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Abstract—Federated learning (FL) has been gaining attention
for its ability to share knowledge while maintaining user data,
protecting privacy, increasing learning efficiency, and reducing
communication overhead. Decentralized FL (DFL) is a decentral-
ized network architecture that eliminates the need for a central
server in contrast to centralized FL (CFL). DFL enables direct
communication between clients, resulting in significant savings
in communication resources. In this paper, a comprehensive
survey and profound perspective are provided for DFL. First,
a review of the methodology, challenges, and variants of CFL
is conducted, laying the background of DFL. Then, a system-
atic and detailed perspective on DFL is introduced, including
iteration order, communication protocols, network topologies,
paradigm proposals, and temporal variability. Next, based on the
definition of DFL, several extended variants and categorizations
are proposed with state-of-the-art (SOTA) technologies. Lastly,
in addition to summarizing the current challenges in the DFL,
some possible solutions and future research directions are also
discussed.

Index Terms—Federated learning, decentralized learning, net-
work, privacy preservation, internet of things (IoT).

I. INTRODUCTION

EDERATED learning (FL) is a decentralized learning

paradigm with natural privacy-preserving capabilities,
which shares only model weights instead of user data [1].
Federated learning was first proposed by Google researchers
in 2016 [2] and was applied to build a language model
collaboration framework on Google Keyboard to learn whether
people clicked on recommended suggestions and contextual
information [3]. In 2020, Google researchers expanded the
concept of FL to federated analytics [4]-[10], extending from
learning tasks to collaborative computing, data analysis, and
inference, further deploying it within Google Keyboard. FL
has demonstrated its excellent capabilities in various areas,
including intelligent transportation, internet of things (IoT),
healthcare, manufacturing, agriculture, energy, remote sensing,
and more [11]-[28]. FL also breaks geographical limitations
allowing efficient collaboration worldwide [29]. Researchers
employed FL to aggregate data from 20 institutes worldwide to
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Fig. 1. Comparative analysis between centralized FL and decentralized FL
across various performance metrics. Each axis represents a metric with the
plotted values indicating the relative strength of the respective FL approach
in that domain.

train a universal model to predict clinical outcomes of COVID-
19 patients [30]. FL improves the generalization capability
of the model to include knowledge of diverse data. Other
researchers have also used FL to aggregate data from 71 sites
for rare cancer boundary detection, which greatly enriches the
dataset to support research on rare diseases [31].

Traditional FL focuses on the decentralized learning and
centralized aggregation paradigm established by data paral-
lelism. Data parallelism refers to the situation where the raw
data of the clients is generated in parallel locally, and this
raw data is neither sent out nor visible to others. Each client
trains a model based on its local data and then communicates
the model parameters with the server to ensure the effective
integration of learning results from each client and obtain a
global model. An FL taxonomy refers to the number and na-
ture of clients participating in the learning network, including
cross-silo and cross-device FL frameworks [1]. The clients
in cross-silo FL usually are different organizations, research
institutions, data centers, etc., which may have more reliable
communication, computational resources, and a large amount
of data. The clients in cross-device FL are huge mobile or
IoT devices, which can encounter potential bottlenecks in
communication and computation. Another FL taxonomy is
considered for differences in data distribution among clients,
including horizontal, vertical, and transfer [32]. In horizontal
FL, clients have more similar sample features and fewer
identical users. Clients in vertical FL have more similar users
and fewer similar sample features. Federated transfer learning
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Fig. 2. Tllustration of local learning, centralized learning, CFL, and DFL. (a) Clients are trained with local user data only. The clients neither share raw data
nor communicate with each other. (b) After clients send the user data packets to the server, the server trains a general model using all the data. The generalized
model is then shared with all clients. (c) Clients send the locally trained model parameters to the server. The server aggregates all the local models and then
transmits the aggregated global model parameters to all the clients. (d) Clients share their locally trained model with other clients. Subsequent clients then
continue to learn, personalize, and adapt the model locally, while also exchanging and propagating the model parameters that possess local knowledge.

clients have neither many similar sample features nor similar
users.

In this paper, we present a thorough investigation into
decentralized FL (DFL) and offer novel perspectives on its
taxonomies. Distinguishing from the conventional centralized
FL (CFL) that relies on a central server for aggregation, we
specifically focus on the less-explored DFL framework, which
operates independently of a central server. Fig. 1 illustrates a
comparison between CFL and DFL across nine key evaluation
metrics, which are the focal points of current state-of-the-art
(SOTA) research and worthy of further investigation [33]-[48].
Given their inherent characteristics, CFL and DFL each exhibit
unique advantages in different applications.

Fig. 2 shows the illustration of local learning, centralized
learning, CFL, and DFL. In the local learning strategy, the
user data and trained model of each client are only used
locally, and they do not communicate with any other clients
or servers, as shown in Fig. 2(a), but this may lead to
overfitting. Alternatively shown in Fig. 2(b), the centralized
learning strategy involves the transmission of raw data in
the communication between clients and the server, which
consolidates and centralizes the learning process but does not
guarantee the privacy of the users. Both of these strategies are
often used by researchers as baselines to compare with FL.

CFL is a centralized structure where a server will commu-
nicate, coordinate, and manage all clients. Fig. 2(c) shows the
communication between clients and the server. Clients learn on
local data and then upload the trained model parameters to the
server. The server aggregates the local models and then shares
the global model with the clients. The idea is that all clients
contribute to one global model, and the one global model is
applied to all clients. For CFL, clients only share the trained
local model parameters with the server but not the users’ raw
data. FL not only protects users’ privacy and improves learning
efficiency, but also saves communication resources when the
model size is much smaller than the data size.

DFL is a decentralized structure in which clients communi-

cate and share model parameters with each other without any
server. There are relevant designations in the recent literature,
such as peer-to-peer FL [49], server-free FL [50], serverless
FL [51], device-to-device FL [52], swarm learning [53], etc.
Fig. 2(d) shows clients communicating directly with other
clients without server coordination. Since there is no unified
coordination and configuration of servers, the communication
network between clients is more diverse. For the DFL discard-
ing the server is considered to be more customizable, which
can further save communication and computational resources
with higher confidence in diverse variants. The pointing and
peer connections in the communication network are adaptively
configured and changed according to the scenario, which is
one of the advantages of DFL. In addition to the typical
line, ring, and fully connected peer connection types, it is
conceivable to connect based on geographical neighbors, the
similarity of clients, communication protocols, etc.

The concept of DFL was first proposed in the year 2018
[54]. As of June 1, 2023, a search on Google Scholar yields
1,350 results related to DFL, with a substantial number of 652
contributions coming from the year 2022 alone. The research
associated with DFL exhibits a persistent exponential growth
trajectory. DFL has received extensive attention as an emerging
framework [55]-[60]. The most significant advantage of DFL
is that it eliminates the communication resources needed for
the server as an intermediary step and the high bandwidth
requirements associated with it. Xu er al. [61] listed DFL,
model compression, selective client communication, and low
communication frequency as four ways to reduce communica-
tion costs. Lian et al. [62] demonstrated the advantages of de-
centralized learning over centralized learning, especially since
the number of clients in decentralized learning is proportional
to the speedup.

Although FL has shown unprecedented advantages, most
of the current research has been limited to CFL. DFL, as an
essential branch in FL, is proliferating and offering benefits
over CFL. Recent surveys have focused more on CFL, with
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TABLE I
COMPARISON OF RELATED SURVEYS OF DECENTRALIZED FEDERATED LEARNING

’ Survey ‘ Time ‘ Focused DFL Topic ‘ Application Scenarios ‘ Order ‘ Protocol | Topology | Paradigm | Variability
[1] 2021 | Introduction X X X X X X
[63] 2021 | Introduction X X X X X X
[64] 2021 | UAV ® X X X X X
[65] 2021 | IoT = lu B ¥ City X X X X X
[66] 2022 | Blockchain X X X X X X
[67] 2022 | Survey X X X X X X
[68] 2022 | Survey & Reflection & JoT Finance X X X X X
[69] 2023 | Tutorial X X X X X X
[70] 2023 Survey X X X X X X
[71] 2023 | Topology X X X 4 X v
[72] 2023 | CAV - X X v X X
[73] 2023 | Survey & Tutorial = «f e X v v X X
[74] 2024 | Security and Privacy X X X X X X

’ Ours ‘ 2024 ‘ Survey & Perspective ‘ =B RSd@ ‘ v ‘ v ‘ 4 v v

v Included, X Not mentioned.

