
MNRAS 531, 1203–1227 (2024) https://doi.org/10.1093/mnras/stae1238 
Advance Access publication 2024 May 13 
REDBACK : a Bayesian inference software package for electromagnetic 
transients 
Nikhil Sarin , 1 , 2 ‹ Moritz H ̈ubner, 3 , 4 Conor M. B. Omand, 5 Christian N. Setzer , 2 Steve Schulze , 2 
Naresh Adhikari, 6 Ana Sagu ́es-Carracedo , 2 Shanika Galaudage , 7 , 8 Wendy F. Wallace, 1 , 9 
Gavin P. Lamb 10 and En-Tzu Lin 11 
1 Nordita, Stockholm University and KTH Royal Institute of Technology, Hannes Alfv ́ens v ̈ag 12, SE-106 91 Stockholm, Sweden 
2 The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden 
3 School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia 
4 OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, University of Melbourne, Parkville, Victoria 3010, Australia 
5 The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden 
6 Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA 
7 Observatoire de la C ̂ ote d’Azur, CNRS, Laboratoire La grang e,Univer sit ́e C ̂ ote d’Azur, Bd de l’Observatoire, F-06304 Nice, France 
8 Observatoire de la C ̂ ote d’Azur, CNRS, Artemis, Universit ́e C ̂ ote d’Azur, Bd de l’Observatoire, F-06304 Nice, France 
9 Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK 
10 Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK 
11 Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan 
Accepted 2024 May 9. Received 2024 May 9; in original form 2023 August 23 
A B S T R A C T 
Fulfilling the rich promise of rapid advances in time-domain astronomy is only possible through confronting our observations 
with physical models and extracting the parameters that best describe what we see. Here, we introduce REDBACK ; a Bayesian 
inference software package for electromagnetic transients. REDBACK provides an object-orientated PYTHON interface to o v er 
12 different samplers and o v er 100 different models for kilono vae, superno vae, gamma-ray burst afterglows, tidal disruption 
e vents, engine-dri ven transients among other explosive transients. The models range in complexity from simple analytical and 
semi-analytical models to surrogates built upon numerical simulations accelerated via machine learning. REDBACK also provides 
a simple interface for downloading and processing data from various catalogues such as Swift and FINK. The software can also 
serve as an engine to simulate transients for telescopes such as the Zwicky Transient Facility and Vera Rubin with realistic 
cadences, limiting magnitudes, and sk y co v erage or a hypothetical user-constructed surv e y or a generic transient for target-of- 
opportunity observations with different telescopes. As a demonstration of its capabilities, we show how REDBACK can be used to 
jointly fit the spectrum and photometry of a kilonova, enabling a more powerful, holistic probe into the properties of a transient. 
We also showcase general examples of how REDBACK can be used as a tool to simulate transients for realistic surv e ys, fit models 
to real, simulated, or pri v ate data, multimessenger inference with gravitational waves, and serve as an end-to-end software toolkit 
for parameter estimation and interpreting the nature of electromagnetic transients. 
Key w ords: softw are: data analysis – black hole–neutron star mergers – gamma-ray bursts – neutron star mergers – transients: 
supernovae – transients: tidal disruption events. 

1  I N T RO D U C T I O N  
Rapid advances in electromagnetic telescope sensitivity and surv e y 
capabilities are revolutionizing transient astronomy. However, to 
realize the full promise of the rich and large photometric and 
spectroscopic data sets, we need a robust toolkit for simulating what 
we expect to see, building and exploring our models and fitting the 
observ ations. Such adv ancements can enable us to ultimately learn 
the physics that drives these transients, optimize our surv e y strate gies 
and instruments, and gain insights into the lives and afterlives of stars 
! E-mail: nsarin.astro@gmail.com 

and the evolution of our Universe. Such a tool must also be modular 
and open-source, easily adaptable to an individual user’s needs and 
efficiently maintained and upgraded. 

Several iterations of open-source software have served important 
roles in improving our understanding of transients. For example, 
MOSFIT (Guillochon et al. 2018 ), a modular package that has been 
used for parameter estimation of several electromagnetic transients 
such as tidal disruption events (Mockler, Guillochon & Ramirez-Ruiz 
2019 ), superluminous supernovae (Nicholl, Guillochon & Berger 
2017 ), and kilonovae (Villar et al. 2017b ). The SNCOSMO (Barbary 
et al. 2022 ), and SN AN A (Kessler et al. 2009 ) software suites that are 
readily used to fit Type Ia supernovae to enable cosmological analyses 
(e.g. Vincenzi et al. 2024 ) or study the detectable rates of supernovae 
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for different surv e y designs (e.g. Bom et al. 2024 ). 3ML (Vianello 
et al. 2015 ), which provides a cohesive framework utilizing existing 
instrument-specific software to best capture how the data is generated 
and perform detailed modelling of gamma-ray bursts (GRBs) across 
data from multiple instruments (e.g. Klinger et al. 2024 ). Haffet 
(Yang & Sollerman 2023 ), which enables data-driven reconstruction 
of supernova bolometric luminosity from multiband photometry 
enabling a more direct probe to study the explosion properties 
(e.g. Dong et al. 2023 ). NMMA (Pang et al. 2023 ), that provides 
machine-learning based ‘surrogates’to radiative transfer simulations 
of kilonovae, enabling inference with kilonova models that include 
the most physics. The NMMA package also provides an interface for 
jointly analysing electromagnetic and gra vitational-wa ve data such 
as for the first gra vitational-wa ve observation of a binary neutron 
star (BNS) merger, GW170817 (Abbott et al. 2017b ), enabling 
strong constraints on the behaviour of nuclear matter (Koehn et al. 
2024 ). 

Although these software packages have driven significant progress 
in electromagnetic transient astronomy, several limitations must be 
addressed to take full advantage of the currently available and forth- 
coming electromagnetic data. For example, models for explosive 
transients are under constant development and often make several 
underlying assumptions. Ho we v er, these packages abo v e are limited 
to a small library of implemented models and inflexible interfaces 
to change or add new models. This prevents detailed studies into 
modelling systematics or the use of the best models for any given 
transient. To truly leverage the data and maximally extract insights 
into these transients, open-source packages must come equipped with 
a large variety of built-in models and are routinely updated to capture 
the best theory has to offer. Ideally, such packages also provide a 
simplified interface to enable end users to drop-in replacements or 
modify features for inbuilt models or with minimal interaction with 
the source code. The last point is pertinent as this could help remo v e 
the burden on development teams to keep pace and implement 
developments from transient modelling, particularly in the scenario 
where key developers leave the field, as has been the case of some 
of the abo v e packages. 

Similarly, there are constant impro v ements to Bayesian inference 
techniques that are not captured by several of these packages abo v e 
as they typically use at most one sampling package such as EMCEE 
(F oreman-Macke y 2015 ). It is worth noting that some of these 
packages are also not Bayesian, failing to provide robust estimation 
of the uncertainty in estimating parameters from any fit. The lack of 
multiple implemented packages prevents cross-sampler validation 
(a valuable tool to determine if results are robust) or leveraging 
the benefits of different samplers, such as evidence calculation for 
Bayesian model selection. Other sampling algorithms can also be 
better tuned for specific transient problems (dramatically improving 
sampling wall-clock time), allowing for the use of the best tools for 
the task at hand. Similarly, there are also several practical benefits 
to having access to multiple different sampling algorithms, such 
as a better ability to capture multimodal posterior distributions or 
parallelization. 

A critical validation step in any inference workflow is to test how 
models perform across the parameter space and tests with complete 
end-to-end analyses, that is, from simulation to fitting workflow. 
While the abo v e packages hav e been tested in various ways, the y do 
not all provide a cohesive framework to both simulate model outputs 
(for a variety of different formats such as flux density or magnitudes 
or bolometric luminosity) and realistic observations (for real surv e ys 
or target-of-opportunity, ToO, observations) and fit them. This is a 
limitation of many of these packages, as we can only truly determine 

bias in parameter estimation by performing simulations with the 
same tools we use to fit and control the data generation process. 
Properly capturing the data-generation process is also instrumental 
for accurate transient analyses. The bulk of the abo v e packages can 
only work with the simple assumption of a Gaussian likelihood (i.e. 
the noise distribution is Gaussian around the true input model). This 
simple noise assumption is known to be incorrect for the majority of 
current and projected future observations and will undoubtedly cause 
problems as we continue to observe each transient more frequently 
and with higher fidelity. 

Higher fidelity and more e xtensiv e observations of transients also 
open up another challenge to maximally leverage our data: astronom- 
ical events are now readily observed in multiple ways. An example 
already described abo v e w as the multimessenger gravitational-w ave 
disco v ery of the BNS merger GW170817 (Abbott et al. 2017b ), 
which had an afterglow observed across the electromagnetic spec- 
trum (Hallinan et al. 2017 ; Alexander et al. 2018 ; Fong et al. 2019 ; 
Lamb et al. 2019a ), a kilonova from near-infrared to ultraviolet 
(UV, Pian et al. 2017 ; Smartt et al. 2017 ; Villar et al. 2017b ), 
very-long baseline interferometry (VLBI, Mooley et al. 2018 ), and 
gra vitational-wa ve data (Abbott et al. 2017a ). While packages such 
as NMMA can perform a joint analysis of the gravitational wave 
and electromagnetic photometry, they fail to include the spectrum 
or VLBI data. Although these constraints could be folded through 
after the photometric and gra vitational-wa ve analysis, you then lose 
the significant benefits offered by the full Bayesian framework 
(Gianfagna et al. 2023 ; Ryan et al. 2023 ). The opportunity to 
jointly fit the spectrum and photometry also provides a holistic 
look into the properties of the transient, where the photometric 
and spectroscopic analyses can often tell a contradictory story. 
Moreo v er, a fle xible framework for combining datasets could also 
enable Bayesian hierarchical modelling, a powerful technique to 
unco v er the properties of a population. 

Here, we introduce REDBACK , an open-source, end-to-end 
Bayesian Inference software package for simulating and fitting 
electromagnetic transients. REDBACK provides an object-orientated 
PYTHON interface to o v er 12 sampling software and o v er 100 
models for se veral dif ferent electromagnetic transients. Furthermore, 
REDBACK provides a simplified interface to download data for 
multiple transients from various catalogues, handling processing 
to a homogeneous format, removing the burden from end users 
to fully understand the peculiarities of different data sources. For 
all models implemented in REDBACK or user-provided models, end 
users of REDBACK can simulate transients for actual surv e ys such 
as the Large Synoptic Surv e y of Space and Time (LSST, Ivezi ́c 
et al. 2019 ) and Zwicky Transient Facility (ZTF, Bellm et al. 2019 ), 
or a custom surv e y, alongside ToO observations for any collection 
of observatories/telescopes. Users can fit this simulated, private, 
or publicly available data through Bayesian inference alongside 
combinations of different data types such as VLBI data, gravitational- 
wave data, and a transient spectrum and photometry. REDBACK is 
also built on modern PYTHON , with many adopted practices to aid 
continual dev elopment, continuous inte gration, and an e xtensiv e 
library of unit tests and examples which ensure that the primary 
features of REDBACK remain stable through future development. 

REDBACK pro vides sev eral advantages o v er other software pack- 
ages and mitigates the aforementioned issues: 

(i) An e xtensiv e library of inbuilt models and a simple interface 
for users to add their o wn. Se veral models implemented in REDBACK 
are direct impro v ements to previous models or model transients one 
can not model in other packages. 
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(ii) An engine to simulate realistic transients for surv e ys and ToO 
observations and perform inference, that is, a tool to validate an entire 
inference workflow or optimize surv e ys. 

(iii) A tool to access and process photometric data alongside 
auxiliary data such as sky position from many publicly available 
catalogues and brokers. 

(iv) A modular and flexible interface, users can swap likelihoods, 
models, and plotting without ever modifying the source code. 
Alternati vely, change ho w existing aspects of REDBACK function by 
passing their own function to existing functional modules. 

(v) Simplified interface (replace a string) to o v er 12 different 
open-source samplers, enabling cross-sampler validation or use of 
samplers better tuned for transient inference or have additional 
capabilities such as multiprocessing. 

(vi) Modern PYTHON software development practices, including 
continuous integration and unit-testing to ensure core software 
features remain functional, even if core developers leave the field. 

This paper is intended to describe the capabilities and mark the 
version 1.0 release of REDB ACK . REDB ACK is installable via pip 
and available at https:// github.com/ nikhil-sarin/ redback. We note 
that REDBACK has been open-source and distributed under the GPL 
licence since 2022 March. Earlier versions of REDBACK have already 
been used in previous publications, which we refer the interested 
reader to see some of the use cases for REDBACK (Sarin, Lasky & 
Ashton 2020a , b ; Sarin et al. 2021 , 2022a , b ; Sarin & Lasky 2022 ; 
Le v an et al. 2024 ; Schulze et al. 2024 ; Omand & Sarin 2024 ; 
Rosswog et al. 2024 ; Sarin & Metzger 2024 ). 

