiring only
2052 LUTs and 2701 FFs. With a larger FPGA, and better board design to place the clock input in a

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

location near the ICAP, the Loader Shell could be made much smaller, and the user would have
access to a much larger portion of the FPGA.

Since the shell/user paradigm is commonly used in cloud FPGA systems, we are confident that a
more appropriate partitioning could be achieved in practice.

6.3 CAD Runtime
Table 3 details the CAD runtimes for our various benchmarks.

The Regular CAD Flow columns report the synthesis and implementation runtimes for a standard
execution of the Vivado tool. No individual runtimes for IP are reported because compilation is
performed on the design as a whole.

The Encrypted IP CAD Flow columns report the synthesis and implementation runtimes for our
proposed flow. The rows include synthesis runtime for both the top-level design, and the encrypted
IP, but it is important to recognize that the encrypted IP synthesis is performed by the IP vendor,
and not the user. Because the encrypted IP is pre-synthesized and marked as DONT_TOUCH, the
top-level synthesis time is quite small (our benchmarks contain very little user logic).
The Encrypt runtime measures the time to run the encryption Python script discussed in Sec-

tion 5.1, and ranges from 1.6 seconds to 12.7 seconds.
The Impl column represents the Implementation time of the top-level design, which includes

the user’s top-level design (including encrypted IP), and the Loader Shell. The Loader Shell is
pre-implemented, so it has minimal contribution to the runtime.

The final column compares the implementation runtime of the encrypted user design against the
standard Vivado flow. We choose to only compare implementation since the synthesis runtimes are
not comparable, given most of the synthesis time is spent on the encrypted IP, which is performed
by the IP vendor, and not the user.

Most designs see a small reduction in implementation time. We believe this is due to the fact that
the encrypted IP flow targets only the user partition, versus the regular flow targeting the entire
part. Since the user partition is smaller, there is potentially less exploration performed by the CAD
tools (fewer swaps for the placer to consider, and a much smaller routing-resource graph for the
router). However, in some designs we did notice a runtime increase, with the largest increase in
runtime (+221%) encountered by our largest design. In this case the implementation logs indicated
that there was considerable routing congestion when targeting the smaller user partition, which
resulted in several more long-running routing iterations.

6.4 Configuration Time
Table 4 details the time to perform configuration, which includes sending the bitstream over UART,
processing the bitstream (decryption and patching), and writing the bitstream to the ICAP.

The total configuration time for our proof-of-concept tool is a few minutes, and varies depending
on howmany frames in the bitstream need to be decrypted and patched. This is orders of magnitude
longer than standard configuration which would take tens of milliseconds for this part. However,
we have not invested any time into speeding this process up. If configuration time was a priority,
there are several improvements that could be made.

First, the majority of the time is spent transmitting over UART. We choose to send the bitstream
over UART for simplicity; a faster communication protocol would substantially reduce configuration
time.
Second, the remainder of the runtime is mainly attributed to processing performed by the

MicroBlaze. The processing time is roughly linear with the number of LUTs to patch, with each
LUT that needs decryption and patching contributing about 25–30 milliseconds to the runtime.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:23

Table 3. CAD Runtime of User Flow

Design
Regular

CAD Flow
Encrypted IP
CAD Flow*

Runtime
Difference

Synth Impl Synth Encrypt Impl Impl

Synth1 (top) 104 s 120 s 33 s 119 s -0.8%
↳ pid - - 59 s 7.4 s -
↳ divider_dshift - - 44 s -

Synth1 (top) 104 s 120 s 33 s 119 s -0.8%
↳ pid - - 59 s 7.4 s -
↳ divider_dshift - - 44 s 7.8 s -

Synth2 (top) 58 s 111 s 28 s 108 s -2.7%
↳ pid_simple - - 57 s 8.0 s -

Synth3 (top) 76 s 191 s 33 s 191 s 0.0%
↳ mc_top - - 59 s 0.0 s -
↳ ac97_top - - 31 s 8.1 s -
↳ des3_area - - 47 s 8.5 s -

