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ABSTRACT

Fulfilling the rich promise of rapid advances in time-domain astronomy is only possible through confronting our observations
with physical models and extracting the parameters that best describe what we see. Here, we introduce REDBACK; a Bayesian
inference software package for electromagnetic transients. REDBACK provides an object-orientated PYTHON interface to over
12 different samplers and over 100 different models for kilonovae, supernovae, gamma-ray burst afterglows, tidal disruption
events, engine-driven transients among other explosive transients. The models range in complexity from simple analytical and
semi-analytical models to surrogates built upon numerical simulations accelerated via machine learning. REDBACK also provides
a simple interface for downloading and processing data from various catalogues such as Swift and FINK. The software can also
serve as an engine to simulate transients for telescopes such as the Zwicky Transient Facility and Vera Rubin with realistic
cadences, limiting magnitudes, and sky coverage or a hypothetical user-constructed survey or a generic transient for target-of-
opportunity observations with different telescopes. As a demonstration of its capabilities, we show how REDBACK can be used to
jointly fit the spectrum and photometry of a kilonova, enabling a more powerful, holistic probe into the properties of a transient.
We also showcase general examples of how REDBACK can be used as a tool to simulate transients for realistic surveys, fit models
to real, simulated, or private data, multimessenger inference with gravitational waves, and serve as an end-to-end software toolkit
for parameter estimation and interpreting the nature of electromagnetic transients.

Key words: software: data analysis —black hole—neutron star mergers — gamma-ray bursts —neutron star mergers — transients:
supernovae — transients: tidal disruption events.

and the evolution of our Universe. Such a tool must also be modular

1 INTRODUCTION and open-source, easily adaptable to an individual user’s needs and

Rapid advances in electromagnetic telescope sensitivity and survey
capabilities are revolutionizing transient astronomy. However, to
realize the full promise of the rich and large photometric and
spectroscopic data sets, we need a robust toolkit for simulating what
we expect to see, building and exploring our models and fitting the
observations. Such advancements can enable us to ultimately learn
the physics that drives these transients, optimize our survey strategies
and instruments, and gain insights into the lives and afterlives of stars
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efficiently maintained and upgraded.

Several iterations of open-source software have served important
roles in improving our understanding of transients. For example,
MOSFIT (Guillochon et al. 2018), a modular package that has been
used for parameter estimation of several electromagnetic transients
such as tidal disruption events (Mockler, Guillochon & Ramirez-Ruiz
2019), superluminous supernovae (Nicholl, Guillochon & Berger
2017), and kilonovae (Villar et al. 2017b). The SNCOSMO (Barbary
et al. 2022), and SNANA (Kessler et al. 2009) software suites that are
readily used to fit Type Ia supernovae to enable cosmological analyses
(e.g. Vincenzi et al. 2024) or study the detectable rates of supernovae
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for different survey designs (e.g. Bom et al. 2024). 3ML (Vianello
et al. 2015), which provides a cohesive framework utilizing existing
instrument-specific software to best capture how the data is generated
and perform detailed modelling of gamma-ray bursts (GRBs) across
data from multiple instruments (e.g. Klinger et al. 2024). Haffet
(Yang & Sollerman 2023), which enables data-driven reconstruction
of supernova bolometric luminosity from multiband photometry
enabling a more direct probe to study the explosion properties
(e.g. Dong et al. 2023). NMMA (Pang et al. 2023), that provides
machine-learning based ‘surrogates’to radiative transfer simulations
of kilonovae, enabling inference with kilonova models that include
the most physics. The NMMA package also provides an interface for
jointly analysing electromagnetic and gravitational-wave data such
as for the first gravitational-wave observation of a binary neutron
star (BNS) merger, GW170817 (Abbott et al. 2017b), enabling
strong constraints on the behaviour of nuclear matter (Koehn et al.
2024).

Although these software packages have driven significant progress
in electromagnetic transient astronomy, several limitations must be
addressed to take full advantage of the currently available and forth-
coming electromagnetic data. For example, models for explosive
transients are under constant development and often make several
underlying assumptions. However, these packages above are limited
to a small library of implemented models and inflexible interfaces
to change or add new models. This prevents detailed studies into
modelling systematics or the use of the best models for any given
transient. To truly leverage the data and maximally extract insights
into these transients, open-source packages must come equipped with
alarge variety of built-in models and are routinely updated to capture
the best theory has to offer. Ideally, such packages also provide a
simplified interface to enable end users to drop-in replacements or
modify features for inbuilt models or with minimal interaction with
the source code. The last point is pertinent as this could help remove
the burden on development teams to keep pace and implement
developments from transient modelling, particularly in the scenario
where key developers leave the field, as has been the case of some
of the above packages.

Similarly, there are constant improvements to Bayesian inference
techniques that are not captured by several of these packages above
as they typically use at most one sampling package such as EMCEE
(Foreman-Mackey 2015). It is worth noting that some of these
packages are also not Bayesian, failing to provide robust estimation
of the uncertainty in estimating parameters from any fit. The lack of
multiple implemented packages prevents cross-sampler validation
(a valuable tool to determine if results are robust) or leveraging
the benefits of different samplers, such as evidence calculation for
Bayesian model selection. Other sampling algorithms can also be
better tuned for specific transient problems (dramatically improving
sampling wall-clock time), allowing for the use of the best tools for
the task at hand. Similarly, there are also several practical benefits
to having access to multiple different sampling algorithms, such
as a better ability to capture multimodal posterior distributions or
parallelization.

A critical validation step in any inference workflow is to test how
models perform across the parameter space and tests with complete
end-to-end analyses, that is, from simulation to fitting workflow.
While the above packages have been tested in various ways, they do
not all provide a cohesive framework to both simulate model outputs
(for a variety of different formats such as flux density or magnitudes
or bolometric luminosity) and realistic observations (for real surveys
or target-of-opportunity, ToO, observations) and fit them. This is a
limitation of many of these packages, as we can only truly determine
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bias in parameter estimation by performing simulations with the
same tools we use to fit and control the data generation process.
Properly capturing the data-generation process is also instrumental
for accurate transient analyses. The bulk of the above packages can
only work with the simple assumption of a Gaussian likelihood (i.e.
the noise distribution is Gaussian around the true input model). This
simple noise assumption is known to be incorrect for the majority of
current and projected future observations and will undoubtedly cause
problems as we continue to observe each transient more frequently
and with higher fidelity.

Higher fidelity and more extensive observations of transients also
open up another challenge to maximally leverage our data: astronom-
ical events are now readily observed in multiple ways. An example
already described above was the multimessenger gravitational-wave
discovery of the BNS merger GW170817 (Abbott et al. 2017b),
which had an afterglow observed across the electromagnetic spec-
trum (Hallinan et al. 2017; Alexander et al. 2018; Fong et al. 2019;
Lamb et al. 2019a), a kilonova from near-infrared to ultraviolet
(UV, Pian et al. 2017; Smartt et al. 2017; Villar et al. 2017b),
very-long baseline interferometry (VLBI, Mooley et al. 2018), and
gravitational-wave data (Abbott et al. 2017a). While packages such
as NMMA can perform a joint analysis of the gravitational wave
and electromagnetic photometry, they fail to include the spectrum
or VLBI data. Although these constraints could be folded through
after the photometric and gravitational-wave analysis, you then lose
the significant benefits offered by the full Bayesian framework
(Gianfagna et al. 2023; Ryan et al. 2023). The opportunity to
jointly fit the spectrum and photometry also provides a holistic
look into the properties of the transient, where the photometric
and spectroscopic analyses can often tell a contradictory story.
Moreover, a flexible framework for combining datasets could also
enable Bayesian hierarchical modelling, a powerful technique to
uncover the properties of a population.

Here, we introduce REDBACK, an open-source, end-to-end
Bayesian Inference software package for simulating and fitting
electromagnetic transients. REDBACK provides an object-orientated
PYTHON interface to over 12 sampling software and over 100
models for several different electromagnetic transients. Furthermore,
REDBACK provides a simplified interface to download data for
multiple transients from various catalogues, handling processing
to a homogeneous format, removing the burden from end users
to fully understand the peculiarities of different data sources. For
all models implemented in REDBACK or user-provided models, end
users of REDBACK can simulate transients for actual surveys such
as the Large Synoptic Survey of Space and Time (LSST, Ivezié
et al. 2019) and Zwicky Transient Facility (ZTF, Bellm et al. 2019),
or a custom survey, alongside ToO observations for any collection
of observatories/telescopes. Users can fit this simulated, private,
or publicly available data through Bayesian inference alongside
combinations of different data types such as VLBI data, gravitational-
wave data, and a transient spectrum and photometry. REDBACK is
also built on modern PYTHON, with many adopted practices to aid
continual development, continuous integration, and an extensive
library of unit tests and examples which ensure that the primary
features of REDBACK remain stable through future development.

REDBACK provides several advantages over other software pack-
ages and mitigates the aforementioned issues:

(1) An extensive library of inbuilt models and a simple interface
for users to add their own. Several models implemented in REDBACK
are direct improvements to previous models or model transients one
can not model in other packages.
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(i) An engine to simulate realistic transients for surveys and ToO
observations and perform inference, that is, a tool to validate an entire
inference workflow or optimize surveys.

(iii) A tool to access and process photometric data alongside
auxiliary data such as sky position from many publicly available
catalogues and brokers.

(iv) A modular and flexible interface, users can swap likelihoods,
models, and plotting without ever modifying the source code.
Alternatively, change how existing aspects of REDBACK function by
passing their own function to existing functional modules.

(v) Simplified interface (replace a string) to over 12 different
open-source samplers, enabling cross-sampler validation or use of
samplers better tuned for transient inference or have additional
capabilities such as multiprocessing.

(vi) Modern PYTHON software development practices, including
continuous integration and unit-testing to ensure core software
features remain functional, even if core developers leave the field.

This paper is intended to describe the capabilities and mark the
version 1.0 release of REDBACK. REDBACK is installable via pip
and available at https://github.com/nikhil-sarin/redback. We note
that REDBACK has been open-source and distributed under the GPL
licence since 2022 March. Earlier versions of REDBACK have already
been used in previous publications, which we refer the interested
reader to see some of the use cases for REDBACK (Sarin, Lasky &
Ashton 2020a, b; Sarin et al. 2021, 2022a, b; Sarin & Lasky 2022;
Levan et al. 2024; Schulze et al. 2024; Omand & Sarin 2024;
Rosswog et al. 2024; Sarin & Metzger 2024).

This paper is structured as follows: in Section 2, we describe
the design objectives of REDBACK, how the different parts of
the software interact, and the three typical workflows we expect
REDBACK to be used for. In Section 3, we describe the different
functional modules in REDBACK and how they are used in various
workflows. In Section 4, we showcase a new scientific analysis
enabled by REDBACK; the joint fitting of the spectrum and pho-
tometry of a kilonova. In Section 5, we briefly describe features
in REDBACK that will be added in future releases and conclude
in Section 6. In the appendix, we showcase the general interface
with detailed code snippets of how to use REDBACK, alongside
more detailed examples. In particular, in Appendix A, we show
how to download and process data, set up the inference workflow,
several plotting methods and simulate transients. This basic interface
is followed by more detailed examples in Appendices B and C
where we demonstrate the different capabilities of REDBACK. In
particular, we first show how REDBACK can be used to jointly
analyse a multimessenger BNS signal with X-ray and gravitational-
wave data and then to fit different types of real electromagnetic
transients.

2 DESIGN AND IMPLEMENTATION

A core design objective for REDBACK is to be truly modular, with
the flexibility to adapt to the different requirements/preferences of
end users and for users to use different parts of the software without
requiring additional overhead or modifying the source code.