This paper is structured as follows: in Section 2 , we describe 
the design objectives of REDBACK , how the different parts of 
the software interact, and the three typical workflows we expect 
REDBACK to be used for. In Section 3 , we describe the different 
functional modules in REDBACK and how they are used in various 
workflows. In Section 4 , we showcase a new scientific analysis 
enabled by REDBACK ; the joint fitting of the spectrum and pho- 
tometry of a kilonova. In Section 5 , we briefly describe features 
in REDBACK that will be added in future releases and conclude 
in Section 6 . In the appendix, we showcase the general interface 
with detailed code snippets of how to use REDBACK , alongside 
more detailed examples. In particular, in Appendix A , we show 
ho w to do wnload and process data, set up the inference workflow, 
several plotting methods and simulate transients. This basic interface 
is followed by more detailed examples in Appendices B and C 
where we demonstrate the different capabilities of REDBACK . In 
particular, we first show how REDBACK can be used to jointly 
analyse a multimessenger BNS signal with X-ray and gravitational- 
wave data and then to fit different types of real electromagnetic 
transients. 
2  D E S I G N  A N D  IMPLEMENTATION  
A core design objective for REDBACK is to be truly modular, with 
the flexibility to adapt to the different requirements/preferences of 
end users and for users to use different parts of the software without 
requiring additional o v erhead or modifying the source code. 

Second, REDBACK must be flexible to both serve as a workhorse 
in expert workflows in transient astronomy and as an accessible tool 
for newcomers to the field. In particular, while advanced users can be 
expected to modify or interact more directly with various aspects of 
the REDBACK software, novice users must be able to use all aspects 
of REDBACK from data collection, simulation, and fitting with just a 
few lines of code. 

Third, where possible, we also aim to leverage other open-source 
software to reduce the burden on core developers of REDBACK and 
better keep pace with developments in other areas. For example, we 
are tightly integrated with the BILBY framework for sampling. This 
provides a simplified interface for end users to multiple open-source 
samplers and access to a large and active development team that 
maintains BILBY and different sampling packages. 

To address these design objects, all primary functional modules of 
REDBACK are built as PYTHON classes or functions. These functional 
modules can be readily modified by end users via k eyw ord arguments 
or replaced entirely within a workflow with other functional modules 
implemented in REDBACK or something the user provides. This 
modularity extends to primary modules described below and to more 
practical features such as plotting or where REDBACK outputs are 
stored. 

This modular interface addresses some critical limitations with 
previous packages described in the introduction. F or e xample, all 
REDBACK models are implemented as callable PYTHON functions. 
These models also have minimal dependencies and do not depend on 
other aspects of the software, enabling users to e v aluate a model as 
they would with any other PYTHON function. Moreover, all models 
in REDBACK can produce different outputs, for example, bolometric 
luminosity, a spectrum, a flux, a magnitude, a flux density, or auxiliary 
information such as the photospheric v elocity. F or man y REDBACK 
models, users can also change critical assumptions of the model, such 
as the spectral energy distribution (SED), by passing in a different 
k eyw ord argument. This allows end users to generate model outputs 
for any arbitrary input, better understand the effects of different 
parameters, or change modelling assumptions without modifying the 
source code. It also facilitates holistic studies by fully considering 
v arious observ ations, for example, spectrum and photometry. End 
users can also replace a model with their own PYTHON function, 
keeping intact all of the other functionality of REDBACK , making it 
significantly easier to use new and impro v ed models with REDBACK . 

Advanced users can also change the likelihood, that is, their as- 
sumptions about the data-generating process or the prior distribution 
on model parameters with different implementations in REDBACK or 
their implementation, again, without needing to change the source 
code. This enables advanced users to adapt their fitting or simulation 
workflows for more sophisticated analyses. At the same time, such 
choices are made by default for novice users, who can perform such 
tasks with minimal domain e xpertise. Moreo v er, different sampling 
algorithms and software packages can be used with minimal effort 
by simply changing the string referring to a sampler. This addresses 
the limitations of previous packages with inflexible interfaces for 
users to change assumptions about how the data are processed or 
generated and leverage the best samplers for the respective task. 

In Fig. 1 , we show the different functional modules of REDBACK , 
implemented as either a PYTHON subpackage, a PYTHON module, a 
PYTHON class or as a PYTHON function and how they interact for the 
three most common workflows we expect this software to be used 
for. 

A: Fitting a real transient . We anticipate that one of the most 
common use cases for REDBACK will be fitting data of a real 
astrophysical transient. This workflow typically involves getting 
data from one of the catalogues using the get data subpackage 
in REDBACK , or users can provide pri v ate data. The user will then 
use this data to create a specific Transient class object from 
the transient subpackage, which loads the data in a homogeneous 
format and can be used for plotting the data or additional processing, 
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Figure 1. Flowchart showcasing the different subpackages, modules, and classes of REDBACK and how they interact for different workflows. 
such as converting flux data to luminosity. The user then passes this 
Transient class object along with a string referring to a model 
from transient models subpackage or their own PYTHON - 
wrapped model, an instance from the prior class, an instance of the 
likelihood class and a string referring to a sampler that is available 
in BILBY (Ashton et al. 2019 ; Romero-Shaw et al. 2020 ). This will 
perform fitting through Bayesian inference and obtain a result 
class object. The result object contains the posterior, and other 
properties such as the Bayesian evidence. This result class can 
also be used to make plots such as the fitted light curve, the corner 
plot, or the cumulative distribution function of all parameters, which 
are internally handled by a separate plotting module. We emphasize 
that for the novice user, choices like the likelihood, prior, sampler 
choice and plot aesthetics are made by default, but more advanced 
users can change these as they desire. 

B: Fitting a simulated tr ansient. Man y users will also fit simulated 
data to verify the inference workflow or predict constraints from 
mock observations. In this workflow, the user would start with a 
model from transient models or supply their own model. Then, 
use the simulation module to create synthetic data. After the 
creation of this simulated data, the workflow for fitting is the same 
as workflow A. 

C: Simulating a transient or a population of transients. Users 
may also wish to create a population of transients, for example, 
to understand how many afterglows LSST will see in a year or 
to understand the selection effects of surv e ys. These workflows 
require choosing a model from transient models or supplying 
a PYTHON -wrapped model and passing this to the simulation 
module alongside a prior object which describes the distribution of 
each parameter in the model that constitutes the population. Complex 
prior constraints can be placed on this population through the use of 
prior constraints functional module. 

The abo v e briefly describes ho w dif ferent aspects in REDBACK 
interact for dif ferent workflo ws. We no w gi v e a general o v erview 
of the REDBACK software and describe each functional module’s 
capabilities in detail and how it can be modified. 

3  SOFTWARE  PA  C K A  G E  OV E R  VI EW  
REDBACK is built predominantly on a class structure and almost every 
aspect of the software exists as an independent PYTHON class. Here, 
we describe each of these different functional modules and their pri- 
mary functionality. We stress that these modules are standalone and 
can be used independently to adapt to different needs and workflows, 
or modified via k eyw ord arguments or replaced to provide additional 
functionality. 
3.1 Data interface 
REDBACK provides an interface to download and process data 
from multiple catalogues through the get data subpackage. In 
particular, this includes the flux, flux density or the photon arri v al 
time data for GRBs detected by the Neil Gehrels Swift Observatory 
available at Swift Data Centre (Evans et al. 2010 ), the magnitude or 
flux density data of transients from ZTF from LASAIR (Smith et al. 
2019 ) or FINK (M ̈oller et al. 2021 ) which in the future are expected 
to also host transient light curves from LSST (Ivezi ́c et al. 2019 ), 
the archi v al GRB data from Burst and Transient Source Experiment 
(BATSE) (Fishman et al. 1994 ) and compilation of optical transient 
light curves available at the Open Access Catalog (OAC, Guillochon 
et al. 2017 ). 

For each of the abo v e catalogues, the get data module pro- 
vides a one line interface to download and process the data into 
a PANDAS data frame and save it as a human-readable file in 
an appropriate location to integrate with the rest of REDBACK . 
This module also attempts to find additional metadata such as 
the redshift of the transient, the GRB photon index, T90 among 
other properties and process the data to add additional attributes 
such as the integrated flux, flux density and their respective 
errors. 

As the data are stored as human-readable file and readable as 
a PANDAS data frame, the user can easily add additional pri v ate 
data or verify and modify any erroneous data. The get data can 
be used independently of all other parts of REDBACK and may be 
used to simply process a large quantity of transient data from public 
archives. 
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3.2 Transient classes 
The primary unifying module of REDBACK are the Transient 
classes that are available through the Transient subpackage. 
These are separated into two main types, a generic transient class 
which is applicable for any type of transient and an optical tran- 
sient class. These classes serve as parent classes for five other 
classes; prompt , afterglow , kilonova , supernova , and 
tde which provide a more seamless interface for the specific type 
of transient, any additional processing such as converting the flux 
data to a luminosity and modify some default behaviour, such as 
labels for plotting, where plots are saved etc. We note that the 
afterglow class is further split into a short and long GRB class 
but these are functionally equi v alent and only differ in locations of 
metadata. 

For all transient classes, we provide one-line class methods to load 
the data from different catalogues obtained via the get data mod- 
ule, or from the simulation module (described in Section 3.4 ). 
The Transient objects can also be initialized independently of any 
class method by specifying the observed properties. In Appendix A2 , 
we sho w ho w to initialize these Transient objects for different 
workflows. 

All transient objects also have two important attributes; 
data mode and use phase model . The former is an attribute 
which dictates what REDBACK assumes to be the mode of data for 
the transient, for example, magnitude for magnitude data, while 
the latter is a Boolean switch which dictates whether the transient 
has observed times in reference to a known start time (as usually the 
case for an afterglow) or is in Modified Julian Days (MJD) without a 
reference (as usually the case for most other transients). Again, these 
attributes affect choices such as the labels for plotting and where 
plots are saved but also in some cases the default likelihood used by 
REDBACK . 
3.3 Models 
While the most desirable method would be to confront observations 
with the best models that include the most physics (typically 
hydrodynamical and radiative transfer simulations), such models 
are not tractable for fitting given the demanding computational 
requirements of Bayesian inference (each model must be e v aluated 
o v er a range of parameters at least O(10 4 ) times to fit a typical 
transient). To be tractable for inference, all models in REDBACK are 
either analytical, semi-analytical, or surrogates built with machine 
learning from numerical simulations. The latter are provided by 
another standalone software package redback surrogate that 
is available independently but we consider as part of the RED- 
BACK software stack. Here, we describe the models for various 
different transients available in REDBACK and how they can be 
modified. 

To remain true to our driving aim of modularity, all models are 
callable PYTHON functions and can be called on an arbitrary set 
of values with minimal dependencies. These functions can all be 
easily modified through the use of dependency injection (described 
in Section 3.3.1 ) without needing modify the REDBACK source code 
or replaced entirely within the rest of the workflow with a user- 
provided model. Most REDBACK models can provide outputs in 
different formats, for e xample, luminosity, inte grated flux, magnitude 
or flux density enabling them to be used to fit any type of data format. 
For magnitude and integrated flux data, REDBACK will integrate 
the spectrum and calculate the band pass magnitude/flux. This 
behaviour could be easily modified to use a flux density to magnitude 

conversion to further alleviate computational demands. We note that 
this behaviour is enabled by default for afterglow models where the 
effect of assuming a flux density to magnitude conversion as opposed 
to integrating a band pass is minimal. 
3.3.1 User-defined models and dependency injections 
As alluded to abo v e, REDBACK is built on a flexible interface which 
allows the user to use their model with all other aspects of REDBACK . 
The only requirement is that the user-defined model is a PYTHON 
function with the first input being the time of observations and the 
output being the desired output, for example, flux density if the 
user wants to fit flux density data. Once written, this PYTHON 
function can be passed to different modules of REDBACK , either to 
simulate data or to fit some observations. This workflow also enables 
users to combine REDBACK models, replacing each of the individual 
models with their own model or a different REDBACK model. 