Synth4 (top) 83 s 201 s 39 s 171 s -14.9%
↳ des3_perf - - 78 s 10.3 s -

Synth5 (top) 35 s 161 s 29 s 153 s -5.0%
↳ int_mul_8 - - 35 s 7.9 s -
↳ configurable_display - - 34 s 7.1 s -

Synth6 (top) 46 s 147 s 31 s 118 s -19.7%
↳ gng - - 39 s 1.6 s -
↳ uart2spi - - 35 s 1.6 s -

Synth7 (top) 87 s 199 s 34 s 238 s 19.6%
↳ fixed_point_sqrt - - 45 s 7.4 s -
↳ graphiti - - 36 s 7.7 s -
↳ hight - - 42 s 7.6 s -
↳ lfsr_randgen - - 32 s 6.6 s -
↳ cpu8080 - - 51 s 8.3 s -

Synth8 (top) 97 s 194 s 34 s 173 s -10.8%
↳ pci_mini - - 36 s 6.5 s -
↳ pic - - 43 s 6.9 s -
↳ potato - - 77 s 8.9 s -
↳ pwm - - 33 s 6.8 s -
↳ quadratic_func - - 32 s 7.0 s -

Synth9 (top) 619 s 42 s 18 s 135 s 221.4%
↳ random_pulse_generator - - 26 s 7.1 s -
↳ sha3_high_throughput - - 691 s 12.7 s -
↳ simon_core - - 26 s 7.1 s -

Average +20.8%

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

Table 4. Configuration Runtime

Design

ICAP
Config
Time

UART
Send
Time

Processing
Time Total

Synth1 111 ms 160 s 99 s 259 s
Synth2 111 ms 160 s 25 s 185 s
Synth3 110 ms 160 s 98 s 258 s
Synth4 110 ms 160 s 166 s 326 s
Synth5 111 ms 160 s 6 s 166 s
Synth6 111 ms 160 s 33 s 194 s

This processing could be significantly sped up by better optimizing the software code, using a faster
processor, or by using hardware acceleration of the decryption process.

6.5 Verification Process
Our tool makes several substantial changes to the already complex FPGA CAD process, and
given the many possible points of failure, we wanted to be sure that our technique was correctly
implementing the design in the FPGA. Our approach to verify correctness of our tools was the
following:

(1) Compile the encrypted IP using our proposed vendor flow (Figure 4). Though not shown in
previous figures, the vendor flow generates two netlists, one that is encrypted and one that
maintains the LUT INIT values intact specifically for verification.

(2) Compile the user design using our proposed user flow (Figure 5), this time including the
intact netlist. This results in a modified bitstream that still contains the intact LUT INIT
values and will serve as a “golden" bitstream.

(3) We then modify the Loader software to enable a verification mode. In this mode the Loader
compares each decrypted bit with the bit it will patch in the golden bitstream. If they do
not match, then the Loader reports an error.

(4) We then perform this verification process on each design by first generating the “golden"
modified bitstream, and then using the verification mode to assure no modification to the
“golden" bitstream when the loader decrypts and writes the encrypted INIT values.

The above process ensures that the process of tracking LUTs through the CAD flow, dealing
with CAD tool optimization, and decrypting and patching the bitstream at configuration time, is all
working correctly. This method helped us catch and correct many of the subtle optimization issues
discussed earlier in the paper.

7 ISSUES AND LIMITATIONS
Despite our approach significantly improving the state-of-the-art for IP protection, there are still a
number of limitations and issues that should be identified.
Partial Encryption: One significant limitation of our approach is that the IP is not fully

encrypted. The INIT values are hidden but the full structure of the netlist is still visible to the user,
including the relative connections of LUTs, FFs, adders, and other primitives. While cell names
could be removed from the netlist, an attacker could still learn important implementation details of
the IP by just looking at the structural layout. In Section 4 we discuss alternative approaches that
could provide coarser-grained granularity of encryption thereby hiding more structure of the IP;