Second, REDBACK must be flexible to both serve as a workhorse
in expert workflows in transient astronomy and as an accessible tool
for newcomers to the field. In particular, while advanced users can be
expected to modify or interact more directly with various aspects of
the REDBACK software, novice users must be able to use all aspects
of REDBACK from data collection, simulation, and fitting with just a
few lines of code.
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Third, where possible, we also aim to leverage other open-source
software to reduce the burden on core developers of REDBACK and
better keep pace with developments in other areas. For example, we
are tightly integrated with the BILBY framework for sampling. This
provides a simplified interface for end users to multiple open-source
samplers and access to a large and active development team that
maintains BILBY and different sampling packages.

To address these design objects, all primary functional modules of
REDBACK are built as PYTHON classes or functions. These functional
modules can be readily modified by end users via keyword arguments
or replaced entirely within a workflow with other functional modules
implemented in REDBACK or something the user provides. This
modularity extends to primary modules described below and to more
practical features such as plotting or where REDBACK outputs are
stored.

This modular interface addresses some critical limitations with
previous packages described in the introduction. For example, all
REDBACK models are implemented as callable PYTHON functions.
These models also have minimal dependencies and do not depend on
other aspects of the software, enabling users to evaluate a model as
they would with any other PYTHON function. Moreover, all models
in REDBACK can produce different outputs, for example, bolometric
luminosity, a spectrum, a flux, a magnitude, a flux density, or auxiliary
information such as the photospheric velocity. For many REDBACK
models, users can also change critical assumptions of the model, such
as the spectral energy distribution (SED), by passing in a different
keyword argument. This allows end users to generate model outputs
for any arbitrary input, better understand the effects of different
parameters, or change modelling assumptions without modifying the
source code. It also facilitates holistic studies by fully considering
various observations, for example, spectrum and photometry. End
users can also replace a model with their own PYTHON function,
keeping intact all of the other functionality of REDBACK, making it
significantly easier to use new and improved models with REDBACK.

Advanced users can also change the likelihood, that is, their as-
sumptions about the data-generating process or the prior distribution
on model parameters with different implementations in REDBACK or
their implementation, again, without needing to change the source
code. This enables advanced users to adapt their fitting or simulation
workflows for more sophisticated analyses. At the same time, such
choices are made by default for novice users, who can perform such
tasks with minimal domain expertise. Moreover, different sampling
algorithms and software packages can be used with minimal effort
by simply changing the string referring to a sampler. This addresses
the limitations of previous packages with inflexible interfaces for
users to change assumptions about how the data are processed or
generated and leverage the best samplers for the respective task.

In Fig. 1, we show the different functional modules of REDBACK,
implemented as either a PYTHON subpackage, a PYTHON module, a
PYTHON class or as a PYTHON function and how they interact for the
three most common workflows we expect this software to be used
for.

A: Fitting a real transient. We anticipate that one of the most
common use cases for REDBACK will be fitting data of a real
astrophysical transient. This workflow typically involves getting
data from one of the catalogues using the get_data subpackage
in REDBACK, or users can provide private data. The user will then
use this data to create a specific Transient class object from
the transient subpackage, which loads the data in a homogeneous
format and can be used for plotting the data or additional processing,
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Figure 1. Flowchart showcasing the different subpackages, modules, and classes of REDBACK and how they interact for different workflows.

such as converting flux data to luminosity. The user then passes this
Transient class object along with a string referring to a model
from transient_models subpackage or their own PYTHON-
wrapped model, an instance from the prior class, an instance of the
likelihood class and a string referring to a sampler that is available
in BILBY (Ashton et al. 2019; Romero-Shaw et al. 2020). This will
perform fitting through Bayesian inference and obtain a result
class object. The result object contains the posterior, and other
properties such as the Bayesian evidence. This result class can
also be used to make plots such as the fitted light curve, the corner
plot, or the cumulative distribution function of all parameters, which
are internally handled by a separate plotting module. We emphasize
that for the novice user, choices like the likelihood, prior, sampler
choice and plot aesthetics are made by default, but more advanced
users can change these as they desire.

B: Fitting a simulated transient. Many users will also fit simulated
data to verify the inference workflow or predict constraints from
mock observations. In this workflow, the user would start with a
model from transient _models or supply their own model. Then,
use the simulation module to create synthetic data. After the
creation of this simulated data, the workflow for fitting is the same
as workflow A.

C: Simulating a transient or a population of transients. Users
may also wish to create a population of transients, for example,
to understand how many afterglows LSST will see in a year or
to understand the selection effects of surveys. These workflows
require choosing a model from transient_models or supplying
a PYTHON-wrapped model and passing this to the simulation
module alongside a prior object which describes the distribution of
each parameter in the model that constitutes the population. Complex
prior constraints can be placed on this population through the use of
prior_constraints functional module.

The above briefly describes how different aspects in REDBACK
interact for different workflows. We now give a general overview
of the REDBACK software and describe each functional module’s
capabilities in detail and how it can be modified.

MNRAS 531, 1203-1227 (2024)

3 SOFTWARE PACKAGE OVERVIEW

REDBACK is built predominantly on a class structure and almost every
aspect of the software exists as an independent PYTHON class. Here,
we describe each of these different functional modules and their pri-
mary functionality. We stress that these modules are standalone and
can be used independently to adapt to different needs and workflows,
or modified via keyword arguments or replaced to provide additional
functionality.

3.1 Data interface

REDBACK provides an interface to download and process data
from multiple catalogues through the get_data subpackage. In
particular, this includes the flux, flux density or the photon arrival
time data for GRBs detected by the Neil Gehrels Swift Observatory
available at Swift Data Centre (Evans et al. 2010), the magnitude or
flux density data of transients from ZTF from LASATIR (Smith et al.
2019) or FINK (Moller et al. 2021) which in the future are expected
to also host transient light curves from LSST (Ivezi¢ et al. 2019),
the archival GRB data from Burst and Transient Source Experiment
(BATSE) (Fishman et al. 1994) and compilation of optical transient
light curves available at the Open Access Catalog (OAC, Guillochon
et al. 2017).

For each of the above catalogues, the get _data module pro-
vides a one line interface to download and process the data into
a PANDAS data frame and save it as a human-readable file in
an appropriate location to integrate with the rest of REDBACK.
This module also attempts to find additional metadata such as
the redshift of the transient, the GRB photon index, T90 among
other properties and process the data to add additional attributes
such as the integrated flux, flux density and their respective
errors.

As the data are stored as human-readable file and readable as
a PANDAS data frame, the user can easily add additional private
data or verify and modify any erroneous data. The get_data can
be used independently of all other parts of REDBACK and may be
used to simply process a large quantity of transient data from public
archives.
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3.2 Transient classes

The primary unifying module of REDBACK are the Transient
classes that are available through the Transient subpackage.
These are separated into two main types, a generic transient class
which is applicable for any type of transient and an optical tran-
sient class. These classes serve as parent classes for five other
classes; prompt, afterglow, kilonova, supernova, and
tde which provide a more seamless interface for the specific type
of transient, any additional processing such as converting the flux
data to a luminosity and modify some default behaviour, such as
labels for plotting, where plots are saved etc. We note that the
afterglow class is further split into a short and long GRB class
but these are functionally equivalent and only differ in locations of
metadata.

For all transient classes, we provide one-line class methods to load
the data from different catalogues obtained via the get _data mod-
ule, or from the simulation module (described in Section 3.4).
The Transient objects can also be initialized independently of any
class method by specifying the observed properties. In Appendix A2,
we show how to initialize these Transient objects for different
workflows.

All transient objects also have two important attributes;
data_mode and use_phase_model. The former is an attribute
which dictates what REDBACK assumes to be the mode of data for
the transient, for example, magnitude for magnitude data, while
the latter is a Boolean switch which dictates whether the transient
has observed times in reference to a known start time (as usually the
case for an afterglow) or is in Modified Julian Days (MJD) without a
reference (as usually the case for most other transients). Again, these
attributes affect choices such as the labels for plotting and where
plots are saved but also in some cases the default likelihood used by
REDBACK.

3.3 Models

While the most desirable method would be to confront observations
with the best models that include the most physics (typically
hydrodynamical and radiative transfer simulations), such models
are not tractable for fitting given the demanding computational
requirements of Bayesian inference (each model must be evaluated
over a range of parameters at least O(10*) times to fit a typical
transient). To be tractable for inference, all models in REDBACK are
either analytical, semi-analytical, or surrogates built with machine
learning from numerical simulations. The latter are provided by
another standalone software package redback_surrogate that
is available independently but we consider as part of the RED-
BACK software stack. Here, we describe the models for various
different transients available in REDBACK and how they can be
modified.

To remain true to our driving aim of modularity, all models are
callable PYTHON functions and can be called on an arbitrary set
of values with minimal dependencies. These functions can all be
easily modified through the use of dependency injection (described
in Section 3.3.1) without needing modify the REDBACK source code
or replaced entirely within the rest of the workflow with a user-
provided model. Most REDBACK models can provide outputs in
different formats, for example, luminosity, integrated flux, magnitude
or flux density enabling them to be used to fit any type of data format.
For magnitude and integrated flux data, REDBACK will integrate
the spectrum and calculate the band pass magnitude/flux. This
behaviour could be easily modified to use a flux density to magnitude
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conversion to further alleviate computational demands. We note that
this behaviour is enabled by default for afterglow models where the
effect of assuming a flux density to magnitude conversion as opposed
to integrating a band pass is minimal.

3.3.1 User-defined models and dependency injections

As alluded to above, REDBACK is built on a flexible interface which
allows the user to use their model with all other aspects of REDBACK.
The only requirement is that the user-defined model is a PYTHON
function with the first input being the time of observations and the
output being the desired output, for example, £ lux_density if the
user wants to fit flux_density data. Once written, this PYTHON
function can be passed to different modules of REDBACK, either to
simulate data or to fit some observations. This workflow also enables
users to combine REDBACK models, replacing each of the individual
models with their own model or a different REDBACK model.

Many REDBACK models use additional keyword arguments to
dictate the precise physics of the model. Some keyword arguments
are Boolean switches to turn on/off certain physics, but others require
amore complex object. This pattern is often referred to as dependency
injection, which allows us to build a more flexible interface. We
implemented the dependency injection pattern to handle features
such as the SED, or the conversion from inspiral parameters to
kilonova parameters, photosphere, or the cosmology used to associate
a redshift to a luminosity distance. By default, every model has
these choices set internally but users can make changes to the model
by simply using a different object as a keyword argument which
could either be an instance of a REDBACK class or a class they write
themselves. Through these model modifications and dependency
injections, many REDBACK models can be extended and have their
physics changed without ever modifying the source code, alleviating
the burden on the end user to make a change to a model. However, as
the interface is modular, a REDBACK model can also just be replaced
entirely.

3.3.2 Specific transient models

Broad-band GRB afterglow. GRBs are typically followed by lower
energy broad-band emission referred to as afterglow (e.g. Sari,
Piran & Narayan 1998). The broad consensus is that the afterglow
is a product of the relativistic jet interacting with the ambient inter-
stellar medium, an interaction that produces synchrotron emission.
However, there are several aspects of afterglow models that are ill-
understood, such as the jet structure, that is, the distribution of energy
as a function of angle, or the role of reverse shocks, or additional
emission components, or energy injection.