& : Connected and Automated Vehicles (CAVs), B : Healthcare, las : Industrial IoT (IIoT), W : Mobile Services,

% : Unmanned Aerial Vehicle (UAVs) and Satellites, #&% : Social Networks, i@ : Artificial General Intelligence (AGI)
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Fig. 3. Roadmap for this perspective paper.

less attention given to DFL [61], [75]-[77]. Furthermore,
there is a lack of a comprehensive, in-depth, and insightful
survey that establishes the logic of building a DFL system,
including iteration, communication protocol, network topol-
ogy, paradigm, and more. This paper begins with a review of
CFL, summarizing its challenges and various extended variants
as potential solutions that can be compared and analogized
with DFL. As an emerging field, this survey aims to fill gaps
in the DFL survey literature by covering perspective papers
that are currently not included. It systematically integrates
and categorizes the SOTA research in DFL. A detailed and

comprehensive comparison of our survey with other related
DFL surveys can be found in Table 1.

The contributions of this paper are:

« We provide a description of CFL, summarize the chal-
lenges, and offer a detailed introduction to the various
variants, their roles, addressed issues, and advantages.

« We systematically define and describe five taxonomies
of DFL, including iteration order, communication proto-
col, network topology, paradigm proposal, and temporal
variability. To the best of our knowledge, this is the first
comprehensive and insightful perspective paper for DFL.
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« Based on the network topology, we propose and envision
five variants of DFL to categorize the recent literature,
anticipate potential application scenarios, and highlight
the advantages.

« We summarize five current challenges, possible solutions,
and future research directions for DFL.

The presentation of this paper is summarized as shown in
Fig. 3. Section II reviews the history of CFL, the existing
challenges, and some variants as potential solutions. Section
IIT provides the definitions and descriptions of DFL commu-
nication protocol, network topology, and paradigm proposal.
Section IV demonstrates several variants in DFL, followed by
Section V analyzing the challenges of DFL. Finally, Section
VI provides a summary of this paper.

II. REVIEW OF CENTRALIZED FEDERATED LEARNING

McMahan et al. [2] proposed the first mature and most
popular FL algorithm, federated averaging (FedAvg). At each
communication round, clients upload their trained local models
to the server, and the server weighted averages all local
models according to the number of client samples. Based on
FedAvg, various derivation and optimization schemes exist
to address the challenges in the FL algorithm [78], [79].
Li et al. [80] developed an advanced algorithm FedProx to
penalize the bias of the local model to the global model by
a proximal term. The advantage is to limit the significant
variance and unstable convergence of local models due to
overfitting on clients with system heterogeneity. Wei et al.
[81] took into account the privacy leakage concern of model
parameters uploaded by clients in FL. and proposed to improve
the differential privacy by adding noise before the client sends
it to the server for aggregation. Also, the game trade-off
between FL convergence and privacy preservation and the
optimal communication rounds were highlighted.

Although the diverse derivations that exist complement the
performance of FL, there are undeniable drawbacks, such as a
single point of failure (SPoF) on the server. In this section,
after presenting some of the challenges and limitations of
the server, we show some variants of the solution and SOTA
technologies.

A. Challenges in Centralized Federated Learning

For CFL, the server takes on many responsibilities and chal-
lenges, with large service providers, such as large organiza-
tions and research institutions, playing the role of server. While
these large providers have unparalleled resources compared to
small workshops, there are some concerns here as the number
of clients grows endlessly [82].

1) Client Heterogeneity predominantly stems from three
latent factors: individual, group, and systemic heterogeneity
[80], [83]-[85]. Individual heterogeneity arises from differ-
ences inherent to each sample or individual, such as variances
among patients in a hospital setting. Group heterogeneity is
rooted in shared characteristics among subsets of samples,
such as patients of different age groups, regions, or medical
backgrounds. Systemic heterogeneity originates from varia-
tions introduced during data collection by the system, which

can include discrepancies from different equipment, clinical
practices, or data collection personnel.

2) Communication Resource is limited on both the server
and client sides [86], [87]. Although FL has dramatically
reduced the consumption of communication resources by
sharing only model parameters instead of user raw data,
communication resources are a serious problem considering
the large number of parallel clients (up to one billion). In
particular, when delays in communication cause the server
to wait for clients with communication problems, it can also
cause the whole FL framework to become highly inefficient.
Some FL communication proposals have been proposed to
improve communication efficiency [88]-[91].

3) Computational and Storage Resource on the server side
are also challenged [92]-[94]. The server needs to store and
aggregate the models of these billions of clients. Even though
lightweight models are emerging recently [95], [96], the need
to compute and store model data can easily reach petabytes
in size [97]. Besides the current version of the massive local
model, subconditionals and versioned storage of the global
model may also be required. Additionally, as clients demand
real-time processing of a large volume of inference tasks, this
places high demands on the computational resources required
during inference [98].

4) Fairness, Security, and Trustworthy have always been
crucial concerns in CFL, with these factors significantly im-
pacting the system’s overall reliability, user confidence, and
data integrity. A series of questions related to security and trust
form the chain of suspicion: whether the server aggregation
model is reasonable, whether the global model will have high
performance across all clients, whether the global model is
validated, how to use the global model securely, and whether
the server is secure from attacks [99]. For security issues,
there are different directions of research, including malicious
attacks [100], data poisoning [101], anomaly detection [102],
and privacy protection [81]. For trustworthy [103], fairness
[104], incentive [105], and interpretability [106] in FL are also
worthy research directions.

5) Unreliable Connection in FL can stem from factors such
as unreliable communication conditions, malicious attacks, or
server malfunctions, leading to delays, packet loss, or noise
in model transmission [107]-[109]. As all clients typically
communicate with a central server, an SPoF can halt the
entire system’s update process. Although employing multiple
edge servers can distribute the risk of SPoF, it may still
cause the system segments connected to an affected edge
server to become unresponsive. [110], [111] have explored
using blockchain technology to mitigate SPoF by replacing
the central server role, but this approach diverges from the
conventional centralized FL. model.

B. Variants of Centralized Federated Learning

The network variants and extensions of CFL are designed to
address the above challenges and adapt to different real-world
application scenarios.

1) Hierarchical FL features a classic and popular client-
edge-cloud architecture, where model parameters are infre-
quently transmitted between the edge and the cloud, effectively
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reducing communication overhead [112]-[114]. It usually per-
form additional aggregations by setting up additional edge
servers [115], which aim to spread the communication [116]
and computing pressure and reduce the impact of SPoF. These
additional edge servers are geographically closer to clients,
resulting in less communication resource consumption and
lower latency [117]-[119]. After one or more edge server
aggregations, the edge servers then upload the edge global
model to the cloud for aggregation into a global model.
In addition to communication optimizations, the geographic
proximity of edge servers to clients may also lead to better
adaptation of edge servers to the connected clients. Edge
servers and connected clients can be considered geographically
personalized clusters. For example, by assigning edge servers
to states in the United States, the state edge servers can be
more personalized to the state’s user scenarios and user habits,
such as weather, number of users, time zone, ethnicity, age
distribution, etc.

2) Personalized FL can be classified into two categories,
i.e., global model personalization and personalized model
architecture [120]-[122]. Global model personalization usually
starts with a global model, and then the client personalizes this
global model to fit the local user. Personalization is the behav-
ior of the client independent of the server, such as federated
transfer learning to transfer global model knowledge locally
[123], [124]. The personalized model architecture changes the
traditional FL architecture to develop a personalized model
with user knowledge, which is the behavior of the server. A
famous architecture is clustered FL that has been of interest to
researchers [83], [125]. The client model in the personalized
FL framework is closer to the user, so it is known for its high
accuracy and confidence. In particular, it is a highly effective
solution for non-independent and identically distributed (non-
IID) data. When the aggregated global model deviates from
the user, personalization can transfer the model and adapt it
to different heterogeneities.

