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Abstract

Modeling the multiwavelength spectral energy distributions (SEDs) of blazars provides key insights into the
underlying physical processes responsible for the emission. While SED modeling with self-consistent models is
computationally demanding, it is essential for a comprehensive understanding of these astrophysical objects. We
introduce a novel, efficient method for modeling the SEDs of blazars by the mean of a convolutional neural
network (CNN). In this paper, we trained the CNN on a leptonic model that incorporates synchrotron and inverse
Compton emissions, as well as self-consistent electron cooling and pair creation—annihilation processes. The CNN
is capable of reproducing the radiative signatures of blazars with high accuracy. This approach significantly
reduces the computational time, thereby enabling real-time fitting to multiwavelength data sets. As a
demonstration, we used the trained CNN with MultiNest to fit the broadband SEDs of Mrk421 and
1ES 1959+4-650, successfully obtaining their parameter posterior distributions. This novel framework for fitting the
SEDs of blazars will be further extended to incorporate more sophisticated models based on external Compton and
hadronic scenarios, allowing for multimessenger constraints in the analysis. The models will be made publicly
available via a web interface at the Markarian Multiwavelength Data Center to facilitate self-consistent modeling of

, and

multimessenger data from blazar observations.

Unified Astronomy Thesaurus concepts: BL Lacertae objects (158); Non-thermal radiation sources (1119);

Relativistic jets (1390); Astronomical simulations (1857)

1. Introduction

Blazars are a subclass of active galactic nuclei which have
their jet oriented at a small angle relative to the observer’s line
of sight (Blandford & Rees 1978; Urry & Padovani 1995). Due
to this orientation and the relativistic nature of their jets, blazars
exhibit exceptional observational features, such as a high
luminosity, strong polarization, and rapid, high-amplitude
variability. The bolometric luminosity of blazars can reach up
to 10*¥® erg s~! (e.g., Beckmann & Shrader 2012), making them
the most powerful nonexplosive objects in the Universe. Their
extreme luminosity enables the detection of blazars even at
high redshifts (e.g., Rau et al. 2012; Ackermann et al. 2017;
Sahakyan et al. 2020, 2023b).

Blazars are commonly classified into two major types based
on their optical emission lines. Blazars having bright and broad
emission lines with equivalent widths of [EW|>5 A are
classified as flat spectrum radio quasars (FSRQs). In contrast,
when the emission lines are weak or absent, they are identified
as BL Lacertae objects (BL Lac objects). While these two
subclasses share many observational similarities, the difference
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in line emission suggests that different physical mechanisms
are responsible for generating their broadband emissions.

The broadband emission of blazars spans from radio
frequencies to the high-energy (>100 MeV) and even to the
very high-energy (VHE; >100 GeV) ~-ray bands, exhibiting a
typical dual-bump shape (e.g., Padovani et al. 2017). The low-
energy component, observed from the radio through the
optical /X-ray bands, is commonly attributed to synchrotron
radiation produced by electrons accelerated in the jet, which is
supported by the observed high degree of polarization (e.g.,
Beckmann & Shrader 2012). However, the origin of the second
component, which extends above the X-ray band, continues to
be a subject of discussion. In a leptonic scenario, this high-
energy component is attributed to inverse Compton scattering
of low-energy photons by the same energetic electrons
responsible for the synchrotron radiation. These low-energy
photons could either be synchrotron photons produced within
the jet itself (synchrotron self-Compton (SSC) model; see, e.g.,
Ghisellini et al. 1985; Maraschi et al. 1992; Bloom &
Marscher 1996; Tavecchio et al. 1998), or they could have
an external origin (external Compton (EC) model; see, e.g.,
Dermer et al. 1992; Dermer & Schlickeiser 1994; Sikora et al.
1994; Blazejowski et al. 2000; Dermer et al. 2009; Ghisellini &
Tavecchio 2009; Sikora et al. 2009). These two alternative
radiation mechanisms are also further used to explain the
differences between FSRQs and BL Lac objects, respectively
associated with the EC and SSC models.
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Hadronic models provide another explanation of the second
component: it can either be from direct synchrotron emission
from protons that are coaccelerated with electrons (Miicke &
Protheroe 2001), or it can arise from secondary particles
generated through photo-pion and photo-pair interactions (see,
e.g., Mannheim & Biermann 1989; Mannheim 1993; Miicke &
Protheroe 2001; Miicke et al. 2003; Bottcher et al. 2013;
Petropoulou & Mastichiadis 2015; Gasparyan et al. 2022). In
this case, neutrino emission is also expected, making blazars
attractive targets for multimessenger astrophysical studies. The
attention to the hadronic models has grown, particularly
following the observation of IceCube-170922A, a neutrino
event which was detected from the direction of the blazar
TXS 0506+056 (IceCube Collaboration et al. 2018a, 2018b;
Padovani et al. 2018). Various models have been applied to
explain both the broadband spectral and the neutrino emission
from individual blazars (e.g., Ansoldi et al. 2018; Keivani et al.
2018; Murase et al. 2018; Sahakyan 2018, 2019; Cerruti et al.
2019; Gao et al. 2019; Righi et al. 2019; Gasparyan et al. 2022;
Sahakyan et al. 2023a).

