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Abstract

Photons that decouple from a relativistic jet do so over a range of radii, leading to a spreading in arrival times at the
observer. Therefore, changes to the comoving photon distribution across the decoupling zone are encoded in the
emitted signal. In this paper, we study such spectral evolution occurring across a pulse. We track the radiation from
the deep subphotospheric regions all the way to the observed time-resolved signal, accounting for emission at
various angles and radii. We assume a simple power-law photon spectrum injection over a range of optical depths
and let the photons interact with the local plasma. At high optical depths, we find that the radiation exists in one of
three characteristic regimes, two of which exhibit a high-energy power law. Depending on the nature of the
injection, this power law can persist to low optical depths and manifest itself during the rise time of the pulse with a
spectral index β≈ α− 1, where α is the low-energy spectral index. The results are given in the context of a
gamma-ray burst jet, but are general to optically thick, relativistic outflows.

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Radiative processes (2055)

1. Introduction

Gamma-ray burst (GRB) jets are initially optically thick. As
the jet expands, the density drops and any trapped radiation can
start leaking out toward the observer. The distance from the
central engine where the ejecta transitions from optically thick
to optically thin is called the photospheric radius, Rph, and the
released radiation is called photospheric emission. Photo-
spheric emission is an inevitable part of the fireball model and
many magnetic jet acceleration models (Cavallo & Rees 1978;
Goodman 1986; Paczyński 1986; Piran 1999; Spruit et al.
2001), and its role in GRB prompt observations has been
studied extensively (Daigne & Mochkovitch 2002; Rees &
Mészáros 2005; Ryde 2005; Giannios 2006).

Photospheric emission is inherently probabilistic in nature,
since it is related to photons experiencing their last scattering.
Assuming a spherically symmetric outflow, Abramowicz et al.
(1991) showed that the optical depth toward the observer
depends on the angle between the radial direction and the
observer line of sight, θ. Pe’er (2008) and Beloborodov (2011)
constructed a probability function for a photon's last scatting as
a function of θ and radius from the central engine, r. They
found that photons decouple across a wide range of optical
depths. Lundman et al. (2013) expanded upon these works by
relaxing the assumption of spherical symmetry, considering the
effect of jet structure and arbitrary viewing angle on the
observed spectrum.

Photons that decouple from high optical depths outrun the
plasma and are the first to arrive at the observer. They are
followed by photons that experienced their last scattering at
progressively lower optical depths. The spread in arrival times
leads to a short-duration pulse in the observer frame. Time-
resolved emission across such a pulse was considered in
spherical symmetry by Pe’er & Ryde (2011). Time-resolved
emission from the photosphere within a structured jet was

studied by Meng et al. (2019). In addition, Meng et al. (2019)
also modeled a long-lasting and varying central engine by
letting the bulk Lorentz factor and luminosity evolve with time.
All of the aforementioned works have considered the

comoving photon distribution to be in thermodynamic equili-
brium with the plasma. In this case, the radiation is affected only
by adiabatic cooling as the jet propagates outward. This effect,
together with the Doppler factor being angle-dependent, leads to
a broadening of the observed time-integrated spectrum, which
consists of a superposition of many Doppler-boosted comoving
spectra emitted at various radii and angles to the line of sight
(Beloborodov 2010).
However, a GRB jet is a highly chaotic system and energy

dissipation below the photosphere is expected (Rees &
Mészáros 2005). The dissipation may be due to radiation-
mediated shocks (Levinson & Bromberg 2008; Bromberg et al.
2011; Levinson 2012; Beloborodov 2017; Samuelsson et al.
2022; Samuelsson & Ryde 2023), magnetic reconnection (Spruit
et al. 2001; Drenkhahn & Spruit 2002; Giannios 2006),
turbulence (Zrake et al. 2019), shearing flows in a structured
jet (Ito et al. 2013; Vyas & Pe’er 2023), or nuclear collisions
between protons and neutrons (Beloborodov 2010). Dissipation
destroys the thermodynamic equilibrium and distorts the photon
distribution, which may appear highly nonthermal. When the
dissipation ceases, the photon distribution will start to re-
establish a new equilibrium. Accounting for dissipation, the
spectral change across the decoupling region can be much more
dramatic compared to the scenario with adiabatic cooling only.
In this paper, we study the time-resolved signal, accounting