3) Split FL splits the model for learning, where the server is
responsible for some model layers [126]-[128]. The only data
sent by the client to the server are the hidden representations
and/or gradients in the cut layer of the model. The client not
only shifts part of the learning task to the server but also
does not share the user data. Compared to traditional FL, the
split FL framework has similar accuracy and communication
efficiency with a lower learning burden on the client side and
more robust privacy protection. However, split FL is still in
its early stages and has significant limitations, such as the
need to consume more communication resources. Especially
the presence of SPoF on the server can have even greater
consequences.

4) Graph FL is particularly effective for applications in-
volving graph-structured data, such as social networks, trans-
portation networks, molecular structures, etc [129], [130].
This effectiveness stems from the fact that clients possess
local or independent graph data, which includes rich relational
information about nodes and edges. More specifically, Graph
FL encompasses three levels, depending on the level of detail
clients have about the graph data. These levels include multiple
graphs, different parts of multiple graphs, and parts of a

single graph [131]. In addition to employing graph neural
networks for graph data in FL, some researchers have also
considered topological graphs between clients [132]. These
topological graphs can be established based on various factors,
exploring network connectivity conditions between clients and
the server, data and model availability of clients, as well as
similarities and data generality among clients [133]-[135].

5) Asynchronous FL is designed to overcome the limita-
tions of FL frameworks that require clients to synchronize
model updates. This approach aligns well with the real-world
scenarios in which the client’s data updates and model training
vary significantly. In these systems, heterogeneous clients have
different amounts of data and computational resources and can
train and update their local models at any time without the
server having to wait for all clients to synchronize [136], [137].
Asynchronous FL is particularly suitable for environments
with dynamic changes, a large number of clients, and a wide
distribution, such as mobile devices, which may conduct model
training during idle times rather than during routine user
interactions [138], [139].

Variants of CFL currently exist with exotic frameworks
that may include single, multiple, sub, and master servers to
optimize and target different problems. For example, Zhang
et al. [140] proposed the (Com)2Net, a large-scale distributed
computing framework capable of spanning space-air-ground,
end-edge-cloud, and multi-data center environments, facilitat-
ing ubiquitous connectivity and collaborative computing in
FL. In addition to various variants, a popular approach is
to assemble various variants of the FL framework to target
multiple issues [141].

C. Definition of Client and Server

This paper proposes a new taxonomy that focuses on the
roles played by communication endpoints in FL. We argue that
the roles of edge devices, compute clusters, institutions, and
organizations are relative rather than absolute. For example, a
university may act as a central server when managing edge
devices within its campus, but it should be considered as
a client when communicating with other universities. The
classification of a role as a client can be determined by whether
it generates raw data and stores the data locally. For instance,
a healthcare institution both generates clinical data for patients
and retains it in its own database without sharing it with other
institutions. Additionally, clients and servers are not mutually
exclusive roles. A healthcare institution, for example, can act
as both a client and a server [31]. It generates raw patient data
and performs local training while also serving as a server by
receiving model parameters from other healthcare institutions,
aggregating them, and sharing the updated model. In practice,
it can be considered as a star topology network in DFL.

The emphasis on a star topology network instead of CFL
is driven by the more pressing issues of fairness and trust in
FL systems when an institution simultaneously possesses raw
data for local training and assumes the role of a server for
aggregation. Ensuring that this institution does not favor its
local data during aggregation poses an open question. As the
saying goes, One cannot be a judge, jury, and executioner.
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TABLE II
DEFINITIONS AND DESCRIPTIONS OF DFL TAXONOMY

Taxonomy | Category | Description
Iteration Order Sequential Clients are synchronized to communicate one by one in a certain order.
Random Clients are synchronized to communicate one by one in a random order.
Cycle Clients are synchronized to communicate one by one in cycle.
Parallel All clients communicate asynchronously.
Communication Protocol | Pointing Clients communicate in a specific form of one-peer-to-one-peer.
Gossip Clients communicate in a random form of one-peer-to-one-peer, which may be determined by the neighbor-
hood principle, client model version, complete randomness, etc.
Broadcast Clients communicate in a form of one-peer-to-all-peers.

Broadcast-gossip
and Broadcast.

Clients communicate in a form of one-peer-to-multiple-peers, which is also a combination form of Gossip

Network Topology Line Clients communicate in a sequential pointing form.

Bus Clients send the model to all clients behind them in order.

Ring Clients communicate in a cycle pointing form.

Mesh Clients communicate with all other clients.

Star Clients communicate only with the central client.

Tree Clients communicate only with their central clients.

Hybrid Combination of multiple communication topologies.
Paradigm Proposal Continual Client learns directly from the model of the previous client.

Aggregate Client first aggregates the models of past clients and then learns on the aggregated models.
Temporal Variability Static Communication architecture will not change.

Dynamic Communication architecture may change with external factors, resource-saving purpose, fairness purpose,

concept drift, etc.

Similarly, an institution should not act as both a client and
a server. However, this situation is more common in the
real world. On one hand, institutions with more raw data
have greater influence and often initiate tasks. On the other
hand, institutions with more data also tend to have more
abundant computing resources, making them better suited for
the server role. In today’s world, where large institutions
possess more resources and hold greater influence, addressing
the interests, privacy, and fairness of non-representative clients
is a challenge.

III. TAXONOMY OF
DECENTRALIZED FEDERATED LEARNING

In this section, we begin by analyzing and comparing DFL
and other related designations. Subsequently, we provide a
well-organized, clear, and precise description of the various
iterations, protocols, network topologies, paradigms, and vari-
ations in DFL, as presented in Table II. It is worth noting
that the table comprises five distinct taxonomies, which may
exhibit overlapping meanings as well as conflicting aspects,
and can also be applied in a complementary manner. These
taxonomies, representing the viewpoints of the authors, include
summarizations of existing literature, extensions of under-
standing, and even inferences regarding potential definitions.
This comprehensive approach aims to strengthen the compre-
hension and categorization of concepts in the field of DFL.

A. Iteration Order

In general, FL requires multiple iterations to converge, and
iteration order represents the order of each client in each
iteration or the way client queues are formed in DFL. In
CFL, clients iterate in a parallel manner, and the order in
which the server receives the client models does not affect

the convergence of the system. However, in DFL, the iteration
order of clients will significantly affect the performance of
client models, and we continue to discuss this issue in depth
in Section III-D. Depending on the specific usage scenario
and task requirements, the client iteration order in DFL can be
determined to be sequential, cyclic, random, parallel, dynamic,
or other strategies. The choice of iteration order can impact the
convergence and performance of the system, and it is important
to consider the specific characteristics and constraints of the
application when determining the appropriate order.

B. Communication Protocol

DFL is a network framework for sharing model weights
based on the pointing, gossip, or broadcast protocol, with the
goal of obtaining optimal models across all clients. Pointing is
one of the simplest and most straightforward forms of estab-
lishing a communication relationship between two peers in a
unidirectional, one-to-one, and specified form. The algorithms
of gossip and broadcast have been well established for use
in networks [142]. Gossip protocol is essentially a random
one-peer-to-one-peer way for clients to share, disseminate, and
learn knowledge in a stochastic communication method [143],
[144]. Tt is a standard communication protocol in DFL and
is already in its infancy [145], [146]. The broadcast protocol
is a one-peer-to-all-peers approach that allows the client to
broadcast its model to all clients [147].

Hybrid protocols are now more popular, with different
gossip, broadcast, and their combined communication struc-
tures designed for different scenarios and constraints. Aysal
et al. [148] proposed a method that combines gossip and
broadcast protocols and can be considered as a one-peer-to-
neighbor-peers approach, where the client first broadcasts to its
neighbors before gossiping. Bellet ef al. [149] introduced an
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algorithm that operates the agent asynchronously and performs
broadcast communication between similar clients with a focus
on obtaining personalized local models.