REDBACK provides an interface to several different afterglow
models. For example, the different jet-structure models implemented
in afterglowpy (Ryan et al. 2020), and implementations of
several other physical models described in the literature (Sari et al.
1998; Sari, Piran & Halpern 1999; Gottlieb, Nakar & Piran 2018;
Lamb, Levan & Tanvir 2020; Lamb et al. 2021). For each of the
models, users can make additional modifications to the physics such
as the inclusion of jet spreading, inverse Compton emission, and
energy injection or more specific settings such as the resolution
of the integration scheme. For other models, users can choose the
exact jet-structure profile, whether the interstellar medium is at a
constant density or a wind-like medium etc., and whether the shock
is refreshed. All these modifications are handled through additional
optional keyword arguments in the PYTHON function which allows

MNRAS 531, 1203-1227 (2024)

202 1990}00 0} U0 18NB Aq €4 L 29//€0Z1/L/LEG/AI0IME/SEIUW/WOd"dNO"d1WaPED.//:SA)Y WOy PAPEOjuMOd



1208  N. Sarin et al.

the advanced users to make changes as they wish while more novice
users can avoid having to make these decisions.

Alongside these physically motivated models we also include
some purely phenomenological broken power-law models with
different degrees of components. In total, REDBACK includes 21
physically motivated afterglow models in addition to the five phe-
nomenological models, providing coverage of the different physical
assumptions involved in afterglow modelling and to test the robust-
ness of inferred models across different modelling assumptions.

Broad-band kilonova afterglow. Similar to a GRB afterglow,
there also exists an expectation for synchrotron emission when the
slower moving kilonova ejecta interacts with the ambient interstellar
medium. However, unlike models for the GRB afterglow, where we
are aided by decades of observations, there are currently no confident
detections of a kilonova afterglow. Nevertheless, we provide an
interface to several different kilonova afterglow models described
previously in the literature (Nakar & Piran 2011; Sarin et al. 2022b)
and make modifications to some of GRB afterglow models described
above to be more suited for a kilonova afterglow (e.g. Gottlieb
et al. 2018; Ryan et al. 2020). In the future, we will add kilonova
afterglow models more representative of the ejecta distribution we
see in numerical simulations (Kathirgamaraju, Giannios & Beniamini
2019; Nedora et al. 2021).

Kilonovae. The revolutionary observations of AT2017gfo (e.g.
Abbott et al. 2017b, a; Arcavi et al. 2017; Kasen et al. 2017; Coulter
et al. 2017; Villar et al. 2017a) provided definitive evidence of a
thermal transient powered by r-process nucleosynthesis. However,
despite the extensive observations and significant theoretical model
development, many aspects of kilonovae remain uncertain. In RED-
BACK we provide implementations of 18 different kilonova models
which range in complexity and implemented physics. Many aspects
of these models such as the distribution of ejecta mass or the recipe
to relate the BNS or neutron star black hole (NSBH) parameters to
kilonova parameters can be changed through the use of dependency
injection (described in Section 3.3.1).

The simplest kilonova model implemented in REDBACK is a one
component kilonova model (Villar et al. 2017b). Although minimal
in parameters and quick to evaluate and therefore fit to observations,
this model has already been shown to be unsuccessful in explaining
multiple aspects of kilonovae observations. To address the inability
of such a simple model to explain observations, we also provide
implementations of two- and three-component kilonova models
following Villar et al. (2017b) and implementations of MOSFIT
kilonova models (Cowperthwaite et al. 2017; Villar et al. 2017b).
These models all effectively ignore the dynamics of the ejecta,
assuming the entire ejecta component is moving at one velocity,
an assumption that is likely incorrect. We therefore also provide
models where the ejecta is distributed into shells which expand
homologously, similar in spirit to the model presented in Metzger
et al. (2010) and Metzger (2019). Alongside this, we also provide an
interface to the heating-rate kilonova models (Korobkin et al. 2012;
Hotokezaka & Nakar 2020; Dorsman et al. 2023), which allow the
user to describe the velocity and opacity distribution themselves.

The above models all have parameters that describe the kilonova
ejecta properties itself, that is, the mass and velocity of the ejecta.
However, it has become increasingly common for kilonova models to
be built upon the BNS or NSBH parameters which are then related to
the ejecta parameters with a series of recipes from numerical relativ-
ity simulations. We provide several implementations of these models
including models for BNS and NSBH, including, for example, the
BNS model implemented in MOSFIT (Nicholl et al. 2021) which
includes additional physics such as shock cooling to describe the
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early optical light curve (Piro & Kollmeier 2018), or implementations
of models presented in Coughlin et al. (2019).

While the above models are all semi-analytical, we also provide
three models that are machine-learning surrogates to numerical
simulations. These surrogates are provided in the optional package
redback_surrogate (described in more detail below), and are
implementations of surrogates built in KilonovaNet (LukoSiute
et al. 2022). In the future, we will continue to add more kilonovae
models (Banerjee et al. 2020; Korobkin et al. 2021) and allow greater
flexibility to existing models such as changing the calculation of the
thermalization efficiency.

Supernovae. REDBACK contains many supernova models of vary-
ing levels of complexity. Most of the models have both a bolometric
implementation and an implementation for multiband photometry.
This setup allows the user to fit bolometric luminosity, magnitude,
integrated flux, or flux density data. Similar to MOSFIT where
physics such as the interaction process, photosphere, and SED can
be swapped, REDBACK supernovae models can do the same since
they are implemented using dependency injection. For all models,
these aspects are chosen by default corresponding to the physics
implemented but can be swapped without modifying the source code
for a different module to capture different physics.

The simplest model, such the exponential-power-law model, is
purely phenomenological and built upon no physics in terms of
luminosity but assumes a diffusive photosphere with a temperature
floor, and a blackbody SED. Other models are more physically
motivated such as several variations of the Arnett (1980, 1982) model
for Ni-powered supernovae including a version which also incor-
porates shock cooling, a version that incorporates line absorption
for modelling Type Ia supernovae, and a version which incorporates
synchrotron emission for modelling Type Ic supernovae. Then there
are models for circumstellar (CSM) interaction powered supernovae
(Chatzopoulos et al. 2013; Villar et al. 2017a; Jiang, Jiang & Ashley
Villar 2020) as well as a mix of CSM and *°Ni power. We also
include other models similar to those available in MOSFIT, such as the
basic magnetar, slsn, and magnetar + nickel models
(Nicholl et al. 2017; Guillochon et al. 2018), as well as new models
which include non-vacuum dipole spin-down (Lasky et al. 2017) and
ejecta acceleration from the pulsar wind nebula (Sarin et al. 2022b;
Omand & Sarin 2024).

Again, through the use of dependency injection, these models can
be easily modified to capture different physics. We also provide an
interface to supernova models implemented in SNCOSMO (Barbary
et al. 2022), which further amplifies the library of supernovae
models available in REDBACK. In future releases, we will be adding
surrogate models to hydrodynamical/radiative transfer simulations
of interaction powered supernovae, among other models.

Engine-driven transients. Distinct from the magnetar-driven su-
pernovae models described above, we also provide a general class of
magnetar driven models. Such models aim to capture the emission
that would be produced in a magnetar-driven kilonova or a magnetar-
driven fast blue optical transient (Drout et al. 2014; Arcavi et al.
2016). Several different models are implemented such as those that
capture the dynamical evolution of the nascent neutron star (Sarin
etal. 2022b) or the dynamical evolution of the ejecta (Metzger & Piro
2014; Sarin et al. 2022b). We also include models with relativistic
considerations (Yu, Zhang & Gao 2013; Sarin et al. 2022b), non-
vacuum dipole spin (Lasky et al. 2017), and models with variation
in their treatment of the thermalization efficiency or gamma-ray
leakage (Wang et al. 2015; Sarin et al. 2022b). We also include
an implementation of the trapped magnetar model that has been
suggested as an explanation for the enigmatic fast X-ray transient,
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CDEF-S XT1 (Sun et al. 2019). In the future, we will add models to
capture energy injection from fallback accretion onto a central black
hole.

Millisecond magnetar. Ever since the launch of Neil Gehrels Swift
Observatory (Gehrels et al. 2004), the origin of the X-ray afterglows
of GRBs has been a long source of debate. In particular, features
referred to as the internal and external plateaus are difficult (although
not impossible) to explain within the standard picture of synchrotron
emission from a jet interacting with the ambient medium. These
plateaus are readily explained as the bare or processed spin-down
from a highly magnetic, rapidly rotating newly born neutron star,
that is, a millisecond magnetar.

In REDBACK, we provide several implementations of millisecond
magnetar models, such as early models which assumed the neutron
star only spun down through vacuum dipole radiation (Zhang &
Mészaros 2001; Rowlinson et al. 2013), to extensions that included
a variable braking index (Lasky et al. 2017). We also provide models
which include a collapse time (Sarin et al. 2020a), to capture light
curves when the neutron star undergoes a delayed collapse to a
black hole. The above models all implicitly assume that the observed
emission is a constant factor of the real spin-down power of the
neutron star. In reality, it is difficult to assume that this factor will be
constant in time and be the same for different environments/ejecta
properties. To capture this behaviour, some other models have been
developed which account for this changing efficiency by accounting
for the radiative losses at the interface between the jet and interstellar
medium (Dall’Osso et al. 2011; Sarin et al. 2020b), these models are
also implemented in REDBACK. Similar to the extension in physics
of how emission is generated, the assumption that a neutron star
spins down with a constant braking index is also simplistic, we
therefore include models where the braking index is a time-dependent
value conditioned on the evolution of the angle between the spin and
magnetic field axes (e.g. Sagmaz Mus et al. 2019; Sarin et al. 2022b).

Tidal disruption events. Tidal disruption events occur when a
star in a galactic nucleus approaches a supermassive black hole
(SMBH) and is sufficiently close to be torn apart by tidal forces
(Hills 1975). Many models for tidal disruption events exist which
have different assumptions of how the optical/UV light curve is
produced. For example, some models assume that the optical/UV
light curve directly tracks the fallback rate (Guillochon & Ramirez-
Ruiz 2013; Guillochon et al. 2017; Mockler et al. 2019), consistent
with the light-curve decay slope of L o =3 expected for complete
disruptions (e.g. Guillochon & Ramirez-Ruiz 2013). Other models
assume that the disrupted material does not circularize rapidly and
instead the light curve is powered by stream—stream collisions (Piran
et al. 2015; Ryu et al. 2020, 2023). Recent numerical simulations
have shown that disrupted material does indeed circularize rapidly
(Steinberg & Stone 2024) but this need not lead to rapid feeding
of the SMBH, instead the material forms a quasi-spherical pressure
supported envelope rather than in an accretion disc (Metzger 2022).

Motivated by these different assumptions, in REDBACK, we provide
two primary sets of models; the cooling envelope model described
in Metzger (2022) and Sarin & Metzger (2024), which models the
optical/UV emission from a cooling envelope and a more fallback
rate inspired model similar to MOSFIT (Guillochon et al. 2018;
Mockler et al. 2019). In future versions, we will add models that
describe the light curve from stream—stream collisions and surrogates
that directly emulate the light curve produced by radiative transfer
simulations.

Shock-powered models. The emission produced via shocks is
diverse and an important ingredient for many different transients,
such as the early cooling that may occur in a supernova or kilonova
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ejecta (Piro & Kollmeier 2018), the shock powered emission when a
blastwave interacts with the preceding material such as supernova ex-
plosions with CSM interaction (Margalit 2022; Margalit, Quataert &
Ho 2022). Or the synchrotron emission produced in mildly relativistic
blast waves with both thermal and non-thermal electrons (Margalit &
Quataert 2021). In REDBACK, we provide an individual model for each
of these processes, to be used independently or added onto any other
REDBACK model.

Prompt gamma-ray burst. The mechanism that produces the high-
energy gamma-ray emission in GRBs is unclear. However, the
prompt emission light curves of GRBs are often analysed to look for
signatures of periodicity (Hiibner et al. 2022; Chirenti et al. 2023),
lensing (Paynter, Webster & Thrane 2021), or to characterize the
observations into different GRB subtypes. In REDBACK, we provide
five models for GRB light curves to facilitate this research.

