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Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional supercon-
ductors. When two superconducting gap functions with different symmetries compete, the relative phase channel (θ− ≡ θ1 − θ2)
exhibits an Ising-type Z2 symmetry due to the second order Josephson coupling, where θ1,2 are the phases of two gap functions.
In contrast, the U(1) symmetry in the channel of θ+ ≡ θ1+θ2

2 is intact. The phase locking, i.e., ordering of θ−, can take place in
the phase fluctuation regime before the onset of superconductivity, i.e., when θ+ is disordered. If θ− is pinned at ±π

2 , then time-
reversal symmetry is broken in the normal state, otherwise, if θ− = 0, or, π, rotational symmetry is broken, leading to a nematic
normal state. In both cases, the order parameters possess a 4-fermion structure beyond the scope of mean-field theory, which can
be viewed as a high order symmetry breaking. We employ an effective two-component XY-model assisted by a renormalization
group analysis to address this problem. As a natural by-product, we also find the other interesting intermediate phase corresponds
to ordering of θ+ but with θ− disordered. This is the quartetting, or, charge-4e, superconductivity, which occurs above the low
temperature Z2-breaking charge-2e superconducting phase. Our results provide useful guidance for studying novel symmetry
breaking phases in strongly correlated superconductors.
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1 Introduction

Unconventional superconductors (for instance, high-Tc

cuprates [1], heavy-fermion systems [2], and iron-based su-
perconductors [3]) have aroused a great deal of attentions for
novel symmetries in addition to the U(1) symmetry breaking.
Time-reversal symmetry (TRS) as well as parity and charge
conjugation are fundamental discrete symmetries, hence,

*Corresponding author (email: wucongjun@westlake.edu.cn)

spontaneous TRS-breaking superconductivity is of particular
importance [4-14]. Various TRS-breaking pairing structures
are theoretically proposed, including d ± id [15, 16], p ± ip
[11,17], s±id [4,18], p±is [19], and s+is [14,20], and exper-
imental evidence has been reported in various systems, such
as Re6Zr [21, 22], UPt3 [23, 24], PrOs4Sb12 [25], URu2Si2
[26, 27], SrPtAs [28], LaNiC2 [29], LaNiGa2 [30, 31], Bi/Ni
bilayers [32], and CaPtAs [33] (For details refer to a recent
review [34]). They are often probed by the zero-field µ-
spin relaxation, or, rotation [35-37], and the polar Kerr effect
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[38, 39]. TRS breaking signatures have also been reported in
iron-based superconductors [40, 41].

If TRS breaking arises from a complex pairing structure,
it is often presumed that it develops after the onset of super-
conductivity. However, these two transitions are of different
nature: Superconductivity is of the U(1) symmetry breaking
and TRS is of Z2, hence, they could take place at different
temperatures. It is interesting to further check whether TRS
breaking can occur before the superconducting transition as
the temperature is lowered. In fact, phase fluctuations are
prominent in strongly correlated superconductors above but
close to Tc, such as high Tc cuprates [42] and iron-based su-
perconductors [43].

In a two-gap superconductor, the TRS breaking can be
solely determined by the relative phase between two gap
functions. The phases of two channels may fluctuate in
a coordinated way such that the relative phase is locked,
leading to TRS breaking, while the total phase θ+ is dis-
ordered, hence, the system remains normal. In the con-
text of 2D bosons in the p-band, a TRS breaking Mott-
insulating ground state was studied via the Ginzburg-Landau
free energy analysis and the quantum Monte Carlo simula-
tions [44,45]. The TRS breaking normal state has been stud-
ied in the context of three-gap superconductors as a conse-
quence from frustrations [46].

In this article, we show that there exists an Ising symmetry
breaking normal phase in a generic 2D two-gap superconduc-
tors when the gap functions belong to different symmetries
and are near degeneracy. The key ingredient here, as men-
tioned above, is the superconduct phase fluctuations. Hence,
it is a phase-fluctuation induced TRS-breaking, or, a nematic
normal state. By the symmetry principle, the two gap func-
tions couple via a second order Josephson term. Therefore,
we dub the resultant symmetry-breaking normal state as the
“high-order” symmetry-breaking state. In the phase fluctu-
ation regime, the low energy physics is described by a cou-
pled two-component XY-model, which is mapped to a cou-
pled sine-Gordon model and analyzed by the renormalization
group (RG) method. Unlike the small difference in the su-
perconducting transition temperature and the TRS-breaking
temperature obtained in ref. [46] from the frustration ef-
fects in the three-band model, the phase-locking, or, the Z2

symmetry breaking temperature can be considerably larger
than the superconducting Tc. Another competing order, the
quartetting [47], or, charge-4e phase [48], can also appear
above Tc, which corresponds to ordered total phase θ+ but
with the relative phase θ− disordered, i.e., the U(1) sym-
metry in the θ+ channel is broken whereas the Z2 symme-
try in the θ− channel is preserved. All these phases exhibit
the 4-fermion-type order parameters, and thus are difficult
to analyze in mean-field theories. Quite remarkably, the Z2-

breaking TRS-breaking normal state has recently been exper-
imentally observed in hole-doped Ba1−xKxFe2As2 [49, 50],
where the TRS-breaking transition is identified with the on-
set of specific-heat anomaly and spontaneous Nernst signal
is also detected in the TRS-breaking normal state. The Z2-
breaking nematic normal state has been observed in Sr2RuO4

[51] using optical anisotropy measurement. Even though
the normal state nematicity most likely has a different origin
from our theory because it can happen at much higher tem-
perature scale, the same experimental techniques can be used
to detect nematicity in the phase fluctuation regime proposed
in our work. The competing charge-4e state has also been
observed recently in kagome superconductor CsV3Sb5 [52],
where the quantization of magnetic flux in units of hc/4e is
observed.

The paper is structured as the following: In sect. 2 we
introduce the Ginzberg-Landau theory for superconductors
with two gap functions of different symmetries. They cou-
ple due to the second order Josephson effect. In sect. 3, we
focus on the phase degree of freedom by mapping the the-
ory to a coupled XY-model, which can be further mapped
to a coupled sine-Gordon model, setting the stage for the
RG study. In sect. 4, we perform detailed RG analysis of
the sine-Gordon model by considering the effects of var-
ious symmetry-allowed couplings between different chan-
nels, which lead to the emergence of different phase diagram
topologies. In sect. 5, we briefly discuss the application of
our theory to Fe-based superconductors. Then we conclude
in sect. 6.

2 Ginzberg-Landau theory with two gap func-
tions

We start with the Ginzberg-Landau (GL) free-energy of su-
perconductivity with two gap functions. Each one by itself
is time-reversal invariant. These two gap functions belong to
two different representations of the symmetry group, say, the
s-wave and d-wave symmetries of a tetragonal system, or,
different components of a two-dimensional representation,
say, the px and py-wave symmetries. They cannot couple
at the quadratic level since no invariants can mix them at this
level. Bearing this in mind, the GL free-energy is constructed
as F = F1 + F2 with

F1 =γ1|∇⃗∆1|2 + γ2|∇⃗∆2|2 + α1(T )|∆1|2 + α2(T )|∆2|2

+ β1|∆1|4 + β2|∆2|4 + κ|∆1|2|∆2|2, (1)

F2 =λ
(
∆2

1∆
∗2
2 + ∆

∗2
1 ∆

2
2

)
, (2)

where α1,2(T ) are functions of temperatures, and their ze-
ros determine their superconducting transition temperatures
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when the two gap functions decouple. γ1,2, β1,2 are all pos-
itive and κ2 < 4β1β2 to maintain the thermodynamic stabil-
ity. If the gap functions form a two-dimensional represen-
tation of the symmetry group, then α1 = α2, β1 = β2, and
γ1 = γ2, otherwise, they are generally independent. Never-
theless, we consider the case that they are nearly degenerate,
i.e., α1 ≈ α2, when they belong to two different representa-
tions, such that they can coexist.