Many REDBACK models use additional k eyw ord arguments to 
dictate the precise physics of the model. Some k eyw ord arguments 
are Boolean switches to turn on/off certain physics, but others require 
a more complex object. This pattern is often referred to as dependency 
injection , which allows us to build a more flexible interface. We 
implemented the dependency injection pattern to handle features 
such as the SED, or the conversion from inspiral parameters to 
kilonova parameters, photosphere, or the cosmology used to associate 
a redshift to a luminosity distance. By default, every model has 
these choices set internally but users can make changes to the model 
by simply using a different object as a k eyw ord argument which 
could either be an instance of a REDBACK class or a class they write 
themselves. Through these model modifications and dependency 
injections, many REDBACK models can be extended and have their 
physics changed without ever modifying the source code, alleviating 
the burden on the end user to make a change to a model. Ho we ver, as 
the interface is modular, a REDBACK model can also just be replaced 
entirely. 
3.3.2 Specific transient models 
Broad-band GRB afterglow. GRBs are typically followed by lower 
energy broad-band emission referred to as afterglow (e.g. Sari, 
Piran & Narayan 1998 ). The broad consensus is that the afterglow 
is a product of the relativistic jet interacting with the ambient inter- 
stellar medium, an interaction that produces synchrotron emission. 
Ho we ver, there are se veral aspects of afterglow models that are ill- 
understood, such as the jet structure, that is, the distribution of energy 
as a function of angle, or the role of reverse shocks, or additional 
emission components, or energy injection. 

REDBACK provides an interface to several different afterglow 
models. F or e xample, the different jet-structure models implemented 
in afterglowpy (Ryan et al. 2020 ), and implementations of 
several other physical models described in the literature (Sari et al. 
1998 ; Sari, Piran & Halpern 1999 ; Gottlieb, Nakar & Piran 2018 ; 
Lamb, Le v an & Tanvir 2020 ; Lamb et al. 2021 ). For each of the 
models, users can make additional modifications to the physics such 
as the inclusion of jet spreading, inverse Compton emission, and 
energy injection or more specific settings such as the resolution 
of the integration scheme. For other models, users can choose the 
exact jet-structure profile, whether the interstellar medium is at a 
constant density or a wind-like medium etc., and whether the shock 
is refreshed. All these modifications are handled through additional 
optional k eyw ord arguments in the PYTHON function which allows 
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the advanced users to make changes as they wish while more novice 
users can a v oid ha ving to make these decisions. 

Alongside these physically moti v ated models we also include 
some purely phenomenological broken power-law models with 
different degrees of components. In total, REDBACK includes 21 
physically moti v ated afterglo w models in addition to the five phe- 
nomenological models, providing coverage of the different physical 
assumptions involved in afterglow modelling and to test the robust- 
ness of inferred models across different modelling assumptions. 

Broad-band kilonova afterglow . Similar to a GRB afterglow, 
there also exists an expectation for synchrotron emission when the 
slower mo ving kilono va ejecta interacts with the ambient interstellar 
medium. Ho we ver, unlike models for the GRB afterglow, where we 
are aided by decades of observations, there are currently no confident 
detections of a kilonova afterglow. Nevertheless, we provide an 
interface to several different kilonova afterglow models described 
previously in the literature (Nakar & Piran 2011 ; Sarin et al. 2022b ) 
and make modifications to some of GRB afterglow models described 
abo v e to be more suited for a kilonova afterglow (e.g. Gottlieb 
et al. 2018 ; Ryan et al. 2020 ). In the future, we will add kilonova 
afterglow models more representative of the ejecta distribution we 
see in numerical simulations (Kathirgamaraju, Giannios & Beniamini 
2019 ; Nedora et al. 2021 ). 

Kilonovae . The re volutionary observ ations of AT2017gfo (e.g. 
Abbott et al. 2017b , a ; Arcavi et al. 2017 ; Kasen et al. 2017 ; Coulter 
et al. 2017 ; Villar et al. 2017a ) pro vided definitiv e evidence of a 
thermal transient powered by r -process nucleosynthesis. Ho we ver, 
despite the e xtensiv e observations and significant theoretical model 
dev elopment, man y aspects of kilonovae remain uncertain. In RED- 
BACK we provide implementations of 18 different kilonova models 
which range in complexity and implemented physics. Many aspects 
of these models such as the distribution of ejecta mass or the recipe 
to relate the BNS or neutron star black hole (NSBH) parameters to 
kilonova parameters can be changed through the use of dependency 
injection (described in Section 3.3.1 ). 

The simplest kilonova model implemented in REDBACK is a one 
component kilonova model (Villar et al. 2017b ). Although minimal 
in parameters and quick to e v aluate and therefore fit to observations, 
this model has already been shown to be unsuccessful in explaining 
multiple aspects of kilonovae observations. To address the inability 
of such a simple model to explain observations, we also provide 
implementations of two- and three-component kilonova models 
following Villar et al. ( 2017b ) and implementations of MOSFIT 
kilonova models (Cowperthwaite et al. 2017 ; Villar et al. 2017b ). 
These models all ef fecti vely ignore the dynamics of the ejecta, 
assuming the entire ejecta component is moving at one velocity, 
an assumption that is likely incorrect. We therefore also provide 
models where the ejecta is distributed into shells which expand 
homologously, similar in spirit to the model presented in Metzger 
et al. ( 2010 ) and Metzger ( 2019 ). Alongside this, we also provide an 
interface to the heating-rate kilonova models (Korobkin et al. 2012 ; 
Hotokezaka & Nakar 2020 ; Dorsman et al. 2023 ), which allow the 
user to describe the velocity and opacity distribution themselves. 

The abo v e models all hav e parameters that describe the kilonova 
ejecta properties itself, that is, the mass and velocity of the ejecta. 
Ho we ver, it has become increasingly common for kilonova models to 
be built upon the BNS or NSBH parameters which are then related to 
the ejecta parameters with a series of recipes from numerical relativ- 
ity simulations. We provide several implementations of these models 
including models for BNS and NSBH, including, for example, the 
BNS model implemented in MOSFIT (Nicholl et al. 2021 ) which 
includes additional physics such as shock cooling to describe the 

early optical light curve (Piro & Kollmeier 2018 ), or implementations 
of models presented in Coughlin et al. ( 2019 ). 

While the abo v e models are all semi-analytical, we also provide 
three models that are machine-learning surrogates to numerical 
simulations. These surrogates are provided in the optional package 
redback surrogate (described in more detail below), and are 
implementations of surrogates built in KilonovaNet (Luko ̌siute 
et al. 2022 ). In the future, we will continue to add more kilonovae 
models (Banerjee et al. 2020 ; Korobkin et al. 2021 ) and allow greater 
fle xibility to e xisting models such as changing the calculation of the 
thermalization efficiency. 

Supernovae . REDBACK contains man y superno v a models of v ary- 
ing levels of complexity. Most of the models have both a bolometric 
implementation and an implementation for multiband photometry. 
This setup allows the user to fit bolometric luminosity, magnitude, 
integrated flux, or flux density data. Similar to MOSFIT where 
physics such as the interaction process, photosphere, and SED can 
be swapped, REDBACK supernovae models can do the same since 
they are implemented using dependency injection. For all models, 
these aspects are chosen by default corresponding to the physics 
implemented but can be swapped without modifying the source code 
for a different module to capture different physics. 

The simplest model, such the e xponential-power-la w model, is 
purely phenomenological and built upon no physics in terms of 
luminosity but assumes a dif fusi ve photosphere with a temperature 
floor, and a blackbody SED. Other models are more physically 
moti v ated such as several variations of the Arnett ( 1980 , 1982 ) model 
for 56 Ni-po wered supernov ae including a version which also incor- 
porates shock cooling, a version that incorporates line absorption 
for modelling Type Ia supernovae, and a version which incorporates 
synchrotron emission for modelling Type Ic supernovae. Then there 
are models for circumstellar (CSM) interaction powered supernovae 
(Chatzopoulos et al. 2013 ; Villar et al. 2017a ; Jiang, Jiang & Ashley 
Villar 2020 ) as well as a mix of CSM and 56 Ni power. We also 
include other models similar to those available in MOSFIT , such as the 
basic magnetar , slsn , and magnetar + nickel models 
(Nicholl et al. 2017 ; Guillochon et al. 2018 ), as well as new models 
which include non-vacuum dipole spin-down (Lasky et al. 2017 ) and 
ejecta acceleration from the pulsar wind nebula (Sarin et al. 2022b ; 
Omand & Sarin 2024 ). 

Again, through the use of dependency injection, these models can 
be easily modified to capture different physics. We also provide an 
interface to supernova models implemented in SNCOSMO (Barbary 
et al. 2022 ), which further amplifies the library of supernovae 
models available in REDBACK . In future releases, we will be adding 
surrogate models to hydrodynamical/radiative transfer simulations 
of interaction powered supernovae, among other models. 

Engine-driven transients . Distinct from the magnetar-driven su- 
pernovae models described above, we also provide a general class of 
magnetar driven models. Such models aim to capture the emission 
that would be produced in a magnetar-driv en kilono va or a magnetar- 
driven fast blue optical transient (Drout et al. 2014 ; Arcavi et al. 
2016 ). Se veral dif ferent models are implemented such as those that 
capture the dynamical evolution of the nascent neutron star (Sarin 
et al. 2022b ) or the dynamical evolution of the ejecta (Metzger & Piro 
2014 ; Sarin et al. 2022b ). We also include models with relativistic 
considerations (Yu, Zhang & Gao 2013 ; Sarin et al. 2022b ), non- 
vacuum dipole spin (Lasky et al. 2017 ), and models with variation 
in their treatment of the thermalization efficiency or gamma-ray 
leakage (Wang et al. 2015 ; Sarin et al. 2022b ). We also include 
an implementation of the trapped magnetar model that has been 
suggested as an explanation for the enigmatic fast X-ray transient, 
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CDF-S XT1 (Sun et al. 2019 ). In the future, we will add models to 
capture energy injection from fallback accretion onto a central black 
hole. 

Millisecond magnetar . Ever since the launch of Neil Gehrels Swift 
Observatory (Gehrels et al. 2004 ), the origin of the X-ray afterglows 
of GRBs has been a long source of debate. In particular, features 
referred to as the internal and external plateaus are difficult (although 
not impossible) to explain within the standard picture of synchrotron 
emission from a jet interacting with the ambient medium. These 
plateaus are readily explained as the bare or processed spin-down 
from a highly magnetic, rapidly rotating newly born neutron star, 
that is, a millisecond magnetar. 

In REDBACK , we provide several implementations of millisecond 
magnetar models, such as early models which assumed the neutron 
star only spun down through vacuum dipole radiation (Zhang & 
M ́esz ́aros 2001 ; Rowlinson et al. 2013 ), to extensions that included 
a variable braking index (Lasky et al. 2017 ). We also provide models 
which include a collapse time (Sarin et al. 2020a ), to capture light 
curves when the neutron star undergoes a delayed collapse to a 
black hole. The abo v e models all implicitly assume that the observed 
emission is a constant factor of the real spin-down power of the 
neutron star. In reality, it is difficult to assume that this factor will be 
constant in time and be the same for different environments/ejecta 
properties. To capture this behaviour, some other models have been 
developed which account for this changing efficiency by accounting 
for the radiative losses at the interface between the jet and interstellar 
medium (Dall’Osso et al. 2011 ; Sarin et al. 2020b ), these models are 
also implemented in REDBACK . Similar to the extension in physics 
of how emission is generated, the assumption that a neutron star 
spins down with a constant braking index is also simplistic, we 
therefore include models where the braking index is a time-dependent 
value conditioned on the evolution of the angle between the spin and 
magnetic field axes (e.g. S ¸a s ¸maz Mu s ¸ et al. 2019 ; Sarin et al. 2022b ). 

Tidal disruption events . Tidal disruption events occur when a 
star in a galactic nucleus approaches a supermassive black hole 
(SMBH) and is sufficiently close to be torn apart by tidal forces 
(Hills 1975 ). Many models for tidal disruption events exist which 
have different assumptions of how the optical/UV light curve is 
produced. F or e xample, some models assume that the optical/UV 
light curve directly tracks the fallback rate (Guillochon & Ramirez- 
Ruiz 2013 ; Guillochon et al. 2017 ; Mockler et al. 2019 ), consistent 
with the light-curve decay slope of L ∝ t −5/3 expected for complete 
disruptions (e.g. Guillochon & Ramirez-Ruiz 2013 ). Other models 
assume that the disrupted material does not circularize rapidly and 
instead the light curve is powered by stream–stream collisions (Piran 
et al. 2015 ; Ryu et al. 2020 , 2023 ). Recent numerical simulations 
have shown that disrupted material does indeed circularize rapidly 
(Steinberg & Stone 2024 ) but this need not lead to rapid feeding 
of the SMBH, instead the material forms a quasi-spherical pressure 
supported envelope rather than in an accretion disc (Metzger 2022 ). 