3.3.3 General purpose models

Generic models. While physical intuition is often the highest priority
when performing inference, sometimes we require a model that is
robust, flexible and will fit all our observations. Such models can
often form the basis of more physically motivated models or just be
used to directly gain insight into the population. In REDBACK, we
provide several phenomenological models to address this aim, from
models which mimic a Gaussianrise, to an exponential rise and power
law decay, to broken power laws with one to six components. As these
models have no physics, they are often orders of magnitude faster to
evaluate and fit than the physical models described above, making
them particularly practical as a way to screen transient candidates.

REDBACK surrogates. All of the models described above rely on
an analytical or semi-analytical model prescription for the physics
dictating the light curve. Although such models are incredibly useful
for getting insight into different transient phenomena, they likely
make simplified assumptions which may not be suitable to draw
accurate inferences into observations. In an independent package,
redback_surrogate, which has a direct interface to REDBACK,
we provide a library of models which are machine learning surrogates
to numerical simulations. At present these models are restricted
to surrogates of kilonovae simulations (Kasen et al. 2017; Bulla
2019; Lukosiute et al. 2022). All models in redback_surrogate
seamlessly integrate into REDBACK and can be used like any other
model implemented in REDBACK. In future releases, we will provide
surrogates for hydrodynamical/radiative transfer simulations of many
different transients as well as an interface to build your surrogate from
a grid of simulations.

Joint afterglow/kilonova/supernova. Observations of supernovae
in afterglows (Zeh, Klose & Hartmann 2004; Greiner et al. 2015;
Cano et al. 2017) and more recent infrared excesses consistent with
a kilonova in some GRBs (Tanvir et al. 2013; Lamb et al. 2019b;
Rastinejad et al. 2022; Levan et al. 2024) have motivated jointly
fitting the broad-band afterglow alongside a kilonova or supernova
component. In REDBACK, we provide three such joint models to
enable joint fitting. In particular, a top-hat afterglow with an Arnett
model, to jointly fit a wide variety of GRBs with supernovae, and
two models for jointly fitting a kilonova, one using a two-component
kilonova following Villar et al. (2017b) and another following the
heating-rate model (Hotokezaka & Nakar 2020) with a simple top-hat
afterglow.

We note that to keep a consistent data generation method, these
models can only be fit in flux density, requiring the assumption
that optical bandpass magnitudes are approximately equivalent to
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the flux density at the bandpass effective wavelength. We further
emphasize that these models are simply adding the prediction of
the two emission processes and do not capture the complicated
physics, for example, the interaction of the jet with the ejecta that
may significantly alter the overall light curve (Klion et al. 2021;
Nativi et al. 2021). We also note that while the above options are
limited in variety, the choice is motivated by both the simplicity (less
parameters to fit) and flexibility of the models. Users of REDBACK
can replace each of the individual components with a different
model implemented in REDBACK or their own model. We provide
an additional, simple joint model interface that enables users to use
any other REDBACK afterglow or kilonova/supernova model, only
requiring the user to pass a string referring to the model they wish to
use.

Gaussian process base model. While the large diversity of models
in REDBACK offers a lot of opportunity that one model might explain
observations sufficiently well. Transient phenomena is quite often too
complicated, and often the data we observe has underlying processes,
for example, periodicity, correlated noise or unmodelled physics that
can not be captured analytically or not understood a priori. To provide
even more flexibility and as a better estimate of uncertainty and
fitting procedure in the presence of correlated noise, we provide a
generic interface to Gaussian processes in REDBACK. In particular,
every model in REDBACK can be used as a mean model for Gaussian
process kernels implemented in George (Foreman-Mackey 2015)
and celerite (Foreman-Mackey et al. 2017).

Phase and attenuation models. All REDBACK models are written
with the assumption of no attenuation and that the transient time
observations are since the transient started (i.e. that the time of
the explosion is known). In practice, these assumptions are mostly
incorrect. Therefore, we provide an interface which for all REDBACK
models can make the time in reference to an unknown start time
(which can be added as a parameter to sample) and/or add attenuation
which can be added as a parameter to be estimated by sampling. The
attenuation is handled through the EXTINCTION package (Barbary
2016). We note that REDBACK assumes all photometry has already
been corrected for Milky Way extinction before creating a Tran-
sient object. However, if not, the user can do this through the
EXTINCTION package alongside online resources to gather the Milky
Way extinction along the line of sight of the transient.

Acknowledgement of models. Many of the models implemented in
REDBACK are implementations of models that have been described
previously in the literature or exist as an interface to another open-
source package. To ensure these previous works are adequately
acknowledged and facilitate development we provide a simple one
line attribute to all models that will provide a reference to the NASA
ADS page for the paper describing the model or the software that
originally implemented this model.

3.4 Simulation

A key requirement for inference workflows is the ability to test
pipelines on realistic synthetic data. To wit, we have created a
simulation module in REDBACK to create light curves for transients
that can be loaded in a transient object and used in inference.
Specifically, we provide three classes.

(1) A generic simulation interface that can be used to create
simulated data for any type of transient. In this module, the time,
observed filters/frequencies are sampled randomly from user inputs
and added to a user-specified noise level. This generic interface can
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be used for any REDBACK model and is appropriate for generating
ToO style of observations rapidly.

(i) A more detailed simulation interface specifically for optical
transients to be used for producing light curves from real or user-
generated surveys/telescopes. Specifically, here we use official table
of pointings for ZTF and the Vera Rubin Observatory (provided
in REDBACK), which describe the pointings of the telescope, the
limiting magnitude, cadence of filters, and other properties. Users
can also build a pointings table with minimal inputs and design
their own survey or provide a table of pointings from an survey
not implemented in REDBACK. This allows any REDBACK or user-
provided model to be used to generate realistic survey light curves and
not only validate their inference methodologies but also understand
constraints from survey light curves or optimize survey design.

(iii) A full survey, here a user provides a rate, a survey duration
and a REDBACK model and prior (described in detail below) and a
full survey is generated with events drawn according to the rate,
placed isotropically in the sky and uniformly in comoving volume.
The detected/not-detected events are tracked and this can be used to
understand the detectable fraction of events and how that is affected
by the population properties of the transient and survey strategy.

We note that we assume a circular field of view for simulating
real surveys in REDBACK. This is incorrect for surveys such as ZTF,
which has a rectangular field of view and a circular field of view
could underestimate the rate of transient detections if adopting a
circular field of view. However, this approximation is likely not a
concern, in ZTF, the fields are fixed to the same sky coordinates
with no dithering, which provides uniformity and more accessible
reduction and background subtraction. Nevertheless, the transients
landing on the gaps between the CCD quadrants are consistently
lost. This results in an &~ 15 per cent loss of the effective area. In
REDBACK, we approximate the 47 sq deg rectangular field of view of
ZTF as a perfect inner circle of 36 sq deg, corresponding to a loss of
~ 20 per cent, which is a reasonable approximation for most studies
given significant uncertainties on rates and source properties. For,
LSST, this is not a concern as the Rubin field of view can be well
approximated as a circle. We will improve the treatment of different
surveys’ focal plane geometry in future releases. This simulation
interface can also be used to optimize survey strategies and design
for different transients or specific science goals.

3.5 Inference

The key aim of REDBACK is to enable Bayesian inference on
electromagnetic transients. For inference, REDBACK leverages the
interface to BILBY, which provides a wrapper to many open source
sampling software. With this interface a user of REDBACK, simply
needs to (1) specify an implemented sampler as a string (16 samplers
are implemented at time of writing), (2) write a prior (or use the
default for the model), (3) specify a likelihood (chosen by default
unless specified), and then (4) fit a model. In this paper, we assume
familiarity with Bayesian inference but we refer readers who are
beginning in this field to Mackay (2003), Hogg, Bovy & Lang (2010),
Ashton et al. (2019), and references therein.

3.5.1 Likelihoods

Likelihoods in REDBACK are chosen by default and apart from the
exception of photon count data (which uses a Poisson likelihood),
are by default, Gaussian. However, the modular interface means
that users can change the likelihood used with one line of code
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to another REDBACK-implemented likelihood (there are several to
choose from) or write their own and use that instead. This flexibility
enables REDBACK to be useful to both advanced users who wish to
model the likelihood more accurately and users who simply wish to
fit a transient.

3.5.2 Priors

To obtain a posterior in Bayesian inference, we require a prior. For all
REDBACK implemented models, we provide a default prior, this prior
is typically broad and uninformative. REDBACK priors are written
in the same way as BILBY priors and are effectively a dictionary
with keys corresponding to each prior. Many prior distributions are
implemented but users can also implement their own which they
either write mathematically or provide a grid of the prior that can
be used to build an interpolant. REDBACK also provides access to
conditional priors to write priors on parameters that depend on
one another. Many astrophysical models also have constraints, for
example in engine-driven models we always want to ensure that the
energy in the ejecta does not exceed the energy budget of the engine
or that our flux does not exceed a known upper-limit/non-detection.
These conditions can be placed on any prior as a Constraint,
which will ensure that any prior draw does not violate any constraints.
All REDBACK priors can also be sampled from with one line of code
to enable users to better understand the prior distributions.

3.5.3 Samplers

There are many advantages to being able to choose from a list of
samplers (with no additional overhead beyond changing one line
of code), for example, several samplers come with the ability to
do parallel processing, which can dramatically improve run times.
Some samplers also have the ability to resume from checkpoints and
produce regular diagnostic plots that can be used to verify progress.
There are also large differences in the algorithm of certain samplers,
beyond the general distinction between nested sampling and Markov
Chain Monte Carlo, with some algorithms better suited to one type
of transient than another.

For REDBACK specifically, we use the DYNESTY (Speagle 2020) by
default, but we regularly find that PYMULTINEST (Buchner et al. 2014)
and NESTLE' give similar posteriors for significant shorter run times.
However, the latter tend to be less robust at dealing with a complicated
parameter space. A full sampler comparison is beyond the scope of
this paper but we strongly encourage users to perform inference with
multiple different samplers, both to gain a better understanding of
the parameter space, what algorithms perform best and as a cross
sampler validation to ensure that their results have converged.

3.6 Format of results

After a fit, REDBACK returns a homogeneous result object. This
object is the same for any type of transient analysed. The object
is also saved locally (in a machine-readable json file by default)
either with a user-specified location/label or as a subfolder with
the name of the model in a folder that is the name of the type of
transient analysed (by default). The result object contains several
attributes needed for diagnosis, such as a PANDAS data frame of the
posterior values, alongside metrics (depending on the sampler) such
as the Occam factor, the Bayesian evidence, the number of likelihood
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evaluations, the priors used in the analysis and additional metadata
which includes a copy of the Transient object used in the fit. The
result object also contains several methods, from convenience
functions to obtain the credible intervals and latex strings for the
constraints on all parameters, to plotting the corner or light curve and
multiband light-curve plots with the data and the fit. The result file
can also be shared and loaded in REDBACK to enable users to share
their analysis or work across multiple machines. We note that the
REDBACK result object inherits from the BILBY result object,
inheriting additional useful methods and diagnostics such as the
ability to importance sample or make a percentile—percentile (PP)
plot (Cook, Gelman & Rubin 2006) to validate an inference workflow.