The F1-term only depends on the magnitude of ∆1,2,
hence, is phase insensitive. We assume that the two gap
functions can form a quartic invariant as the F2-term, as in
the cases of s and d-waves, and px and py-wave symme-
tries. The F2-term does depend on the relative phase be-
tween ∆1,2, which can be viewed as a 2nd order Josephson
coupling. To minimize the free energy, the relative phase
between two gap functions θ− = θ1 − θ2 = ±π

2 at λ > 0,
i.e., they form ∆1± i∆2, breaking TRS spontaneously. On the
other hand, when λ < 0, θ− = 0, or, π. They form the nematic
superconductivity ∆1±∆2, breaking the rotational symmetry.
The magnitude of the mixed gap function remains isotropic
in momentum space in the former case, while that in the latter
case is anisotropic. The value of λ depends on the energetic
details of a concrete system. At the mean-field level, the free
energy is a convex functional of the gap function distribution
in the absence of spin-orbit coupling [5,19,53]. This favors a
relatively uniform distribution of gap function in momentum
space, corresponding to the complex mixing ∆1 ± i∆2 , i.e.,
λ > 0. Nevertheless, the possibility of λ < 0 cannot be ruled
out, which could take place in the presence of spin-orbit cou-
pling [11], or as a result beyond the mean-field BCS theory.
This leads to the gap function ∆1 ± ∆2, which breaks the ro-
tational symmetry leading to nematic superconductivity.

3 New phases due to the phase fluctuations

The above GL analysis only works in the superconducting
phases in which both ∆1,2 develop non-zero expectation val-
ues. However, it does not apply to the phase fluctuation
regime above Tc. Let us parameterize the gap functions as
∆1,2 = |∆1,2|eiθ1,2 . In the phase fluctuation regime, the order
magnitudes |∆1,2| are already significant, and their fluctua-
tions can be neglected. On the contrary, the soft phase fluc-
tuations dominate the low energy physics, and the system re-
mains in the normal state before the onset of the long-range
phase coherence.

New states can arise in the phase fluctuation regime in
which neither of ∆1,2 is ordered. A possibility is that the sys-
tem remains in the normal state but θ− is pinned: If θ− = ±π

2 ,
then Im∆∗1∆2 is ordered, which breaks TRS; if θ− = 0,π, then
Re∆∗1∆2 is ordered, which breaks rotation symmetry. Similar

physics occurs in the p-orbital band Bose-Hubbard model,
where the boson operators in the px,y-bands play the role of
∆1,2, respectively. The transitions of superfluidity and TRS
breaking divide the phase diagram into four phases of super-
fluidity states with and without TRS breaking, and the Mott
insulating state with and without TRS breaking, where TRS
here corresponds to the development of the onsite orbital an-
gular momentum by occupying the complex orbitals px ± ipy

[54, 55]. The TRS-breaking normal states were also stud-
ied in the context of competing orders in superconductors
[56,57]. Another possibility is that the total phase θ+ = θ1+θ2
is pinned, i.e., ∆1∆2 is ordered. This corresponds to the quar-
tetting instability, i.e., a four-fermion clustering instability
analogous to the α-particle in nuclear physics. The compe-
tition between the pairing and quartetting instabilities in one
dimension has been investigated by one of the authors [47].
Later it was also studied in the context of high-Tc cuprates as
the charge-4e superconductivity [48].

However, all the above states involve order parameters
consisting of 4-fermion operators. Hence, they are beyond
the ordinary mean-field theory based on fermion bilinear or-
der parameters. To address these novel states, we map the
above GL free-energy to the XY-model on a bilayer lat-
tice, and perform the renormalization group (RG) analysis
to study the possible phases. Since there should be no true
long-range order of the U(1) symmetry at finite temperatures,
we mean the quasi-long-ranged ordering of the Kosterlitz-
Thouless (KT) transition. The model is expressed as:

H = − J1

∑

⟨i, j⟩
cos(θ1i − θ1 j) − J2

∑

⟨i, j⟩
cos(θ2i − θ2 j)

+ λ′
∑

i

cos2(θ1i − θ2i), (3)

where θ1,2 are compact U(1) phases with the modulus
2π. J1,2 are the intra-layer couplings estimated as J1,2 ≈
γ1,2|∆1,2|2, and λ′ is the inter-layer coupling estimated as
λ′ ≈ 2λ|∆1|2|∆2|2.

Following the dual representation of the 2D classic XY-
model as detailed in the Appendix A1, the above model eq.
(3) can be mapped to the following multi-component sine-
Gordon model, which is often employed for studying cou-
pled Luttinger liquids [58, 59]. Its Euclidean Lagrangian in
the continuum is defined as L =

∫
d2xL(x) [60], where

L(x) =
1

2K1

(
∂µφ1

)2
+

1
2K2

(∂µφ2)2 + gθ−cos2 (θ1 − θ2)

− gφ1 cos2πφ1 − gφ2 cos2πφ2, (4)

where φ1,2 are the dual fields to the superconduct-
ing phase fields of θ1,2 with commutation relations
[θ1,2(t, x), ∂yφ1,2(t, y)] = 2πiδ(x − y), and the Luttinger pa-
rameters K1,2 = J1,2/T (Please note that K1,2 appear in the
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denominators in eq. (4) since we are using the dual repre-
sentation). The compact radius of θ1,2 is 2π, and that of the
vortex fields φ1,2 is 1. gθ− is proportional to λ′ in eq. (3);
gφ1,φ2 are proportional to the vortex fugacities of the phase
fields θ1,2, respectively. For simplicity, all of these g-eology
coupling constants have absorbed the short-distance cutoff of
the lattice.

4 Renormalization group analysis for phase dia-
grams

In this section, we explore the possible phase diagrams us-
ing RG analysis for the case where the two channels are
degenerate, i.e., J1 = J2 ≡ J, gφ1 = gφ2 ≡ 1

2 gφ± , and
K1 = K2 = J/T ≡ K.

Due to the permutation symmetry between these two chan-
nels, the coupled theory is rewritten in terms of the collective
basis θ±, φ± channels conveniently defined as:

θ+ ≡ (θ1 + θ2)/2, θ− ≡ θ1 − θ2,
φ+ ≡ φ1 + φ2, φ− ≡ (φ1 − φ2)/2.