C. Network Topology

DFL networks are inspired by various network topologies,
as detailed in sources such as [150]-[154]. Nedi¢ et al.
[142] highlighted and provided convergence proofs for several
network structures, including grid, star, and fully connected
topologies. Due to the absence of server-based adaptation,
management, and propagation constraints, DFL networks ex-
hibit a diverse range of configurations, as illustrated in Fig.
4. Drawing from Graph FL concepts, DFL networks can
form a graph to represent structured relationships, with clients
as nodes and their connections as edges. This graph-based
approach in DFL enables the quantification of dependencies
between clients based on characteristics such as heterogeneity
and communication patterns, thus enhancing learning effi-
ciency and model robustness. Note that the depicted line
segment indicates a connection between clients, which can
be either unidirectional or bidirectional. The data transmitted
between clients do not only comprise their models, but may
also include models from previous interactions. In addition,
the computational scope of each client can encompass both
local learning and aggregation.

For CFL, since all client models are hosted on the server,
aggregation (i.e., averaging of all model parameters) is the
mainstream and popular method for integrating knowledge
from all clients. However, for DFL, the situation is much more
complex. First, the network topology is diverse. There are
diverse network topologies in DFL. At each communication
round, clients may obey different protocols to transmit models
to one or more other clients. Second, there are different
versions of the model. Except for the synchronous DFL, there
must be different versions of the model for other DFLs. The
subsequent clients in the learning process will have models
that incorporate more knowledge compared to the previous
clients. Third, acquiring all client knowledge becomes more
challenging. Without a centralized server for collaborative
management, future clients face difficulties in accessing the
knowledge of all previous clients, except for the immediate
preceding clients, such as Fig. 4(a). Therefore, there is an
urgent need for an alternative paradigm to complement and

expand the FL landscape that is not well-compatible with
aggregation.

D. Paradigm Proposal

We introduce an innovative taxonomy of DFL into two
paradigms: Continual and Aggregate. The main dif-
ferences between these two paradigms lie in the number of
model updates exchanged between clients and whether ag-
gregation takes place. The distinction between the paradigms
also entails variations in other settings, such as learning
rates. The Aggregate paradigm represents the archetypal FL
algorithm, where each client receives the model from other
clients, aggregates these models, and subsequently conducts
local learning. Conversely, within the Continual paradigm,
each client receives the model from merely one peer client and
proceeds to learn directly based upon this particular model.
Continual learning [155], [156], or be called incremental learn-
ing, provides a solid and grounded theory for Continual.
A number of concepts and algorithms for federated continual
learning are mentioned in the recent literature [157]-[160],
which consider the process of dynamic data collection in the
real world while addressing the issues of non-IID data, concept
drift, and catastrophic forgetting. In DFL, the role of continual
learning is more extensive:

o The subsequent client will directly learn on the model
of the previous client. Compared to local learning and
Aggregate, the client is able to obtain a more personal-
ized model while saving communication, computational,
and storage resources.

« In storage-constrained frameworks, clients do not need to
retain any additional model parameter data.

« In computation-constrained frameworks, clients also do
not need to consume additional resources for aggregation
calculations.

o The continuous generation of new data by clients is
accommodated, and they do not need to wait for all data
to be collected before starting the local learning process.

« For tasks that may have concept drift, clients are always
provided with the latest version of the model.

Table III analyzes and summarizes the intrinsic, algorithm,
advantage, challenge, and network topology of these two
paradigms. The difference between these two paradigms is
illustrated by the example of sequential pointing line DFL. In
the Continual paradigm, the only content delivered to the
subsequent client is the trained model. The subsequent client
just continue learning on this model, as shown in Table III(a).
In the Aggregate paradigm, the previous client transmits not
only the trained local model but also all the previous models.
The learning process performed by the subsequent client is
divided into two parts, first aggregation and then learning, as
shown in Table III(b).

In order to compare and illustrate the difference between the
Continual and Aggregate paradigms, pointing, gossip,
and broadcast, and different network topologies. Algorithm
1 shows two paradigms in the sequential pointing line DFL
topology and Algorithm 2 shows pointing ring Continual
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TABLE III
PARADIGMS OF DFL

Paradigm | Continual | Aggregate
Intrinsic Client receives a single model per iteration. Client receives multiple models per iteration.
Learning is performed on the received model without aggregation. Learning is performed locally after aggregating the previous models.
Algorithm For each client until convergence do: For each client until convergence do:
1) Receive the model from the previous client. 1) Receive all other client models from the previous client (point-
2) Perform local learning on the model. ing and gossip) or other clients (broadcast and broadcast-
3) Transmit the trained model to the next client. gossip).

2) Aggregate all received models and perform local learning on
the aggregated model.

3) Transmit the trained model and other client models to the next
client (pointing and gossip) or transmit the trained model to
all clients (broadcast and broadcast-gossip).

Advantage o Each client involved in learning has a highly accurate, personalized, high-confidence local model.
o Compared to CFL, they do not have the same set of issues on the server side, such as aggregation fairness.
e Fewer communication, computation, and storage resources are | e More powerful generalization ability on the obtained model.
required. o Stronger ability to update new knowledge generated by the client.
e More simple and straightforward, suitable for all scenarios.
Challenge e Model performance strongly depends on the client iteration order.
o Appropriate loss function, learning rate, and training epoch, which allows the model to learn the current client’s knowledge while
ensuring that the previous knowledge is not forgotten.
o Catastrophic forgetting of past client knowledge. ‘ e Repetition and overemphasis on learning from past clients.
Network
Topology / L
(Take « — —
sequential L L L
L LA ol il o
line DFL
e | @@ —@—0—0—0 . 0 Q0,0 ,-0
‘ AR )
an example)
o
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and broadcast mesh Aggregate DFL. The difference be-
tween the Continual and Aggregate paradigms can be
clearly seen in the pre-processing of the client before learning
and the sharing of the model after learning. The additional
requirements of the Aggregate paradigm for communica-
tion, computation, and storage have been highlighted. Under
the Aggregate paradigm, the pointing and gossip proto-
cols require the client to send more model data at once,
while the broadcast and broadcast-gossip protocols require the
client to send at a higher frequency. The ring topology can
be seen as a cyclic variant of the line topology, and both
network topologies are widely used by researchers due to
their simple and straightforward structure. The line topology
is a sufficient knowledge learning system for systems that do
not generate new knowledge. However, in a system that is
constantly generating new knowledge, the ring topology may
be a more reasonable topology. It is not only able to re-update
the knowledge in the system but also a feasible solution to
catastrophic forgetting.

To further illustrate the learning and communication process
among clients in these two paradigms, Fig. 5 demonstrates

the learning process from the first client to the final client in
the parameter space. It is important to note that we actually
have several assumptions here. Firstly, the optimal solutions
of the local models of all clients follow a multivariate normal
distribution in the parameter space. Secondly, considering the
systemic and statistical heterogeneity, some clients exhibit
significant biases. Thirdly, although reasonable loss functions
and learning rates are chosen, the models are not always
trained to achieve optimal solutions. The communication and
learning processes of the two paradigms, Continual and
Aggregate, are as follows.

Step 1) Both paradigms initiate learning with the same initial
model parameters and obtain the same Model 1 in
Client 1.

Both paradigms learn from Model 1 and reach the
same Model 2 in Client 2. It’s worth noting that the
Aggregate paradigm is meaningful when there are
two or more aggregated models available.

In the Continual paradigm, Client 3 learns di-
rectly from Model 2 to obtain Model 3, while in
the Aggregate paradigm, Model 1 and Model 2

Step 2)

Step 3)
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Algorithm 1 and

pointing line Aggregate decentralized federated learning.

Sequential  pointing line Continual

Algorithm 2 and

broadcast mesh Aggregate| Decentralized Federated Learning.

Cycle pointing ring Continual

Input: Client set (C), training epoch (F), initial model (wo), loss
function (L), learning rate (1)
Output: Local models ({w.|c € C})
for c € C in sequence do
Copy the model from previous client we < we—1

Aggregate received models w. + Aggregation{w, wa, ..., We—1}

fore=1to £ —1do
Backpropagate and update the local model wE™!
nVL.
end for
Update the local model w, + w?Z.
Client ¢ sends [{wi, w3, ...;we—1} and w. to the next client.