3.7 Plotting

In REDBACK, all plotting methods are implemented in a specific
plotting module. However, we note that the access to these meth-
ods is through the Transient and result objects. In particular,
we provide interfaces to plot the observations themselves, the fit to
single or multiband photometry as random models drawn from the
posterior or as a credible interval and a residual plot. The different
REDBACK plotting functionality is demonstrated in Appendix C. To
simplify modification of REDBACK plots, all plotting methods return
the MATPLOTLIB axes, which can allow users to change things such
as the axes labels/fontsize/scale/limits or plot something extra on the
same plot. Furthermore, users can also pass their own MATPLOTLIB
figure and axes to REDBACK, enabling multipanel light-curve plots
or a customized size. The plott ing module also uses dependency
injection and keyword arguments for several settings which can be
used to change many features of the different plots. Users can also
replace the plotting module to be more specific to their needs or
call the model themselves to plot what they would like.

3.8 Analysis

Separate from the main modules provided in REDBACK, we include an
analysis module that can be used to set up the different workflows
or make additional diagnostic plots for some models or calculate
prior/posterior predictions for other properties. For example, here we
provide a method to plot light curves generated by a user-provided set
of parameters on top of the ‘plot_multiband’ or ‘plot_data’ generated
plots to get a sense of the appropriate prior for fitting or build
intuition about a model. Alongside this, we provide methods to plot
the spectrum generated by REDBACK model, or additional posterior
predictive plots such as of the evolution of the nascent neutron star.
In the future, we will add more diagnostic analysis methods and
encourage REDBACK users to contribute with typical diagnostic plots
and calculations of their favourite transient.

3.9 Directory structure

By default, the REDBACK directory structure is set by the type of
transient, the name of the transient and the model used in fitting. For
example, if one downloads the data for the kilonova, AT2017gfo,
this data will be saved to a folder called kilonova in the current
working directory. If a user then loads this data and fits with a
model called redback, then the result file alongside all plots
and sampler-specific diagnostics will be saved to a folder within
kilonova with the model name. This behaviour can be changed in
two primary ways. (1) The user can specify an outdir and label
when running the fit (see below) which will save the result to folder
outdir with the 1abel prepended to any output. (2) The user can
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change the name attribute of the Transient object. Which will
change the label that is prepended to any output file but keep the
default directory structure. We note that any result files generated
by a non-default directory structure can simply be loaded up by
specifying the path, while plotting locations can also be specified via
the typical method of MATPLOTLIB.

4 JOINT ANALYSIS OF SPECTRUM AND
PHOTOMETRY

With the software’s design objectives and overview out of the way.
‘We now turn towards a new application enabled by REDBACK. As we
described in the introduction, it is becoming increasingly common
for electromagnetic transients to have extensive spectroscopic and
photometric observations. However, photometric analyses and spec-
troscopic analyses are often performed independently. Typically, the
spectrum is often used primarily for the identification of a redshift
and to identify the type of transient and later potentially specific
emission lines. Meanwhile, the photometry is left for estimating the
properties of the transient, such as the ejecta masses in supernovae
and kilonovae or the black hole mass in tidal disruption events.

It is understandable that currently, analysis of the spectrum and
photometry is performed separately, given the high computational
cost of detailed spectral models and analytical/semi-analytical mod-
els that work on photometry but fail to capture the details of a
spectrum. However, it is often the case that separate analyses of
photometry and spectrum can provide contradictory information.
For example, some supernovae observations where the photometry
are often better described purely by *°Ni decay while the spectrum
has tell-tale signatures of interaction with CSM material. Each
independently suggests different quantities of ejecta, making it
difficult to understand the properties of supernovae explosions and
can sometimes even change the interpretation of specific events (e.g.
Schulze et al. 2024). Or the case of the kilonova, AT2017gfo, where
the spectrum at 1.4 and 4.4 d is best described by electron fractions
(Gillanders et al. 2022) inconsistent with those used to fit the pho-
tometry (Villar et al. 2017b). Such contradictions are likely down to
modelling limitations. However, it is critical we understand which of
the estimated properties are more robust, where our modelling could
be improved and what the photometric and spectral observations
are jointly telling us. Joint analysis can also provide significantly
more powerful constraints by breaking degeneracies present in the
independent analyses and thereby improving our estimation of the
transient properties. This has important consequences as, ultimately,
we aim to use the estimated parameters of the explosion to answer
fundamental questions in physics and astrophysics.

We now describe how REDBACK can be used to jointly fit the
spectrum and photometry of a kilonova. For the purposes of this
demonstration, we choose a simplified simulated spectrum and
photometry to ensure we can validate the entire process. This is a
specific example of workflow B, described in Section 2. We simulate
ToO observations of a hypothetical kilonova, AT2025ixp, observed
by the Vera Rubin observatory through the REDBACK simulation
module. In particular, we use the two-component kilonova model
implemented in the transient_models subpackage following
Villar et al. (2017b). We then evaluate the spectrum at 4.5 d from this
model, by calling the model with an additional keyword argument
to change the output format of the model. Assuming this model
only captures continuum emission, we add an additional absorption
and emission line at 8800 and 21000 A, respectively. Here, we
model both spectral lines as a Gaussian, mimicking their Doppler
broadening due to the high-velocity kilonova ejecta. We add Gaussian
noise to the total spectrum (spectral lines and continuum emission)
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comparable to noise in the X-shooter spectrum of AT2017gfo (Pian
etal. 2017; Smartt et al. 2017). With the data generated, we create an
instance of the kilonova Transient object. We then independently
fit the spectrum and photometry and jointly fit both together using the
PYMULTINEST sampler (Buchner et al. 2014) through the REDBACK
interface, specifying a Gaussian likelihood via the 1ikelihood
module and broad uninformative priors via the prior module.

In Fig. 2, we show the results from our analysis. In particular, in
the left panel, we show the data in multiple LSST filters alongside
the 95 per cent credible interval from our fit to the photometry. In
the right panel, we show the simulated spectrum at 4.5d (in black)
alongside our fit, showing the continuum emission in blue and the
full spectrum, including absorption and emission lines in red. In both
cases, we see we can fit the observations well, correctly recovering
the input.

In Fig. 3, we show the posterior distributions on multiple param-
eters of the two-component kilonova model from the independent
spectrum and photometry fits and the joint fit. These posteriors
highlight the power of joint analysis, while all analyses recover
the true input (indicated by black lines), the joint spectrum and
photometric fit do so with significantly more precision by breaking
the degeneracy in the independent photometric and spectroscopic
analyses. For example, the precision of the second ejecta compo-
nent’s mass and velocity improves from a precision of 29 per cent and
15 per cent, respectively, from the independent fit to the photometry
to a precision of 8 per cent and 4 per cent. This boost to precision has
several important consequences as kilonova properties have been
previously shown to be useful for constraints on the behaviour
of nuclear matter (Pang et al. 2023), constraints on the Hubble
constant (Pérez-Garcia et al. 2022), while offering better precision
to ultimately understand how these explosions work.

The above example is a demonstration of one of the unique
capabilities of REDBACK: a cohesive, single framework analysis of
spectrum and photometry that is facilitated by the modular design of
REDBACK. Specifically, REDBACK enables stitching together different
functional modules for different problems. In particular, we can
jointly, and independently fit both the spectrum and photometry
by setting up the relevant functional modules in distinct ways.
Similarly, we can simulate the two types of data in question, enabled
by the design implementation of all models such that they can be
evaluated for arbitrary inputs, times and return outputs in multiple
formats, alongside the implementation of the simulation and
Transient functional modules, where the former can be used to
generate synthetic observations for distinct data types, while the latter
has the required flexibility to handle such distinct data.

5 FUTURE DEVELOPMENT

As we continue to drive progress in transient astronomy, we develop
newer and better models for transients and make improvements
to how we treat the data. This paper marks version 1.0 release
but REDBACK will be further developed to keep pace with the
developments in modelling and treatment of data.

One of the primary aspects that will be improved are the models im-
plemented in REDBACK. In particular, we are currently implementing
models for interacting supernovae and fast-blue optical transients,
from semi-analytical models of shocks produced by interacting
shells (Margalit 2022), to surrogates of radiative transfer simulations
(Khatami & Kasen 2023). We are also improving some of our models
of afterglows for better treatment of reverse shocks and to make them
more computationally efficient. We will soon implement model for
r-process nucleosynthesis from collapsars (Barnes & Metzger 2022;
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Anand et al. 2024). On longer timescales, we will implement models
with better spectral modelling, enabling joint fitting of the spectrum
and photometry.

Alongside improvements and addition of models, we will further
develop REDBACK for more practical purposes, for example, provid-
ing a generic interface in redback_surrogate to allow users
to make their own surrogate from a grid of simulations and newer
likelihoods that better describe the data generation process. We will
also be further developing the simulation module to improve our
treatment of focal plane geometry. On longer time-scales, we will
add some GPU implementations of models to enable rapid inference

and an application programming interface (API) to download and
process data from the Fermi catalogue (e.g. von Kienlin et al. 2020).

6 CONCLUSION

Realizing the rich promise of the large transient data expected from
new observing facilities such as the Vera Rubin Observatory and
ULTRASAT (Shvartzvald et al. 2024) requires us to confront such
data with models describing the different transient phenomena. This
requires fast, reliable, open-source code that is both accessible to
newcomers to the field and modular such that it can be adapted to
be the powerhouse required by experts. Here, we have described
REDBACK, a Bayesian inference software package for end-to-end
for parameter estimation and interpretation of electromagnetic tran-
sients.

REDBACK is an engine for simulating realistic transients and
inferring their properties enabling end-to-end analysis and valida-
tion of inference workflows. Furthermore, one can also use this
software to understand how to optimize survey strategies/design or
understand the selection function of different telescopes/surveys.
REDBACK is also fully Bayesian, enabling the vast advantages
of this statistical paradigm such as model selection, importance
sampling, and Bayesian hierarchical modelling. We re-emphasize
here that REDBACK is object-orientated, enabling users to input their
own model, priors, and data without needing to edit the source
code, and simply replace any functional module of REDBACK with
their own code. The interface to BILBY also provides access to a
large variety of samplers enabling validation across samplers and
a simplistic interface for multimessenger analysis for joint events
such as GW170817 (e.g. Radice et al. 2018; Coughlin et al. 2019;
Gianfagna et al. 2023). These design objectives address many of the
limitations of previous open-source packages for electromagnetic
transients.

In this paper, we have described the overall design of REDBACK,
a new scientific application where we jointly fit the spectrum and
photometry of a kilonova. This holistic look at a complete transient
data set offers the opportunity to both increase the precision of
our constraints and confront contradictions that may emerge when
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interpreting only one type of data. For the specific case of a kilonova,
we show how joint fitting can dramatically improve the precision
of the inferred ejecta masses, increasing the value of each event
for constraints on the equation of state. Or also remove biases
inadvertently caused by fixed opacities in photometric analyses that
are inconsistent with the spectrum. In the appendix, we provide
additional examples demonstrating the functionality and usability of
the software in various applications and a general interface.