(5)

The compact radius of θ± can be chosen as 2π, and that of
the vortex fields φ± remains 1. This new basis is also conve-
nient in the sense that it makes the symmetries of the coupled
system explicit and at the same time it preserves the com-
mutation relations between the fields and the dual fields, i.e.,
[θ±(t, x), ∂yφ±(t, y)] = 2πiδ(x−y). The Lagrangian has a U(1)
symmetry in θ+ channel, θ+ → θ+ + α with α ∈ [0, 2π), and
the Z2 symmetry in the θ− channel, θ− → θ− + π, due to the
cos 2θ− term.

Based on symmetry alone, there can exit four different
phases: (i) Both U(1) and Z2 are unbroken, i.e., the normal
phase; (ii) only Z2 is broken, i.e., TRS-breaking (or nematic)
normal phase; (iii) only U(1) is broken, i.e., the charge-
4e phase; (iv) both U(1) and Z2 are broken, i.e., the TRS-
breaking (or nematic) superconducting phase. We can start
with the free theory containing only the kinetic terms, and
then add on the most relevant symmetry-preserving interac-
tion terms to obtain phase diagrams containing all of the four
possible phases discussed above, but with different phase di-
agram topologies.

With the basis transformation defined above, the free part
of the Lagrangian in eq. (4) can be equivalently written in
the θ±, φ± basis as:

L0(x) =
1

4K+
(∂µφ+)2 +

1
K−

(∂µφ−)2, (6)

where the initial values of both K± are both J/T .
Once various interaction terms are added, the phase dia-

gram lives in a high dimensional parameter space. As a re-

sult, it is difficult to present a complete phase diagram in-
volving all the parameters. However, based on the symmetry
analysis provided above, there are only four phases in total.
Therefore, it is possible to show two dimensional (2D) slices
of the phase diagram that contains the four phases. Interest-
ingly enough, topologically distinct configurations of phase
boundaries can be obtained, depending on which interaction
terms dominate at low energy. In the following two subsec-
tions, we will present two generic cases showing three types
of phase diagram topologies.

4.1 φ± channels decoupled

We consider possible local vortex terms in the collective ba-
sis, which are discussed in Appendix A3. The most rele-
vant one is gφint cosπφ+ cos 2πφ−, which couples the even
and odd channels together. It originates from the vortex fu-
gacity terms in the individual basis cos 2πφ1 + cos 2πφ2. The
sign change of cosπφ+ cos 2πφ− from shifting φ+ by 1 can
be compensated by a shift of φ− by 1/2, and vice versa. The
next leading vortex terms are gφ+ cos 2πφ+ and gφ− cos 4πφ−
in the even and odd channels, respectively, which originate
from the inter-layer vortex-vortex coupling in the original ba-
sis cos 2πφ1 cos 2πφ2 ± sin 2πφ1 sin 2πφ2.

We begin with the limit that the initial value of the inter-
layer phase coupling gθ− is large. In this case, vortices in two
layers tend to be aligned together. Hence, the independent
single vortex excitation in each layer is not favored and its
fugacity is suppressed, i.e., |gφ± | ≫ |gφint |. In this limit, the
gφint -term is neglected, then the system is decoupled in the
collective basis with Lagrangian given by

L1(x) =
1

4K+
(∂µφ+)2 +

1
K−

(∂µφ−)2

− gφ+cos2πφ+ − gφ−cos4πφ− + gθ−cos2θ−. (7)

In this decoupled case, we expect the U(1)-breaking tran-
sition in the θ+ channel to be completely independent from
the Z2-breaking transition in the θ− channel. The phase dia-
gram can be obtained by numerically solving the following
set of RG equations (see Appendix A2 for details),

dgφ+
d ln l

= (2 − 2πK+) gφ+ ,

dgφ−
d ln l

= (2 − 2πK−) gφ− ,

dgθ−
d ln l

=

(
2 − 2

πK−

)
gθ− ,

dK+
d ln l

= −2π3g2
φ+K2

+,

dK−
d ln l

= −4π3g2
φ−K2

− + 4πg2
θ− ,

(8)

where both of the initial values of K± are J/T .
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Below we analyze the nature of the fixed points of RG for
four different phases: (I) the Z2 breaking SC phase; (II) Z2

breaking normal phase; (III) quartetting phase; (IV) normal
phase. The values of couplings at these fixed points are sum-
marized in Table 1.

Phase I and Phase II are the Z2 breaking superconducting
(SC) and normal phases, respectively. In the former case, the
relative phase θ− is locked, while the θ+ is quasi-long-range
ordered. Hence, gθ− → ∞ and correspondingly K− → ∞. As
for the vortex term cos 2πφ+ in the φ+ channel, such a vor-
tex term should be irrelevant in Phase I, which requires that
K+ takes a constant value with K+ > 1/π, and (gφ− , gφ+ ) →
(0, 0). In the Z2-breaking normal phase, the relative phase
θ− remains locked, while the vortex φ+ proliferates such that
superfluidity is lost. Notice that the Z2-breaking normal state
appears in the intermediate temperature, i.e., the phase fluc-
tuations of the underlying SC state lead to the symmetry-
breaking normal state above the SC critical temperature. This
intermediate phase can be the TRS breaking state, or, the ne-
matic state depending on the θ− is pinned at ±π

2 , or, 0 or π,
respectively. In such a phase, gθ− → ∞ and K− → +∞, which
are the same as in Phase I. On the other hand, in order to pro-
liferate vortices in the φ+ channel, gφ+ → ∞, which means
K+ → 0. Then (gφ− , gφ+ )→ (0,∞).

Phase III and Phase IV, i.e., the quartetting (4e) state and
the normal state, are both the Z2-symmetric phases. For the
quartetting (4e) state, the vortex field in the relative chan-
nel φ− condenses, while the θ+ channel is quasi-long-range
ordered. The condensation of φ− means that gθ− → 0 and
K− → 0, and gφ− → ∞. The quasi-long-range ordering of θ+
requires gφ+ → 0, which means that the renormalized value
of K+ reaches a constant with K+ > 1

π , which becomes a
line of stable fixed points. As for the normal state, it means
that the vortex fields in both channels condense. This sim-
ply gives rise to gφ+ → ∞, gφ− → ∞, and gθ− → 0, which
corresponds to K+ → 0 and K− → 0.

By numerically integrating the RG eq. (8), the above four
phases are obtained. The phase diagram as a function of tem-
perature and fugacity ratio between two channels gφ−/gφ+ is
shown in Figure 1. The fixed point values of the couplings
deep in the four phases as well as on the phase boundaries
are listed in Table 1. As expected, when the two channels are
decoupled, the U(1)-breaking phase boundary and the Z2-
breaking phase boundary are independent from each other
and cross at a single point, diving the phase diagram into
four regions characterized by different symmetry breaking
patterns.

Along the phase boundary P1P3 (excluding the multi-
critical point O), it represents a Z2-breaking transition inside
the normal state with K− = 1

π . Then the fixed point condi-
tion for K− can be solved to give the relation |gφ− | = |gθ− |.

The segment of P1O lies in the normal state with gφ+ = ∞
with K+ → 0 separating the Z2-breaking normal state and the
complete normal state. In contrast, the P3O lies in the re-
gion with quasi-long-range ordered U(1) phase θ+ separating
the Z2-breaking SC state with θ− locked and the quartetting
charge-4e phase. The boundary of P2P4 separates the su-
perfluid phase and the normal phase, below which the U(1)
phase θ+ becomes quasi-long-range ordered. The line of P2O
marks the boundary between the Z2-breaking normal and SC
phases. Similarly, the line of P4O marks the boundary be-
tween the quartetting phase and the normal phase.