— we —

end for

are first aggregated, and then Client 3 learns from
the aggregated model to obtain Model 3. Note that
the Continual paradigm is less complex than the
Aggregate paradigm, as indicated by the length of
the black arrow.

Step 4) In the Aggregate paradigm, the model aggregated
by Client 4 is closer to the center of the Normal
distribution than Client 3, so it is expected that the
learning process for subsequent clients will be easier.

Step n) When the client is positioned towards the end of
the queue, the learning difficulty in the Continual
paradigm becomes random, depending on the devia-
tion between the previous client and the current client.
However, in the Aggregate paradigm, the learning
difficulty is only influenced by the current client since
the aggregated model is expected to be extremely
close to the center of the normal distribution.

Based on the aforementioned assumptions and iterative
process, we can make certain expectations regarding the
accuracy, loss, convergence, and communication complexity
of the clients in both paradigms during training. We come up
with the following speculations:

1) The learning loss will exhibit periodic oscillations
across client iterations and eventually converge in both
paradigms.

2) The convergence of learning loss in the Aggregate
paradigm is expected to be more stable. In the
Continual paradigm, the learning difficulty depends
on the discrepancy between the previous client and the
current client’s local data, in other words, it depends
on the iteration order of clients. Under the assumption
of a normal distribution, the learning difficulty in the
Aggregate paradigm is determined by the heterogene-
ity of the current client’s data, and most clients may have
similar data distributions.

3) The convergence of learning loss in the Aggregate
paradigm is also expected to be faster due to the decreas-
ing learning difficulty as the client iterations progress.
However, this acceleration in convergence is accompanied
by an increase in communication overhead.

Input: Client set (C), training epoch (E), initial model (wo), loss

function (L), learning rate (1)

Output: Local models ({w.|c € C})

while ¢ € C' in cyclic do > line vs. ring
Copy the model from previous client we < we—1

fore=1to £ —1do

Backpropagate and update the local model wft! «+ w? —
nVL.

end for

Update the local model w. < wf .

Client ¢ sends w. to the next client [and all other clients |.

> pointing vs. broadcast

end while

4) The Continual paradigm requires more communi-
cation rounds to achieve convergence, whereas the
Aggregate paradigm incurs greater communication
overhead per round.

5) The Continual paradigm exhibits stronger personal-
ization, while the Aggregate paradigm demonstrates
greater generalization. Depending on scenario require-
ments, both paradigms can achieve similar performance
after convergence by adjusting weights.

E. Temporal Variability

The network topology of DFLs has recently undergone a
shift from static to dynamic trends, adapting to the time-
varying external environment [161]. The inspiration for the
separation and clustering of network topologies comes from
group behaviors observed in nature, such as fish schools
and bee swarms [162]. When a school of fish encounters a
predator, the entire school separates to avoid it. Similarly, in
a bee swarm, a small number of scouts can lead the entire
swarm, demonstrating the herd effect. Interestingly, migratory
birds form V-shaped formations during long-distance flights to
conserve energy, and the birds at the front rotate over time to
distribute flight fatigue evenly. In the context of DFL networks,
dynamic topologies may exhibit more robust, fair, and efficient
performance compared to static topologies. The determination
of dynamic topologies in DFL networks can be influenced by
various factors, including:

« External Interference. Strong and unbreakable commu-
nication barriers, SPoF, malicious attacks, and other exter-
nal factors can lead to changes in the network topology. In
order to avoid the failure of the entire network, topology
adjustments and discards are made.

o Communication Resource Saving. Clients have the
ability to dynamically select their neighbors for each
communication. By selectively choosing nearby clients,
communication resources can be optimized and saved.
Additionally, clients can dynamically elect the most cen-
tral client as a leader during each communication, enhanc-
ing the efficiency and effectiveness of communication
within the network.
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« Fairness. In order to ensure fairness among clients, a
random selection process is employed for determining
the communication target. This helps to prevent any bias
or preference towards specific clients, ensuring equal
opportunities for all participants.

The development of dynamic topological structures based
on these factors shapes DFL networks to facilitate robust,
efficient, and fair communication among clients.

IV. VARIANTS OF DECENTRALIZED FEDERATED
LEARNING

In Section III, we provide a comprehensive definition, intro-
duction, and propose two paradigm for DFLs. In this section,
we review the real-world applications in DFL, with a specific
focus on its diverse applications across various domains and
its real-world deployment. Taking inspiration from the CFL
variants and considering the underlying network topologies
depicted in Fig. 4, we propose several viable topology variants
for DFL. These topology variants serve as alternative options
for researchers to consider when deploying DFL. We discuss
the advantages and limitations associated with each variant,
enabling researchers to make informed decisions regarding the
most suitable topology for specific usage scenarios.

A. Real-World Applications

The development of a DFL framework relies on several
key factors, such as relevant application scenarios, sources
of information acquisition, information processing units, and
perceptual prediction modules, among others. With the es-
tablishment of the theoretical framework for networks, DFL
has been adopted in various application domains, including
vehicles, healthcare, industrial IoT, social networks, etc.

1) Connected and Automated Vehicles (CAVs) serve as a
robust hardware infrastructure for DFL, leveraging onboard
batteries, diverse sensors, computing units, storage devices,
and more. Existing vehicle networking frameworks, such as
vehicle-to-vehicle (V2V), have also laid the foundation for
communication and networking experiences in DFL for CAV

[72], [174]. Referred to as V2V FL, this approach enables the
exchange and sharing of up-to-date knowledge among vehicles
and has been explored in recent studies [175]-[182]. Lu et
al. [183] proposed a vehicular DFL approach with a focus
on privacy protection and mitigating data leakage risks in
vehicular cyber-physical systems (VCPS). In their framework,
roadside units (RSUs) are responsible for forwarding vehicle
identities, vehicle data retrieval information, data profiles, data
sharing requests, and related tasks. Once the V2V connection
is established through the RSU intermediary, the model data
is directly transmitted to the requesting vehicle.

2) Healthcare Institutions are inclined towards DFL frame-
works over CFL due to their abundant patient privacy data,
computational resources, and storage capabilities. As key
stakeholders in healthcare institutions, clinicians play a crucial
role in data collection, model training, data analysis, charac-
terization, and providing experimental results and solutions.
Unlike traditional server-centric approaches, clinicians have
the flexibility to observe, analyze, fine-tune, and match models
manually, offering more control and adaptability. Healthcare
institutions widely employ DFL frameworks in various studies
[61], [163]-[166], [184]-[186]. Warnat-Herresthal et al. [53]
introduced a DFL framework called Swarm Learning, which
addresses four use cases of heterogeneous diseases, includ-
ing COVID-19, tuberculosis, leukemia, and lung pathologies.
This framework incorporates a blockchain smart contract for
enhanced security and dynamically selects a leader for aggre-
gating model parameters in each iteration.

3) Industrial IoT (IloT), as a cornerstone of Industry 4.0,
greatly benefits from DFL, which offers robust and scalable
solutions tailored to the complexities of modern manufacturing
environments [187]-[189]. IIoT requires enhanced robustness,
and DFL improves system resistance to SPoF, which is par-
ticularly crucial for devices on production lines [190]. The
high autonomy of DFL makes it well suited for industrial
settings with diverse physical conditions and operational envi-
ronments. Moreover, IIoT can rely on the scalability of DFL
to easily adapt to geographically dispersed production sites
and dynamically accommodate new industrial devices into the
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TABLE IV
SOME INSPIRING DFLS WITH DIFFERENT PROTOCOLS, TOPOLOGIES, PARADIGMS, AND VARIANTS.