for dissipation and thermalization. In contrast to Meng et al.
(2019), we do not model the central engine variation. Instead, we
focus on a thin slice of the jet with an observed width δr∼ r/Γ2,
where Γ is the jet bulk Lorentz factor. Therefore, the observed
spectral evolution presented in this work is solely due to changes
of the photon distribution within the jet. A complex GRB light
curve would consist of radiation from many such slices, where
each slice would create a subpulse with its own evolution.
The dissipation is modeled by simply injecting a spectral

power-law distribution of photons across a range of optical
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depths. We show that under these conditions, the radiation in
the deep subphotospheric region exists in one of three
characteristic regimes, which we call the slow, the marginally
fast, and the fast Compton regime. These regimes have direct
analogs in the slow and fast synchrotron-cooling regimes,
hence the chosen names. Each regime has a typical spectral
shape and we characterize the relation between the spectral
indices in each case. Tracking the photon distribution as a
function of optical depth, we generate the time-resolved signal
in the observer frame, accounting for contributions from
different angles and radii. We show that dissipation at low
optical depths can lead to a significant intrapulse spectral
evolution in the observer frame.

Throughout this paper, we use the term thermalization to
indicate that the radiation tends toward a kinetic equilibrium when
interacting with the plasma, with high-energy photons losing
energy and low-energy photons gaining energy. Furthermore, the
terms downscattering and upscattering are used to describe photons
losing or gaining energy in a scattering event, respectively.

The paper is structured as follows. In Section 2, we introduce
the general picture. We obtain the radiated energy as a function of
optical depth and describe the model used in the paper. In
Sections 3 to 5, we follow the evolution of the photon distribution
on its journey, from the deep subphotospheric regions (Section 3),
across the decoupling zone (Section 4), to the observed signal
(Section 5). We discuss our results, with a specific emphasis on
assumptions, in Section 6, and we conclude in Section 7.

2. General Picture

2.1. Radiated Energy as Function of Optical Depth

The radiated energy as a function of optical depth is a
combination of the probability of the last scattering at a given
angle and optical depth, as well as the comoving radiation
energy density at that point. When there is no energy
dissipation, only two things are needed obtain the radiated
energy as a function of optical depth: (1) a photon-decoupling
probability function; and (2) a cooling function that describes
the energy losses due to adiabatic expansion.

Throughout the paper, we assume the outflow to be
spherically symmetric, i.e., that we are observing the jet on-
axis and that the jet properties do not vary with angle within
∼1/Γ to the line of sight. In the case of spherical symmetry, the
probability function for a photon to decouple as a function of
optical depth and angle was derived using radiative transfer in
the ultrarelativistic regime by Beloborodov (2011). In this
work, we adopt the expression from Appendix C in
Samuelsson & Ryde (2023), which is identical to the
expression given in Beloborodov (2011), but rewritten as a
function of optical depth, τ. It reads
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Here, ( )m q¢ = ¢cos , where q¢ is the angle between the radial
direction and the line of sight as measured in the frame
comoving with the outflow.

The optical depth in Equation (1) is measured for a fluid
element along the radial direction toward infinity. If the

electron density decreases with radius as r−2, as expected in the
GRB coasting phase, then τ is related to radius as (e.g.,
Beloborodov 2011)
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where L is the isotropic equivalent luminosity and σT is the
Thomson cross section. Equation (2) assumes a negligible
amount of pairs at the photosphere and that all magnetic energy
initially present in the jet has been converted into kinetic
energy below the photosphere.
Under the assumption of no dissipation, the total energy of

the comoving radiation in the subphotospheric region of the jet
is only affected by adiabatic cooling. Samuelsson & Ryde
(2023) found a “photon-cooling function,” f(τ), which well
described the energy loss at high and low optical depths,
including the transition across the photosphere. The cooling
function is given by