As discussed in Section 5, we will continue to further develop
REDBACK, including the addition of newer models and additional
functionality. REDBACK has already been used in previous publica-
tions such as inference on tidal disruption events (Sarin & Metzger
2024), analysis of SN 2018ibb (Schulze et al. 2024), magnetar-
driven kilonovae and supernovae (Sarin et al. 2022b; Omand & Sarin
2024), GRB afterglows (Sarin et al. 2021, 2022a), and to infer joint
GRB and kilonovae observations (Levan et al. 2024), demonstrating
the flexibility of the software. A more comprehensive comparison
of results for different transient catalogues is underway alongside
interpretation for other transients.
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to provide an interface to different sampling algorithms and for
evaluating prior distributions. REDBACK uses SNCOSMO (Barbary
et al. 2022) for filter definitions and calculations of magnitude
from SEDs, EXTINCTION (Barbary 2016) for extinction correc-
tions. And REQUESTS and SELENIUM for downloading data from
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DATA AVAILABILITY

The software package along with example scripts for all analysis
demonstrated in this manuscript alongside a plotting notebook to
generate all the plots as well as other examples are available at https:
/lgithub.com/nikhil-sarin/redback. The specific result objects for
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each of the analyses presented here are available at https://doi.org/
10.5281/zenodo.8273145. REDBACK is available on PYPI. This paper
uses v1.0 release of REDBACK with documentation at https://redbac
k.readthedocs.io/en/latest/. The data for all transients is available at
the OAC (Guillochon et al. 2017) gathered through the REDBACK
get_data module or hosted at https://github.com/nikhil-sarin/redb
ack.
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APPENDIX A: GENERAL INTERFACE

We now describe the general interface for REDBACK, for example how to download and load data, simulating a transient or calling a REDBACK
model with a constrained prior. We note that these sections are not exhaustive demonstrations of the REDBACK API and merely show some
demonstrative functionality. Full API documentation is provided at https://redback.readthedocs.io/en/latest/.

A1l Getting data

As mentioned in Section 3, REDBACK provides an API to download and process data from multiple catalogues. These data are saved as a
human-readable file and returned as a PANDAS data frame. In particular,
import redback

# FINK

name = '’ZTF22abdjglm’’

data = redback.get_data.get_fink data(transient=name, transient_type = ’’supernova’’)

# LASAIR

transient = '’ZTF20aamdsjv’’

data = redback.get_data.get_lasair._data (transient=transient, transient_type = ’’'supernova’’)

# Open Access Catalog

tde = ’’PS18kh’’

data = redback.get_data.get_tidal disruption_event_data_from open_transient_catalog.data(tde)
# BATSE

name = '’910505"'

data = redback.get_data.get_prompt_data_from-batse (grb = name)

# SWIFT
GRB = ''070809""
data = redback.get_data.get_bat xrt_afterglow.data_-from_swift (grb=GRB, data-mode = '’flux’’)

In all function calls, we specify the name of the transient we want to obtain the data for and use the relevant class method of the get _data
module. For some of these methods we can also specify the type of transient or the type of data to ensure we get the data we want and that it
is saved in the appropriate location. We note that REDBACK only processes the AB magnitude data for sources hosting multiband photometry.
This is not a concern for FINK and LASAIR but may result in a loss compared to the OAC. However, the raw data file is also downloaded and
users can reprocess the data as they wish.

A2 Creating transient objects

Once we have the data of a transient, there are many different ways to create a Transient object. For example, we provide simple class
methods to load data that is downloaded from the OAC, FINK, and LASAIR.

supernova = redback.supernova.Supernova.from.open_access_catalogue (name='"'ZTF22abdjglm’’,
data.mode = ’’'flux’’)

sn = redback.transient.Supernova.from lasair_data (name=’'"’ZTF20aamdsjv’’,
use_phase_model = True,

data_.mode=’"'flux_density’’, activebands = np.array([’’'ztfr’'’]1))

Here, the first line creates a supernova Transient object from data that was downloaded from FINK. We note that as FINK and
OAC have the same data structure, the OAC method can be used for FINK data. Here, we have also specified the data_mode to be flux,
which will create the transient object with the £ 1ux data mode. Similarly, the second line creates a supernova object but from LASAIR data.
However unlike the FINK example, here we specify an active band, which sets all bands apart from the zt £r band to be inactive (not used in
fitting), set the data_mode to be flux_density and set use_phase_model = True. The latter condition ensures that the time values
we initialize are in MJD, to fit this data we therefore must also sample in the start time of the event.

We also provide simplified class methods for loading data from Swift, BATSE, and the simulation module. In particular,

kn_object = redback.transient.Kilonova.from_simulated. optical_data (name=’''my_kilonova’’,
data.mode = ’’magnitude’’)
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Here, we have loaded the magnitude data for a kilonova; my_kilonova we generated using the simulation module. REDBACK
Transient objects can also be constructed directly, for example, by loading in a data file and specifying the specific attributes directly. For
example,

import pandas as pd

data = pd.read-csv(’'’'example_data/grb.afterglow.csv’’)
time.d = datal’’time’’].values

flux_density = datal’’flux’’].values

frequency = datal’’frequency’’].values
flux_density.err = datal’’flux.err’’].values

name = '’'170817A"’

afterglow = redback.transient.Afterglow(name=name, datamode=''flux density’’, time = time.d,
flux density=flux.density, flux.density_err=flux density_err, frequency = frequency)
This direct construction of a Transient object can be done for any other combination of attributes, enabling users to construct a
Transient object in many different ways. We emphasize that we provide several other class methods than shown here and refer the reader
to https://redback.readthedocs.io/en/latest/ for the full documentation.

A3 Calling a model

As alluded to in Section 3, all REDBACK models exist as PYTHON functions and can be called directly on an arbitrary time array and set of
parameters. We also provide a convenient look up dictionary to find the function corresponding to a model as well as convenience functions
to obtain the relevant citation for the model (for ease of reference and gather additional information about the model) and return an instance
of the default prior for the model.

from redback.model library import all models dict

model = ’’one_component_kilonova. model’’

priors = redback.priors.get_priors(model = model)
priors[’’redshift’’] = 1le-2

function = all.models_dict [model]

citation = function.citation

model _kwargs = dict (frequency=2el4, output_format = ’’flux.density’’)
time = np.linspace(0.1, 30, 50)

sample = ©priors.sample()

sample.update (model _kwargs)

fmjy = function(time, sxsample)

Here, the first set of code creates the REDBACK prior object from a string referring to a model implemented in REDBACK, we also set the
redshift of the prior to be a fixed value, and use a REDBACK dictionary to conveniently get the function corresponding to the model string.
The function also has an attribute ‘citation’ that provides a reference for the model. The second set of code sets up some additional keywords
required by the model such as the frequency we want to evaluate the model at and an output format. We then call the function on a random
sample from the prior and arbitrary time array to obtain the flux density (in mJy) corresponding to the specific prior draw. This simple
workflow can be readily changed to draw many more samples from the prior, add a constraint to the prior and draw from the constrained prior,
or add/change keys in ‘model_kwargs’ to change the physics of the model or the output format.

A4 Simulating transient

While the interface described above can be used to simulate data, we also provide a more comprehensive simulation module (described
in detail in Section 3). For example, generating a simulated light curve for a kilonova in ZTF can be done via,

import redback

from redback.simulate_transients import SimulateOpticalTransient

model kwargs = {}

parameters = redback.priors.get_priors(model = ’’one_component_kilonova-model’’) .sample ()
parameters[’'mej’’] = 0.05

parameters[’’tO.mjd-transient’’] = 58288

parameters[’’redshift’’] = 0.005
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Figure Al. Simulated kilonova (one-component kilonova model) in (left) ZTF and (right) LSST. We emphasize that aesthetic features such as the colours of
the data points, axes limits etc can all be modified by passing in relevant keyword arguments to the plotting methods.

parameters[’’t0’’] = parameters[’'’t0mjd transient’’]

parameters[’’'temperature_floor’’] = 3000

parameters[’’kappa’’] = 1

parameters[’’'vej’’] = 0.2

parameters[’’ra’’] = 3.355395

parameters[’’dec’’] = 0.5820673

kn.sim = SimulateOpticalTransient.simulate_transient_in_ztf

(model = ’’one_component_kilonova model’’,

parameters=parameters, model_kwargs=model_kwargs, end._transient_time = 15.,
snr_threshold=5., add_source_noise = True)

Here, the first set of code specifies the model we want to simulate with and the parameters of the simulated event. Then, we also place it
in a part of a sky observable with ZTF (REDBACK will internally randomly place the source within the ZTF observable volume otherwise),
then generate a light curve with the simulation module. As shown in Appendix A2, the simulated data can be easily saved and loaded in a
single line of code to create a Transient object enabling inference. In Fig. A1, we show two representative simulated kilonovae in ZTF and
the LSST Survey in the Vera Rubin Observatory, demonstrating through a simple example the benefits of the high cadence of surveys such as
ZTF for fast transients such as kilonovae.

We note that this exact interface can also be used to generate survey light curves for the Nancy-Grace Roman Observatory or a user-generated
survey and for any model implemented in REDBACK, and these examples are available at https://github.com/nikhil-sarin/redback. Furthermore
REDBACK also offers the functionality to simulate transients more generically (in a manner more consistent with ToO observations) or simulate
a full survey.

APPENDIX B: MULTIMESSENGER ANALYSIS

A key advantage of the interface with BILBY is to facilitate multimessenger gravitational-wave and electromagnetic transient analyses.
Here, REDBACK provides the likelihood, model and/or simulated data for the electromagnetic transient and BILBY provides the same for the
gravitational-wave data. Both likelihoods communicate together through the use of a joint_likelihood which combined with a full
prior, can be used to perform joint multimessenger analyses.

We demonstrate this feature through the observation of a simulated BNS signal, GW231116, observed in O4 alongside a GRB afterglow
detected in X-rays. We note that this workflow can be easily extended to also include an optical/radio afterglow and/or a kilonova. Furthermore,
the joint likelihood interface can also be used to jointly fit any two data types, for example, a spectrum and photometry, both of which could be
provided by REDBACK but we leave such examples from this paper for simplicity. This analysis has been performed for GW170817 by multiple
groups (e.g. Gianfagna et al. 2023).

We start by setting up the data,

import bilby

import redback

from astropy.cosmology import Planckl8 as cosmo
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from redback.transient.models.afterglow.models import tophat
from bilby.core.prior import Uniform

source._.redshift = 0.03
source_distance = cosmo.luminosity distance (source_redshift) .value
gw_injection_parameters = dict (mass_.1=1.5, mass_2=1.3, chi_.1=0.02, chi 2=0.02, lu-

minosity_distance=source_distance,theta.jn=0.43, psi=2.659, phase=1.3, geo-
cent_time = 1126259642.413,
ra=1.375, dec=-1.2108, lambda_-1=400, lambda.2=450, fiducial = 1)

For demonstrative purposes, we assume that the afterglow kinetic energy is some unknown fraction of the total rest mass energy of the binary,
alongside the more conventional assumption that the jet is launched along the orbital angular momentum of the binary. These assumptions
are not captured by any afterglow model implemented in REDBACK, so we create a new function, wrapping a simple tophat model already
implemented in REDBACK.

def get_jet_energy(mass_.1l, mass_.2, fudge):

totalmass = (mass.1 + mass.2)
return total-mass *x fudge x 2e33 x 3el0**2

fudge_factor = 0.04

afterglow_energy = get_jet_energy(gw_injection_parameters[’’'mass.1''],
gw_injection_parameters
[""mass2"'"],

fudge = fudge_factor)

grb_injection_parameters = dict (fudge = fudge_factor,

theta.jn = gw_injection_parameters[’’theta_jn’’],
redshift=source_redshift, loge0 = afterglow_energy,

thec=0.1, logn0=-1, p=2.2, logepse=-1, logepsb=-2, ksin = 1,
g0=50, mass.1 = gw-injection.parameters[’’'mass.1’’],

mass_2 = gw_injection_parameters[’’'mass.2’'])

def grb_afterglow.model (time, redshift, theta_jn, mass_.1, mass_.2, fudge, thc, logn0O, p,
logepse, logepsb, ksin, g0, xtkwargs) :
energy = get_jet_energy(mass.1l, mass_2, fudge = fudge)
energy = np.logl0 (energy)
if "’loge0’’ in kwargs.keys() :
kwargs.pop(’’loge0’’)
return tophat (time=time, redshift=redshift, thv=theta_jn, logeO=energy, thc = thc,
logn0=logn0, p=p, logepse=logepse, logepsb = logepsb,
ksin=ksin, g0 = g0, sxxkwargs)