Literature Year Paradigm Type Highlight
Chang et al. [163] 2018 Continual e Sequential pointing line o Introduced system heterogeneity artificially.
e Cycle pointing ring
Sheller et al. [164] 2019 Continual e Sequential pointing line o Obtained a conclusion that catastrophic forgetting worsens as the number
o Cycle pointing ring of clients increases.
Sheller et al. [165] 2020 Continual e Sequential pointing line o Considered the DFL framework to output a final model approach.
e Cycle pointing ring
Huang et al. [166] 2022 Continual e Sequential pointing line o Introduced synaptic intelligence in Continual DFL to effectively
o Cycle pointing ring improve model stability, especially for sequential pointing line topology.
Yuan et al. [167] 2023 Continual e Random gossip ring o Considered the highly dynamic and random nature of vehicle connec-
tivity in vehicular networks and employed gossip-based communication
to simulate this characteristic when deploying Continual DFL.

e Provided a comprehensive comparison between CFL and DFL, such
as knowledge dissemination mechanism, communication complexity,
generalizability, compatibility, overhead, hidden concerns, etc.

Assran et al. [168] 2019 Aggregate e Cycle broadcast-gossip e Performed a comparison of broadcast-gossip and broadcast protocols.
mesh
o Parallel broadcast mesh
Roy et al. [169] 2019 Aggregate e Random broadcast- o Pre-requested model versions from other clients.
gossip mesh o Considered the scenario where the DFL framework outputs a model to
a new client.
Pappas et al. [170] 2021 Aggregate e Parallel broadcast star o Proposed a framework that combines star DFL with split learning.
Warnat et al. [53] 2021 Aggregate e Dynamic pointing star o Elected a leader dynamically via a blockchain smart contract that is used
to aggregate model parameters.
Shi et al. [171] 2021 Aggregate e Cycle broadcast-gossip e Analyzed the convergence of broadcast-gossip in a hybrid network.
hybrid
Chen et al. [172] 2022 Aggregate e Cycle broadcast mesh o Introduced the superposition property of the analog scheme to improve
the parallelism of communication, which enables a significant reduction
communication rounds.
Wang et al. [173] 2022 Aggregate e Dynamic parallel e Promoted more frequent communication in the central client to achieve

broadcast-gossip hybrid

fast convergence.

e Promoted less frequent communication in the other clients to achieve
low communication latency.

e The proposed algorithm is applicable and generalized to all hybrid
networks.

DFL system. Du et al. [191] designed a DFL framework for
ITIoT, where each client exchanges model parameters only with
neighbors using a broadcast-gossip communication protocol
to achieve model consensus. To enhance the efficiency of the
gossip protocol and reduce communication overhead, they also
consider the topology of the entire client network to facilitate
asynchronous model exchanges between clients.

4) Mobile Services based on IoT devices provide a signif-
icant application scenario for DFL, leveraging the capabili-
ties of smartphones, laptops, tablets, etc. These mobile IoT
devices are equipped with various sensors, such as global
positioning system (GPS), inertial measurement unit (IMU),
cameras, sound sensors, and magnetic sensors, enabling them
to acquire diverse sources of information. Unlike the relatively
fixed connectivity of CAVs, mobile IoT devices offer more
flexible systems and platforms to support a wide range of
applications. In recent studies, DFL frameworks have been
developed specifically for mobile IoT devices, aiming to lever-

age their computational power and sensor capabilities [192],
[193]. While the traditional example of CFL, such as Google
mobile keyboard prediction, is well-known [3], the transfer of
such applications to DFLs is of great interest. For instance,
building DFLs among individuals with similar professions,
such as doctors, lawyers, or engineers, can enable personalized
word recommendations tailored to their specific needs. Belal
et al. [194] developed a smartphone-based DFL personalized
recommendation system for New York City attractions and
movies. By sharing model parameters with neighbors who
have similar interests, the system achieves higher hit rates and
faster convergence, enhancing the recommendation accuracy
and user experience.

5) UAVs and Satellites, operating in dynamic computing
environments, possess vast amounts of sensitive data for
remote sensing, target recognition, and military-related tasks,
under the constraints of limited resources, making them well
suited for the advantages of DFL [195]-[197]. For mobile
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UAVs and satellites, bandwidth is a valuable resource. One
potential solution is that using a DFL framework based on
broadcast gossip tailored to dynamic geographic locations
can significantly reduce bandwidth requirements and the con-
sumption of communication resources [64]. Moreover, due to
their dynamic nature and highly variable data, DFL can also
enhance real-time responsiveness, adaptability, and efficiency
of task execution. Han et al. [198] proposed a DFL framework
that orchestrates satellite constellations, aggregating models
within a satellite cluster and relaying models to other satellites
via inter-satellite links, particularly considering the dynamic
scenarios of low earth orbit satellites with varying orbits.

6) Social Networks, as large-scale knowledge graphs, con-
tain various users as nodes, content, and connections, making
DFL highly effective for handling a widely dispersed and
personalized user base, where each user is connected only to
their neighbors [199]. Use cases in social networks include
sentiment analysis, recommendation systems, publication sys-
tems, and influence analysis, among others [130], [200], [201].
Users in social networks come from diverse backgrounds,
such as teachers and doctors, but may share common interests
in topics like comics, leading to frequent interactions. The
connections within and between user groups vary in proximity,
thus emphasizing the need for a personalized and scalable DFL
approach. Chen et al. [202] developed a DFL framework for
social networks that establishes a user data structure with affine
distributions. This structure helps capture the heterogeneity
among users and reduces the loss associated with indepen-
dently and identically distributed data.

7) Artificial General Intelligence (AGI), as one of the
popular research areas today, represented by large language
models (LLMs) like ChatGPT, has the potential to fundamen-
tally change our lives [203]. The training of these models relies
on vast amounts of computational resources and data, which
can benefit from the collaborative learning paradigm of DFL
to facilitate cooperation among different data centers [204],
[205]. Unlike other application areas discussed earlier, such as
healthcare, AGI models feature billions or even tens of billions
of model parameters and are intended for general use cases,
not just confined to a specific application. This poses unique
challenges for the application of DFL in AGI. Qin et al. [206]
proposed a method using FL for full-parameter fine-tuning of
billion-scale LLMs, employing zeroth-order optimization with
a random seed subset, reducing communication requirements
to just a few random seeds and scalar gradients, totaling
only a few thousand bytes. Meanwhile, Gao et al. [207] only
proposed a purely theoretical design for decentralized LLMs.
Therefore, the use of DFL for AGI remains a nascent field
requiring further research [208].

B. Variant: Line

The base variant of DFL can be considered as a sequential
pointing line, depicted in Fig. 4(a) and Fig. 6(a). This topology
serves as the simplest and most straightforward illustration
and comparison in this paper, as demonstrated in Table III(a),
(b), and Algorithm 1. The line variant is frequently used
as a baseline for comparison due to its ease of implemen-
tation, intuitiveness, and efficiency [163]-[166]. However, it

has notable limitations, such as the inability to accommodate
continuous learning of new knowledge within the system, the
risk of catastrophic forgetting in the Continual paradigm,
or redundant and excessive learning in the Aggregate
paradigm, as well as limited generalization ability for starting
clients and the vulnerability to a SPoF. Furthermore, the line
variant lacks cyclic connections, limiting each client to a single
iteration and preventing the system from fully converging.
In particular, in the line variant, the clients at the front of
the queue will have worse model performance. Given its
prominent disadvantages and advantages, it can serve as a
baseline or initial implementation for further research and
development.

C. Variant: Ring

The ring variant corresponds to the cycle pointing line DFL,
as depicted in Fig. 4(b) and Fig. 6(a). The cyclic form is
commonly used in DFL as the model needs to be trained
between clients to acquire new knowledge collected from
other clients, thereby enhancing generalization. Based on the
framework, not all past models need to be transferred for
aggregation in each communication since many of them may
already be outdated. The ring variant not only inherits the
simplicity of the line variant but also becomes a popular
approach in various research papers due to its ability to iterate
indefinitely until convergence.