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:25

however, this would require more significant changes to the CAD tool, and would be more difficult
to implement.
However, it should be noted that the current approach to IP encryption in Vivado similarly

allows the user to view cell instances and how they are connected, without needing to perform any
of the workarounds such as Tcl interrogation or bitstream-to-netlist processing. Thus, at minimum
our approach hides the same information as current approaches, but is immune to the attacks that
can be performed on current approaches.
Vulnerability to Key Theft: Another limitation is that there is a possibility that the user can

potentially steal the encryption keys. This shouldn’t be possible, given they are encrypted into the
Loader design; however, previous work, such as the Starbleed attack [24], has demonstrated that it
is possible to break FPGA encryption technology. Currently this is only the case for certain FPGA
families, although there are no guarantees that new vulnerabilities for other FPGA families won’t
be discovered in the future. In addition, we have not considered the effects of side-channel attacks,
such as dynamic power analysis, which could possibly be used to extract the encryption keys from
the Loader design. Despite this, our approach is still vastly more effective than current approaches
for IP protection, and makes it much harder for an attacker to gain access to protected IP.
In addition, if this approach were used in an environment where the IP customer did not have

access to the FPGA or Loader Shell, such as in a cloud environment, then this risk would be removed
entirely.
Brute-Force Netlist Recovery Attacks: Despite the protections offered by our proposed

technique, there still may bemethods to for a determined attacker to recover the LUT INIT properties
through a brute-force attack. For example, a malicious IP user could alter the proprietary bitstream,
select an encrypted LUT and change the metadata to indicate that this LUT is not encrypted. This
would likely break the functionality of the design since the LUT would have the incorrect INIT
property. However, the attacker could then continually regenerate bitstreams with different LUT
INIT values until the correct value is found.

The feasibility of such an attack would depend on a number of factors. First, the attacker would
need a way to validate whether the LUT INIT value they are trialing is correct. This may be very
difficult, especially since the attacker may not know what feature of the IP this LUT impacts, or how
to validate its correctness. Validating the correctness of the LUT INIT value would likely require
substantial test vectors with perfect test coverage to be sure the LUT is functioning correctly in all
possible scenarios.
Second, the number of possible LUT INIT values for a k-input LUT is 22

𝑘

, making this attack
computationally infeasible for larger LUTs. For example, supposing an attacker is able to generate
a new bitstream, configure it to the FPGA via the Loader, and fully validate the functionality of the
IP in one minute, it would take four hours to test every possible 3-LUT INIT value, 46 days for a
4-LUT, and thousands of years for 5/6-LUTs.

Such an attack could be used to obtain many of the smaller LUT INIT values, but would be
computationally infeasible for an entire IP, which would naturally contain many larger LUTs.

Simulation and IPReverse Engineering:A substantial limitation of any encrypted IP approach
is that the user is no longer able to perform simulation on the design. Current FPGA tools do not
run into this issue as the CAD tool has access to decrypt the IP design for simulation. One way to
address this issue would be for the IP vendor to provide a simulation executable that could provide
cycle-accurate behavior of the IP, and a plug-in system that would allow this to be integrated into
the simulator tool.

Providing a cycle-accurate behavioral oracle would allow a user to try and break the IP encryption
by providing various inputs and observing the outputs. It is possible that with machine-learning or

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

SAT-based attacks a user could gain the full netlist details. However, such an approach would be
far more difficult and compute-intensive than the current trivial methods of obtaining encrypted IP
netlists described in Section 2.1.
In addition, depending on the implementation of the IP module, this may be computationally

infeasible. For example, suppose the IP is an AES encryption module with the encryption key
hard-coded into the LUT logic. AES is inherently designed such that even with multiple known
plaintext/ciphertext pairs, it is computationally infeasible to determine the encryption key. Thus,
even with a cycle-accurate input/output behavioral oracle, it would be impossible to determine the
encryption key. However, the simulator executable could still be vulnerable to other attacks, such
as memory probing, which could be used to extract the encryption key from the executable.

Feature RestrictionsAside from simulation, there are a number of convenient other design-flow
features that would be prohibited when using encrypted IP. Since the user is being provided with a
partially encrypted netlist, they do not have access to the original RTL (soft IP), and cannot change
configuration options that may have otherwise been possible. In addition, debugging features such
as Xilinx Integrated Logic Analyzer (ILA) debug probes and device readback would not be possible.
Dynamic reconfiguration would also not be possible.