Moti v ated by these different assumptions, in REDBACK , we provide 
two primary sets of models; the cooling envelope model described 
in Metzger ( 2022 ) and Sarin & Metzger ( 2024 ), which models the 
optical/UV emission from a cooling envelope and a more fallback 
rate inspired model similar to MOSFIT (Guillochon et al. 2018 ; 
Mockler et al. 2019 ). In future versions, we will add models that 
describe the light curve from stream–stream collisions and surrogates 
that directly emulate the light curve produced by radiative transfer 
simulations. 

Shock-powered models . The emission produced via shocks is 
diverse and an important ingredient for many different transients, 
such as the early cooling that may occur in a supernova or kilonova 

ejecta (Piro & Kollmeier 2018 ), the shock powered emission when a 
blastwave interacts with the preceding material such as supernova ex- 
plosions with CSM interaction (Mar galit 2022 ; Mar galit, Quataert & 
Ho 2022 ). Or the synchrotron emission produced in mildly relativistic 
blast waves with both thermal and non-thermal electrons (Margalit & 
Quataert 2021 ). In REDBACK , we provide an individual model for each 
of these processes, to be used independently or added onto any other 
REDBACK model. 

Prompt gamma-ray burst . The mechanism that produces the high- 
energy gamma-ray emission in GRBs is unclear. Ho we ver, the 
prompt emission light curves of GRBs are often analysed to look for 
signatures of periodicity (H ̈ubner et al. 2022 ; Chirenti et al. 2023 ), 
lensing (Paynter, Webster & Thrane 2021 ), or to characterize the 
observations into different GRB subtypes. In REDBACK , we provide 
five models for GRB light curves to facilitate this research. 
3.3.3 General purpose models 
Generic models . While physical intuition is often the highest priority 
when performing inference, sometimes we require a model that is 
robust, flexible and will fit all our observations. Such models can 
often form the basis of more physically moti v ated models or just be 
used to directly gain insight into the population. In REDBACK , we 
pro vide sev eral phenomenological models to address this aim, from 
models which mimic a Gaussian rise, to an exponential rise and power 
law decay, to broken power laws with one to six components. As these 
models have no physics, they are often orders of magnitude faster to 
e v aluate and fit than the physical models described abo v e, making 
them particularly practical as a way to screen transient candidates. 

REDBACK surrogates . All of the models described abo v e rely on 
an analytical or semi-analytical model prescription for the physics 
dictating the light curve. Although such models are incredibly useful 
for getting insight into different transient phenomena, they likely 
make simplified assumptions which may not be suitable to draw 
accurate inferences into observations. In an independent package, 
redback surrogate , which has a direct interface to REDBACK , 
we provide a library of models which are machine learning surrogates 
to numerical simulations. At present these models are restricted 
to surrogates of kilonovae simulations (Kasen et al. 2017 ; Bulla 
2019 ; Luko ̌siute et al. 2022 ). All models in redback surrogate 
seamlessly integrate into REDBACK and can be used like any other 
model implemented in REDBACK . In future releases, we will provide 
surrogates for hydrodynamical/radiative transfer simulations of many 
different transients as well as an interface to build your surrogate from 
a grid of simulations. 

Joint afterglow/kilono va/superno va . Observations of supernovae 
in afterglows (Zeh, Klose & Hartmann 2004 ; Greiner et al. 2015 ; 
Cano et al. 2017 ) and more recent infrared excesses consistent with 
a kilonova in some GRBs (Tanvir et al. 2013 ; Lamb et al. 2019b ; 
Rastinejad et al. 2022 ; Le v an et al. 2024 ) have moti v ated jointly 
fitting the broad-band afterglow alongside a kilonova or supernova 
component. In REDBACK , we provide three such joint models to 
enable joint fitting. In particular, a top-hat afterglow with an Arnett 
model, to jointly fit a wide variety of GRBs with supernovae, and 
two models for jointly fitting a kilonova, one using a two-component 
kilonov a follo wing Villar et al. ( 2017b ) and another following the 
heating-rate model (Hotokezaka & Nakar 2020 ) with a simple top-hat 
afterglow. 

We note that to keep a consistent data generation method, these 
models can only be fit in flux density, requiring the assumption 
that optical bandpass magnitudes are approximately equi v alent to 
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the flux density at the bandpass ef fecti v e wav elength. We further 
emphasize that these models are simply adding the prediction of 
the two emission processes and do not capture the complicated 
physics, for example, the interaction of the jet with the ejecta that 
may significantly alter the o v erall light curv e (Klion et al. 2021 ; 
Nativi et al. 2021 ). We also note that while the abo v e options are 
limited in variety, the choice is motivated by both the simplicity (less 
parameters to fit) and flexibility of the models. Users of REDBACK 
can replace each of the individual components with a different 
model implemented in REDBACK or their own model. We provide 
an additional, simple joint model interface that enables users to use 
any other REDBACK afterglow or kilono va/superno va model, only 
requiring the user to pass a string referring to the model they wish to 
use. 

Gaussian process base model . While the large diversity of models 
in REDBACK offers a lot of opportunity that one model might explain 
observ ations suf ficiently well. Transient phenomena is quite often too 
complicated, and often the data we observe has underlying processes, 
for example, periodicity, correlated noise or unmodelled physics that 
can not be captured analytically or not understood a priori. To provide 
ev en more fle xibility and as a better estimate of uncertainty and 
fitting procedure in the presence of correlated noise, we provide a 
generic interface to Gaussian processes in REDBACK . In particular, 
every model in REDBACK can be used as a mean model for Gaussian 
process kernels implemented in George (F oreman-Macke y 2015 ) 
and celerite (F oreman-Macke y et al. 2017 ). 

Phase and attenuation models . All REDBACK models are written 
with the assumption of no attenuation and that the transient time 
observations are since the transient started (i.e. that the time of 
the explosion is known). In practice, these assumptions are mostly 
incorrect. Therefore, we provide an interface which for all REDBACK 
models can make the time in reference to an unknown start time 
(which can be added as a parameter to sample) and/or add attenuation 
which can be added as a parameter to be estimated by sampling. The 
attenuation is handled through the EXTINCTION package (Barbary 
2016 ). We note that REDBACK assumes all photometry has already 
been corrected for Milky Way extinction before creating a Tran- 
sient object. Ho we ver, if not, the user can do this through the 
EXTINCTION package alongside online resources to gather the Milky 
Way extinction along the line of sight of the transient. 

Acknowledgement of models . Many of the models implemented in 
REDBACK are implementations of models that have been described 
previously in the literature or exist as an interface to another open- 
source package. To ensure these previous works are adequately 
acknowledged and facilitate development we provide a simple one 
line attribute to all models that will provide a reference to the NASA 
ADS page for the paper describing the model or the software that 
originally implemented this model. 

3.4 Simulation 
A key requirement for inference workflows is the ability to test 
pipelines on realistic synthetic data. To wit, we have created a 
simulation module in REDBACK to create light curves for transients 
that can be loaded in a transient object and used in inference. 
Specifically, we provide three classes. 

(i) A generic simulation interface that can be used to create 
simulated data for any type of transient. In this module, the time, 
observed filters/frequencies are sampled randomly from user inputs 
and added to a user-specified noise level. This generic interface can 

be used for any REDBACK model and is appropriate for generating 
ToO style of observations rapidly. 

(ii) A more detailed simulation interface specifically for optical 
transients to be used for producing light curves from real or user- 
generated surv e ys/telescopes. Specifically, here we use official table 
of pointings for ZTF and the Vera Rubin Observatory (provided 
in REDBACK ), which describe the pointings of the telescope, the 
limiting magnitude, cadence of filters, and other properties. Users 
can also build a pointings table with minimal inputs and design 
their own surv e y or pro vide a table of pointings from an surv e y 
not implemented in REDBACK . This allows any REDBACK or user- 
provided model to be used to generate realistic survey light curves and 
not only validate their inference methodologies but also understand 
constraints from surv e y light curves or optimize survey design. 

(iii) A full surv e y, here a user provides a rate, a survey duration 
and a REDBACK model and prior (described in detail below) and a 
full surv e y is generated with ev ents dra wn according to the rate, 
placed isotropically in the sky and uniformly in comoving volume. 
The detected/not-detected events are tracked and this can be used to 
understand the detectable fraction of events and how that is affected 
by the population properties of the transient and surv e y strate gy. 

We note that we assume a circular field of view for simulating 
real surv e ys in REDBACK . This is incorrect for surv e ys such as ZTF, 
which has a rectangular field of view and a circular field of view 
could underestimate the rate of transient detections if adopting a 
circular field of vie w. Ho we ver, this approximation is likely not a 
concern, in ZTF, the fields are fixed to the same sky coordinates 
with no dithering, which provides uniformity and more accessible 
reduction and background subtraction. Nevertheless, the transients 
landing on the gaps between the CCD quadrants are consistently 
lost. This results in an ≈ 15 per cent loss of the ef fecti ve area. In 
REDBACK , we approximate the 47 sq deg rectangular field of view of 
ZTF as a perfect inner circle of 36 sq deg, corresponding to a loss of 
≈ 20 per cent , which is a reasonable approximation for most studies 
given significant uncertainties on rates and source properties. For, 
LSST, this is not a concern as the Rubin field of view can be well 
approximated as a circle. We will impro v e the treatment of different 
surv e ys’ focal plane geometry in future releases. This simulation 
interface can also be used to optimize surv e y strate gies and design 
for different transients or specific science goals. 
3.5 Inference 
The key aim of REDBACK is to enable Bayesian inference on 
electromagnetic transients. For inference, REDBACK leverages the 
interface to BILBY , which provides a wrapper to many open source 
sampling software. With this interface a user of REDBACK , simply 
needs to (1) specify an implemented sampler as a string (16 samplers 
are implemented at time of writing), (2) write a prior (or use the 
default for the model), (3) specify a likelihood (chosen by default 
unless specified), and then (4) fit a model. In this paper, we assume 
familiarity with Bayesian inference but we refer readers who are 
beginning in this field to Mackay (2003 ), Hogg, Bovy & Lang ( 2010 ), 
Ashton et al. ( 2019 ), and references therein. 
3.5.1 Likelihoods 
Likelihoods in REDBACK are chosen by default and apart from the 
exception of photon count data (which uses a Poisson likelihood), 
are by default, Gaussian. Ho we ver, the modular interface means 
that users can change the likelihood used with one line of code 
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to another REDBACK -implemented likelihood (there are several to 
choose from) or write their own and use that instead. This flexibility 
enables REDBACK to be useful to both advanced users who wish to 
model the likelihood more accurately and users who simply wish to 
fit a transient. 
3.5.2 Priors 
To obtain a posterior in Bayesian inference, we require a prior. For all 
REDBACK implemented models, we provide a default prior, this prior 
is typically broad and uninformative. REDBACK priors are written 
in the same way as BILBY priors and are ef fecti vely a dictionary 
with keys corresponding to each prior. Many prior distributions are 
implemented but users can also implement their own which they 
either write mathematically or provide a grid of the prior that can 
be used to build an interpolant. REDBACK also provides access to 
conditional priors to write priors on parameters that depend on 
one another. Many astrophysical models also have constraints, for 
e xample in engine-driv en models we al w ays w ant to ensure that the 
energy in the ejecta does not exceed the energy budget of the engine 
or that our flux does not exceed a known upper-limit/non-detection. 
These conditions can be placed on any prior as a Constraint , 
which will ensure that any prior draw does not violate any constraints. 
All REDBACK priors can also be sampled from with one line of code 
to enable users to better understand the prior distributions. 
3.5.3 Samplers 
There are many advantages to being able to choose from a list of 
samplers (with no additional o v erhead be yond changing one line 
of code), for e xample, sev eral samplers come with the ability to 
do parallel processing, which can dramatically impro v e run times. 
Some samplers also have the ability to resume from checkpoints and 
produce regular diagnostic plots that can be used to verify progress. 
There are also large differences in the algorithm of certain samplers, 
beyond the general distinction between nested sampling and Markov 
Chain Monte Carlo, with some algorithms better suited to one type 
of transient than another. 