Blazars are monitored across various wavelengths, leading to
the accumulation of a substantial volume of multiwavelength
data over different periods, and many numerical codes have
been developed to model this wealth of data. Some of these
codes focus exclusively on leptonic interactions. This is the
case of, e.g., naima (Zabalza 2015), JetSeT (Tramacere
et al. 2009, 2011; Tramacere 2020), and agnpy (Nigro et al.
2022). Both leptonic and hadronic interactions are included in,
e.g., AM3 (Gao et al. 2017), ATHEvVA (Mastichiadis &
Kirk 1995), Bottcherl3 (Bottcher et al. 2013), LeHa-
Paris (Cerruti et al. 2015), LeHaMoC (Stathopoulos et al.
2023), and the Simulator of Processes in Relativistic
AstroNomical Objects (SOPRANO; Gasparyan et al. 2022).
These codes make different assumptions, employ different
methodologies, include various physical processes, and while
some operate under the steady state assumption, others are time
dependent.

For this paper, we used the kinetic code SOPRANO.
SOPRANO is a fully conservative and implicit kinetic code
designed to compute the radiative signatures of accelerated
leptons and hadrons, taking into account a broad range of
physical processes as well as time-dependent cooling mechan-
isms for both primary and secondary particles. In SOPRANO,
energy discretization is based on the discontinuous Galerkin
method, and the time stepping can either be first order or
exponential first order, in case of steep problems. Written in C
for speed and highly optimized, SOPRANO is used via a python
wrapper. This allowed us to perform the 200k simulations
required for this project. SOPRANO has been successfully
applied to model the multimessenger spectral energy distribu-
tions (SEDs) of TXS 05064056 (Gasparyan et al. 2022),
PKS 0735+178 (possibly in association with several neutrino
events; Sahakyan et al. 2023a), and Mrk 501 (Abe et al. 2023)
during its historically low X-ray and 7-ray state.

Over the years, the complexity of models has dramatically
increased with the inclusion of more physical mechanisms to
explain numerous observed features and details. For instance,
including radiative contributions from protons to account for
VHE neutrinos, along with the consideration of particle decay
and cooling as they radiate, has led to computationally
intensive models, which prevent parameter explorations and
the interpretation of the data through model fitting. As a result,
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fitting blazar SEDs is possible only with “simple” models. For
example, in Sahakyan (2021), Sahakyan & Giommi (2022),
and Sahakyan et al. (2022), blazar SEDs observed during
different periods are modeled with JetSeT (Tramacere 2020).
Their analysis assumed an ad hoc electron distribution
function, and although this approach allows for estimating
the evolution of parameters over time, it does not include
electron cooling. So it remains unclear whether such an ad hoc
electron distribution can be formed. Alternatively when
computationally intensive models are built, they are typically
superimposed onto data from a specific celestial object. In such
cases, obtaining statistical information about model parameters
becomes infeasible due to the prohibitive computational cost of
model evaluation.

Recent attempts to compare multimessenger sets of data,
including particle cooling and interactions, have also been
made. However, among other challenges, these approaches
necessitate tremendous computational resources, questioning
their use on large samples and time-resolved SED modeling.
For instance, Finke et al. (2008) use a recursive strategy to
attempt to converge toward the best-fit parameters. A similar
method, although modified, was also used in Petropoulou et al.
(2015). Instead Ahnen et al. (2017) used a grid-scan strategy to
model the SED of Mrk 501. Rodrigues et al. (2024) also relied
on a strategy of grid scanning to find the best parameters,
working in a hierarchical way from the simplest leptonic model
to the most complicated hadronic models by adding compo-
nents and freezing the parameters of the previous submodels.
With this approach, no model comparison can be performed
and the reliability of the parameter distributions is impacted by
the lack of cross-correlation between the parameters at different
levels, even if in the last stage a global likelihood minimization
is performed. Their study extracts parameters from 324 blazars
but requires a computational cost of approximately 17,000
node hours, which, to our understanding, cannot be reused for
blazars outside of the original sample.

Another recent example is the work of Stathopoulos et al.
(2023), who introduced LeHaMoC, a versatile lepto-hadronic
code capable of computing spectra in just a few seconds. This
speed enabled the authors to fit the SED of the blazar
HSP J095507.94-355101. However, as acknowledged by
Stathopoulos et al. (2023), the computational time required
still prohibits the use of Markov Chain Monte Carlo (MCMC)
fitting for blazar SEDs. The computational time of LeHaMoC is
somewhat comparable to that of SOPRANO (Gasparyan et al.
2022), leading us to the same conclusion: current computa-
tional resources do not permit a systematic comparison
between model and data, nor do they allow for thorough
constraints on model parameters and their study.

We are therefore at a crossroad where we either continue to
rely on simple models or we find a solution that allows the use
of computationally intensive complex models for the analysis
and fitting of blazar SEDs. The objective of this paper is to
introduce a new methodology that addresses this challenge by
integrating complex and resource-intensive numerical models
in detailed comparisons with data. Our method uses a
convolutional neural network (CNN), a specific type of feed-
forward neural network that efficiently calculates the resulting
spectrum from a given set of model parameters with high
accuracy, requiring approximately a millisecond. This makes it
well suited for complex fitting procedures. Although the
creation of the set of spectra required to train the CNN demands
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considerable computational resources, once trained for a
specific model, the CNN can be cost-effectively deployed for
the interpretation of any blazar SED.

In this paper, we train our CNN on a sample of spectra
numerically obtained from an SSC model of blazars using
SOPRANO (Gasparyan et al. 2022). We subsequently employ
the trained CNNs to fit the broadband SEDs of Mrk 421 and
1ES 19594-650 in order to demonstrate its performance. The
paper is organized as follows. In Section 2, we review the SSC
model and outline the numerical methods implemented in
SOPRANO for computing the resulting spectra. Section 3
presents our numerical table model, detailing the range of
model parameters and validating the computed spectra.
Section 4 describes the CNN, providing insights into the
training procedure and the measures taken to prevent spurious
oscillations in the spectra generated by the CNN. Section 5
applies the CNN to the analysis of the SEDs of blazars Mrk 421
and 1ES 19594650 performed in a Bayesian framework. Our
conclusions are summarized in Section 6.