Here we comment on the exact duality on the critical line
P1P3. More precisely, it is the duality between the field θ−
and its dual φ−. To make the duality manifest, we can do a
field rescaling

φ̃− ≡
√

2πφ−, θ̃− ≡ θ−/
√

2π, (9)

such that the two mass terms become cos
√

8πφ̃− and
cos
√

8πθ̃− respectively. At the same time, the Luttinger

Table 1 Values of couplings at fixed points in the four phases and on phase
boundaries under RG eq. (8)

Phases and phase boundaries gθ− gφ− gφ+ K− K+
(I) Z2-breaking SC ∞ 0 0 +∞ > 1

π

(II) Z2-breaking normal ∞ 0 ∞ +∞ 0
(III) quartetting (4e) 0 ∞ 0 0 > 1

π

(IV) normal 0 ∞ ∞ 0 0

P1O gφ−
gθ−
= ±1 ∞ 1

π 0

P2O ∞ 0 0 +∞ 1
π

P3O gφ−
gθ−
= ±1 0 1

π
1
π

P4O 0 ∞ 0 0 1
π

Normal

Charge-4e

Z2-breaking normal

Z2-breaking SC

0.10 1.10 2.20

2.00

1.10

0.10

gϕ -
/gϕ +

T
/J

P1

P2

O P4

P3

Figure 1 (Color online) Phase diagram vs. temperature and gφ−/gφ+ by
numerically integrating the RG eq. (8). The initial values of coupling con-
stants are gφ+ = 0.2 and gθ− = 0.01. All of the four phases appear and meet
at the multi-cirtical point O.



M. Zeng, et al. Sci. China-Phys. Mech. Astron. March (2024) Vol. 67 No. 3 237411-6

parameter also has to be rescaled K̃− ≡ πK−, which becomes
1 at the critical point. It is again straightforward to show that
|gφ− | = |gθ− | at criticality. Then the duality of exchanging
θ̃− and φ̃− on the Lagrangian level is made explicit. Such a
theory has also been studied as the field theory description
of one dimensional deconfined quantum critical point with
Z2 × Z2 symmetry [61]. In our case, the first Z2 acts on the
field θ−, and the second Z2 acts on its dual φ−. The mixed
anomaly between the two Z2 symmetries dictates that when
one is preserved the other has to be spontaneously broken.
It has also been shown that such exotic critical point can be
mapped to the usual Landau symmetry-breaking transition of
a 1D Z4 clock model, whose critical point is just two decou-
pled copies of Ising CFT [61,62]. It is interesting to note that
such exotic critical point can arise naturally in the two-gap
superconductors that we study.

4.2 φ± coupled through cos πφ+ cos 2πφ−

Now we add the vortex term of cosπφ+ cos 2πφ− which cou-
ples the φ± fields together. The following Lagrangian is ob-
tained:

L2(x) =
1

K−
(∂µφ−)2 +

1
4K+

(∂µφ+)2

+ gθ−cos2θ− − gφint cosπφ+cos2πφ−
− gφ−cos4πφ− − gφ+cos2πφ+. (10)

The RG equations can be written down as the following
(see Appendix A2):

dgθ−
d ln l

=

(
2 − 2

πK−

)
gθ− ,

dgφint

d ln l
=

[
2 − π

2
(K+ + K−)

]
gφint ,

dK−
d ln l

= −4π3K2
−
(
g2
φ− + g2

φint
/8

)
+ 4πg2

θ−

dK+
d ln l

= −4π3K2
+

(
g2
φ+ + g2

φint
/8

)
,

dgφ−
d ln l

= (2 − 2πK−) gφ− +
π

4
g2
φint
,

dgφ+
d ln l

= (2 − 2πK+) gφ+ +
π

4
g2
φint
.

(11)

By analyzing eq. (11), again we have the four stable
phases as discussed in the decoupled case in the previous sec-
tion before. The values of couplings at the fixed points cor-
responding to these phases and at the phase boundaries are
summarized in Table 2. Compared with the decoupled case,
the Z2-breaking SC phase, the Z2-breaking normal phase, and
the quartetting phase further require that gφint → 0. Further-
more, the quartetting phase requires K+ > 4

π to ensure the

irrelevancy of the gφint -term. As for the normal phase, cer-
tainly gφint → ∞.

A key feature of the new phase diagram after introducing
the gφint term is that the previous tetra-critical point O splits
into a pair of tri-critical points O1 and O2, such that there
appears a direct transition across O1O2 from the Z2-breaking
SC phase to the normal state [63].

A small gφint -term does not change the boundaries much
when deep inside the Z2-ordered or the superconducting re-
gions as long as they are relatively far away from O1O2.
In this case, the RG processes in the two channels can be
decomposed into fast and slow steps. For example, along
the boundary P2O1 deep inside the Z2-breaking phase, θ− is
pinned, which renders the gφint -term highly irrelevant by dis-
ordering the φ− field. Similarly, along the boundary P3O2

deep inside the superfluid phase, gφ+ is quickly suppressed to
0. The RG process in the φ+ channel stops quickly, such that
gφint does not grow much and remains small still. Further-
more, φ+ remains power-law fluctuating, which suppresses
the effect of the gφint -term.

On the other hand, the gφint -term affects the boundaries
surrounding the normal phase. As for the part along P4O1

deep inside the Z2-disordered region, φ− is pinned. The gφint -
term becomes g′ cosπφ+, which is a half-quantum vortex
with a renormalized coupling constant g′ = gφint⟨cos 2πφ−⟩.
Such a term is more relevant than the one-vortex term
of gφ+ although its coupling is weaker. Nevertheless,
it extends the region of the normal state significantly as
shown in Figure 2. As for P1O1 deep inside the nor-
mal phase, gφ+ -term reaches the order of 1 quickly, and φ+
is pinned. Then the gφint -term becomes g′′ cos 2πφ− with
g′′ = gφint⟨cosπφ+⟩, which is more relevant than the exist-
ing gφ− cos 4πφ− term. It changes the competition between
the condensation of θ− and φ−, which corresponds to the Z2-
ordered and disordered state, respectively. The critical theory
on P1O1 is also modified as a consequence of the gφint -term.
Based on the numerical solution near this critical line, the

Table 2 The values of couplings at the fixed points corresponding to four
stable phases and on the phase boundaries by solving eq. (11)

Phases gθ− gφ− gφ+ gφint K+ K−
(I) Z2-breaking SC ∞ 0 0 0 > 1

π +∞
(II) Z2-breaking normal ∞ 0 ∞ 0 0 +∞

(III) Quartetting (4e) 0 ∞ 0 0 > 4
π 0

(IV) Normal 0 ∞ ∞ ∞ 0 0

P1O1 ∞ ∞ ∞ ∞ 0 1
π

P2O1 ∞ 0 0 0 1
π 0

P3O2
gφ−
gθ−
= ±1 0 0 > 4

π
1
π

P4O2 0 ∞ 0 0 1
π 0

O1O2
gφ−
gθ−
= ±1 0 0 1

π
1
π
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Figure 2 (Color online) Phase diagram vs. temperature and gφ−/gφ+ by
numerically integrating the RG eq. (11). The initial values of coupling con-
stants are gφ+ = 0.2, gθ− = 0.01 and gφint = 0.001. Different from Figure 1,
this phase diagram features a direct transition boundary O1O2 between the
normal state and the Z2-breaking SC phase due to the coupling between the
φ± channels.

scaling dimensions of the two competing interaction terms,
the gφint -term and the gθ−-term both stabilize at 1, indicating
the criticality belongs to the Ising universality class. In con-
trast, the critical behavior on P3O1 for the θ−-channel inherits
from the critical line P3O in Figure 1 since gφint flows to 0 and
this coupling term is non-consequential.