For REDBACK specifically, we use the DYNESTY (Speagle 2020 ) by 
default, but we regularly find that PYMULTINEST (Buchner et al. 2014 ) 
and NESTLE 1 give similar posteriors for significant shorter run times. 
Ho we ver, the latter tend to be less robust at dealing with a complicated 
parameter space. A full sampler comparison is beyond the scope of 
this paper but we strongly encourage users to perform inference with 
multiple different samplers, both to gain a better understanding of 
the parameter space, what algorithms perform best and as a cross 
sampler validation to ensure that their results have converged. 
3.6 Format of results 
After a fit, REDBACK returns a homogeneous result object. This 
object is the same for any type of transient analysed. The object 
is also saved locally (in a machine-readable json file by default) 
either with a user-specified location/label or as a subfolder with 
the name of the model in a folder that is the name of the type of 
transient analysed (by default). The result object contains several 
attributes needed for diagnosis, such as a PANDAS data frame of the 
posterior values, alongside metrics (depending on the sampler) such 
as the Occam factor, the Bayesian evidence, the number of likelihood 
1 http:// kylebarbary.com/ nestle/ 

e v aluations, the priors used in the analysis and additional metadata 
which includes a copy of the Transient object used in the fit. The 
result object also contains several methods, from convenience 
functions to obtain the credible intervals and latex strings for the 
constraints on all parameters, to plotting the corner or light curve and 
multiband light-curve plots with the data and the fit. The result file 
can also be shared and loaded in REDBACK to enable users to share 
their analysis or work across multiple machines. We note that the 
REDBACK result object inherits from the BILBY result object, 
inheriting additional useful methods and diagnostics such as the 
ability to importance sample or make a percentile–percentile (PP) 
plot (Cook, Gelman & Rubin 2006 ) to validate an inference workflow. 
3.7 Plotting 
In REDBACK , all plotting methods are implemented in a specific 
plotting module. Ho we ver, we note that the access to these meth- 
ods is through the Transient and result objects. In particular, 
we provide interfaces to plot the observations themselves, the fit to 
single or multiband photometry as random models drawn from the 
posterior or as a credible interval and a residual plot. The different 
REDBACK plotting functionality is demonstrated in Appendix C . To 
simplify modification of REDBACK plots, all plotting methods return 
the MATPLOTLIB axes, which can allow users to change things such 
as the axes labels/fontsize/scale/limits or plot something extra on the 
same plot. Furthermore, users can also pass their own MATPLOTLIB 
figure and axes to REDBACK , enabling multipanel light-curve plots 
or a customized size. The plotting module also uses dependency 
injection and k eyw ord arguments for several settings which can be 
used to change many features of the different plots. Users can also 
replace the plotting module to be more specific to their needs or 
call the model themselves to plot what they would like. 
3.8 Analysis 
Separate from the main modules provided in REDBACK , we include an 
analysis module that can be used to set up the different workflows 
or make additional diagnostic plots for some models or calculate 
prior/posterior predictions for other properties. F or e xample, here we 
provide a method to plot light curves generated by a user-provided set 
of parameters on top of the ‘plot multiband’ or ‘plot data’ generated 
plots to get a sense of the appropriate prior for fitting or build 
intuition about a model. Alongside this, we provide methods to plot 
the spectrum generated by REDBACK model, or additional posterior 
predictive plots such as of the evolution of the nascent neutron star. 
In the future, we will add more diagnostic analysis methods and 
encourage REDBACK users to contribute with typical diagnostic plots 
and calculations of their fa v ourite transient. 
3.9 Dir ectory structur e 
By default, the REDBACK directory structure is set by the type of 
transient, the name of the transient and the model used in fitting. For 
example, if one downloads the data for the kilonova, AT2017gfo, 
this data will be saved to a folder called kilonova in the current 
working directory. If a user then loads this data and fits with a 
model called redback , then the result file alongside all plots 
and sampler-specific diagnostics will be saved to a folder within 
kilonova with the model name. This behaviour can be changed in 
tw o primary w ays. (1) The user can specify an outdir and label 
when running the fit (see below) which will save the result to folder 
outdir with the label prepended to any output. (2) The user can 
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change the name attribute of the Transient object. Which will 
change the label that is prepended to any output file but keep the 
default directory structure. We note that any result files generated 
by a non-default directory structure can simply be loaded up by 
specifying the path, while plotting locations can also be specified via 
the typical method of MATPLOTLIB . 
4  J O I N T  ANA LYSIS  O F  SPECTRUM  A N D  
PHOTOM ETRY  
With the software’s design objectives and overview out of the way. 
We now turn towards a new application enabled by REDBACK . As we 
described in the introduction, it is becoming increasingly common 
for electromagnetic transients to have extensive spectroscopic and 
photometric observ ations. Ho we ver, photometric analyses and spec- 
troscopic analyses are often performed independently . Typically , the 
spectrum is often used primarily for the identification of a redshift 
and to identify the type of transient and later potentially specific 
emission lines. Meanwhile, the photometry is left for estimating the 
properties of the transient, such as the ejecta masses in supernovae 
and kilonovae or the black hole mass in tidal disruption events. 

It is understandable that currently, analysis of the spectrum and 
photometry is performed separately, given the high computational 
cost of detailed spectral models and analytical/semi-analytical mod- 
els that work on photometry but fail to capture the details of a 
spectrum. Ho we ver, it is often the case that separate analyses of 
photometry and spectrum can provide contradictory information. 
F or e xample, some superno v ae observ ations where the photometry 
are often better described purely by 56 Ni decay while the spectrum 
has tell-tale signatures of interaction with CSM material. Each 
independently suggests different quantities of ejecta, making it 
difficult to understand the properties of superno vae e xplosions and 
can sometimes even change the interpretation of specific events (e.g. 
Schulze et al. 2024 ). Or the case of the kilonova, AT2017gfo, where 
the spectrum at 1.4 and 4.4 d is best described by electron fractions 
(Gillanders et al. 2022 ) inconsistent with those used to fit the pho- 
tometry (Villar et al. 2017b ). Such contradictions are likely down to 
modelling limitations. Ho we ver, it is critical we understand which of 
the estimated properties are more robust, where our modelling could 
be impro v ed and what the photometric and spectral observations 
are jointly telling us. Joint analysis can also provide significantly 
more powerful constraints by breaking degeneracies present in the 
independent analyses and thereby improving our estimation of the 
transient properties. This has important consequences as, ultimately, 
we aim to use the estimated parameters of the explosion to answer 
fundamental questions in physics and astrophysics. 

We now describe how REDBACK can be used to jointly fit the 
spectrum and photometry of a kilono va. F or the purposes of this 
demonstration, we choose a simplified simulated spectrum and 
photometry to ensure we can validate the entire process. This is a 
specific example of workflow B, described in Section 2 . We simulate 
ToO observations of a hypothetical kilono va, AT2025ixp, observ ed 
by the Vera Rubin observatory through the REDBACK simulation 
module. In particular, we use the two-component kilonova model 
implemented in the transient models subpackage following 
Villar et al. ( 2017b ). We then e v aluate the spectrum at 4.5 d from this 
model, by calling the model with an additional k eyw ord argument 
to change the output format of the model. Assuming this model 
only captures continuum emission, we add an additional absorption 
and emission line at 8800 and 21 000 Å, respectively. Here, we 
model both spectral lines as a Gaussian, mimicking their Doppler 
broadening due to the high-velocity kilonova ejecta. We add Gaussian 
noise to the total spectrum (spectral lines and continuum emission) 

comparable to noise in the X-shooter spectrum of AT2017gfo (Pian 
et al. 2017 ; Smartt et al. 2017 ). With the data generated, we create an 
instance of the kilonova Transient object. We then independently 
fit the spectrum and photometry and jointly fit both together using the 
PYMULTINEST sampler (Buchner et al. 2014 ) through the REDBACK 
interface, specifying a Gaussian likelihood via the likelihood 
module and broad uninformative priors via the prior module. 

In Fig. 2 , we show the results from our analysis. In particular, in 
the left panel, we show the data in multiple LSST filters alongside 
the 95 per cent credible interval from our fit to the photometry. In 
the right panel, we show the simulated spectrum at 4.5 d (in black) 
alongside our fit, showing the continuum emission in blue and the 
full spectrum, including absorption and emission lines in red. In both 
cases, we see we can fit the observations well, correctly reco v ering 
the input. 

In Fig. 3 , we show the posterior distributions on multiple param- 
eters of the two-component kilonova model from the independent 
spectrum and photometry fits and the joint fit. These posteriors 
highlight the power of joint analysis, while all analyses reco v er 
the true input (indicated by black lines), the joint spectrum and 
photometric fit do so with significantly more precision by breaking 
the de generac y in the independent photometric and spectroscopic 
analyses. F or e xample, the precision of the second ejecta compo- 
nent’s mass and velocity improves from a precision of 29 per cent and 
15 per cent, respectively, from the independent fit to the photometry 
to a precision of 8 per cent and 4 per cent. This boost to precision has 
several important consequences as kilonova properties have been 
pre viously sho wn to be useful for constraints on the behaviour 
of nuclear matter (Pang et al. 2023 ), constraints on the Hubble 
constant (P ́erez-Garc ́ıa et al. 2022 ), while offering better precision 
to ultimately understand how these explosions work. 

The abo v e e xample is a demonstration of one of the unique 
capabilities of REDBACK : a cohesive, single framework analysis of 
spectrum and photometry that is facilitated by the modular design of 
REDB ACK . Specifically, REDB ACK enables stitching together different 
functional modules for different problems. In particular, we can 
jointly, and independently fit both the spectrum and photometry 
by setting up the rele v ant functional modules in distinct ways. 
Similarly, we can simulate the two types of data in question, enabled 
by the design implementation of all models such that they can be 
e v aluated for arbitrary inputs, times and return outputs in multiple 
formats, alongside the implementation of the simulation and 
Transient functional modules, where the former can be used to 
generate synthetic observations for distinct data types, while the latter 
has the required flexibility to handle such distinct data. 
5  F U T U R E  DEVELOPMENT  
As we continue to drive progress in transient astronomy, we develop 
newer and better models for transients and make impro v ements 
to how we treat the data. This paper marks version 1.0 release 
but REDBACK will be further developed to keep pace with the 
developments in modelling and treatment of data. 

One of the primary aspects that will be impro v ed are the models im- 
plemented in REDBACK . In particular, we are currently implementing 
models for interacting supernovae and fast-blue optical transients, 
from semi-analytical models of shocks produced by interacting 
shells (Margalit 2022 ), to surrogates of radiative transfer simulations 
(Khatami & Kasen 2023 ). We are also improving some of our models 
of afterglows for better treatment of reverse shocks and to make them 
more computationally efficient. We will soon implement model for 
r -process nucleosynthesis from collapsars (Barnes & Metzger 2022 ; 
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Figure 2. Simulated photometric data (left panel) with colours corresponding to different LSST filters and spectroscopic data (right panel) in black for a 
kilonova. In the left panel, the shaded band shows the 95 per cent credible interval fit to the photometry. On the right panel, we show the predicted continuum 
flux (in blue) and total spectrum (red) from 100 randomly drawn points from the posterior, alongside the true input in black dashed lines. 

Figure 3. Posterior distribution on the component ejecta masses, M ej, 1 and 
M ej, 2 , and bulk ejecta velocity of the first component, v ej, 1 for the joint fit 
and the photometry and spectrum independently. 
Anand et al. 2024 ). On longer timescales, we will implement models 
with better spectral modelling, enabling joint fitting of the spectrum 
and photometry. 

Alongside impro v ements and addition of models, we will further 
develop REDBACK for more practical purposes, for example, provid- 
ing a generic interface in redback surrogate to allow users 
to make their own surrogate from a grid of simulations and newer 
likelihoods that better describe the data generation process. We will 
also be further developing the simulation module to impro v e our 
treatment of focal plane geometry. On longer time-scales, we will 
add some GPU implementations of models to enable rapid inference 

and an application programming interface (API) to download and 
process data from the Fermi catalogue (e.g. von Kienlin et al. 2020 ). 
6  C O N C L U S I O N  
Realizing the rich promise of the large transient data expected from 
new observing facilities such as the Vera Rubin Observatory and 
ULTRASAT (Shv artzv ald et al. 2024 ) requires us to confront such 
data with models describing the different transient phenomena. This 
requires fast, reliable, open-source code that is both accessible to 
newcomers to the field and modular such that it can be adapted to 
be the powerhouse required by e xperts. Here, we hav e described 
REDBACK , a Bayesian inference software package for end-to-end 
for parameter estimation and interpretation of electromagnetic tran- 
sients. 

REDBACK is an engine for simulating realistic transients and 
inferring their properties enabling end-to-end analysis and valida- 
tion of inference workflows. Furthermore, one can also use this 
software to understand how to optimize surv e y strate gies/design or 
understand the selection function of different telescopes/surv e ys. 
REDBACK is also fully Bayesian, enabling the v ast adv antages 
of this statistical paradigm such as model selection, importance 
sampling, and Bayesian hierarchical modelling. We re-emphasize 
here that REDBACK is object-orientated, enabling users to input their 
own model, priors, and data without needing to edit the source 
code, and simply replace any functional module of REDBACK with 
their own code. The interface to BILBY also provides access to a 
large variety of samplers enabling validation across samplers and 
a simplistic interface for multimessenger analysis for joint events 
such as GW170817 (e.g. Radice et al. 2018 ; Coughlin et al. 2019 ; 
Gianfagna et al. 2023 ). These design objectives address many of the 
limitations of previous open-source packages for electromagnetic 
transients. 