2. The Model: Synchrotron Self-Compton
2.1. Model Description

In this paper, we focus on modeling the emission from BL
Lac objects within the framework of the SSC model, for which
the low-energy bump is attributed to the synchrotron emission
of relativistic electrons, while the second peak arises from the
inverse Compton scattering of the synchrotron photons on the
same electron population. This model successfully reproduces
the observed multiwavelength spectrum as well as the
observational features in different bands, and is widely adopted
for modeling the observed data from optical to the VHE ~-ray
bands.

In the one-zone SSC model, it is assumed that the emission
originates from a spherical region of the jet (referred to as a
“blob”) with a comoving radius R, which moves with Lorentz
factor I'. We assume that the observers sees the jet at angle 1/
T', such that the Doppler boost factor ¢ = I'. The magnetic field
B inside this region is assumed to be homogeneous and
constant. Electrons, once injected into this region, lose their
energy under the effect of the magnetic field as well as by
interacting with the local photon fields, ultimately generating
the observed broadband spectrum.

Despite the likely presence of protons in the jet, for the SSC
model, we assume that only electrons are accelerated and
radiate once injected in the radiation zone. The injection
function Q, is assumed to be a cutoff power law with index p
for electrons with a Lorentz factor ~ larger than a minimum
Lorentz factor v, , such that

- 2
0y Pexp| — Z Ymins
Qe — Q ,O’y p( ’ymax) 7 ’ymn (])

0 otherwise,

where .. is the cutoff electron Lorentz factor. The normal-
ization Q.o is set so that the electron luminosity L, is
determined by

L. = 7R?6%m,c3 f1 10cd. ®)

where m, is the electron rest mass and c is the speed of light.
The temporal evolution of the electron distribution is obtained
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by solving the Fokker—Planck diffusion equation, while the
evolution of photons is described by an integro-differential
equation. We label the distribution function of photons by N.,,
and that of electrons by N,. With the photon energy denoted as
x, the kinetic equations are

ON, N, 0

E(V) = l‘_ + a[(CICN'y + Csync)]\]ex] + Q’w%e’e 5
esc

ON, N,

—@x)=—+0 sync T RICNW - Sm/%e*e?

ot Fese

3

where feq = tqyn = R/c is the escape time, such that the first
term on the right-hand side of each equation represent the
escape of particles from the radiation zone, Cjc and Cgypc
represent inverse Compton and synchrotron cooling, respec-
tively, Q..+~ and S,,_ .+~ are the source and sink terms
associated to pair creation, respectively, and Ryc is the
redistribution kernel of Compton scattering. We note here that
we do not include synchrotron self-absorption in our analysis
as it is not yet included into SOPRANO. More details on the
kinetic equations and their numerical solutions are given in
Gasparyan et al. (2022), who also provide the expressions for
all the rates that appear in these equations.

In this paper, we employ SOPRANO (Gasparyan et al. 2022)
to solve the set of coupled kinetic equations as defined in
Equation (3). We obtain the equilibrium solution to the kinetic
equations in Equation (3) by evolving the system in time until
t:4tdyn:4R/(c). Our experiences show that further time
evolution does not significantly alter the distribution functions;
hence, we designate these as equilibrium distributions. These
distributions serve as the final output from SOPRANO and are
subsequently used to train the CNN.

2.2. Model Limitations

The model we use in this study is rather simple and has
several limitations, in addition to the obvious constraints
related to jet geometry. These limitations are listed in this
subsection. First, we assume that the emission originates from a
localized (meaning at a given radius) steady system in
equilibrium, without considering the dynamics of the jet. This
is implied by our explicit choice to evolve the equation until a
few times the dynamical time and by our consideration of the
escape of particles from the radiation zone. We chose this
assumption for its simplicity and because the final solution to
the equation does not depend on an additional ad hoc
parameter, namely the time at which the simulation stops.
This assumption physically requires that any variation of the
flux should happen on a time longer than 41,4y,. In other word,
the model is suitable to study the steady state emission of
blazars. The model can be also used to study blazar flares,
considering that in this case the spectral evolution is neglected.

Another limitation of the model is given by the assumption
of electron injection into the radiative zone after their impulsive
acceleration, i.e., on a timescale f,cc < fayn. Additionally, we
do not consider particle acceleration in the radiative zone, see,
e.g., Tramacere et al. (2011). This assumption has important
consequences, as it prevents us from studying models in which
the maximum electron Lorentz factor is determined by the
interplay between acceleration and radiative cooling in the
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radiation zone. Although this effect could be considered in
future studies, it would require one to compute a new training
set, as explained below. Such a requirement applies to any
modification of the model, whether it involves the inclusion of
new processes, like electron acceleration, or new constraints,
such as a modified cooling rate due to field anisotropy (see, for
example, Sobacchi & Lyubarsky 2019; Tavecchio & Sobacchi
2020).