( ) ( )f t
t

=
+ 0.2

1.2
, 3

2 3

which was found to give very good agreement with simulations.
The average photon energy at an arbitrary optical depth, ̄ ( )t , is
related to the average photon energy at the photosphere, ̄ph, as
 ¯ ( ) ( ) ¯t f t= ph. At high optical depths, f(τ) corresponds to an
ideal adiabatic cooling of the photon distribution as ¯µ -r 2 3,
expected in the coasting phase of GRBs from the conservation of
entropy (e.g., Pe’er 2015). At optical depths τ= 1, all photons
are free-streaming and f(τ) is constant.
With the photon-cooling function, one can calculate the

normalized radiated energy as a function of τ and m¢ in a
spherically symmetric outflow as

∬
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Above, t m= ¢t m¢E dE d d, and ∬ t m= ¢t m¢E E d d, . This quan-
tity, multiplied by τ, is plotted with the solid green lines in
Figure 1 for different observing angles, θ. The angle θ is related
to m¢ via ( ) ( )m m b mb¢ = - -1 , where ( )m q= cos and
b = - G1 1 2 . The multiplication with τ ensures that the
curve height indicates where most energy is radiated.
The angle-integrated normalized radiated energy can be

calculated as
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where Eτ= dE/dτ. This, again multiplied by τ, is shown by a
dashed gray line in Figure 1. Since scatterings do not change
the energy in the photon bath if the electrons are kept at the
Compton temperature, Figure 1 is always accurate as long as
dissipation is absent.
It is clear from the figure that photons start free streaming at

different depths. Additionally, photons reaching the observer
from larger angles to the line of sight are preferentially emitted
farther out and contribute less to the total observed emission.
Both these results are in agreement with previous works
(Pe’er 2008; Beloborodov 2011; Bégué et al. 2013). It is
interesting to note that the radiated energy peaks already at τ∼ 3.
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2.2. Jet Profile

The scenario envisioned in the current paper is given in the
schematic in Figure 2. We assume that some dissipation process
generates a power-law distribution of photons as a function of
energy. The assumption of a power-law spectral distribution is
discussed in more detail in Section 6.1.1. These photons are
continuously injected into a region that we call the interaction
region. We assume a single-zone approximation for the
interaction region, implying that the whole region is causally
connected. The injection continues throughout the injection zone
(red), which spans an optical depth Δτinj= τi− τf.

All injected photons are accumulated in the interaction
region. Furthermore, the interaction region contains only the
injected photons, i.e., there are no photons in the interaction
region at optical depths τ> τi. This scenario mimics that of a
region downstream of a subphotospheric shock occurring at τi.
In the case of a shock, thermal photons from the upstream are
energized as they traverse the shock region, after which they
are advected downstream. Thus, all photons in the downstream
region have passed through the shock and the downstream
itself did not exist before the shock was initiated. The photons
in the interaction region interact with the local plasma through
thermal Comptonization. Meanwhile, the whole ejecta is
moving outward toward the photosphere (fluid elements move
from left to right in the cartoon).

Photons have a nonzero probability of decoupling anywhere
in the jet, as is evident from Equation (1). However, ∼99% of
the energy is radiated in the “decoupling zone” (blue), at
optical depths τ� τdc, where τdc≈ 10. The decoupling zone,
therefore, spans an optical depth of Δτdc≈ 10. In an
ultrarelativistic outflow, the average number of scatterings per
photon traveling from r to infinity is roughly equal to the
optical depth at r. Thus, on average, photons experience several
scatterings while traversing the decoupling zone. Note that we
introduce the notion of a decoupling zone to facilitate the

discussion. However, all results presented are obtained using
the probability distribution in Equation (1).
In the following sections, we will follow the evolution of the

photon distribution in the interaction region as it traverses the
GRB jet.