In this paper, we have described the overall design of REDBACK , 
a new scientific application where we jointly fit the spectrum and 
photometry of a kilonova. This holistic look at a complete transient 
data set offers the opportunity to both increase the precision of 
our constraints and confront contradictions that may emerge when 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
3
1
/1

/1
2
0
3
/7

6
7
1
1
4
3
 b

y
 g

u
e
s
t o

n
 1

0
 O

c
to

b
e
r 2

0
2
4



1214 N. Sarin et al. 

MNRAS 531, 1203–1227 (2024) 

interpreting only one type of data. For the specific case of a kilonova, 
we sho w ho w joint fitting can dramatically impro v e the precision 
of the inferred ejecta masses, increasing the value of each event 
for constraints on the equation of state. Or also remo v e biases 
inadvertently caused by fixed opacities in photometric analyses that 
are inconsistent with the spectrum. In the appendix, we provide 
additional examples demonstrating the functionality and usability of 
the software in various applications and a general interface. 

As discussed in Section 5 , we will continue to further develop 
REDBACK , including the addition of newer models and additional 
functionality. REDBACK has already been used in previous publica- 
tions such as inference on tidal disruption events (Sarin & Metzger 
2024 ), analysis of SN 2018ibb (Schulze et al. 2024 ), magnetar- 
driv en kilono vae and supernovae (Sarin et al. 2022b ; Omand & Sarin 
2024 ), GRB afterglows (Sarin et al. 2021 , 2022a ), and to infer joint 
GRB and kilonov ae observ ations (Le v an et al. 2024 ), demonstrating 
the flexibility of the software. A more comprehensive comparison 
of results for different transient catalogues is underway alongside 
interpretation for other transients. 
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The REDBACK package makes use of the standard scientific 
PYTHON stack (Jones et al. 2001 ; McKinney 2010 ; Harris et al. 
2020 ), MATPLOTLIB (Hunter 2007 ), and CORNER (F oreman-Macke y 
2016 ), for the generation of figures, and ASTROPY (Robitaille 
et al. 2013 ; Price-Whelan et al. 2018 ; Astropy Collaboration 
2022 ) for common astrophysics-specific operations. REDBACK makes 
use of BILBY (Ashton et al. 2019 ; Romero-Shaw et al. 2020 ) 
to provide an interface to different sampling algorithms and for 
e v aluating prior distributions. REDBACK uses SNCOSMO (Barbary 
et al. 2022 ) for filter definitions and calculations of magnitude 
from SEDs, EXTINCTION (Barbary 2016 ) for extinction correc- 
tions. And REQUESTS and SELENIUM for downloading data from 
catalogues. 
DATA  AVAILABILITY  
The software package along with example scripts for all analysis 
demonstrated in this manuscript alongside a plotting notebook to 
generate all the plots as well as other examples are available at https: 
// github.com/nikhil-sarin/ redback. The specific result objects for 

each of the analyses presented here are available at https://doi.org/ 
10.5281/zenodo.8273145 . REDBACK is available on PYPI . This paper 
uses v1.0 release of REDBACK with documentation at https://redbac 
k.readthedocs.io/en/ latest/ . The data for all transients is available at 
the OAC (Guillochon et al. 2017 ) gathered through the REDBACK 
get data module or hosted at https:// github.com/nikhil-sarin/ redb 
ack. 
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APPENDIX  A :  G E N E R A L  I N T E R FAC E  
We now describe the general interface for REDBACK , for example how to download and load data, simulating a transient or calling a REDBACK 
model with a constrained prior. We note that these sections are not e xhaustiv e demonstrations of the REDBACK API and merely show some 
demonstrative functionality. Full API documentation is provided at https:// redback.readthedocs.io/en/ latest/ . 
A1 Getting data 
As mentioned in Section 3 , REDBACK provides an API to download and process data from multiple catalogues. These data are saved as a 
human-readable file and returned as a PANDAS data frame. In particular, 
import redback 
# FINK 
name = ’’ZTF22abdjqlm’’ 
data = redback.get data.get fink data(transient = name, transient type = ’’supernova’’) 
# LASAIR 
transient = ’’ZTF20aamdsjv’’ 
data = redback.get data.get lasair data(transient = transient, transient type = ’’supernova’’) 
# Open Access Catalog 
tde = ’’PS18kh’’ 
data = redback.get data.get tidal disruption event data from open transient catalog data(tde) 
# BATSE 
name = ’’910505’’ 
data = redback.get data.get prompt data from batse(grb = name) 
# SWIFT 
GRB = ’’070809’’ 
data = redback.get data.get bat xrt afterglow data from swift(grb = GRB, data mode = ’’flux’’) 
In all function calls, we specify the name of the transient we want to obtain the data for and use the rele v ant class method of the get data 

module. For some of these methods we can also specify the type of transient or the type of data to ensure we get the data we want and that it 
is saved in the appropriate location. We note that REDBACK only processes the AB magnitude data for sources hosting multiband photometry. 
This is not a concern for FINK and LASAIR but may result in a loss compared to the OAC. Ho we v er, the ra w data file is also downloaded and 
users can reprocess the data as they wish. 
A2 Creating transient objects 
Once we have the data of a transient, there are many different ways to create a Transient object. For example, we provide simple class 
methods to load data that is downloaded from the OAC, FINK, and LASAIR. 
supernova = redback.supernova.Supernova.from open access catalogue(name = ’’ZTF22abdjqlm’’, 

data mode = ’’flux’’) 
sn = redback.transient.Supernova.from lasair data(name = ’’ZTF20aamdsjv’’, 

use phase model = True, 
data mode = ’’flux density’’, active bands = np.array([’’ztfr’’])) 
Here, the first line creates a supernova Transient object from data that was downloaded from FINK. We note that as FINK and 

OAC have the same data structure, the OAC method can be used for FINK data. Here, we have also specified the data mode to be flux , 
which will create the transient object with the flux data mode. Similarly, the second line creates a supernova object but from LASAIR data. 
Ho we ver unlike the FINK example, here we specify an active band, which sets all bands apart from the ztfr band to be inactive (not used in 
fitting), set the data mode to be flux density and set use phase model = True . The latter condition ensures that the time values 
we initialize are in MJD, to fit this data we therefore must also sample in the start time of the event. 

We also provide simplified class methods for loading data from Swift , BATSE, and the simulation module. In particular, 
kn object = redback.transient.Kilonova.from simulated optical data(name = ’’my kilonova’’, 

data mode = ’’magnitude’’) 
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Here, we have loaded the magnitude data for a kilonova; my kilonova we generated using the simulation module. REDBACK 
Transient objects can also be constructed directly, for example, by loading in a data file and specifying the specific attributes directly. For 
example, 
import pandas as pd 
data = pd.read csv(’’example data/grb afterglow.csv’’) 
time d = data[’’time’’].values 
flux density = data[’’flux’’].values 
frequency = data[’’frequency’’].values 
flux density err = data[’’flux err’’].values 
name = ’’170817A’’ 
afterglow = redback.transient.Afterglow(name = name, data mode = ’’flux density’’, time = time d, 
flux density = flux density, flux density err = flux density err, frequency = frequency) 

This direct construction of a Transient object can be done for any other combination of attributes, enabling users to construct a 
Transient object in many different ways. We emphasize that we provide several other class methods than shown here and refer the reader 
to https:// redback.readthedocs.io/en/ latest/ for the full documentation. 
A3 Calling a model 
As alluded to in Section 3 , all REDBACK models exist as PYTHON functions and can be called directly on an arbitrary time array and set of 
parameters. We also provide a convenient look up dictionary to find the function corresponding to a model as well as convenience functions 
to obtain the rele v ant citation for the model (for ease of reference and gather additional information about the model) and return an instance 
of the default prior for the model. 
from redback.model library import all models dict 
model = ’’one component kilonova model’’ 
priors = redback.priors.get priors(model = model) 
priors[’’redshift’’] = 1e-2 
function = all models dict[model] 
citation = function.citation 
model kwargs = dict(frequency = 2e14, output format = ’’flux density’’) 
time = np.linspace(0.1, 30, 50) 
sample = priors.sample() 
sample.update(model kwargs) 
fmjy = function(time, ∗∗sample) 
Here, the first set of code creates the REDBACK prior object from a string referring to a model implemented in REDBACK , we also set the 

redshift of the prior to be a fixed value, and use a REDBACK dictionary to conveniently get the function corresponding to the model string. 
The function also has an attribute ‘citation’ that provides a reference for the model. The second set of code sets up some additional k eyw ords 
required by the model such as the frequency we want to e v aluate the model at and an output format. We then call the function on a random 
sample from the prior and arbitrary time array to obtain the flux density (in mJy) corresponding to the specific prior draw. This simple 
workflow can be readily changed to draw many more samples from the prior, add a constraint to the prior and draw from the constrained prior, 
or add/change keys in ‘model kwargs’ to change the physics of the model or the output format. 
A4 Simulating transient 
While the interface described abo v e can be used to simulate data, we also provide a more comprehensive simulation module (described 
in detail in Section 3 ). For example, generating a simulated light curve for a kilonova in ZTF can be done via, 
import redback 
from redback.simulate transients import SimulateOpticalTransient 
model kwargs = {} 
parameters = redback.priors.get priors(model = ’’one component kilonova model’’).sample() 
parameters[’’mej’’] = 0.05 
parameters[’’t0 mjd transient’’] = 58288 
parameters[’’redshift’’] = 0.005 
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Figure A1. Simulated kilonova (one-component kilonova model) in (left) ZTF and (right) LSST. We emphasize that aesthetic features such as the colours of 
the data points, axes limits etc can all be modified by passing in rele v ant k eyw ord arguments to the plotting methods. 
parameters[’’t0’’] = parameters[’’t0 mjd transient’’] 
parameters[’’temperature floor’’] = 3000 
parameters[’’kappa’’] = 1 
parameters[’’vej’’] = 0.2 
parameters[’’ra’’] = 3.355395 
parameters[’’dec’’] = 0.5820673 
kn sim = SimulateOpticalTransient.simulate transient in ztf 

(model = ’’one component kilonova model’’, 
parameters = parameters, model kwargs = model kwargs, end transient time = 15., 
snr threshold = 5., add source noise = True) 

Here, the first set of code specifies the model we want to simulate with and the parameters of the simulated event. Then, we also place it 
in a part of a sky observable with ZTF ( REDBACK will internally randomly place the source within the ZTF observable volume otherwise), 
then generate a light curve with the simulation module. As shown in Appendix A2 , the simulated data can be easily saved and loaded in a 
single line of code to create a Transient object enabling inference. In Fig. A1 , we show two representative simulated kilonovae in ZTF and 
the LSST Surv e y in the Vera Rubin Observatory, demonstrating through a simple example the benefits of the high cadence of surv e ys such as 
ZTF for fast transients such as kilonovae. 

We note that this exact interface can also be used to generate survey light curves for the Nancy-Grace Roman Observatory or a user-generated 
surv e y and for any model implemented in REDBACK , and these examples are available at https:// github.com/nikhil-sarin/ redback. Furthermore 
REDBACK also offers the functionality to simulate transients more generically (in a manner more consistent with ToO observations) or simulate 
a full surv e y. 
APPENDIX  B:  MULTIMESSENGER  ANALYS I S  
A key advantage of the interface with BILBY is to facilitate multimessenger gra vitational-wa ve and electromagnetic transient analyses. 
Here, REDBACK provides the likelihood, model and/or simulated data for the electromagnetic transient and BILBY provides the same for the 
gra vitational-wa ve data. Both likelihoods communicate together through the use of a joint likelihood which combined with a full 
prior , can be used to perform joint multimessenger analyses. 

We demonstrate this feature through the observation of a simulated BNS signal, GW231116, observed in O4 alongside a GRB afterglow 
detected in X-rays. We note that this workflow can be easily extended to also include an optical/radio afterglow and/or a kilonova. Furthermore, 
the joint likelihood interface can also be used to jointly fit any two data types, for example, a spectrum and photometry, both of which could be 
provided by REDBACK but we leave such examples from this paper for simplicity. This analysis has been performed for GW170817 by multiple 
groups (e.g. Gianfagna et al. 2023 ). 