Finally, the current model does not consider self-consistent
evolution of the magnetic field, radius, and other outflow
properties with observed time. This limitation is particularly
significant for studying blazar flares, for which we assume an
average scenario and neglect spectral evolution in this paper.
Yet, we note that the approach presented in this paper can also
be applied to time-dependent models, such as the Compton
rocket model (Odell 1981; Vuillaume et al. 2015) or shock
evolution model (e.g., Bottcher & Baring 2019). In the latter,
the authors assumed that the electron injection function is a
Heaviside function, such that the particle number increases
with time until injection stops, which allows them to mimic a
flare. Following the work of Yan et al. (2024) in the context of
~-ray bursts, we believe that a time-dependent fit for blazar
flares is also possible, but is outside of the scope of this paper.

3. Numerical Model: Computation and Validation

In this section, we provide details of the methodologies
employed in our study to simulate spectra, which will be used
as input to the CNN. Namely, we give details on the parameter
space used for generating the SEDs via SOPRANO. With
regards to the large number of spectra, we also provide our
methodology to assess the validity of the generated spectra.

3.1. Parameter Ranges and Sampling

For the SSC model considered in this paper, there are seven
free parameters: the comoving blob radius R, the Doppler factor
of the emission region 9, the comoving magnetic field strength
B within the emission zone, the electron luminosity L,, the
minimum Lorentz factor «,_, , the cutoff Lorentz factor =, ,.,
and the power-law index p. These parameters are inputs to
SOPRANO, which computes the resulting spectrum in a time
frame ranging from several tens of seconds to a few minutes.
This computational demand makes direct fits impossible due to
the necessity to evaluate the model tens of thousands of times
for a single fit.” To overcome this challen%e, we developed a
CNN, which we trained on a set of 2 x 10° spectra computed
by SOPRANO. The input parameters cover the whole range of
parameters relevant for an SSC model for any blazar. The
calculation of so many spectra was facilitated by coupling
SOPRANO as the spectrum generator with the ronswansona
python-based code designed for high-performance computing
systems as the distribution software (Burgess 2023). The code
ronswanson provides a flexible and comprehensive interface
for constructing table models from computationally intensive
simulations.

The ranges and sampling distributions of the model
parameters are detailed in Table 1. The Doppler boost factor
varies linearly between three and 50, and the power-law index
p is sampled linearly within the range 1.8-5. We note that steep

® This large number of likelihood estimations is due to the large number of

parameters, which is required for a full parameter exploration and for the
computation of the posterior distributions and the Bayesian factor.
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values of p >3 are not expected from the theory of shock
acceleration or magnetic reconnection (see, e.g., Kirk et al.
2000; Sironi & Spitkovsky 2011; Uzdensky 2022). They are
included so the range of p is sufficiently large to not have to
deal with boundaries. Alternatively, our method allows us to
set p or to specify an informative prior, which can only be
achieved if the model is trained on a larger than expected range
of the index. In contrast, the other model parameters, i.e., the
emission radius R, the minimum and maximum Lorentz factors
Voo a0d 7,..» TESPectively, the electron luminosity L., and the
strength of the comoving magnetic field B are sampled
logarithmically within their respective ranges, such that
IS5 < log(R) < 18, 1.5 < log(yiy) <35, 2 < log(pa) < 8,
42 < log(L,) < 48, and -3 < log(B) < 2, respectively.
These large ranges of the parameters guarantee that the CNN
we developed will be usable for the modeling of any
blazar SED.

We use Latin hypercube sampling to select the parameters of
the spectra to be computed with SOPRANO (see, e.g., McKay
et al. 2000; Viana 2016). This sampling method is a widely
popular technique in the creation of surrogate models as it
presents several advantages. First, it allows one to specify the
number of simulations to be computed. As a by-product, this
method does not require the user to specify the parameter
spacing. Second, it ensures uniform sampling across all
parameters. Lastly, it avoids the regular sampling of para-
meters, which is typical in grid-scan techniques. This
variability in the sampling enhances the performance of the
CNN, see, e.g., Kamath (2022).

3.2. Properties and Validation of the Computed Spectra

In this section, we discuss the computational performance of
SOPRANO, assessing the reliability of the computed spectra.
Given that it is impossible to verify each of the 2 x 10°
computed spectra individually, we rely on the metadata
measured for each simulation to assess the overall reliability
of our numerical model. We anticipate that future implementa-
tions involving more complex models of blazar SEDs, such as
external Compton or hadronic models, will necessitate even
larger data sets. The validation methodology developed here
will be applied in these future cases. In particular, we study (i)
the time to solution, ensuring it aligns with our expectations
and prior experience with SOPRANO; (ii) the maximum error of
the Newton—Raphson scheme over a simulation; and (iii) the
number of times this maximum was larger than the targeted
uncertainty in the computation, here set to 107"

First, we begin by analyzing the computational time required
by SOPRANO for each run. The left panel of Figure 1 shows the
the histogram of run times for all simulations. The average
simulation time is 43.7 s per spectra, with a long tail extending
beyond 700 s. These extended durations correspond to spectra
characterized by a high compactness with small radius R, large
electron luminosity L., and small injection Lorentz factor v, .
We further note that these computation times are obtained
when each independent simulations is executed on eight cores
on a AMD EPYC 7713 64 core processor CPU. An average
computation time of ~40 s for evolving the spectra until 474y,
aligns with our initial expectations and previous experience
with SOPRANO. Overall the computation of the table model
with 2 x 10° spectra required ~20,000 core hours, which is
feasible by any dedicated server in a couple of weeks. Although
it remains a moderately expensive computation, our approach
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Table 1
Characteristics of the Data Set

Parameter Units Symbol Minimum Maximum Type of Distribution
Doppler boost 6 3 50 Linear

Blob radius cm R 10' 108 Logarithmic
Minimum electron injection Lorentz factor Vinin 10'° 10° Logarithmic
Maximum electron injection Lorentz factor Vimax 10% 108 Logarithmic
Injection index P 1.8 5 Linear

Electron luminosity ergs ! L, 10% 10% Logarithmic
Magnetic field G B 1072 10 Logarithmic

Note. For each parameter, we recall its unit (if any) and symbol, and we provide its range and the distribution of the discrete parameter values. The total number of

spectra is set to 2 x 10°.

presents the advantage that it needs to only be performed once,
if the full parameter space relevant for blazar modeling in the
SSC scenario is covered.