3. Spectral Evolution across the Injection Zone

Many authors have made detailed calculations regarding the
evolution of the subphotospheric photon distribution in the presence
of various dissipation mechanisms (e.g., Beloborodov 2010; Vurm
& Beloborodov 2016; Parsotan et al. 2018; Samuelsson et al.
2022). In this paper, we consider a simple one-zone model, which
is continuously injected with photons in a power-law spectral
distribution between the energiesmin andmax. Photon energies are
measured in units of mec

2 throughout the paper. Furthermore, we
assume that 1max  , such that we can neglect relativistic effects in
the comoving frame. The slope of the injected spectrum in photon
number is αinj, i.e.,  µ ainj, where  is the specific photon
number density. We show that under these simplified assumptions,
the photon distribution can exist in three characteristic regimes. In
this section, we assume that the injection is always active.

3.1. Slow, Fast, and Marginally Fast Compton Regimes

In the subphotospheric region of a GRB jet, the photons
vastly outnumber the electrons once the initial pairs have
recombined (Bromberg et al. 2011).3 Under such conditions,
the electron-scattering time is much shorter compared to the
photon-scattering time. This implies that to a good approx-
imation, the electrons are always kept in a thermal distribution
at the local Compton temperature, ΘC. The Compton
temperature is defined as the temperature that satisfies no net
energy exchange between the photon and electron populations.
Note that due to the difference in scattering length, the photon
distribution need not be thermal.
In Compton scattering between an isotropic photon field and

thermal electrons, the average relative energy change per
scattering is given by (Rybicki & Lightman 1979)




 ( )D
= Q -4 , 6C

Figure 1. Normalized radiated energy as a function of optical depth and angle
in a spherically symmetric outflow. The different solid lines show the emission
at different angles compared to the line of sight calculated using Equation (4),
and the gray dashed line shows the angle-integrated radiated energy calculated
using Equation (5). The quantity Ei indicates t m¢dE d d and dE/dτ for the solid
lines and dashed line, respectively. The shaded region shows where two-thirds
of the energy is radiated. One can see that photons are emitted over a wide
range of optical depths, and that the radiated energy peaks at τ ∼ 3. The figure
is generated with Γ = 100, but is essentially identical as long as Γ > 10. A
similar figure for the photon number can be found in Beloborodov (2011).

Figure 2. Schematic showing the scenario envisioned in this paper. The plasma
moves from left to right, passing through each zone. In the injection zone
between τi and τf, some dissipation event continuously injects a power-law
distribution of photons. The injected radiation interacts with the local plasma.
Photons start leaking out of the plasma in the decoupling zone, at τ < τdc. If
injection occurs within, or close to, the decoupling zone, the observed spectral
shape may change significantly with time.

3 This would not be true in a cold, magnetically accelerated jet.

3
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where Δò is the photon energy change in the scattering, ò is the
photon energy, and ΘC is the electron temperature, all
measured in units of electron rest-mass energy mec

2.
Equation (6) is valid for photons with energies ò= 1. It is
clear that high-energy photons lose energy more quickly than
low-energy photons gain energy. From the equation above, one
can derive that all photons with energies ò> 1/Nsc lose at least
half of their energy after Nsc number of scatterings. As the
number of scatterings is roughly equal to the optical depth
traversed, all photons with energies ò> 1/Δτ lose a significant
amount of energy over an optical depth Δτ. The down-
scattering process continues until 1/Δτ becomes comparable
to 4ΘC. This leads to three different possible regimes.

Slow Compton regime: 4ΘCΔτ< 1. In this case, only the
high-energy photons with energies satisfying ò> 1/Δτ have
time to be downscattered. No other photons are significantly
affected, regardless of whether their energy is above or below
4ΘC. This leads to a spectrum with a power-law slope α= αinj
between min and 1/Δτ. At energies higher than 1/Δτ, the
power law steepens due to the additional Compton losses.
Since the relative energy loss is proportional to the photon
energy, the power-law slope becomes β= αinj− 1.4 This result
is valid only when αinj<− 1, above which no steady-state
solution exists (see the further discussion in Section 6.2). A
special case of the slow Compton regime is when
 t< D1max , in which case the spectral shape is simply
similar to that of the injected spectrum.