When close to O1O2, the energy scales in the even and odd
channels are close, hence, the RG processes cannot be de-
composed into fast and slow steps any more. Since the gφint -
term is the most relevant, it grows quickly and overwhelms
other terms under sufficiently long RG processes. Once gφint

is renormalized to the strong coupling region, both φ+ and φ−
are pinned, thus the system enters into normal state. Once it
is renormalized to zero, the system is in the SC state and the
residual gθ−-term will drive the Z2 symmetry breaking. The
transitions on the critical lines across the tri-critical points O1

and O2 are also quite interesting, but we leave the details for
future study.

5 Discussion

We briefly discuss the application of our theory to the
FeTe1−xSex superconductor, in which evidence to sponta-
neously time-reversal-symmetry breaking states has been
observed by using the high-resolution laser-based photo-
emission method both in the superconducting and the normal
states [41].

Following ref. [64], we consider two superconducting gap
functions ∆1 and ∆2, which possess different pairing symme-
tries and each of them maintains time-reversal symmetry. It

has been argued that the pairing symmetries are constrained
to be among A1g(u) ± iA2g(u), B1g(u) ± iB2g(u), or Eg(u) ± iEg(u),
based on the effects of TRS-breaking pairing on the surface
Dirac cone. Here A, B, E denote discrete angular momenta
analogous to the s, d, p-wave in the continuous case. g and
u denote even and odd parities respectively. A1,2 means even
or odd under vertical plane reflection. The Ginzburg-Landau
free energy is given by

F =α1|∆1|2 + β1|∆1|4 + α2|∆2|2 + β2|∆2|4

+ κ|∆1|2|∆2|2 + λ
(
(∆∗1∆2)2 + c.c.

)
, (12)

where α1 ≈ α2 is assumed so that the two pairing channels
are nearly degenerate as discussed before. And we focus on
the case of λ > 0, where the relative phase between ∆1 and
∆2 as θ− = ±π

2 . Hence, the complex gap function ∆1 ± i∆2

spontaneously breaks time-reversal symmetry.
Since the FeSe1−xTex superconductor has strong atomic

spin-orbit coupling, as allowed by symmetry, the complex
gap function can directly couple to the spin magnetization
mz via a cubic coupling term as:

FM = αm|mz|2 + iγmz(∆1∆
∗
2 − ∆∗1∆2), (13)

where αm > 0 and γ is proportional to the spin-orbit coupling
strength [64]. This term satisfies both the U(1) symmetry and
time-reversal symmetry. Because of αm > 0, the spin mag-
netization can only be induced by the complex gap function
via mz =

γ
αm
|∆∗1∆2| sin θ− when θ− = ±π

2 . The development
of mz will gap out the surface Dirac cone as observed in the
experiment [41]. As detailed in ref. [64], this spontaneous
breaking of TR symmetry can impose a strong constraint on
the gap function symmetry in the FeSe1−xTex system.

Furthermore, recent experiment [41] also shows that the
spin-magnetization develops nonzero values even at T > Tc,
indicating that TRS breaking already occurs above Tc. It can
be understood from the analysis in the main text, where we
propose the Z2-breaking normal state. There are no long-
range superconducting orderings, i.e., the ⟨∆1⟩ = ⟨∆2⟩ = 0.
However, the expectation value of the 4-fermion order pa-
rameter is nonzero ⟨∆∗1∆2⟩ ! 0 due to the pinning of θ− =
±π

2 .

6 Conclusions

To summarize, we have analyzed the possible symmetry-
breaking phases in the phase fluctuation regime in a two-gap
superconductors in 2D. The system has an overall Z2 × U(1)
symmetry, where the Z2 in the θ− channel is due to the sec-
ond order Josephson coupling between the two gaps and the
θ+ channel still has U(1) symmetry. If only the Z2 is bro-
ken, then we have the Z2-breaking normal state, which can
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be either the phase fluctuation induced TRS breaking normal
state or the nematic state, depending on whether the relative
phase θ− is locked at ±π

2 , or, at 0 or π. On the other hand, if
only the U(1) symmetry is broken, then it corresponds to the
ordering of the total phase θ+, even though the two gaps are
not individually ordered. This is the quartetting phase, or the
so-called 4e phase.

Extensive RG analysis is done by including the more rel-
evant symmetry allowed couplings. Not only have we ob-
tained all the four possible phases, including the two interest-
ing intermediate phases in the phase fluctuation regime, we
also find a direct transition from the Z2-breaking SC state to
the normal state. This is because the coupling between half-
vortices in the even and odd channels favors the simultaneous
ordering/disordering of the two channels.

On the experimental side, the TRS-breaking normal phase
has been experimentally observed recently in hole-doped
Ba1−xKxFe2As2 [49, 50]. Furthermore, experimental evi-
dence of the elusive charge-4e state has also been found re-
cently in kagome superconductor CsV3Sb5 [52]. The theory
presented in this work is based on general symmetry princi-
ples. We believe the fluctuation effects and the physical con-
sequences discussed here are quite generic and likely play a
role in a wide range of multi-gap superconductors with dom-
inant second-order Josephson couplings.

Note added: Upon the completion of the first version of
this manuscript, we became aware of two manuscripts on re-
lated topics refs. [65,66]. Very recently, similar physics have
also been discussed in ref. [67].
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45 F. Hébert, Z. Cai, V. G. Rousseau, C. Wu, R. T. Scalettar, and G. G.

Batrouni, Phys. Rev. B 87, 224505 (2013), arXiv: 1304.0554.
46 T. A. Bojesen, E. Babaev, and A. Sudbø, Phys. Rev. B 88, 220511

(2013), arXiv: 1306.2313.
47 C. Wu, Phys. Rev. Lett. 95, 266404 (2005), arXiv: cond-mat/0409247.
48 E. Berg, E. Fradkin, and S. A. Kivelson, Nat. Phys. 5, 830 (2009),

arXiv: 0904.1230.
49 V. Grinenko, D. Weston, F. Caglieris, C. Wuttke, C. Hess, T. Gottschall,

I. Maccari, D. Gorbunov, S. Zherlitsyn, J. Wosnitza, A. Rydh, K. Ki-
hou, C. H. Lee, R. Sarkar, S. Dengre, J. Garaud, A. Charnukha, R.
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Appendix

A1 The 2D classical XY-model and its dual to the sine-
Gordon model

In this section, we review the duality transformation from
the XY-model to the sine-Gordon model. We follow ref. [68]
to review the duality between the XY-model and the sine-
Gordon model. The Hamiltonian of a single-component XY-
model with the coupling constant J is given by

HXY = −J
∑

⟨i, j⟩
cos(θi − θ j). (a1)

To map the XY-model to the sine-Gordon model, we start
with the Villain approximation,

e−K(1−cos θ) ≈
∞∑

n=−∞
e−

K
2 (θ−2nπ)2

, (a2)

which is valid when K is large. In this case, the dominant
contribution comes from the regime that cos θ ≈ 1, i.e.,
θ ≈ 2nπ. Performing Taylor expansion around each of these
values, we have e−K(1−cos θ) ≈ ∑

n e−
K
2 (θ−2nπ)2 .