The computation of the spectra by SOPRANO can fail,
specifically in regions of large compactness, for which the
numerical integrator currently used is not adapted. These
failures originate from the implicit nature of the integration
scheme, which necessitates us to find the root of a nonlinear
systems of equations. This solution is obtained with the
Newton—Raphson root finding algorithm, which can, in some
instances, not converge toward the solution with the required
accuracy. For the current numerical model, the accuracy of the
root solver is set at 10~ 1> , close to machine accuracy. Yet, even
if the required accuracy is not reached, the photons and
electrons spectra are returned and the computation continued.
Therefore, we computed the number of failures for each
spectral computation as well as the maximum relative error on
the solution.

The total number of spectra with at least one failed time
iteration is 3693, constituting fewer than 2% of all calculated
spectra. The distribution of the number of failed time bins per
simulation is depicted in the right panel of Figure 1. The
distribution of the maximum error across a full simulation is
shown in the middle panel of Figure 1. It is evident that only a
small fraction of the spectra are unreliable, with most spectra
having a maximal error below 107'°. We verified that the
unreliable spectra are in the ranges of parameter space which
are irrelevant for the interpretation of blazar SEDs.

We show in Figure 2 the workflow of the analysis and
method used in this paper. In this section, we presented the
generation of the parameter sets with ronswanson, and the
corresponding spectrum computation with SOPRANO. This is
shown on the top half of Figure 2, namely above the dashed
line on the first row.

4. Convolutional Neural Network

We initially attempted to use a table model directly by
performing multidimensional linear interpolation between the
input parameters to evaluate the model for any given parameter
set. However, we encountered limitations in the interpolation
procedure in a critical region of the spectrum, specifically at the
transition between the synchrotron and SSC components. Even
increasing the number of points in the table model to several
millions did not resolve this issue. This transition frequently
occurs in the X-ray band and must be accurately represented for
detailed analysis. Furthermore, the accurate modeling of this
transition is also crucial in scenarios where neutrinos could be
produced, as it constrains the maximum proton luminosity (e.g.,

see Keivani et al. 2018; Gasparyan et al. 2022; Stathopoulos et al.
2022; Sahakyan et al. 2023a).

To address the challenge of fitting blazar SEDs, we have
developed a surrogate model utilizing a CNN. In essence, the
CNN is modeling the relationship between the input parameters
and their corresponding spectra. Our CNN is designed to
reproduce the spectra from SOPRANO in 150 energy bins.
Before performing the training, the input parameters are
detrended and their mean removed. We follow the same recipe
for the spectra. However, instead of considering the 150 output
energy bins as being independent, the mean and variance are
computed for all outputs across all generated spectra. This is an
essential step because these outputs are not truly independent:
they collectively form a consistent spectrum. Based on our
experience and trials, treating the averages and means as
independent variables leads to less accurate reconstructions.
Furthermore, if each output is considered independently of the
other, unwanted oscillations appear in the produced spectra.
This is because if each value is independent, each one can
overestimate or underestimate the spectrum independently of
each other. To remove these oscillations, we introduce three
linear combinations that link together the 150 spectral outputs
within the model, by constraining linear combinations of local
neighbors. These combinations are chosen to represent the
finite difference derivative at order 2 and 8, as well as the finite
difference of the second-order derivative at order 4. In other
words, our output vector is of length 586 where:

1. the first 150 outputs represent the targeted spectral output,

2. the next 142 outputs represent the eighth-order finite
difference of the first derivative, multiplied by a
numerical coefficient dy, namely

ﬁ:dl[ﬁ—4 M S M
de  °]280 105 5 5
o i, Y "
5 5 105 280 |

3. the next 148 outputs represent the second-order finite
difference approximation of the first derivative, multi-
plied by the coefficient d;, namely

d;

Te di[—f_y +f1ls

&)

4. the last 146 outputs represent the fourth-order finite
difference approximation of the second derivative,
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Figure 1. Left panel: distribution of the computation time for all simulations in the table model. The average compute time is 43.7 s while the median time is 37 s.
Middle panel: distribution of the maximum error in the Newton-Raphson method over the course of one simulation. We note that the ordinate is in logarithmic scale.
Most of the spectra achieve the targeted relative error of 10~ '3, On the other hand, the computation of a small fraction of spectra (1.8%) is seen to fail with a larger
error. Right panel: number of failed time iterations by the simulations, which is zero for most of our simulations, while fewer than 1.8% of our simulations have a

number of failures larger than zero.

multiplied by the coefficient 7, namely

df :df[—ﬁ2 N 4 S n i1 S

de 12 3 2 3 12|

(6)

The CNN computes the 150 initial spectral outputs, and the
remaining linear combinations are added in a last linear step.
We find that setting the normalization coefficients to di =10,
di =2, and d} = 4 provides an adequate balance between (i)
learning rate, (ii) accuracy of the CNN, and (iii) the smoothness
of the solution, specifically characterized by the absence of
oscillatory behavior in the output spectra. We actually found
that this method also increases the learning rate and the
accuracy of the CNN.