The shape of the photon distribution in this regime is
completely analogous to the slow-cooling distribution of
charged particles downstream of a collisionless shock, hence
the chosen name. In the synchrotron case, charged particles are
injected as a power law with index −p above the injection
Lorentz factor γm. In the slow-cooling regime, particles below
the cooling Lorentz factor γc> γm do not lose energy
efficiently and, thus, the particle distribution between γm and
γc has a slope −p. Above γc, particles are cooled due to
synchrotron losses and the energy-loss timescale is inversely
proportional to the particle energy. This steepens the power-law
slope above γc to −p – 1 (Sari et al. 1998). The same thing
occurs here, excepts that it is the photons that are the primary
particle population. The break occurs at òc= 1/Δτ.

Fast Compton regime: 4ΘCΔτ> 1. In this case, all high-
energy photons have time to downscatter, leading to a pileup
around 4ΘC. Furthermore, the Compton y-parameter for the
low-energy photons, y≡ 4ΘCΔτ, is larger than unity. This
implies that all low-energy photons will significantly increase
their energy, leading to a hardening of the low-energy part. If
the difference between 4ΘC and max is large enough, a power-
law segment with β= αinj− 1 develops in the region

 Q  4 C max. The analogy between this scenario and the
fast-cooling synchrotron scenario is less clear here, since some
photons gain energy in the fast Compton regime, while all
charged particles in the synchrotron fast-cooling regime lose
energy.

Marginally fast Compton regime: 4ΘCΔτ∼ 1. In the
intermediate regime, we have y∼ 1, meaning that the low-
energy photons are marginally affected. Furthermore, a
significant pileup of high-energy photons is not yet visible

around 4ΘC. In this case, the spectrum consists of a power law
with slope α∼ αinj between min and 4ΘC∼ 1/Δτ, a possible
minor pileup above 4ΘC, and a power law with slope
β= αinj− 1 between 4ΘC and max.
In Figure 3, on the left-hand side, we show schematics of the

three spectra in the different regimes. Below min, the dotted
(dashed) line shows a Rayleigh–Jeans slope (Wien slope). Note
that which spectral regime is the relevant one in a given context
depends partly on Δτ, but also on αinj, since ΘC depends on
the slope of the injected power-law spectrum.

3.2. The Influence of Adiabatic Cooling

The discussion in Section 3.1 is valid in a plane-parallel
geometry and neglects the influence of adiabatic cooling on the
spectrum. The characteristic timescale for adiabatic cooling
corresponds to one doubling of the radius, which equals one
halving of the optical depth. Thus, if a high-energy photon is
injected at an optical depth τinj, it suffers Compton losses until
its energy is òc= 2/τinj (assuming 2/τinj> 4ΘC). Thereafter,
Compton losses are negligible with respect to adiabatic
cooling. This leads to the power-law spectrum injected at τinj
having a high-energy cutoff at the photosphere of
  ( )

( )= f
f tcph

cut 1
2inj
, which is approximately

⎛⎝ ⎞⎠ ( )t
t

~ Q <
-

2
, 4

2
. 7ph

cut inj
5 3

C
inj

Similarly, the Compton y-parameter for a low-energy photon
injected at τinj should be evaluated as ~ Q t

y 4 C 2
inj .

3.3. Spectral Shape as Function of Optical Depth

The spectral shape as a function of optical depth depends on
the nature of the injection. In this paper, we assume the photon
number injection to be either constant as a function of radius,

=dN dr const.in , or constant as a function of optical depth,
t µ =dN d r dN dr const.in

2
in , where Nin is the number of

injected photons (see Equation (9) below).
If the photon number injection is constant with radius, then

at least half of the photons in the interaction region were
injected during the last doubling of the radius, i.e., between 2τ
and τ. Photons injected at τinj? τ are relatively few in number
and contribute only with higher-order effects to the spectrum.
The current spectral regime can be estimated by evaluating
4ΘC(τ)Δτ and comparing it to unity, as in Section 3.1. Note
that Δτ= τ in this case.
If instead the photon number injection is constant with