Using the Villain approximation, the Partition function of
the XY-model in eq. (a1) is given by

ZXY =

∫ 2π

0

∏

i

dθi
2π

e−βHXY =

∫ 2π

0

∏

i

dθi
2π

eβJ
∑
⟨i, j⟩ cos(θi−θ j)

=

∫ 2π

0

∏

i

dθi
2π

∏

⟨i, j⟩

∑

mi j

e−K/2(θi−θ j−2mi jπ)2
, (a3)

where K = βJ = J/T and the Boltzmann constant is set to be
1 for simplicity; mi j are integers defined on each link of the
2D lattice. Now we perform the Hubbard-Stratonovich trans-
formation by introducing the continuous variables xi j defined
on each link of the lattice. The Partition function becomes

ZXY =

∫ 2π

0

∏

i

dθi
2π

∫ ∞

−∞

∏

<i j>

√
2K
π

dxi j

×
∏

⟨i, j⟩

∑

mi j

e−
1

2K x2
i j−ixi j(θi−θ j−2mi jπ). (a4)

With the help of the Poisson resummation formula,
∑

n

δ(x − nT ) =
∑

m

1
T

ei 2mπ
T x, (a5)

where n is an integer, the partition function ZXY becomes

ZXY =

∫ 2π

0

∏

i

dθi
2π

∫ ∞

−∞

∏

<i j>

√
2K
π

dxi j

×
∏

⟨i, j⟩
e−

1
2K x2

i j−ixi j(θi−θ j)
∑

n

δ(xi j − n)
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∼
∫ 2π

0

∏

i

dθi
2π

∑

{mi j}

∏

⟨i, j⟩
e−

1
2K m2

i j−imi j(θi−θ j). (a6)

To perform the above integrals, each θi is extracted from its
neighbors,

ZXY ∼
∫ 2π

0

∏

i

dθi
2π

∑

{mi j}
e−

1
2K

∑
i,µ̂ m2

i,µ̂−i
∑

i,µ̂(mi,µ̂−mi,−µ̂)θi , (a7)

where µ̂ = x̂, ŷ denotes the lattice unit vectors along the bond
directions. Now the angles θi can be integrated out,

ZXY ∼
∑

{mi j}
e−

1
2K

∑
i,µ̂ m2

i,µ̂

∏

i

δ

⎛
⎜⎜⎜⎜⎜⎜⎝
∑

µ̂

(mi,µ̂ − mi,−µ̂)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (a8)

where the δ-function here is the Kronecker δ.
Each integer mi j defined on the link can be treated as a cur-

rent flown into and out of the connected lattice sites, and the
δ-function here basically says the current through each site
is conserved. This conservation constraint is naturally satis-
fied if we define another set of integers {ni} at the sites of the
dual lattice, i.e., the centers of the plaquettes of the original
lattice,

mi,x̂ = ni+x̂+ŷ − ni+x̂,

mi,ŷ = ni+ŷ − ni+x̂+ŷ,

mi−x̂,x̂ = ni+ŷ − ni,

mi−ŷ,ŷ = ni − ni+x̂.

(a9)

With the new set of integers, the partition function now be-
comes,

ZXY ∼
∑

{ni}
e−

1
2K

∑
i,µ̂(ni+µ̂−ni)2

. (a10)

Comparing with the original partition function, we notice that
the temperature has been inverted because K → 1/K, and
continuous variables has been replaced by integer variables.
However, we can use Poisson summation to go back to con-
tinuous variables. Therefore,

ZXY ∼
∫ ∏

i

dφi

∑

{ni}
e−

1
2K

∑
i,µ̂(φi,µ̂−φi)2

∏

i

δ(φi − ni)

=

∫ ∏

i

dφi

∑

{ni}
e−

1
2K

∑
i,µ̂(φi,µ̂−φi)2−i2π

∑
i niφi . (a11)

After adding the chemical potential term, the Partition func-
tion becomes

ZXY ∼
∫ ∏

i

dφi

∑

{ni}
e−

1
2K

∑
i,µ̂(φi,µ̂−φi)2−i2π

∑
i niφi+lny

∑
i n2

i . (a12)

Next we perform the summation over {ni} by using the fol-
lowing identity,
∑

{ni}
e−i2π

∑
i niφi+lny

∑
i n2

i =
∏

i

∑

ni=0,±1,...

yn2
i e−i2πniφi

=
∏

i

(1 + 2y cos 2πφi + O(y2))

= e2y
∑

i cos 2πφi . (a13)

The partition function eventually becomes the form of the
sine-Gordon model,

ZXY ∼
∫ ∏

i

dφie−
1

2K
∑

i,µ̂(φi,µ̂−φi)2+2y
∑

i cos 2πφi . (a14)

A2 RG equations from operator product expansions

A2.1 Scaling dimensions

In this part we use the operator product expansion (OPE) to
calculate the scaling dimensions of the coupling terms con-
sisting of vertex operators of the form cos βφ in the free
bosonic field φ and the vertex operators cos βθ in the dual
field θ, based on the free Lagrangian L0 =

1
2K (∂µφ)2. No-

tice that the Luttinger parameter K in the results presented
below have to be accordingly scaled in order to be used for
the theory in eq. (6).

We start with the correlation functions of the following
vertex operators. Following the notation in ref. [69], the cor-
relation function is given by

Gβ(x − y) ≡ ⟨eiβφ(x)e−iβφ(y)⟩. (a15)

By using the operator identity: eAeB :=: eA+B : e⟨AB+ A2+B2
2 ⟩,

where : Ô : means normal ordering, we have

Gβ(x − y) = ⟨: eiβ(φ(x)−φ(y)) :⟩e− β
2
2 ⟨(φ(x)−φ(y))2⟩

= eβ⟨φ(x)φ(y)−φ2(x)⟩ = lim
l→0

(
l2

l2 + (x − y)2

) β2K
4π

, (a16)

where l is the short distance cutoff. The following fact is used
to derive the above equation,

⟨φ(x)φ(y) − φ2(x)⟩ = − K
2π

ln
l2

l2 + (x − y)2 . (a17)

Similarly, we have for the dual field θ:

⟨θ(x)θ(y) − θ2(x)⟩ = − 1
2πK

ln
l2

l2 + (x − y)2 . (a18)

Therefore, we are able to obtain the following correlation
functions for two different types of vertex operators:

⟨eiβφ(x)e−iβφ(y)⟩ ∼ |x − y|− β
2K

2π ,

⟨eiβθ(x)e−iβθ(y)⟩ ∼ |x − y|− β2
2πK ,

(a19)

based on which the scaling dimensions of the vertex opera-
tors can be calculated.
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By taking cos βφ = 1
2 (eiβφ + e−iβφ), then

⟨cosβφ(x)cosβφ(y)⟩ = 1
4

(
⟨eiβφ(x)eiβφ(y)⟩ + ⟨eiβφ(x)e−iβφ(y)⟩

+⟨e−iβφ(x)eiβφ(y)⟩ + ⟨e−iβφ(x)e−iβφ(y)⟩
)

∼ |x − y|− β
2K

2π ,

where we have used the fact that ⟨eiβ1φ(x1)...eiβNφ(xN )⟩ = 0 in
the thermodynamic limit when

∑N
n=1 βn ! 0 [70]. From this

we conclude that the scaling dimension of the cos βφ term
is β

2K
4π . Similarly the cos βθ term has scaling dimension β2

4πK .
Using these results, the composite operators consisting of this
two types of basic vertex operators, like the ones in the main
text, can be readily calculated.