By recursively building the CNN, we have determined that a
deep network is not necessary to produce an accurate
representation of our numerical model, which is computed
using SOPRANO. Indeed, our CNN contains only eight layers
in this order: a first dense layer transforms the seven inputs to a
high dimensional vector, five 1D convolutional layers with
different kernel sizes and strides, one maxpooling layer
followed by a 1D convolutional layer, and a final dense layer,
mapping to the 150 outputs. This final layer of length 150 is
then multiplied by the (nonsquared) matrix, converting the 150
outputs to all outputs including the derivative expressions. In
this layer, all coefficients are known.

All these layers are followed by the ReLU activation
function, apart from the maxpooling layer which is not
followed by any, and the last dense linear layer, which is
coupled to an activation function of type hyperbolic tangent.

In total our CNN comprises 687,815 free model parameters
and is implemented using PyTorch. Our sample of spectra is
split into a 80% training set, a 10% validation set, and a 10%
test set. We also experimented with different splits, but the
results remain the same. The optimization is carried out via the
NAdam algorithm, employing an epoch-dependent learning rate
of 1072 for the first 50 epochs, 10~ for the subsequent 50
epochs, and 1077 for the remaining 250 epochs. We use the L1
norm as our loss function with a sum reduction type. We find
that our CNN model is straightforward to train and produces
accurate results. Our CNN performances are attested by several

metric scores applied to the validation set. With the inclusion of
derivative expressions, the average R? score is 0.84, where the
average is taken across all resulting spectral point plus
derivatives, the mean squared error (MSE) is 0.0004, the mean
absolute error (MAE) is 0.0027, and the root mean squared
error (RMSE) is 0.004. In contrast, omitting the derivatives
from the final score yields an average R score of 0.9960, an
MSE of 9.4374 x 10~°, an MAE of 0.0013, and an RMSE of
9.4374 x 1076, all of which attest to the excellent performance
of our CNN. The training of the CNN is represented in
Figure 2, on the second row above the dashed line.

In Figure 3, the two leftmost columns display representative
examples of vF, spectra from the training set. They are
superposed with their corresponding spectra as computed by
the CNN. In contrast, the two rightmost columns of Figure 3
feature spectra from the validation set, which were not used to
train the CNN. These are also compared with their respective
spectra generated by our CNN for comparative analysis.
Despite a wide spread in normalization, the agreement between
the original SOPRANO spectra and their corresponding CNN-
generated spectra is remarkably high, spanning multiple orders
of magnitude in both power and frequency. Notably, key
features such as the synchrotron peak and the inverse Compton
peak are accurately reproduced, once more attesting to the
accuracy of the CNN model in reproducing the complex
spectra produced by SOPRANO.

We note that the accuracy of some spectra is lower than for
others. For instance, the second and third spectra on the second
line are slightly off around frequency 10?° Hz. We find that this
happens at the boundary of the parameter space, as there is less
information with which to train the model. On the other hand,
these parameters are not expected to be relevant for the analysis
of blazar SEDs, but have to be included to form regular
continuous and independent parameter distributions.

5. Modeling the Broadband Spectral Energy Distributions
of Mrk 421 and 1ES 19594650

To demonstrate the efficiency of our approach based on the
CNN in fitting and interpreting the SEDs of blazars, we model
in this section the observed broadband data set of two well-
studied sources, namely, Markarian421 (Mrk421) and
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the fitting procedure, with MultiNest used for sampling the posterior distributions.

1ES 19594-650. Our analysis assumes uniform priors for the
electron index p and the Doppler boost 6, and log-uniform
priors for all remaining parameters, namely R, B, L,, ., and
Vmax- W€ assume a Gaussian likelihood and sample the
posterior distributions with MultiNest (Feroz et al. 2009),
a nested sampling algorithm designed for efficient Bayesian
inference. We assume 1000 active points and a tolerance of 0.5
to ensure efficient sampling and convergence. MultiNest
offers a number of advantages, including computational
efficiency and the ability to handle multimodal posterior
distributions robustly, which is a distinct requirement given the
high dimensionality and complexity of the parameter space.

We use the CNN as a means to compute the spectral model
for each set of parameters required by the fitting process. The
result of the computation is then used by MultiNest to
compute the likelihood and choose new sampling points. This
process is depicted on the bottom half of Figure 2. To link
together free model parameters or set them to constants, we
must only specify the functional dependence between the
parameters or the constants. Then, it is sufficient to modify the
definition of the likelihood by specifying the parameter
dependence to obtain the values of all model parameters for a
set of independent parameters, such that the CNN can be
employed.

5.1. Markarian 421

Located at a redshift of z=0.031, Mrk 421 is one of the
most extensively monitored blazars as it is the brightest blazar
in the extragalactic X-ray sky. Owing to its proximity and
brightness, the broadband emission features of Mrk 421 have
been thoroughly investigated at all wavelengths from radio to
VHE ~-rays. In 2009, a 4.5 month long multiwavelength
campaign was conducted, yielding an unprecedented volume of

simultaneous data (Abdo et al. 2011). The observed SED is
presented in the left panel of Figure 4, where the set of data is
obtained from Abdo et al. (2011). We performed a fit to the
SED, excluding data below 10" Hz, as emission in the radio
band can be self-absorbed, implying that it is dominated by the
outer regions of the jet. The best-fit parameters are listed in
the left column of Table 2. The left panel of Figure 4 displays
the model uncertainty in gray and the best model, based on the
best-fit parameters, in red. The posterior distribution functions
are provided in Figure 6 in the Appendix.