8 CONCLUSION
In this paper we have presented a novel approach for protecting third-party IP on FPGAs. Our
approach allows the IP vendor to partially encrypt their IP, and then provide the encrypted IP to
the user. The user can then incorporate the encrypted IP into their design, and generate a custom
bitstream that can be loaded onto the FPGA. The FPGA contains a special static region that contains
the decryption and configuration circuitry, and is able to decrypt the IP during configuration.
We have implemented a proof-of-concept tool that demonstrates our approach, and have eval-

uated it using a collection of benchmark circuits. Our results show that our approach is able to
protect the IP, while only incurring a moderate overhead to resource usage. Our configuration
runtime is significantly higher than traditional configuration, but there are many opportunities to
speed up the configuration.

We hope that future work will explore other implementations in this vein, allowing FPGA CAD
tools to operate on partially encrypted IP, along with the development of new FPGA devices that
are designed with this type of IP protection in mind.

REFERENCES
[1] IEEE Computer Society, “IEEE recommended practice for encryption and management of

electronic design intellectual property (IP),” IEEE, Dec. 10, 2014, ISBN: 9780738194929.
[2] J. Speith, F. Schweins, M. Ender, M. Fyrbiak, A. May, and C. Paar, “How not to protect your

IP – an industry-wide break of IEEE 1735 implementations,” in 2022 IEEE Symposium on
Security and Privacy (SP), May 2022, pp. 1656–1671. arXiv: 2112.04838[cs].

[3] F4PGA. “F4pga/prjxray.” (Jun. 23, 2020), [Online]. Available: https://github.com/f4pga/prjxray
(visited on 06/23/2020).

[4] F4PGA. “F4pga/prjuray.” (Jul. 21, 2020), [Online]. Available: https://github.com/f4pga/prjuray
(visited on 07/22/2020).

[5] H. Yu, H. Lee, S. Lee, Y. Kim, and H.-M. Lee, “Recent advances in FPGA reverse engineering,”
Electronics, vol. 7, no. 10, p. 246, Oct. 2018.

[6] Yosys Open SYnthesis Suite. “Project IceStorm.” (Oct. 28, 2021), [Online]. Available: https:
//github.com/YosysHQ/icestorm (visited on 10/31/2021).

[7] CHIPS Alliance. “Chipsalliance/f4pga-xc-fasm2bels.” (Apr. 10, 2023), [Online]. Available:
https://github.com/chipsalliance/f4pga-xc-fasm2bels (visited on 07/24/2023).

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://arxiv.org/abs/2112.04838 [cs]
https://github.com/f4pga/prjxray
https://github.com/f4pga/prjuray
https://github.com/YosysHQ/icestorm
https://github.com/YosysHQ/icestorm
https://github.com/chipsalliance/f4pga-xc-fasm2bels

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Toward FPGA Intellectual Property (IP) Encryption from Netlist to Bitstream 1:27

[8] J. Yoon, Y. Seo, J. Jang, et al., “A bitstream reverse engineering tool for FPGA hardware trojan
detection,” in Conference on Computer and Communications Security (CCS), Oct. 15, 2018,
pp. 2318–2320.

[9] A. Chhotaray, A. Nahiyan, T. Shrimpton, D. Forte, and M. Tehranipoor, “Standardizing bad
cryptographic practice: A teardown of the IEEE standard for protecting electronic-design
intellectual property,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17, New York, NY, USA: Association for Computing
Machinery, Oct. 30, 2017, pp. 1533–1546.

[10] R. McKendrick, K. Faulkner, and J. Goeders, “Assuring netlist-to-bitstream equivalence
using physical netlist generation and structural comparison,” presented at the International
Conference on Field-Programmable Technology (FPT), Dec. 2023.

[11] E. Cahill, B. Hutchings, and J. Goeders, “Approaches for FPGA design assurance,” ACM
Transactions on Reconfigurable Technology and Systems, vol. 15, no. 3, 28:1–28:29, Dec. 28,
2022.