optical depth, at least half of all photons were injected between
τi and τi/2. Thus, the overall spectral regime can be estimated
by the value of 4ΘC(τi/2)Δτ, where Δτ= τi/2. If the photon
distribution is in the slow or marginally fast Compton regime,
i.e., 4ΘC(τi/2)Δτ 1, then energy transfer via Compton
scatterings has no large effect on the photon distribution at
optical depths τ< τi/2. With few photons injected and little
thermalization, the photon distribution is dominated by
adiabatic cooling below τi/2. Since the energy loss for each
photon during adiabatic cooling is proportional to its current
energy, the spectral shape (in a log–log plot) remains
∼constant. In the fast Compton regime, the spectral shape
may continue to evolve, depending on the value of the
Compton temperature at τ= τi/2.

4 This result can also be obtained by evaluating the steady-state solution to the
Kompaneets Equation (8) in the region  Q  4 C max, ignoring adiabatic
cooling.

4
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3.4. Simulating the Three Regimes

To verify the discussion in the previous sections, we make
simulations in each of the three regimes. The spectra are
obtained as follows.

The evolution of a photon distribution in interaction with
thermal electrons is described by the Kompaneets equation.
The Kompaneets equation in an ultrarelativistic outflow and
modified to account for adiabatic cooling as the jet expands is

Figure 3. Left: schematics of the slow, marginally fast, and fast Compton regimes discussed in Section 3.1. Right: simulation results in the three regimes. The red
cross and the green star show the values of 4ΘC and 1/Δτ at τf, respectively. The dashed blue lines show the theoretical slopes, which are determined solely by αinj in
all instances, except for the low-energy slope in the fast Compton case. In the simulations shown by the solid lines, the injection continues over a doubling of the
radius. The black dashed lines have identical input parameters, except that the injection has been active for 10 times longer. The solid lines are normalized to 1, while
the dashed lines are normalized to 0.5 for clarity. Parameter values are given in Table 1.

5
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given in Vurm & Beloborodov (2016). Neglecting induced
emission and assuming constant Γ, it is given by (Samuelsson
et al. 2022):
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Here, r̄ is the normalized radius, ¯ =r r Rph, nò is the photon
occupation number, related to the specific photon number
density as  µ n2 , and s(ò) is a source term. The first term
in brackets accounts for the upscattering of low-energy
photons, while the second term accounts for the downscattering
of high-energy photons. The last term in brackets accounts for
an ideal adiabatic cooling of the photon distribution as ¯µ -r 2 3.
The Kompaneets equation is solved using the solver from
Chang & Cooper (1970).

The source term injects a power-law distribution of photons as

⎧⎨⎩    ( ) ( ¯) ( )µ
< <

s
C r , ,
0, otherwise.

9
p

min maxinj

The source term is only nonzero at optical depths between τi
and τf. Note that pinj is related to αinj as αinj= pinj+ 2. The
term ( ¯)C r determines the dependency on r̄ . If ( ¯) =C r 1, the
injection is constant as a function of r. If, instead, ( ¯) ¯= -C r r 2,
the injection is constant as a function of τ.

The Compton temperature is given by
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( )ò

ò
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n d

n d
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obtained by solving Equation (8) in steady state without
injection and adiabatic cooling. Since the Compton temperature
is a function of the shape of the photon spectrum, it must be
evaluated continuously.

In Figure 3, on the right-hand side, we show the results of six
simulation runs, whose parameter values are given in Table 1.
For all six simulations, the spectrum is evaluated just at the end
of the injection zone, at τf.

In each of the three panels, two simulation runs are shown.
The solid lines show simulations that have run for one doubling
of the radius. The red cross and the green star indicate the
values of 4ΘC and 1/Δτ, respectively, at the end of the
simulation. It is clear that the simulated spectrum in each
regime closely resembles the corresponding idealized

schematic shown on the left. Adiabatic cooling is accounted
for in the simulation runs, but since the runs only last for one
doubling of the radius, its effect is small. The dashed blue lines,
with their respective slopes, are shown for clarity. In these
cases, the relevant Δτ is τi− τf.
To study the effect of longer-lasting injection, we make three

additional runs with identical parameter sets, but where the
injection has continued for 10 times longer. These runs are
shown by the black dashed lines in each panel. In each case, the
two simulations have the same global characteristics, verifying
the discussion in Section 3.3. However, the detailed spectral
shapes are different. Specifically, the relations between the
power-law slopes are modified. The relevant Δτ for the
simulations with longer-lasting injection are Δτ= τi/2 for the
slow Compton simulation (injection is proportional to τ) and
Δτ= τf for the other two simulations (injection is proportional
to r).