A2.2 The one-loop correction

For the one-loop corrections for the RG equations, we con-
sider first the simple case where the free bosonic Lagrangian
L0 =

1
2K (∂µφ)2 is perturbed by a generic vortex term L′ =

gφ
lD−∆φ cosβφ + gθ

lD−∆θ cosαθ, where the short-distance cutoff l is
restored to make the couplings dimensionless or scale invari-
ant [60]. The partition function can then be expanded as the
following:

Z =
∫

D[φ]e−S

= Z∗
(
1 +

∫
dx

gφ
lD−∆φ ⟨cosβφ⟩ +

∫
dx

gθ
lD−∆θ ⟨cosαθ⟩

+
1
2

∫
dxdy

gφgθ
l2D−∆φ−∆θ ⟨cosβφ(x)cosαθ(y)⟩

+
1
2

∫
dxdy

g2
φ

l2D−2∆φ
⟨cosβφ(x)cosβφ(y)⟩

+
1
2

∫
dxdy

g2
θ

l2D−2∆θ
⟨cosαθ(x)cosαθ(y)⟩ + O(g3)

)
, (a20)

where Z∗ represents the free theory partition function. As we
know, the conformal invariance of the free theory requires
that the cross term corresponding to gφgθ vanishes at the one-
loop level because the gφ and the gθ terms in general have
different scaling dimensions. So we only need to consider
the g2

φ and g2
θ terms.

Firstly, consider the g2
φ term. The OPE in terms of eiβφ is

given by ref. [60],

: eiβφ(x) :: e−iβφ(y) :=
1

|x − y|2∆φ −
1

|x − y|2∆φ−2
β2

2
: (∂µφ)2 :,

(a21)

: e±iβφ(x) :: e±iβφ(y) :=
1

|x − y|−2∆φ
: e±i2βφ(x) :, (a22)

: eiαθ(x) :: e−iαθ(y) :=
1

|x − y|2∆θ −
1

|x − y|2∆θ−2
α2

2
: (∂µθ)2 :,

(a23)

: e±iαθ(x) :: e±iαθ(y) :=
1

|x − y|2∆θ : e±i2αθ(x) :, (a24)

where it is understood that |x − y|→ 0. Therefore,

: cosβφ(x) :: cosβφ(y) :

=
1
4

:
(
eiβφ(x) + e−iβφ(x)

)
::

(
eiβφ(y) + e−iβφ(y)

)
:

=
1/2

|x − y|2∆φ −
1/2

|x − y|2∆φ−2
β2

2
: (∂µφ)2 :

+
1/2

|x − y|−2∆φ
: cos 2βφ(x) :, (a25)

and similarly,

: cosαθ(x) :: cosαθ(y) :

=
1/2

|x − y|2∆θ −
1/2

|x − y|2∆θ−2
α2

2
: (∂µθ)2 :

+
1/2

|x − y|−2∆θ
: cos 2αθ(x) : . (a26)

For the g2
φ term in eq. (a20), 1

2

∫
dxdy

g2
φ

l2D−2∆φ ⟨cosβφ(x)cosβφ(y)⟩,
which gives rise to the one-loop correction to the : (∂µφ)2 :
term, becomes

− β
2

8

∫
dxdy

g2
φ

l2D−2∆φ
|x − y|−2∆φ+2⟨: (∂µφ)2 :⟩

= −β
2

8

∫
dx

g2
φ

l2D−2∆φ
⟨: (∂µφ)2 :⟩

∫
dy|x − y|−2∆φ+2. (a27)

Now we do a change of scale by changing the cutoff l →
l + δl = (1 + δ ln l)l. This means the domain of the above
integration is changed from |x− y| > l to |x− y| > (1+ δ ln l)l.
Therefore, the corresponding change in the above integration
becomes

β2

8

∫
dx

g2
φ

l2D−2∆φ
⟨: (∂µφ)2 :⟩

∫

l<|x−y|<(1+δ ln l)l
dy|x − y|−2∆φ+2,

(a28)

which in the case of D = 2 is

β2π

4
g2
φδ ln l

∫
dx⟨: (∂µφ)2 :⟩. (a29)

Comparing with the kinetic term 1
2K

∫
dx(∂µφ)2, we obtain

the correction of K due to the gφ term,

d(1/K)
d ln l

=
πβ2

2
g2
φ ⇒

dK
d ln l

= −πβ
2K2

2
g2
φ. (a30)

The contribution from the gθ cosαθ term can be similarly ob-
tained as:

dK
d ln l

=
πα2

2
g2
θ . (a31)
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A2.3 Derivation of the RG equations

Using the basic ingredients above, we can proceed to work
out the full RG equations presented in the main text. For the
free theory given by

L0 =
1

4K+
(∂µφ+)2+

1
K−

(∂µφ−)2 ≡ 1
2K̃+

(∂µφ+)2+
1

2K̃−
(∂µφ−)2,

(a32)

where we have redefined the Luttinger parameters K̃+ ≡
2K+, K̃− ≡ K−/2, so that the Lagrangian takes the stan-
dard normalization convention and the results derived from
the previous section can be directly carried over. We have
the following scaling dimensions for the different interaction
terms:
• For cos βφ+: ∆φ+ =

β2K̃+
4π ;

• For cos βφ−: ∆φ− =
β2K̃−
4π ;

• For cosαθ−: ∆θ− =
α2

4πK̃−
;

• For cos βφ+ cosαφ−: ∆φ+φ− =
1

4π

(
β2K̃+ + α2K̃−

)
.

The scaling dimensions above give us the tree-level flow
equations. For the loop-level correction of the Luttinger pa-
rameters, we again make use of the OPEs. The OPE

: cosβφ+(x) :: cosβφ+(y) :

=
1/2

|x − y|2∆φ+ −
1/2

|x − y|2∆φ+−2
β2

2
: (∂µφ+)2 :, (a33)

gives the following correction after repeating the real-space
renormalization,

δ

(
1

2K̃+

)
=

1
2
· β

2

4
g2
φ+ ·2πδ (ln l)⇒ δK̃+ = −

π

2
β2K̃2

+g2
φ+δ (ln l) .

(a34)

The OPE

: cosβφ−(x) :: cosβφ−(y) :

=
1/2

|x − y|2∆φ− −
1/2

|x − y|2∆φ−−2
β2

2
: (∂µφ−)2 :, (a35)

gives the following correction to K̃−,

δ

(
1

2K̃−

)
=

1
2
· β

2

4
g2
φ− ·2πδ (ln l)⇒ δK̃− = −

π

2
β2K̃2

−g2
φ−δ (ln l) .