We can now simulate the electromagnetic data using this model following the method outlined in previous sections or by calling the model
directly, and then create a REDBACK Transient class, alongside an instance of the likelihood. Furthermore, we can set up the gravitational-
wave analysis, to reduce the computational cost we use the relative-binning approximation (Zackay, Dai & Venumadhav 2018; Krishna et al.
2023). We follow the standard BILBY relative-binning example for this aspect and do not outline the details here. We can also set up the
electromagnetic aspect (i.e. the prior and likelihood) via

empriors = Dbilby.core.prior.PriorDict ()
empriors[’’'redshift’’] = source._redshift
empriors[’’thc’’] = Uniform(0.01, 0.2, ’‘’thc’’,

latex_label = «r’’$\theta_{\mathrm{core}}s’’)
empriors[’’logn0’’] = Uniform(-4, 2, ’'’logn0’’,

latex label = 1r’'’$\log {10} n {\mathrm{ism}}s’’)
empriors[’’'p’’] = Uniform(2,3, ''p’’, latex.label = 1r'’'SpS$’'’)
empriors[’’fudge’’] = Uniform(0.01, 0.1, ’’fudge’’,

latex label = «r’'’'$f {\mathrm{fudge}}s$’")
empriors[’’logepse’’] = grb_.injection_parameters(’’logepse’’]
empriors[’'’logepsb’’] = grb.injection parameters[’’logepsb’’]
em_priors[’’ksin’’] = grb_injection_parameters[’’ksin’’]
empriors[’’g0’’] = grb.injection_parameters[’'’g0’’]
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Figure B1. Left: corner plot showing the 1o0—30¢ posterior on a subset of parameters with a gravitational-wave (GW) only analysis (blue) and a GW + Afterglow
analysis (red), with black lines indicating the input values of the simulation. The right-hand panel shows the light-curve fit from the joint analysis.

em_likelihood = redback.likelihoods.GaussianLikelihood (x = sim.,afterglow.time,
y = sim,afterglow.flux density,
function = grb._afterglow.model,
sigma=yerr, kwargs = afterglow_kwargs)

Here, we have first set up a prior on a series of parameters, while fixing some to the injected values to reduce the computational cost of the
analysis, and then set up the electromagnetic likelihood, using the Transient object attributes.

Once, the electromagnetic and gravitational wave is set up (i.e. the individual likelihoods and priors), we can simply set up the joint analysis
via,

joint_likelihood = Dbilby.core.likelihood.JointLikelihood (gw_-likelihood, em_-likelihood)

priors_.emgw = empriors.copy/()

priors_emgw.update (gw_priors)

Here, the first line sets up a joint likelihood (the product of the two individual likelihoods) and the functional interface for the code to interact
correctly. The second line does the same, setting up a prior object, automatically handling parameters that are shared.

Parameter estimation with the joint likelihood can then be performed via the BILBY interface,

result = bilby.run_sampler (joint_likelihood, priors=priors._emgw, label='’'emgw’’, out-
dir = '’'joint’"’)

In Fig. B1, we show the constraints on various parameters provided by the above analysis, alongside constraints provided under the
assumption that they are separate events. The orange lines indicate the true value of the simulation, indicating that the parameters are recovered
correctly. In the right-hand panel, we show the fit to the simulated X-ray afterglow plotted via the analysis module. As expected, the
primary benefit of including the afterglow is to break the distance—inclination angle degeneracy, clearly improving the estimate of distance and
viewing angle for this hypothetical event.

APPENDIX C: EXAMPLES

We now go through a series of more general examples that demonstrate how REDBACK can be used to fit and infer properties of a variety of
electromagnetic transients. We note that each of these examples are available as standalone scripts at https://github.com/nikhil-sarin/redback.
To aid readability of these examples in this paper, we avoid code snippets that are identical to the snippets described above.

C1 Broad-band afterglow — GRB170817A

We first demonstrate how REDBACK can be used to fit private or simulated data by fitting the afterglow of GRB170817A (Hallinan
et al. 2017; Abbott et al. 2017b; Alexander et al. 2018; Fong et al. 2019; Lamb et al. 2019a). We must first load the data file
and create an afterglow Transient object via the method described in Appendix A2. After we have created the Transient
object and have verified that the data looks correct (by plotting or by inspecting the Transient object), we are ready to fit. We
know through many lines of evidence that GRB170817A was observed off-axis (e.g. Fong et al. 2019; Alexander et al. 2018) and
the jet was likely structured (e.g. Lamb et al. 2019a; Fong et al. 2019). Furthermore, many previous analyses have already fit the
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Figure C1. Left: posterior on the observers viewing angle, the isotropic equivalent energy of the afterglow and the opening angle of the relativistic jet from
fitting the afterglow of GRB170817A with the different shading indicating the 10—30 credible intervals. Right: data of the afterglow of GRB170817A at multiple
frequencies along with the light curves from a 100 random draws from the posterior.

observations of GRB170817A to remarkable success. In particular, we can fit this data with a gaussiancore structured jet model from
afterglowpy. As this model is already implemented in REDBACK, we simply need to specify this model as a string and load the associated

prior.
model = '’gaussiancore’’
priors = redback.priors.get_priors(model = model)

These lines construct a prior object using the default prior implemented in REDBACK for the gaussiancore model. To reduce inference
wall time, we can also fix some of the parameters of the model with values consistent as those found by Ryan et al. (2020). This can be done
via,

priors[’’redshift’’] = 1le-2
priors[’’logn0’’] = -2.6
priors([’'’'p’’'] = 2.16
priors[’’logepse’’] = -1.25
priors[’’logepsb’’] = -3.8
priors([’’ksin’ '] = 1.

We note that we could have instead set a narrow Gaussian prior around these values instead of fixing these parameters. With these few lines,
we are now almost ready for inference. As mentioned in Section 3, several REDBACK models require additional keyword arguments; such as
the frequencies at which each data point was was observed and the output format of the model (which must be the same as the data).

model kwargs = dict (frequency=afterglow.filtered_frequencies,
output_format = ’’flux._density’’)

Here, we have set up a model dictionary which contains the frequency of the data points (this can be easily extracted from the Transient
object via the filtered_frequencies attribute) and set the output format as flux density. We are now ready to fit via,

result = redback.fit_model (transient=afterglow, model=''gaussiancore’’, sam-
pler = '’'dynesty’’,
model_kwargs=model kwargs, prior=priors, nlive=2000, resume = True)

Here we call the REDBACK fit_model function, which takes as input the afterglow object being fit, the name of the model, sampler,
the prior, the model keyword arguments, and any other keyword arguments; and returns the REDBACK result object. Here, we have specified
the sampler to be DYNESTY via a string, but this could be any other sampler implemented in BILBY. We also specify some sampler settings
such as the number of live points and the option to resume from a previous run. When finished, this will return the REDBACK result object,
which can be used to create a plot of the corner and a multiband light curve to verify the fit via,

result.plot_corner (parameters = ['’'thv’’, '’loge0’’, ’'’'thc’’'])

result.plotmultiband_lightcurve (random-models = 100)

Here, in the first line we have also passed a list of the parameters we wish to show and in the second asked for 100 randomly sampled light
curves from the posterior to be plotted. Note that several other arguments can be passed into these functions to change aesthetics or the type
of information displayed. These two plots are shown in Fig. C1.
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Figure C2. Left: data of AT2017gfo plotted through the plot_data method. Right: data of the AT2017gfo plotted through the plot_multiband method.

C2 Kilonova — AT2017gfo

We now demonstrate how REDBACK can be used to fit a kilonova, in particular the kilonova that accompanied GW170817, AT2017gfo
(Abbott et al. 2017b; Villar et al. 2017b). For simplicity, we will fit a one_component _kilonova_model implemented within REDBACK to
observations of AT2017gfo (Villar et al. 2017b). Such a model is known to not provide a great fit to the data so this is merely a demonstration
of REDBACK functionality. As mentioned in Section 3, significantly more complex kilonovae models are available in REDBACK which have
been previously shown to well explain the observations (e.g. Villar et al. 2017b; Bulla 2019; Nicholl et al. 2021).

The data of AT2017gfo is available at OAC (Guillochon et al. 2017), which can be obtained via the code shown in Appendix Al.

data = redback.get_data.get_kilonova.data_from open_transient_catalog.data

(transient = ’’at2017gfo’"’)

The above code calls the get_data module to obtain the data for AT2017gfo from the OAC. As mentioned above, this will return a PANDAS
data frame while also saving the data to disc. Users can manipulate the data as they would any other PANDAS object. However, for our purpose
it is more useful to use this data to create an kilonova object. This is done via

kilonova = redback.kilonova.Kilonova.from open_access_catalogue (

name='’'at2017gfo’’, datamode=’'’flux density’’, activebands = np.array(['’'g’’, "'1i'']))

Here we have created a kilonova Transient object, specifying the data mode to be flux density. We have also set the ‘g’ and ‘i’ bands
as active, which will disable all other bands and only fit the active bands. This can be done to both reduce the computational time of inference
but also for cases when the data or model are unreliable for specific filters. To ensure the data are correctly processed, we can plot the data via

kilonova.plot_data (show=True, save=False, plot_others=False,

band.colors={''g’’:’'green’’, ’'’i’’:’’indigo’’}, xlimhigh = 10)
fig,~axes = plt.subplots (3, 2, sharex=True, sharey=True, figsize = (12, 8))
kilonova.plotmultiband (figure=fig, vaxes=axes,

filters = [’'g’’", ''x’'*", "rire, g, iy gor])

Here, the first line will plot all the data onto one figure, where we have also passed additional arguments such a dictionary of the colours for
each band, whether to plot the inactive bands, to not save and to show the plot and the upper limit on the x-axis. Note that REDBACK returns the
MATPLOTLIB axes so several other plotting related things can be changed by the user directly or by passing in an additional keyword argument.
The second line, will make a plot with one band per axes and we have also specified the specific filters we wish to display. Note that this
functionality allows us to show data for a filter or fits for a filter even if that filter was set as inactive. Both figures are shown in Fig. C2.

With the Transient object created and data verified through a plot, we are now ready to fit. As mentioned above, we will fit with the a
one-component kilonova model. However, we will now also demonstrate how a user can fit the data with a different likelihood and sampler.
We skip steps to load a prior and set up model keyword argument dictionary as they are identical to the afterglow example above.

prior[’’sigma’’] = Uniform(0.01, 0.0001, name='’sigma’’, latex_label = ’’S$\sigmas’'’)
function = all.models_dict [model]
sampler = ''’'mnestle’’

Here, we first define a new prior on a parameter sigma, which is an additional parameter to be fit for, then use a convenience dictionary to
get the REDBACK function for a one component kilonova model and specify the sampler to be used in inference as the NESTLE sampler. We note
that sigma is the uncertainty in the typical Gaussian likelihood (i.e. o), and if a user provides a prior but uses the standard (default) likelihood,
this will overwrite the specific measured errors for a constant o that is estimated by sampling. However, here, we wish to demonstrate the use
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Figure C3. R- and /-band observations of SN1998bw alongside the 68 per cent credible interval from our fit.

of a custom likelihood (either something provided by the user or a different likelihood already implemented in REDBACK), we can do this using
the processed attributes from the Transient object via,

likelihood = redback.likelihoods.GaussianLikelihoodQuadratureNoise
(x=kilonova.x[kilonova.filtered.indices], y=kilonova.yl[kilonova.filtered_indices],
sigma_i=kilonova.y_err[kilonova.filtered indices], function = function)

Here, we use a Gaussian likelihood with an additional noise source, o added in quadrature (that is fitted for) to the measured y errors. This
likelihood is already implemented in REDBACK, but a user could easily replace this likelihood with their own class. Then, users can use this
likelihood in the fit via,

result = redback.fit_model (transient=kilonova, model=model, likelihood=1likelihood, sam-
pler = sampler,
model _kwargs=model kwargs, prior = priors)

With this simple change we can fundamentally change what we believe to be the data generation process and ensured that advanced users
can easily change the likelihood and settings of the sampler, without ever digging into the REDBACK source code.