4. Spectral Evolution across the Decoupling Zone

The decoupling zone is the region of optical depth wherein
escaping photons contribute significantly to the observed
fluence. It is therefore possible to detect spectral change across
the decoupling zone in the observed time-resolved signal.5 The
photon distribution can experience significant thermalization or
additional dissipation across the decoupling zone. This leads to
three different scenarios.
(1) No dissipation and no high-energy photons. Only

photons with energies above 2/Δτdc (∼100 keV) in the
comoving frame have time to downscatter while traversing
the decoupling zone (see Sections 3.1 and 3.2). If no such
photons exist, and there is no additional dissipation, the
comoving radiation is only affected by adiabatic cooling. Note
that the Compton y-parameter for the low-energy photons is
necessarily less than unity, since 4ΘC cannot be larger than the
maximum photon energy. The observer will see a spectral
shape that is constant in time, but that decreases in energy
continuously across the pulse. How large the total decrease is
depends on the signal-to-background level. If we imagine the
observer can distinguish the signal coming from optical depths
of τ∼ 10 until τ∼ 0.3, then the observed spectrum would
decrease in energy by a factor of ∼f(10)/f(0.3)∼ 7 across the
pulse.
(2) No dissipation but high-energy photons. In this case, the

highest-energy photons have time to downscatter. This leads to
a spectral softening with time of the high-energy part of the
observed spectrum, shifting the upper cutoff to lower energies.
The downscattering is efficient until an optical depth
τ= τdc/2∼ 5, after which adiabatic cooling will dominate.
The radiated energy as a function of τ peaks at τpeak∼ 3 (see
Figure 1). Thus, we expect a rapid softening of the high-energy
part during the rise time of the pulse, which stabilizes and
remains ∼constant during the decay. The observed upper cutoff
energy at the light-curve peak can be estimated as
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~
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where Γ2≡ Γ/102 and z is the cosmological redshift.

Table 1
Parameter Values Used for the Right-hand Panels in Figure 3

Parameter Slow Comp. Marg. Comp. Fast Comp.

τi 200 40 200
τf 100 20 100
αinj −2.3 –1.9 –1.8

( ¯)C r ¯-r 2 1 1
τf = 10 τi = 400 τi = 2000

Note. All runs use  = -10min
4 and  = 1max . The bottom row indicates the

parameter value change used for the longer-lasting runs, which are shown by
the dashed lines in each panel.

5 To observe such change requires that the pulse duration is longer than the
time resolution of the observing telescope.
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If the Compton temperature is exceptionally high, a slight
hardening of the low-energy spectrum could be observed. In
addition, we expect the previous behavior of the hard-to-soft
evolution of the peak energy due to the adiabatic cooling of the
spectrum as a whole. This scenario is demonstrated by Run A
in Section 5.

(3) Additional dissipation in the decoupling zone. In this
case, the evolution of the observed spectrum will depend on the
nature of the dissipation. If the injection is constant with radius,
i.e., ( ¯) =C r 1 in the current framework, then the photon
distribution will increasingly start to resemble the injected
spectrum at smaller optical depths. This is because the total
photon number in the interaction region doubles with each
doubling of the radius, while the number of scatterings in
between each doubling halves. At some point, the radiation is
likely to enter the slow-cooling Compton regime even if the
injected power-law slope is hard, and when t < 2 max, not
even the highest-energy photons have time to downscatter. This
scenario is demonstrated by Run B in Section 5 (although
 = 1max in Run B, so there are always some photons being
downscattered).