(a36)

The OPE

: cosαθ−(x) :: cosαθ−(y) :

=
1/2

|x − y|2∆θ− −
1/2

|x − y|2∆θ−−2
α2

2
: (∂µθ−)2 :, (a37)

gives the following correction to K−,

δ

(
K̃−
2

)
=

1
2
· α

2

4
g2
θ− · 2πδ (ln l)⇒ δK̃− =

πα2

2
g2
θ−δ (ln l) .

(a38)

The OPE

: cos βφ+(x) cosαφ−(x) :: cos βφ+(y) cosαφ−(y) :

=
1
16

∑

η1,2,3,4=±1

: ei(η1βφ+(x)+η2αφ−(x)) :: ei(η3βφ+(y)+η4αφ−(y)) :

=⇒ − 1/8
|x − y|2∆φ++2∆φ−−2

(
β2 : (∂µφ+)2 : +α2 : (∂µφ+)2 :

)

+
1/4

|x − y|−2∆φ++2∆φ−
: cos 2βφ+ :

+
1/4

|x − y|2∆φ+−2∆φ−
: cos 2αφ− :, (a39)

which generates the following renormalizations:

δ

(
1

2K̃+

)
=

1
2
· β

2

8
g2
φint
· 2πδ (ln l)⇒ δK̃+

= −πβ
2K̃2
+

4
g2
φint
δ (ln l) ,

δ

(
1

2K̃−

)
=

1
2
· α

2

8
g2
φint
· 2πδ (ln l)⇒ δK̃−

= −πα
2K̃2
−

4
g2
φint
δ (ln l) ,

δgφ± =
1
2
· 1

4
g2
φint
· 2πδ (ln l) =

π

4
g2
φint
δ (ln l) .

(a40)

Combining the contributions from the different interaction
terms, we eventually arrive at the RG equations presented in
the main text.

A3 K-matrix formulation of Luttinger liquid

In this section, we review the K-matrix formulation of the
Luttinger liquid. In this framework, a Luttinger liquid is
treated as the boundary of a higher-dimensional bulk and the
K-matrix contains topological information about the bulk. In
particular, using the K-matrix it is straightforward to calcu-
late the braiding statistics between the various vertex oper-
ators that represent the charges, vortices or their combina-
tions. This is a useful way to rule out non-local operators
when writing down the Lagrangian based on symmetry con-
siderations.

A3.1 One pair of boson and dual boson

To warm up for the case of two coupled Luttinger liquids in
our paper, we look at the simpler case of one Luttinger liquid
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consisting of the boson field θ and its dual φ. By defining
Φ ≡ (θ, φ)T, the free Lagrangian density is given by

L0 =
1

4π

(
∂tΦ

TK∂xΦ + ∂xΦ
TV∂xΦ

)
, (a41)

where K is not to be confused with the Luttinger parameter
K that appears in the rest part of the paper. The K-matrix is
given by K = σ1 and the V-matrix is given by V = σ0, where
the σµ with µ = 0, 1, 2, 3 are the Pauli matrices. In canonical
quantization, the conjugate momentum of the θ field is given
by

Π =
δL0

δ∂tθ
=

1
2π
∂xφ, (a42)

with the canonical commutation given by [θ(t, x),Π(t, y)] =
iδ(x − y), or equivalently, [θ(t, x), ∂yφ(t, y)] = 2πiδ(x − y).

We have two basic types of vertex operators eiθ and eiφ,
whose charge vectors are given by lθ = (1, 0)T and lφ =
(0, 1)T respectively. Then the braiding statistics between the
two vertex operators is given by

2πlTθK
−1lφ = 2π, (a43)

which simply states the fact that if we move a charge around
its vortex, then it picks up a phase of 2π. Here we take eiθ to
be the charge operator and the eiφ to be the vortex operator to
be consistent with the notation of the main text. Notice how-
ever, that in the normalization convention of the main text,
the vortex is given by ei2πφ instead, so there is a factor of 2π
in the field rescaling for φ. In the convention used here, θ
and φ are put on equal footing, both without the π factors.
The normalization convention does not change the essential
physics we discuss.

A3.2 Two coupled Luttinger liquids

Now we move on to two coupled Luttinger liquids, which
would correspond to two coupled XY-models. Choosing the
basis Φ = (θ1, φ1, θ2, φ2)T, the Lagrangian density takes the
same form as in eq. (a41), but the new K-matrix and V-matrix
are given by

K =

⎛
⎜⎜⎜⎜⎜⎜⎝
σx 0
0 σx

⎞
⎟⎟⎟⎟⎟⎟⎠ , V =

⎛
⎜⎜⎜⎜⎜⎜⎝
σ0 0
0 σ0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (a44)

Then we have the following charge vectors:

lθ1 = (1, 0, 0, 0)T, lφ1 = (0, 1, 0, 0)T,

lθ2 = (0, 0, 1, 0)T, lφ2 = (0, 0, 0, 1)T.
(a45)

Under the basis transformation used in the main text,

θ+ ≡ (θ1 + θ2)/2, θ− ≡ θ1 − θ2,
φ+ ≡ φ1 + φ2, φ− ≡ (φ1 − φ2)/2,

(a46)

the charge vectors for the new fields are given by

lθ+ =
(

1
2
, 0,

1
2
, 0

)T

, lφ+ = (0, 1, 0, 1)T,

lθ− = (1, 0,−1, 0)T, lφ− =
(
0,

1
2
, 0,−1

2

)T

.

(a47)

In a similar fashion, the braidings between the fields and the
dual fields are given by

2πlTθ+K
−1lφ+ = 2π, 2πlTθ−K

−1lφ− = 2π,

2πlTθ+K
−1lφ− = 0, 2πlTθ−K

−1lφ+ = 0,
(a48)

i.e., the braidings between fields from different channels van-
ish, as it should be.

Now we are ready to check the locality of the various terms
appearing in the Lagrangian, i.e., whether their braiding with
the original local physical fields θ1,2 are integer multiples of
2π.
• cos φ+ (note again that this term is the cos 2πφ+ in the

main text): The charge vector is (0, 1, 0, 1)T, and its braiding
with θ1,2 are both 2π. Higher order terms are therefore also
allowed.
• cos 2θ−: The charge vector is (1, 0, 1, 0)T, and its braid-

ing with θ1,2 are both 0.
• cos φ− (equivalent to cos 2πφ− in the main text): The

charge vector is (0, 1
2 , 0,− 1

2 )T, and its braiding with θ1,2 are
±π respectively, i.e., not integer multiple of 2π, hence not
allowed.
• cos 2φ− (equivalent to cos 4πφ− in the main text): The

charge vector is (0, 1, 0,−1)T, and its braiding with θ1,2 are
±2π.
• cos 1

2φ+ cos φ− (equivalent to cosπφ+ cos 2πφ− in the
main text): The charge vector is given by (0, 1, 0, 0)T, whose
braiding with θ1,2 are 2π and 0 respectively, hence it is lo-
cal and allowed, even though neither cos 1

2φ+ nor cos φ− is
allowed separately. This is consistent with the fact that this
term comes from the sum of the original two local vortex
terms cos φ1 and cos φ2.
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