C3 Supernova — SN1998bw

REDBACK can also be used to fit supernovae. Here, we fit the arnett model (Arnett 1980, 1982) implemented within REDBACK to observations
of SN1998bw (Galama et al. 1998). We can acquire the data for SN1998bw through the OAC and API shown above and create a supernova
object.

After ensuring that the data are obtained correctly we can set up the fit in a few lines of code. As the arnett model is already implemented
in REDBACK we can simply load up the default prior for this model via,

priors = redback.priors.get_priors(model = '’arnett’’)

priors[’’redshift’’] = 0.0085

Here, we have also fixed the redshift to the known redshift of SN1998bw. We can now set up the fit in another two lines of code.

model _kwargs = dict (frequency=supernova.filtered_frequencies,
output_format = ’’flux_density’’)

result = redback.fit_model (transient=supernova, model=’'arnett’’, sampler=''dynesty’’,
model_kwargs = model_kwargs,

prior=priors, nlive=500, clean=True, npool = 4)

Here, we have also specified npool = 4 which will set up the DYNESTY sampler with multiprocessing over four cores to reduce the wall

time of the analysis. We have also set the option clean to True, which ensures that REDBACK will restart this analysis from scratch and not
resume from a previous analysis.

As with all other analysis, the fit returns a REDBACK result object, which we can use to obtain posteriors on various parameters, or for
plotting. For example, we can plot the light curve with the fit shown as a 68 per cent credible interval (shown in Fig. C3) via,

ax = result.plot_lightcurve (uncertainty mode='’'credible_intervals’’,
plot_others=False, show = False,
credible_interval_level = 0.68)

MNRAS 531, 1203-1227 (2024)

202 1990}00 0} U0 18NB Aq €4 L 29//€0Z1/L/LEG/AI0IME/SEIUW/WOd"dNO"d1WaPED.//:SA)Y WOy PAPEOjuMOd



1224  N. Sarin et al.

109
1071-

=

=

S, 1024

Z 100

)

[er)

=

5

=

£ 1071-
1072-

Time since burst [days]

Figure C4. Multiband light curve of PS18bh along with the fitted light curve from a 100 random realizations randomly drawn from the prior.

ax.set_xscale(’’'log’"’)
ax.setx1im (10, 300)
plt.show()

Here we have also returned the MATPLOTLIB axes and used this to modify the xscale and xlimits of the plot. The fit demonstrates the large
uncertainty at early times where there are no observations in these bands.

C4 Tidal disruption events — PS18kh

Here, we fit the tde_analytical model implemented within REDBACK to multiband observations of, tidal disruption event, PS18kh (Holoien
et al. 2019). We acquire the data from OAC and create a tde Transient object. We set only a subset of bands as active via,
tidal_disruption_event.activebands = ["'V'’, "'g’'’, ''x’'"']
The rest of the code to fit is exactly like the afterglow example above. We can visualize our fit and make the predicted light curve (shown in
Fig. C4) for multiple filters, including a filter that we did not fit, for example, the u band, via
result.plot multiband_lightcurve (random models=100, filters = [’"'V'’, ’'’'g’’', ’'’'xr'', '"'u’''])
This is a useful verification exercise to understand which filters are driving the fit and whether the fits without a certain band are consistent
with those observations.

C5 X-ray afterglow of GRB070809 — millisecond magnetars

‘We now use REDBACK on an integrated flux or luminosity data by fitting the X-ray afterglows of a GRB, by fitting the evolving magnetar
model (Sasmaz Mus et al. 2019) to Swift observations of GRB070809, specifically the integrated flux obtained from Swift—XRT.

We acquire the Burst Alert Telescope (BAT) and X-ray Telescope (XRT) data of GRB070809 from Swift via the get _data module

redback.get_data.get bat xrt_afterglow data_from swift (grb=’’070809’'’, datamode = ’’'flux’'’)

We construct an afterglow class instance via

afterglow = redback.afterglow.SGRB.from_swift_grb(name=’''070809’', data.mode = ’’'flux’'’,

truncate=True, truncatemethod = '’'prompt_time_error’’)
afterglow.analytical_flux_to_-luminosity ()

ax = afterglow.plot_data()

Here, we have specified to load the £1ux data for GRB070809 from Swift. This data typically also include BAT data from the prompt phase
which we do not wish to fit here. We truncate this data using the prompt_t ime_error method.

The evolving.magnetar model works on luminosity data. We could have provided this data when creating the af terglow object but
we also provide two convenience functions to generate this data, an analytical method which uses the GRBs photon index and a numerical
method from SHERPA which uses the spectrum. All details necessary for either method are obtained internally by REDBACK from the Swift Data
Centre. Here, we use the analytical method to convert the integrated flux data to a luminosity.
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Figure C5. Residual plot obtained using plot_residual method of the result object. Here, the top panel shows the data in black with maximum likelihood
and 100 randomly drawn light curves in blue and red, respectively, with the bottom panel showing the residual between the data and the maximum-likelihood
model.

afterglow.analytical flux to_ luminosity ()
Note, that this will automatically change the afterglow objects data mode to luminosity. Beyond this point, the fitting workflow is
identical to fitting any other transient, that is,

priors = redback.priors.get_priors(model = ‘’evolving. magnetar’’)
result = redback.fit_model (model=''evolving.magnetar’’, sampler='’'dynesty’’, nlive=200,
transient = afterglow,
prior=priors, sample=’'‘rslice’’, resume = True)

The above code first constructs a prior object, using the default prior implemented in REDBACK for the evolving magnetar model.
This is followed by code calling £it_model. Note that here we do not need a dictionary for the model keywords as this model does not
require any. We are again returned the REDBACK result object which can be used to plot a corner plot, the light curve or obtain any other
diagnostic about the inference/posterior. For these data modes however, it can be especially informative to show a plot of the light curve
with the residuals. This can be obtained using plot_residual method of the result object. This generates Fig. C5, where the top panel
shows the data in black with maximum likelihood and random draws in blue and red, respectively, with the bottom panel showing the residual
between the data and the maximum-likelihood model.

result.plot_residual ()

C6 Phase and attenuation — SN2018ibb

In previous examples, we have ignored two important aspects of fitting transients; (1) we often do not know when the explosion occurred and
(2) there is attenuation in the form of dust extinction from the host galaxy.

In this example, we show how to fit data while measuring the unknown explosion time and including extinction. We will also demonstrate
how to fit in magnitudes and adding a new filter to REDBACK and SNCOSMO. We will do this by fitting a supernova, in particular, the UV-to-NIR
light curve of the superluminous supernova SN 2018ibb (Schulze et al. 2024).

As previous examples, we can load the private data for SN 2018ibb and create a Supernova Transient object via

First, we read in the private data.

import pandas as pd

data = pd.read.csv(’'’SN2018ibb_photcat_Redback.ascii’’, sep = '''")

sn=redback.transient.Supernova (name = '’SN2018ibb’’,
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data.mode = '’'magnitude’’, timemjd = datal[’’MJD’’].values,
magnitude = datal’’'MAG’’'].values, magnitude_err = datal[’’MAG_ERR’’] .values,
bands = datal’’band’’].values,

use_phase_.model = True)

In contrast to the previous examples, we fit the data in magnitude space. Furthermore, we set use_phase_.model = True because
we do not know the explosion date. We also specify time values in MJD instead of days since explosion. When fitting a model to such data, a
user must then add a prior on the explosion time which will then be sampled over. We note that use_phase model = True, will also

change plotting labels to account for the change.

Before we can fit the magnitude data of SN 2018ibb, we must first ensure that all filters of the observations are available in REDBACK. We
note that this is only a concern when fitting photometry in magnitudes or flux as this requires the full transmission curve of every filter rather
than a reference wavelength. Some of the observations of SN 2018ibb were performed with the GROND camera mounted at the 2.2 m MPG
telescope. The GROND filters (in our example grond: : 1 and grond: : z) are not part of SNCOSMO distribution that is used internally within
REDBACK for filter definitions. After retrieving the filters, for instance, from the Spanish Virtual Observatory? (Rodrigo, Solano & Bayo 2012),
we add them to SNCOSMO and by extension REDBACK, via

from astropy.io import ascii

import astropy.units as u

import sncosmo

filter_files = [
' 7 /PATH/WHERE/YOU/STORED/FILTER CURVES/GROND_I.dat’ ’,
'+ /PATH/WHERE/YOU/STORED/FILTER_CURVES/GROND_Z.dat’ ',
]

filternames = [’’grond::1i’’, ’'’'grond::z’’]

for £, fname in zip(filternames, filter_files):

_data = ascii.read (fname)
band = sncosmo.Bandpass(.datal[’’coll’’], _datal[’’col2’’], name=f, wave_unit = u.angstrom)
sncosmo.register (band, £, force = True)

We can set up the rest of the inference workflow, first set up the model and the prior via

model = ''’tO_supernova.extinction’’

base.model = '‘’'arnett’’

priors = redback.priors.get_priors(model = model)

priors.update (redback.priors.get priors (model = base_model))

Here, we choose the t 0_supernova_extinction model, which has the explosion time and magnitude of extinction as a free parameter.
This model itself does not contain any physics and must be specified an additional physical model. For simplicity, we use the physical arnett
model as the base model. The last two lines of code just set up the prior object to include the parameters of both models.

We must now also set priors on the explosion time, the extinction magnitude and update the prior on the ejecta mass as SN 2018ibb requires
an extraordinary amount of ejecta (Schulze et al. 2024).

from bilby.core.prior import Uniform

# Allow the explosion date to be up to 200 days before the first detection

priors[’'t0’’] = Uniform(minimum = datal[’’MJD’’].values.min()-200, maxi-

mum = datal[’’'MJD’’].values.min()-1, name = ’'’t0’’, latexlabel = r’’$t{\rm expl.}$’'")
priors[’'mej’’] = Uniform(minimum = 1, maximum = 260, name = ’'’‘mej’’, la-

tex label = zr’'$M{\rm{ej}}~ ({\rm M} {\odot})s$’")

# Extinction

priors[’’av’’] = Uniform(minimum = 0, maximum = 1, name = ’'’‘av’’,
latex_label = 1r’'’S$SAVS (mag)’'’)

With the model specified and prior set up, we can now fit via,

Zhttp://svo2.cab.inta-csic.es/theory/fps/
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Figure C6. Multiband light curve of SN2018ibb along with the 68 per cent credible interval light-curve fit from the posterior.
model kwargs = dict (bands = sn.filtered_sncosmo_bands, basemodel = base.model, out-
put_format = ’’magnitude’’)
result = redback.fit_model (transient = sn, model = model, model_kwargs = model_kwargs,
prior = priors, plot = True)

We note that as we are fitting with a base model and in magnitudes, there are some minor differences to the model_kwargs, namely that
we must now specify a list of bands for the data points instead of frequency and must specify the base model. In the £it_model argument,
we have also set plot = True, which will automatically generate the fitted light curve after inference finishes. In Fig. C6, we show the
light-curve fit generated with the above code and the result.plot multiband-lightcurve ().

This paper has been typeset from a TEX/IATEX file prepared by the author.
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