We start by setting up the data, 
import bilby 
import redback 
from astropy.cosmology import Planck18 as cosmo 
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from redback.transient models.afterglow models import tophat 
from bilby.core.prior import Uniform 
source redshift = 0.03 
source distance = cosmo.luminosity distance(source redshift).value 
gw injection parameters = dict(mass 1 = 1.5, mass 2 = 1.3, chi 1 = 0.02, chi 2 = 0.02, lu- 

minosity distance = source distance,theta jn = 0.43, psi = 2.659, phase = 1.3, geo- 
cent time = 1126259642.413, 

ra = 1.375, dec = -1.2108, lambda 1 = 400, lambda 2 = 450, fiducial = 1) 
F or demonstrativ e purposes, we assume that the afterglow kinetic energy is some unknown fraction of the total rest mass energy of the binary, 

alongside the more conventional assumption that the jet is launched along the orbital angular momentum of the binary. These assumptions 
are not captured by any afterglow model implemented in REDBACK , so we create a new function, wrapping a simple tophat model already 
implemented in REDBACK . 
def get jet energy(mass 1, mass 2, fudge): 
total mass = (mass 1 + mass 2) 
return total mass ∗ fudge ∗ 2e33 ∗ 3e10 ∗∗2 

fudge factor = 0.04 
afterglow energy = get jet energy(gw injection parameters[’’mass 1’’], 

gw injection parameters 
[’’mass 2’’], 
fudge = fudge factor) 
grb injection parameters = dict(fudge = fudge factor, 
theta jn = gw injection parameters[’’theta jn’’], 
redshift = source redshift, loge0 = afterglow energy, 
thc = 0.1, logn0 = -1, p = 2.2, logepse = -1, logepsb = -2, ksin = 1, 
g0 = 50, mass 1 = gw injection parameters[’’mass 1’’], 
mass 2 = gw injection parameters[’’mass 2’’]) 

def grb afterglow model(time, redshift, theta jn, mass 1, mass 2, fudge, thc, logn0, p, 
logepse, logepsb, ksin, g0, ∗∗kwargs): 
energy = get jet energy(mass 1, mass 2, fudge = fudge) 
energy = np.log10(energy) 
if ’’loge0’’ in kwargs.keys(): 
kwargs.pop(’’loge0’’) 
return tophat(time = time, redshift = redshift, thv = theta jn, loge0 = energy, thc = thc, 
logn0 = logn0, p = p, logepse = logepse, logepsb = logepsb, 
ksin = ksin, g0 = g0, ∗∗kwargs) 

We can now simulate the electromagnetic data using this model following the method outlined in previous sections or by calling the model 
directly, and then create a REDBACK Transient class, alongside an instance of the likelihood. Furthermore, we can set up the gravitational- 
wave analysis, to reduce the computational cost we use the relative-binning approximation (Zackay, Dai & Venumadhav 2018 ; Krishna et al. 
2023 ). We follow the standard BILBY relativ e-binning e xample for this aspect and do not outline the details here. We can also set up the 
electromagnetic aspect (i.e. the prior and likelihood) via 
em priors = bilby.core.prior.PriorDict() 
em priors[’’redshift’’] = source redshift 
em priors[’’thc’’] = Uniform(0.01, 0.2, ’’thc’’, 

latex label = r’’$ \ theta { \ mathrm { core }} $’’) 
em priors[’’logn0’’] = Uniform(-4, 2, ’’logn0’’, 

latex label = r’’$ \ log { 10 } n { \ mathrm { ism }} $’’) 
em priors[’’p’’] = Uniform(2,3, ’’p’’, latex label = r’’$p$’’) 
em priors[’’fudge’’] = Uniform(0.01, 0.1, ’’fudge’’, 

latex label = r’’$f { \ mathrm { fudge }} $’’) 
em priors[’’logepse’’] = grb injection parameters[’’logepse’’] 
em priors[’’logepsb’’] = grb injection parameters[’’logepsb’’] 
em priors[’’ksin’’] = grb injection parameters[’’ksin’’] 
em priors[’’g0’’] = grb injection parameters[’’g0’’] 
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Figure B1. Left: corner plot showing the 1 σ–3 σ posterior on a subset of parameters with a gra vitational-wa ve (GW) only analysis (blue) and a GW + Afterglow 
analysis (red), with black lines indicating the input values of the simulation. The right-hand panel shows the light-curve fit from the joint analysis. 

em likelihood = redback.likelihoods.GaussianLikelihood(x = sim afterglow.time, 
y = sim afterglow.flux density, 
function = grb afterglow model, 
sigma = yerr, kwargs = afterglow kwargs) 

Here, we have first set up a prior on a series of parameters, while fixing some to the injected values to reduce the computational cost of the 
analysis, and then set up the electromagnetic likelihood, using the Transient object attributes. 

Once, the electromagnetic and gravitational wave is set up (i.e. the individual likelihoods and priors), we can simply set up the joint analysis 
via, 
joint likelihood = bilby.core.likelihood.JointLikelihood(gw likelihood, em likelihood) 
priors emgw = em priors.copy() 
priors emgw.update(gw priors) 
Here, the first line sets up a joint likelihood (the product of the two individual likelihoods) and the functional interface for the code to interact 

correctly. The second line does the same, setting up a prior object, automatically handling parameters that are shared. 
Parameter estimation with the joint likelihood can then be performed via the BILBY interface, 
result = bilby.run sampler(joint likelihood, priors = priors emgw, label = ’’emgw’’, out- 

dir = ’’joint’’) 
In Fig. B1 , we show the constraints on various parameters provided by the above analysis, alongside constraints provided under the 

assumption that they are separate events. The orange lines indicate the true value of the simulation, indicating that the parameters are reco v ered 
correctly. In the right-hand panel, we show the fit to the simulated X-ray afterglow plotted via the analysis module. As expected, the 
primary benefit of including the afterglow is to break the distance–inclination angle de generac y, clearly impro ving the estimate of distance and 
viewing angle for this hypothetical event. 
APPENDIX  C :  EXAMPLES  
We now go through a series of more general examples that demonstrate how REDBACK can be used to fit and infer properties of a variety of 
electromagnetic transients. We note that each of these examples are available as standalone scripts at https:// github.com/nikhil-sarin/ redback. 
To aid readability of these examples in this paper, we a v oid code snippets that are identical to the snippets described above. 
C1 Broad-band after glo w – GRB170817A 
We first demonstrate how REDBACK can be used to fit pri v ate or simulated data by fitting the afterglow of GRB170817A (Hallinan 
et al. 2017 ; Abbott et al. 2017b ; Alexander et al. 2018 ; Fong et al. 2019 ; Lamb et al. 2019a ). We must first load the data file 
and create an afterglow Transient object via the method described in Appendix A2 . After we have created the Transient 
object and have verified that the data looks correct (by plotting or by inspecting the Transient object), we are ready to fit. We 
know through many lines of evidence that GRB170817A was observed off-axis (e.g. Fong et al. 2019 ; Alexander et al. 2018 ) and 
the jet was likely structured (e.g. Lamb et al. 2019a ; Fong et al. 2019 ). Furthermore, many previous analyses have already fit the 
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Figure C1. Left: posterior on the observers viewing angle, the isotropic equi v alent energy of the afterglow and the opening angle of the relativistic jet from 
fitting the afterglow of GRB170817A with the different shading indicating the 1 σ–3 σ credible intervals. Right: data of the afterglow of GRB170817A at multiple 
frequencies along with the light curves from a 100 random draws from the posterior. 
observations of GRB170817A to remarkable success. In particular, we can fit this data with a gaussiancore structured jet model from 
afterglowpy . As this model is already implemented in REDBACK , we simply need to specify this model as a string and load the associated 
prior. 
model = ’’gaussiancore’’ 
priors = redback.priors.get priors(model = model) 
These lines construct a prior object using the default prior implemented in REDBACK for the gaussiancore model. To reduce inference 

wall time, we can also fix some of the parameters of the model with values consistent as those found by Ryan et al. ( 2020 ). This can be done 
via, 
priors[’’redshift’’] = 1e-2 
priors[’’logn0’’] = -2.6 
priors[’’p’’] = 2.16 
priors[’’logepse’’] = -1.25 
priors[’’logepsb’’] = -3.8 
priors[’’ksin’’] = 1. 
We note that we could have instead set a narrow Gaussian prior around these values instead of fixing these parameters. With these few lines, 

we are now almost ready for inference. As mentioned in Section 3 , several REDBACK models require additional k eyw ord arguments; such as 
the frequencies at which each data point was was observed and the output format of the model (which must be the same as the data). 
model kwargs = dict(frequency = afterglow.filtered frequencies, 

output format = ’’flux density’’) 
Here, we have set up a model dictionary which contains the frequency of the data points (this can be easily extracted from the Transient 

object via the filtered frequencies attribute) and set the output format as flux density. We are now ready to fit via, 
result = redback.fit model(transient = afterglow, model = ’’gaussiancore’’, sam- 

pler = ’’dynesty’’, 
model kwargs = model kwargs, prior = priors, nlive = 2000, resume = True) 

Here we call the REDBACK fit model function, which takes as input the afterglow object being fit, the name of the model, sampler, 
the prior, the model k eyw ord arguments, and any other k eyw ord arguments; and returns the REDBACK result object. Here, we have specified 
the sampler to be DYNESTY via a string, but this could be any other sampler implemented in BILBY . We also specify some sampler settings 
such as the number of live points and the option to resume from a previous run. When finished, this will return the REDBACK result object, 
which can be used to create a plot of the corner and a multiband light curve to verify the fit via, 
result.plot corner(parameters = [’’thv’’, ’’loge0’’, ’’thc’’]) 
result.plot multiband lightcurve(random models = 100) 
Here, in the first line we have also passed a list of the parameters we wish to show and in the second asked for 100 randomly sampled light 

curves from the posterior to be plotted. Note that several other arguments can be passed into these functions to change aesthetics or the type 
of information displayed. These two plots are shown in Fig. C1 . 
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Figure C2. Left: data of AT2017gfo plotted through the plot data method. Right: data of the AT2017gfo plotted through the plot multiband method. 
C2 Kilono v a – AT2017gfo 
We now demonstrate how REDBACK can be used to fit a kilonova, in particular the kilonova that accompanied GW170817, AT2017gfo 
(Abbott et al. 2017b ; Villar et al. 2017b ). For simplicity, we will fit a one component kilonova model implemented within REDBACK to 
observations of AT2017gfo (Villar et al. 2017b ). Such a model is known to not provide a great fit to the data so this is merely a demonstration 
of REDBACK functionality. As mentioned in Section 3 , significantly more complex kilonovae models are available in REDBACK which have 
been previously shown to well explain the observations (e.g. Villar et al. 2017b ; Bulla 2019 ; Nicholl et al. 2021 ). 

The data of AT2017gfo is available at OAC (Guillochon et al. 2017 ), which can be obtained via the code shown in Appendix A1 . 
data = redback.get data.get kilonova data from open transient catalog data 

(transient = ’’at2017gfo’’) 
The abo v e code calls the get data module to obtain the data for AT2017gfo from the OAC. As mentioned abo v e, this will return a PANDAS 

data frame while also saving the data to disc. Users can manipulate the data as they would any other PANDAS object. Ho we ver, for our purpose 
it is more useful to use this data to create an kilonova object. This is done via 
kilonova = redback.kilonova.Kilonova.from open access catalogue( 
name = ’’at2017gfo’’, data mode = ’’flux density’’, active bands = np.array([’’g’’, ’’i’’])) 

Here we have created a kilonova Transient object, specifying the data mode to be flux density. We have also set the ‘g’ and ‘i’ bands 
as active, which will disable all other bands and only fit the active bands. This can be done to both reduce the computational time of inference 
but also for cases when the data or model are unreliable for specific filters. To ensure the data are correctly processed, we can plot the data via 
kilonova.plot data(show = True, save = False, plot others = False, 

band colors = { ’’g’’:’’green’’, ’’i’’:’’indigo’’ } , xlim high = 10) 
fig, ∼axes = plt.subplots(3, 2, sharex = True, sharey = True, figsize = (12, 8)) 
kilonova.plot multiband(figure = fig, ∼axes = axes, 

filters = [’’g’’, ’’r’’, ’’i’’, ’’z’’, ’’y’’, ’’J’’]) 
Here, the first line will plot all the data onto one figure, where we have also passed additional arguments such a dictionary of the colours for 

each band, whether to plot the inactive bands, to not save and to show the plot and the upper limit on the x -axis. Note that REDBACK returns the 
MATPLOTLIB axes so several other plotting related things can be changed by the user directly or by passing in an additional k eyw ord argument. 
The second line, will make a plot with one band per axes and we have also specified the specific filters we wish to display. Note that this 
functionality allows us to show data for a filter or fits for a filter even if that filter was set as inactive. Both figures are shown in Fig. C2 . 