[12] W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering circuits using behavioral pattern
mining,” in International Symposium on Hardware-Oriented Security and Trust, Jun. 2012,
pp. 83–88.

[13] P. Subramanyan, N. Tsiskaridze, W. Li, et al., “Reverse engineering digital circuits using
structural and functional analyses,” IEEE Transactions on Emerging Topics in Computing, vol. 2,
no. 1, pp. 63–80, Mar. 2014.

[14] W. Li, A. Gascon, P. Subramanyan, et al., “WordRev: Finding word-level structures in a sea of
bit-level gates,” in International Symposium on Hardware-Oriented Security and Trust (HOST),
Jun. 2013, pp. 67–74.

[15] N. Albartus, M. Hoffmann, S. Temme, L. Azriel, and C. Paar, “DANA universal dataflow
analysis for gate-level netlist reverse engineering,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 309–336, Aug. 26, 2020.

[16] R. McKendrick, C. Simpson, B. Nelson, and J. Goeders, “Leveraging FPGA primitives to
improve word reconstruction during netlist reverse engineering,” in International Conference
on Field-Programmable Technology (ICFPT), Dec. 2022, pp. 1–5.

[17] T. Kean, “Cryptographic rights management of FPGA intellectual property cores,” in Pro-
ceedings of the 2002 ACM/SIGDA tenth international symposium on Field-programmable gate
arrays, ser. FPGA ’02, New York, NY, USA: Association for Computing Machinery, Feb. 24,
2002, pp. 113–118.

[18] L. Gaspar, V. Fischer, T. Güneysu, and Z. C. Jouini, “Two IP protection schemes for multi-
FPGA systems,” in International Conference on Reconfigurable Computing and FPGAs, Dec.
2012, pp. 1–6.

[19] K. Kepa, F. Morgan, K. Kosciuszkiewicz, and T. Surmacz, “SeReCon: A secure reconfiguration
controller for self-reconfigurable systems,” International Journal of Critical Computer-Based
Systems, vol. 1, no. 1, pp. 86–103, Feb. 1, 2010.

[20] K. Kepa, F. Morgan, and K. Kosciuszkiewicz, “IP protection in partially reconfigurable FPGAs,”
in International Conference on Field Programmable Logic and Applications (FPL), Aug. 2009,
pp. 403–409.

[21] C. Lavin and A. Kaviani, “RapidWright: Enabling custom crafted implementations for FP-
GAs,” in Symposium on Field-Programmable Custom Computing Machines (FCCM), Apr. 2018,
pp. 133–140.

[22] G. Provelengios, D. Holcomb, and R. Tessier, “Power wasting circuits for cloud FPGA attacks,”
in International Conference on Field-Programmable Logic and Applications (FPL), Aug. 2020,
pp. 231–235.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Daniel Hutchings, Adam Taylor, and Jeffrey Goeders

[23] K.Matas, T. M. La, K. D. Pham, andD. Koch, “Power-hammering through glitch amplification –
attacks andmitigation,” in International Symposium on Field-Programmable CustomComputing
Machines (FCCM), May 2020, pp. 65–69.

[24] M. Ender, A. Moradi, and C. Paar, “The unpatchable silicon: A full break of the bitstream
encryption of xilinx 7-series FPGAs,” in USENIX Conference on Security Symposium, Aug.
2020, pp. 1803–1819.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

	Abstract
	1 Introduction
	1.1 Outline
	1.2 Contributions

	2 Threat Model
	2.1 IP Encryption and Extraction Methods
	2.2 Relevance of Bitstream Encryption

	3 Related Work
	4 Approaches for Partially Encrypted IP
	4.1 Encryption during CAD flow
	4.2 Support for Multiple Keys
	4.3 FPGA Configuration and Decryption
	4.4 Motivating Deployment Scenarios

	5 Proof-of-Concept Tool
	5.1 Vendor Flow: IP Encryption
	5.2 User Flow
	5.3 Loader Shell

	6 Experimental Results
	6.1 Benchmarks
	6.2 Resource Overheads
	6.3 CAD Runtime
	6.4 Configuration Time
	6.5 Verification Process

	7 Issues and Limitations
	8 Conclusion