The ring topology is already considered mature in decen-
tralized learning [145], [209] and is beginning to gain traction
in DFL [210]. For example, Chang et al. [163] proposed two
heuristics for DFL, including sequential pointing communica-
tion on each client for one iteration and multiple iterations to
obtain the final model. Similarly, Sheller et al. [165] also con-
sidered sequential pointing or cycle continual learning in the
client to generate the final model. Nguyen et al. [181] applied
cycle pointing DFL to autonomous driving applications. Yuan
et al. [167] proposed a random ring topology DFL framework,
named FedPC, based on the gossip communication protocol
for naturalistic driving action recognition. FedPC emphasizes
the highly dynamic, random, and data-heterogeneous nature
of vehicle connections in this context.

D. Variant: Mesh

A multidirectional ring, also known as a fully connected
topology, or be called mesh, is a variant of the ring basic
variant, depicted in Fig. 4(c) and Fig. 6(b). In the ring variant,
each client needs to transmit multiple model parameters in
each communication round, which can pose a burden on the
network bandwidth. In contrast, the mesh variant requires
each client to transmit its local model parameters to all other
clients in each communication round. This approach entails
higher communication frequency for the clients while also
reducing the size of model packets transmitted per commu-
nication. The higher communication frequency and larger per-
communication data packet overhead have their respective ad-
vantages and disadvantages, which can be traded off depending
on the specific application context. However, when compared
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(c) Star

(d) Hybrid

Fig. 6. Illustrations of imagined DFL network topologies in the real world: (a) line/ring, (b) mesh, (c) star, and (d) hybrid. The red dots represent clients,
which can be universities, institutions, or organizations in some of the major cities in the world (determined by population). The blue lines depict the
communication network among these clients. Depending on the chosen topology, the communication networks exhibit different communication distances,

number of communication links, complexity, and other characteristics.

to the ring variant, the mesh variant significantly mitigates the
impact of SPoF, which is a notable advantage of this variant.

Recent research has witnessed the emergence of mesh-based
DFL approaches [61], [172], [180], [211]. Assran et al. [168]
proposed Stochastic Gradient Push (SGP), a parallel broadcast-
gossip mesh DFL approach. In the broadcast-gossip iteration,
clients in SGP send their trained local models to a sparse
selection of other clients in a parallel manner, and they also
receive models from other selected clients. Each client then
performs a weighted aggregation of its local model with the
received models. Roy et al. [169] introduced the BrainTorrent
framework, in which a requesting client communicates with
all clients to obtain information about available model ver-
sions, and clients with new versions send their models to the
requesting client for aggregation.

E. Variant: Star

The star variant resembles the CFL model, where one client
assumes the role of the server to coordinate and interact with
other clients, as depicted in Fig. 4(d) and Fig. 6(c). The star
variant operates in two different modes. In the first mode,
similar to CFL, the central client is responsible for receiv-
ing, aggregating, and distributing the local models. However,
unlike CFL, the central client also generates original data
and utilizes the models for perception and decision-making.
This mode emphasizes a family-like relationship, where one
member has more computational and communication power

to assist the other clients. In the second mode of operation,
the focus is on geographic interoperability among clients. As
some clients in the community are geographically dispersed,
there is a client that serves as the geographical center for these
clients. To conserve communication resources, the surrounding
clients transmit their models to the central client, which then
forwards the models to the other clients.

Pappas et al. [170] introduced a split learning framework
within a star DFL architecture, where clients train different
layers of a model and update the model parameters with
the central client. This approach allows for distributed model
training and collaboration among clients. Another example
of a star variant is the Swarm Learning framework proposed
by Warnat-Herresthal et al. [53], which involves the dynamic
election of a leader to aggregate model parameters. In Swarm
Learning, the leader plays a central role in coordinating the
aggregation process and facilitating collaboration among the
clients.

F. Variant: Hybrid

The Hybrid variant of DFL encompasses a wide range of
configurations, combining elements from various other vari-
ants. It is considered the most promising option for practical
applications due to its adaptability to different scenarios [212]-
[214]. However, the complexity of configuring a hybrid variant
can pose challenges. One example of a hybrid variant, as
depicted in Fig. 4(g), involves connecting two ring variants
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through a central client. In this configuration, the hybrid
variant provides global connectivity, allowing for the sharing
of client models and knowledge within the framework. The
two ring variants can also be treated as a single entity, with
only one communication channel connected to the two central
clients. Another illustration of a hybrid variant, shown in
Fig. 6(d), involves dividing clients into organizations based
on geographical locations (e.g., continents). Within each or-
ganization, a mesh topology network is established, and a
leader is elected. These leaders then form a ring topology
network among themselves. The hybrid variants do not have
a fixed structure and can be customized to meet the specific
requirements of real-world scenarios. The hybrid variant offers
several advantages.

Firstly, the hybrid variant helps in saving communication
resources. This is achieved through the knowledge dissemi-
nation between the leaders of two organizations, where only
the aggregated global model is shared. By transmitting only
the essential information, the hybrid variant reduces the com-
munication overhead. Additionally, organized knowledge dis-
semination further enhances resource efficiency by minimizing
the sharing of irrelevant or invalid information. This approach
is particularly advantageous when establishing communica-
tion between two geographically distant organizations, as the
single-line connection reduces the resource requirements for
long-distance communication. Considering that the commu-
nication between organizations represents the dissemination
of knowledge across states, countries, and continents [215],
the clients representing the institutions establish a stable and
well-structured communication connection to facilitate the
exchange of knowledge between their respective organizations.

Secondly, the hybrid variant offers enhanced security. With
two central clients in control, they have the ability to unilat-
erally disconnect the communication between organizations,
ensuring the protection of their respective knowledge from
potential leaks or unauthorized access. This adds an extra layer
of security to the DFL system.

Thirdly, the hybrid variant provides a more personalized ap-
proach. Each organization’s aggregated model is organization-
specific, tailored to the unique characteristics of its local data.
This personalized model may offer better applicability to the
specific needs and requirements of the organization. While
model knowledge is shared between the two organizations, the
decision of whether to utilize the other organization’s model is
subject to further investigation and discussion. By thoroughly
assessing the performance of the other organization’s model,
clients can ensure that their own model remains uncontami-
nated and unaffected by potentially inferior or incompatible
models.

Xing et al. [216] proposed a hybrid DFL network that
establishes connections only with neighboring clients, and
model parameters are broadcast-gossiped only among these
neighboring clients. Their approach takes into account various
factors such as link blockages, channel fading, and mutual
interference, to ensure efficient and reliable communication.
Building upon this work, Shi et al. [171] further improved the
convergence performance by incorporating coding strategies,
gradient tracking, and variance reduction algorithms. In a

similar vein, Wang et al. [173] developed a dynamic hybrid
DFL framework called Matcha. Matcha introduces the concept
of creating different network topologies at each iteration to
enhance convergence speed. The algorithm consists of two
main parts. Firstly, an initial network topology pre-processing
step where Matcha performs matching decomposition on a
base communication topology to obtain disjoint sub-graphs,
including sub-graphs with only two-peer connections. Next,
matching activation probabilities are computed to maximize
the connectivity of the graph, and a new random topology
graph is generated for each iteration. The key idea behind
Matcha is to achieve faster convergence by enabling more
frequent communication on connectivity-critical links (e.g.,
central clients) and reducing communication latency by de-
creasing the frequency of communication on other connec-
tions. Matcha is particularly advantageous for hybrid networks
with unknown or dynamic central clients. However, it may not
exhibit the same advantages in scenarios involving research in-
stitutions where central clients are known and pre-determined.

V. CHALLENGE AND POTENTIAL SOLUTIONS IN DFL

Based on the current SOTA technology, this section aims to
discuss and analyze potential challenges and future research
directions for DFL. Additionally, the variants mentioned in
Section IV can be regarded as potential solutions to address
these challenges.

A. High Communication Overhead

DFL is widely recognized as an extremely communica-
tion resource-efficient approach compared to CFL. However,
researchers are still striving for further savings in commu-
nication resources and reduced communication complexity
[217]. We discuss the existing CFL frameworks in Section
II-B, and we consider introducing viable methods to achieve
efficient communication in DFL. Wang et al. [218] introduced
a method called optimization of topology construction and
model compression (CoCo) that aims to improve communica-
tion efficiency and convergence speed in DFL. CoCo achieves
this by employing adaptive techniques for constructing the
DFL network topology and assigning an appropriate model
compression ratio to each participating client. It achieves this
by adaptively constructing the DFL network topology and
assigning an appropriate model compression ratio to each
client.