With the Transient object created and data verified through a plot, we are now ready to fit. As mentioned abo v e, we will fit with the a 
one-component kilonov a model. Ho we ver, we will no w also demonstrate ho w a user can fit the data with a different likelihood and sampler. 
We skip steps to load a prior and set up model k eyw ord argument dictionary as they are identical to the afterglow example above. 
prior[’’sigma’’] = Uniform(0.01, 0.0001, name = ’’sigma’’, latex label = ’’$ \ sigma$’’) 
function = all models dict[model] 
sampler = ’’nestle’’ 
Here, we first define a new prior on a parameter sigma , which is an additional parameter to be fit for, then use a convenience dictionary to 

get the REDBACK function for a one component kilonova model and specify the sampler to be used in inference as the NESTLE sampler. We note 
that sigma is the uncertainty in the typical Gaussian likelihood (i.e. σ ), and if a user provides a prior but uses the standard (default) likelihood, 
this will o v erwrite the specific measured errors for a constant σ that is estimated by sampling. Ho we ver, here, we wish to demonstrate the use 
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Figure C3. R - and I -band observations of SN1998bw alongside the 68 per cent credible interval from our fit. 
of a custom likelihood (either something provided by the user or a different likelihood already implemented in REDBACK ), we can do this using 
the processed attributes from the Transient object via, 
likelihood = redback.likelihoods.GaussianLikelihoodQuadratureNoise 

(x = kilonova.x[kilonova.filtered indices], y = kilonova.y[kilonova.filtered indices], 
sigma i = kilonova.y err[kilonova.filtered indices], function = function) 

Here, we use a Gaussian likelihood with an additional noise source, σ added in quadrature (that is fitted for) to the measured y errors. This 
likelihood is already implemented in REDBACK , but a user could easily replace this likelihood with their own class. Then, users can use this 
likelihood in the fit via, 
result = redback.fit model(transient = kilonova, model = model, likelihood = likelihood, sam- 

pler = sampler, 
model kwargs = model kwargs, prior = priors) 
With this simple change we can fundamentally change what we believe to be the data generation process and ensured that advanced users 

can easily change the likelihood and settings of the sampler, without ever digging into the REDBACK source code. 
C3 Superno v a – SN1998bw 
REDBACK can also be used to fit supernovae. Here, we fit the arnett model (Arnett 1980 , 1982 ) implemented within REDBACK to observations 
of SN1998bw (Galama et al. 1998 ). We can acquire the data for SN1998bw through the OAC and API shown abo v e and create a supernova 
object. 

After ensuring that the data are obtained correctly we can set up the fit in a few lines of code. As the arnett model is already implemented 
in REDBACK we can simply load up the default prior for this model via, 
priors = redback.priors.get priors(model = ’’arnett’’) 
priors[’’redshift’’] = 0.0085 
Here, we have also fixed the redshift to the known redshift of SN1998bw. We can now set up the fit in another two lines of code. 
model kwargs = dict(frequency = supernova.filtered frequencies, 

output format = ’’flux density’’) 
result = redback.fit model(transient = supernova, model = ’’arnett’’, sampler = ’’dynesty’’, 

model kwargs = model kwargs, 
prior = priors, nlive = 500, clean = True, npool = 4) 
Here, we have also specified npool = 4 which will set up the DYNESTY sampler with multiprocessing o v er four cores to reduce the wall 

time of the analysis. We have also set the option clean to True , which ensures that REDBACK will restart this analysis from scratch and not 
resume from a previous analysis. 

As with all other analysis, the fit returns a REDBACK result object, which we can use to obtain posteriors on various parameters, or for 
plotting. For example, we can plot the light curve with the fit shown as a 68 per cent credible interval (shown in Fig. C3 ) via, 
ax = result.plot lightcurve(uncertainty mode = ’’credible intervals’’, 

plot others = False, show = False, 
credible interval level = 0.68) 
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Figure C4. Multiband light curve of PS18bh along with the fitted light curve from a 100 random realizations randomly drawn from the prior. 
ax.set xscale(’’log’’) 
ax.set xlim(10, 300) 
plt.show() 
Here we have also returned the MATPLOTLIB axes and used this to modify the xscale and xlimits of the plot. The fit demonstrates the large 

uncertainty at early times where there are no observations in these bands. 
C4 Tidal disruption events – PS18kh 
Here, we fit the tde analytical model implemented within REDBACK to multiband observations of, tidal disruption event, PS18kh (Holoien 
et al. 2019 ). We acquire the data from OAC and create a tde Transient object. We set only a subset of bands as active via, 
tidal disruption event.active bands = [’’V’’, ’’g’’, ’’r’’] 
The rest of the code to fit is exactly like the afterglow example above. We can visualize our fit and make the predicted light curve (shown in 

Fig. C4 ) for multiple filters, including a filter that we did not fit, for example, the u band, via 
result.plot multiband lightcurve(random models = 100, filters = [’’V’’, ’’g’’, ’’r’’, ’’u’’]) 
This is a useful verification exercise to understand which filters are driving the fit and whether the fits without a certain band are consistent 

with those observations. 
C5 X-ray after glo w of GRB070809 – millisecond magnetars 
We now use REDBACK on an integrated flux or luminosity data by fitting the X-ray afterglows of a GRB, by fitting the evolving magnetar 
model ( S ¸a s ¸maz Mu s ¸ et al. 2019 ) to Swift observations of GRB070809, specifically the integrated flux obtained from Swift –XRT. 

We acquire the Burst Alert Telescope (BAT) and X-ray Telescope (XRT) data of GRB070809 from Swift via the get data module 
redback.get data.get bat xrt afterglow data from swift(grb = ’’070809’’, data mode = ’’flux’’) 
We construct an afterglow class instance via 
afterglow = redback.afterglow.SGRB.from swift grb(name = ’’070809’’, data mode = ’’flux’’, 
truncate = True, truncate method = ’’prompt time error’’) 

afterglow.analytical flux to luminosity() 
ax = afterglow.plot data() 
Here, we have specified to load the flux data for GRB070809 from Swift . This data typically also include BAT data from the prompt phase 

which we do not wish to fit here. We truncate this data using the prompt time error method. 
The evolving magnetar model works on luminosity data. We could have provided this data when creating the afterglow object but 

we also provide two convenience functions to generate this data, an analytical method which uses the GRBs photon index and a numerical 
method from SHERPA which uses the spectrum. All details necessary for either method are obtained internally by REDBACK from the Swift Data 
Centre. Here, we use the analytical method to convert the integrated flux data to a luminosity. 
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Figure C5. Residual plot obtained using plot residual method of the result object. Here, the top panel shows the data in black with maximum likelihood 
and 100 randomly drawn light curves in blue and red, respectively, with the bottom panel showing the residual between the data and the maximum-likelihood 
model. 
afterglow.analytical flux to luminosity() 
Note, that this will automatically change the afterglow objects data mode to luminosity. Beyond this point, the fitting workflow is 

identical to fitting any other transient, that is, 
priors = redback.priors.get priors(model = ’’evolving magnetar’’) 
result = redback.fit model(model = ’’evolving magnetar’’, sampler = ’’dynesty’’, nlive = 200, 

transient = afterglow, 
prior = priors, sample = ’’rslice’’, resume = True) 

The abo v e code first constructs a prior object, using the default prior implemented in REDBACK for the evolving magnetar model. 
This is followed by code calling fit model . Note that here we do not need a dictionary for the model k eyw ords as this model does not 
require any. We are again returned the REDBACK result object which can be used to plot a corner plot, the light curve or obtain any other 
diagnostic about the inference/posterior. For these data modes ho we ver, it can be especially informative to show a plot of the light curve 
with the residuals. This can be obtained using plot residual method of the result object. This generates Fig. C5 , where the top panel 
shows the data in black with maximum likelihood and random draws in blue and red, respectively, with the bottom panel showing the residual 
between the data and the maximum-likelihood model. 
result.plot residual() 

C6 Phase and attenuation – SN2018ibb 
In previous examples, we have ignored two important aspects of fitting transients; (1) we often do not know when the explosion occurred and 
(2) there is attenuation in the form of dust extinction from the host galaxy. 

In this example, we show how to fit data while measuring the unknown explosion time and including extinction. We will also demonstrate 
how to fit in magnitudes and adding a new filter to REDBACK and SNCOSMO . We will do this by fitting a supernova, in particular, the UV-to-NIR 
light curve of the superluminous supernova SN 2018ibb (Schulze et al. 2024 ). 

As previous examples, we can load the private data for SN 2018ibb and create a Supernova Transient object via 
First, we read in the pri v ate data. 
import pandas as pd 
data = pd.read csv(’’SN2018ibb photcat Redback.ascii’’, sep = ’’’’) 
sn = redback.transient.Supernova(name = ’’SN2018ibb’’, 
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data mode = ’’magnitude’’, time mjd = data[’’MJD’’].values, 
magnitude = data[’’MAG’’].values, magnitude err = data[’’MAG ERR’’].values, 

bands = data[’’band’’].values, 
use phase model = True) 
In contrast to the previous examples, we fit the data in magnitude space. Furthermore, we set use phase model = True because 

we do not know the explosion date. We also specify time values in MJD instead of days since explosion. When fitting a model to such data, a 
user must then add a prior on the explosion time which will then be sampled o v er. We note that use phase model = True , will also 
change plotting labels to account for the change. 

Before we can fit the magnitude data of SN 2018ibb, we must first ensure that all filters of the observations are available in REDBACK . We 
note that this is only a concern when fitting photometry in magnitudes or flux as this requires the full transmission curve of every filter rather 
than a reference wavelength. Some of the observations of SN 2018ibb were performed with the GROND camera mounted at the 2.2 m MPG 
telescope. The GROND filters (in our example grond::i and grond::z ) are not part of SNCOSMO distribution that is used internally within 
REDBACK for filter definitions. After retrieving the filters, for instance, from the Spanish Virtual Observatory 2 (Rodrigo, Solano & Bayo 2012 ), 
we add them to SNCOSMO and by extension REDBACK , via 
from astropy.io import ascii 
import astropy.units as u 
import sncosmo 
filter files = [ 
’’/PATH/WHERE/YOU/STORED/FILTER CURVES/GROND I.dat’’, 
’’/PATH/WHERE/YOU/STORED/FILTER CURVES/GROND Z.dat’’, 

] 
filter names = [’’grond::i’’, ’’grond::z’’] 
for f, fname in zip(filter names, filter files): 
data = ascii.read(fname) 
band = sncosmo.Bandpass( data[’’col1’’], data[’’col2’’], name = f, wave unit = u.angstrom) 
sncosmo.register(band, f, force = True) 

We can set up the rest of the inference workflow, first set up the model and the prior via 
model = ’’t0 supernova extinction’’ 
base model = ’’arnett’’ 
priors = redback.priors.get priors(model = model) 
priors.update(redback.priors.get priors(model = base model)) 
Here, we choose the t0 supernova extinction model, which has the explosion time and magnitude of extinction as a free parameter. 

This model itself does not contain any physics and must be specified an additional physical model. For simplicity, we use the physical arnett 
model as the base model. The last two lines of code just set up the prior object to include the parameters of both models. 

We must now also set priors on the explosion time, the extinction magnitude and update the prior on the ejecta mass as SN 2018ibb requires 
an extraordinary amount of ejecta (Schulze et al. 2024 ). 
from bilby.core.prior import Uniform 
# Allow the explosion date to be up to 200 days before the first detection 
priors[’’t0’’] = Uniform(minimum = data[’’MJD’’].values.min()-200, maxi- 

mum = data[’’MJD’’].values.min()-1, name = ’’t0’’, latex label = r’’$t { \ rm expl. } $’’) 
priors[’’mej’’] = Uniform(minimum = 1, maximum = 260, name = ’’mej’’, la- 

tex label = r’’$M { \ rm { ej }} ∼( { \ rm M } { \ odot } )$’’) 
# Extinction 
priors[’’av’’] = Uniform(minimum = 0, maximum = 1, name = ’’av’’, 

latex label = r’’$A V$ (mag)’’) 
With the model specified and prior set up, we can now fit via, 

2 ht tp://svo2.cab.int a-csic.es/theory/fps/
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Figure C6. Multiband light curve of SN2018ibb along with the 68 per cent credible interval light-curve fit from the posterior. 
model kwargs = dict(bands = sn.filtered sncosmo bands, base model = base model, out- 

put format = ’’magnitude’’) 
result = redback.fit model(transient = sn, model = model, model kwargs = model kwargs, 
prior = priors, plot = True) 
We note that as we are fitting with a base model and in magnitudes, there are some minor differences to the model kwargs , namely that 

we must now specify a list of bands for the data points instead of frequency and must specify the base model. In the fit model argument, 
we have also set plot = True , which will automatically generate the fitted light curve after inference finishes. In Fig. C6 , we show the 
light-curve fit generated with the above code and the result.plot multiband lightcurve() . 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 

© 2024 The Author(s). 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
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