The model displayed in the left panel of Figure 4 accurately
reproduces the observed data above 225 GHz. Given the
current };arameter set, self-absorption dominates below
1.3 x 10" Hz, making it impossible to model the lower-
frequency data. The parameters we obtained are somewhat in
agreement with the values determined by Abdo et al. (2011),
who used a three-component power-law function to fit the
broadband SED. In their model, the electron distribution
between 7. = 8.0 x 102 and 4y = 5.0 x 10" has an index
of 2.2, which is consistent with our estimated value of p =2.16
(for the errors see Table 2). In our approach the main difference
is that we achieve an acceptable fit by assuming a single
electron index for the injection, which is consistently evolved
under the influence of radiation cooling. In our case, the
synchrotron cooling would affect the spectrum at a frequency
of ~5.3 x 10'® Hz. This is above the maximum frequency
defined by 7, =251 x 10° (9.79 x 10'" Hz). Conse-
quently, an electron spectrum with a power-law index of
p=2.16 above ~,;, = 3.71 x 10? is sufficient to reproduce
the observed spectrum. Our fit indicates that the magnetic
field is around B = 8.71 x 1072 G, which is in agreement with
the value from Abdo et al. (2011) within the uncertainties.
The dissipation radius we obtained, R =5.25 x 10'3 cm, is
somewhat close to the value estimated in their modeling,
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Figure 3. Comparison between the vF,, spectra computed by the CNN (dots) and by SOPRANO (solid line) before unit conversion and expression in the observer
frame. The x-axis is the comoving frequency in units of hertz. Left panel: spectra from the training set. Right panel: analogous spectra from the validation set. This
figure shows the large diversity of spectra the CNN must be (and is) able to reproduce, the accuracy at which it reproduces them, and the wide span of the typical

emitted power across the leptonic SSC model.

which was derived based on the variability time. We further
find that the total luminosity of the electrons, L, =7.56 x
10*erg s™', is one order of magnitude larger than the
magnetic field luminosity Ly =4.57 x 10*' erg s, calcu-
lated as Ly = chzész/ 8m. This suggests that the system is
close to equipartition.

5.2. 1ES 1959+650

Blazar 1ES 19594-650, at z = 0.048, is another bright blazar
known for frequent flaring across the optical, X-ray, and TeV
bands. The X-ray and ~v-ray (TeV) flares often occur
simultaneously, although orphan ~-ray flares have also been
observed. This suggest that the same population of electrons is
responsible for emissions in both bands. The source was in an

active state from 2016 April to November, during which the
MAGIC telescopes observed major VHE ~-ray flares on June
13 and 14, as well as 2016 July 1 (MAGIC Collaboration et al.
2020). The multiwavelength campaigns conducted during these
flaring periods also enabled the accumulation of data across
lower-frequency bands, providing a comprehensive view of the
flaring activities. In this study, we focus on modeling the flare
observed on 2016 June 13. We retrieved the data of the flare
from MAGIC Collaboration et al. (2020). We note that the data
are corrected for extragalactic background light (EBL)
absorption. If it was not the case, our numerical model includes
the possibility to incorporate EBL absorption, via the model of
Dominguez et al. (2011).

The fit to the data obtained during the flaring activity of
1ES 19594650 is depicted in the right panel of Figure 4, and
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Figure 4. The broadband SEDs of Mrk 421 during the 4.5 month long multiwavelength campaign in 2009 (left) and of 1ES 1959+650 on the 2016 June 14 (right).
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Table 2
Parameters Describing the SEDs in Figures 4 and 5

Parameters Mrk 421 1ES 19594650 1ES 19594650
p 2.16 +£0.04 2.12+£0.16 2.15+0.15
1080 (Vonax) 5.40 +£0.17 6.87 +£0.33 6.76 + 0.36
108, (Vi) 257 +£0.17 2.56 £ 0.62 1.57 +£0.71
6 23.88 + 6.54 14.13 £ 10.22 26.27 +£7.75
log,(B/[G]) —1.06 4 0.22 —2.16 = 0.49 —0.95 +0.33
log;o(R/[cm]) 15724037  16.89 +0.52 15.22
log,o(Le/lerg s7'1) 42.88 +0.12 43.98 + 0.40 4322 +0.30
log,o(Lg/lerg s 41.66 41.34 40.95

All para- All para- Variability time

meters free meters free constraint

Note. The two middle columns correspond to models with all seven parameters
free, while in the rightmost column, R and ¢ are linked through the
variability time.

the corresponding parameter posterior distributions are pro-
vided in Figure 7. The best-fit parameters are summarized in
Table 2. The data suggest that the synchrotron peak should
occur at frequencies 2 10 Hz, enabling the X-ray data to
constrain the power-law index of the electron injection function
at p =2.12. In contrast to the case of Mrk 421 where the X-ray
data define the high-energy tail of the synchrotron component,
the value of the parameter .= 7.41 X 10° is not well
constrained in this case. It is determined solely by the last data
points of the MAGIC spectrum, which have large uncertainties.
The interpretation of this parameter is also difficult because of
the EBL effect at these high frequencies. The fit to our model
constrains the magnetic field to be 6.92 x 107 >G and the
Doppler boost 6 to be 14.13. The parameters p, .y, and § are
similar to those proposed by MAGIC Collaboration et al.
(2020), but the magnetic field and the radius R differ
significantly.