In addition to model compression, it is also important
to investigate how to leverage efficient communication lines
and reduce the overall communication length. Variants such
as star and hybrid variants, which select geocentric clients
and resource-rich clients as leaders, have been proven to
be effective solutions in this regard. Some researchers have
also focused on addressing the bandwidth differences among
different communication lines [219], [220]. It is worth noting
that the dynamic hybrid variant proposed by Wang et al. [173]
emphasizes the importance of communication efficiency and
suggests frequent communication with key clients to achieve
faster convergence. A considerable body of research empha-
sizes the importance of efficient communication in DFL and
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proposes various strategies and methods to reduce complexity
and optimize communication resources. Further exploration in
this direction is expected to facilitate the potential deployment
of DFL frameworks in real-world applications.

B. Computational and Storage Burden

Compared to the CFL and Continual paradigm, the
Aggregate paradigm imposes significantly higher demands
on client-side computational and storage resources. As there
is no dedicated server in the Aggregate paradigm, clients
are responsible for storing previous model parameters and
performing aggregation computations alongside local model
training. Consequently, the computational and storage burdens
pose challenges for client hardware.

One potential solution is to adopt the transfer learning
concept and fix the weights of the lower layers in all models.
In this approach, the lower layers serve as feature extractors for
a specific task and are expected to be similar across models,
while the higher-level representations remain task-specific. By
fixing these parameters, there is no need for gradient descent,
aggregation computations, or communication-related to these
layers. Moreover, this approach reduces storage requirements,
thereby substantially mitigating the resource consumption
of the client. Currently, with the widespread availability of
high-performance GPU computing resources, the challenges
related to computational and storage burdens are gradually
diminishing. This is especially true in DFL scenarios where
institutions and organizations serve as clients. However, in
contexts such as mobile services dominated by smartphones
and on-board units in vehicular edge devices, there is still
value in researching ways to reduce computational complexity
and optimize storage efficiency.

C. Vulnerability in Cybersecurity

Network security has always been a major challenge in FL,
and this challenge is particularly prominent in DFL [221]-
[224]. In the traditional CFL setting, clients communicate with
a central server, typically operated by a research institution or
a large commercial organization. While there is still potential
for attacks and data poisoning between clients and the server,
communication is generally more regulated and protected
compared to DFL. In DFL, the knowledge exchange occurs
directly among users within a local area network, with free and
unrestricted sharing agreements, which poses an increased risk
of privacy exposure. Malicious attacks from clients, poisoned
data, free-riding attacks, and other malicious behaviors are all
possible in this decentralized setting [225], [226].

Kuo et al. [227] proposed the integration of blockchain into
a decentralized learning framework to enhance privacy protec-
tion, which can also be applied to DFL. Chen et al. [228] in-
tegrated a differential privacy mechanism based on blockchain
technology. Bellet ez al. [149] introduced an asynchronous
and differential privacy algorithm in DFL to safeguard user
privacy. He et al. [50] addressed trust issues between clients
by employing an online push-sum algorithm to actively push
local models to trusted clients. Shayan et al. [229] proposed
the Biscotti DFL system, which incorporates multiple privacy

and security protection techniques, including the Multi-Krum
defense to prevent poisoning attacks, differential privacy noise
to protect privacy, and secure aggregation. The future research
direction in cybersecurity will involve the roles of attackers
and defenders, focusing on developing targeted attack and
defense mechanisms for different DFL variants.

D. Lack of Incentive Mechanism

In the absence of server management, the issue of fairness in
aggregation has been effectively addressed in DFL. However,
the lack of incentives and mutual distrust among clients can
significantly impact their willingness to contribute knowledge.
A key issue is the lack of incentives, which may lead to free-
riding attacks where clients choose to benefit from the models
without contributing their own knowledge [68], [230].

In the context of DFL, the feasibility of incentive mecha-
nisms based on game theory, such as Stackelberg games [231],
raises questions due to the requirements on game leaders,
participants, and rewards. One potential solution could be the
integration of reputation-based incentive mechanisms using
blockchain and smart contracts. Kang er al. [105] proposed
assigning reputation scores to clients to represent and quantify
their reliability. Clients with higher contributions and reputa-
tions can receive greater rewards. However, designing effective
and practical incentive mechanisms for DFL remains an open
problem.

In cases where task providers do not exist or there are no
explicit rewards, punitive incentives may also be a potential
solution. Clients who fail to contribute or engage in malicious
behavior could face penalties or reduced access to the benefits
of the DFL framework. Further research is needed to explore
and develop robust incentive mechanisms tailored specifically
for DFL systems. Designing effective incentive mechanisms
to encourage active participation, foster trust, and stimulate
enthusiastic knowledge sharing will greatly facilitate the dis-
semination of knowledge in DFL.

E. Lack of Management

In DFL, the absence of a central server for managing all
clients poses a significant challenge in receiving and sharing
knowledge in an organized manner. The lack of central man-
agement can lead to confusion, particularly among clients with
varying sample sizes, computational resources, and commu-
nication capabilities. In the ring variant, a client only needs
to wait for the model parameters from the previous client,
while in the mesh variant, a client needs to wait for model
parameters from all other clients. Such dependencies on other
clients for model transmission can result in deadlocks, causing
the entire system to halt. Moreover, the communication among
clients may not be robust, considering the possibility of SPoF.
The absence of management is particularly problematic in the
hybrid variant depicted in Fig. 6(d), where clients communi-
cate globally. The lack of management can lead to reduced
operational efficiency, confusion regarding model versions,
and performance degradation.

To address the challenge of lack of management in DFL,
researchers have proposed several approaches. One approach
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is to pre-request the status of other clients, such as their
model versions, before initiating knowledge transfer [169].
By obtaining accurate information, a client can then request
the transfer of the entire model data. Some star variants
enforce the knowledge dissemination flow among clients by
designating a leader [178]. This leader is responsible for
regulating knowledge dissemination among the remaining
clients. Additionally, Chen et al. [179] introduced the BDFL
framework, a mesh DFL framework specifically designed for
autonomous vehicles. In this framework, a leader is randomly
selected in each communication round, offering advantages
such as increased privacy and security protection against
Byzantine faults, as well as enhanced management through
the leader’s command issuance. In real-world scenarios, clients
may face challenges where they lack knowledge about each
other’s statuses, leading to issues such as model version
discrepancies and even system paralysis, such as in the case of
an SPoF. Therefore, future research directions aim to ensure
the smooth operation of the system by incorporating additional
information or establishing contingency plans. These measures
can help mitigate the impact of uncertainty and improve the
reliability and robustness of the DFL framework.

VI. CONCLUSION

In this paper, we provided an extensive exploration of the
DFL framework, covering communication protocols, network
topologies, paradigm proposals, extension variants, challenges,
and potential solutions. Our aim is to offer a comprehensive,
well-defined, and systematic perspective that organizes and
synthesizes the existing literature and definitions, thereby
facilitating a comprehensive introduction to DFL for new
researchers. Given that DFL is a rapidly evolving area, we
established a solid theoretical foundation by defining and
discussing five variants in this paper. This not only provides
researchers with a comprehensive understanding of the field
but also fosters the generation of new ideas and collaborations
among peers.

It is important to note that our approach differs from
traditional surveys, as we presented our own insights and
innovative thinking on DFL. Moreover, this paper uncovers
a considerable number of previously unexplored types within
the DFL framework. For example, no existing studies have
demonstrated the integration of the Continual paradigm
with mesh network topology. Researchers might consider
asynchronous DFL, where clients acquire data and learn at dif-
ferent times, thus benefiting from the dual advantages offered
by the Continual paradigm and the mesh network topology,
such as reduced communication overhead, personalization,
and more. By considering diverse usage scenarios, we aim
to stimulate and extend the research interest of other DFL
practitioners, enabling them to adapt the framework to their
specific needs.
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