The dissipation radius R = 7.83 x 10'® cm is rather large and
the value of the Doppler factor is average, § = 14.13, which
leads to an estimated variability time of f,, ~ 10° s, which is
much longer than the reported variability time of approximately
36 minutes (MAGIC Collaboration et al. 2020). Although our
fitting procedure generally treats the radius R and § as
independent variables, we can easily couple these parameters
by specifying the variability timescale and removing one of
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Figure 5. The same SED of 1ES 19594650 as presented in Figure 4, but fitted
with a model where R is constrained by a variability of 35 minutes.

them from the model parameter. To illustrate this approach, we
set the radius to be R = cdt,,, and retain 6 as a free parameter.
In order to not jump outside of the parameter range, the bounds
on ¢ are changed to 8y, = max(3, Ruyin/(ctyar)) and Opmax =
mln(so’ Rmax/(Ctvar))-

The fit results are illustrated in Figure 5, while the parameter
posterior distributions are presented in Figure 8. The best-fit
parameters are listed in the rightmost column of Table 2. A
significant difference is observed in the value of the Doppler
boost parameter, 6, which has shifted to larger values,
compared to 6 ~ 14.13 in the previous scenario. This indicates
that the compact emission region is moving at a higher
velocity. Additionally, the magnetic field density in this case is
larger, B~ 0.11 G, as opposed to B ~ 0.007 G in the previous
case, which influences the electron cooling process. In the first
case, synchrotron cooling is inefficient for all electrons.
However, in the second case, the synchrotron cooling is
efficient for the highest-energy electrons, and a cooling break
occurs at ~2.24 x 10'® Hz, resulting in the X-ray emission to
be produced by cooled electrons.

6. Conclusion

In this work, we presented a new approach to fit multi-
wavelength SEDs of blazars with numerically intensive
models. Indeed, there is a clear gap between the computational
resources needed for each model evaluation and the analysis,
fitting, and detailed interpretation of multiwavelength (and
soon, multimessenger) data for blazars. To bridge these two
aspects of blazar SED analysis, we developed a neural network
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that can be trained on different computationally demanding
numerical models. In this study, the CNN is trained on a large
set of SSC spectra generated by SOPRANO, taking into account
all relevant cooling processes and the pair creation process. Our
surrogate model achieves high accuracy, is computed in a
relatively short time of order milliseconds, includes self-
consistent cooling of the electrons, and enables on-the-fly fits to
data. We demonstrate the performance of the CNN by fitting
the multiwavelength observations of two BL Lac objects,
namely Mrk 421 and 1ES 19594650, thereby constraining the
parameters of the SSC model and obtaining their posterior
distributions.

The significant advantage of the method proposed in this
work is its computational speed; the model performs fast
independently of the considered physical processes and is
expected to do so when hadronic processes will be included.
However, a key limitation of this approach is the initial
requirement for the substantial computational resources to
generate the spectra needed for training the CNN. Once this
initial step is completed, our methodology enables efficient and
straightforward analysis of blazar SEDs. The low computa-
tional cost of the model evaluation via the CNN offers the
advantage of enabling more sophisticated data fitting techni-
ques. In future works, this efficiency will permit us to allocate
computational resources for model forward folding. Specifi-
cally, instead of using preanalyzed data, we plan to utilize raw
observational data in conjunction with the response functions
of various instruments, such as Swift-XRT and Fermi-LAT.
This integration will be facilitated through the use of 3ML
(Vianello et al. 2015), a framework specifically designed to
combine analyses from different instruments across energy
bands into a unified, coherent picture.

In this study, we trained the first CNN to model the radiative
signatures associated with the SSC model accurately. This
approach provides a novel framework for fitting the SEDs of
blazars, and we intend to apply it further to other models of
blazar SEDs. Specifically, we plan to implement additional
computationally intensive models based on external Compton
and hadronic scenarios, for which the CNN will be trained.
This set of models will facilitate the interpretation of a large
variety of blazar SEDs, spanning various wavelengths, periods,
and sources.

We believe that the approach outlined in this paper has the
potential to provide significant advances of our understanding
of blazars by enabling the fitting of self-consistent models to
their SEDs. To facilitate broader analysis and interpretation, the
model developed here is made publicly available on the

10
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Markarian Multiwavelength Data Center.'” Users are able to
interact with an interface to reproduce single snapshot SEDs by
specifying model parameters. Additionally, users are able to
perform fits after uploading their data (if necessary), which
provides them with the parameters that best describe the
observed data, along with their posterior distributions. It should
be noted that, at the time of writing, this is the only public tool
available for performing fits with a self-consistent model of
blazar SEDs.

Not only could the CNN and the associated methodology be
applied to several models of blazars as demonstrated here, but
we believe that it is sufficiently general and robust to also be
used in spectral and temporal analysis of the prompt and
afterglow phases of v-ray bursts, multiwavelength temporal
evolution of kilonovae (e.g., Boersma & van Leeuwen 2023),
and for the spectral interpretation of X-ray binaries.

In summary, this study represents a pioneering effort to
employ a CNN for the efficient and accurate modeling of blazar
SEDs. We have introduced a flexible and efficient methodology
for self-consistent blazar modeling, which holds the potential
for deepening our understanding of blazar physics. With the
tool made publicly available through the Markarian Multi-
wavelength Data Center, researchers will be able to perform
state-of-the-art, self-consistent analyses of multiwavelength
and soon, multimessenger data from blazar observations.
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Appendix
Parameter Posteriors for Mrk 421 and 1ES 19594650

In Figures 6, 7, and 8, we show the parameter posteriors for
Mrk 421 and 1ES 19594650, respectively.
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