If the dissipation is proportional to τ, the magnitude of the
spectral change in the observer frame depends on when the
injection started. If τi? τdc, only a small fraction of the total
photon number is injected in the decoupling zone and the
situation will resemble (1) or (2). Note that in the case of
additional dissipation at low optical depths, the shape of the
radiated energy as a function of τ given in Figure 1 will be
modified.

5. Evolution of the Observed Spectrum

In this section, we study the evolution of the observed signal
in two simulated pulses, whose parameters are given in
Table 2. The modeling of the comoving photon distribution is
done in the same way as in Section 3.4. In Run A, the photon
injection stops just at the beginning of the decoupling zone.
Since max is high, Run A illustrates the case of (2) no
dissipation but high-energy photons, as discussed in Section 4.
In Run B, photon injection continues until τ= 3. Thus, this run
illustrates one possible scenario of (3) additional dissipation in
the decoupling zone.

How we obtain the observed signal is outlined in the
Appendix. In short, the observed signal is obtained using the
code Raylease. We assume that the central engine emits a
relativistic outflow during an active period between t= 0 s and
t= tE. A photon that experiences its last scattering at an optical

depth τ and an angle m¢ reaches the observer at

⎡⎣⎢ ⎤⎦⎥( )
( )

( )
b t bm

= + +
G + ¢

t z t
R

c
1

1
, 12eobs

ph
2

where te is the emission time from the central engine of the
shell from which the photon decoupled. The observer time tobs
is given in relation to an imaginary observed photon, emitted at
the line of sight, at te= 0 and r= 0.
The observed spectral flux at the observer time tobs, Fò(tobs),

is given by Equation (A5). Since we consider a thin part of the
jet with a width δr∼ r/Γ2, it implies that tE is short. Therefore,
it is safe to assume that Γ, the central engine luminosity, L, and
the spectral shape are all independent of te. In this case,
Equation (A5) simplifies to Equation (A6), which is what we
use in this paper. The photon distribution is tracked from τi
until well above the photosphere, and 1000 snapshots of the
comoving photon distribution at linear intervals of τ have been
used to generate the observed time-resolved signal.

5.1. Intrapulse Spectral Evolution

In the left panels in Figure 4, four snapshot spectra are
shown at different intervals of tobs/tvar for the two runs. Here,
tvar= tdyn(1+ z), and the dynamical time tdyn is given by

( )=
G

= G-t
R

c
L

2
0.2 s , 13dyn

ph
2 53 2

5

where L53≡ L/1053 erg s−1. In both runs, we assume that radial
spreading of the plasma causes a perceived jet active period of
tE= tdyn (this assumption is discussed briefly in Section 6.1).
This implies a constant width of the considered slice as
δr= Rph/2Γ

2. The black dashed line in both panels shows the
time-integrated spectrum, which is generated by first obtaining
the spectral fluence via time integration of 100 snapshots of the
observed spectrum, evenly log-spaced in time between
tobs/tvar= 0.03 and tobs/tvar= 50, and then dividing the
integrated fluence with tvar. For Run A (top), the spectra are
shown in the observer frame with an assumed redshift z= 2. In
the case of Run B (bottom), the spectra are instead shown in the
central engine frame with   ( )p= ´ +L F d z4 1l

2 , where dl
is the luminosity distance.6 The purple shading shows the
energy sensitivity of the Fermi Gamma-ray Burst Monitor
(GBM), with a darker color corresponding to higher sensitivity
(Meegan et al. 2009).
The first photons to reach the observer originate from the

leading parts of the slice (te= 0) along the line of sight
(m¢ = 1). By comparison with Equations (12) and (13), one
obtains when Γ? 1 that photons observed at tobs/tvar= 0.1
decoupled at τ= 10, i.e., just at the beginning of the
decoupling zone. For Run A, the injection is proportional to
the optical depth and the spectral regime can be evaluated by
estimating 4ΘC(τi/2)Δτ, with Δτ= τi/2 (see Section 3.3).
When the injection is proportional to the radius, as in Run B,
the spectral regime at τ= 10 is instead governed by the value
of 4ΘC(τ)Δτ with Δτ= 10. From the simulations, we find
4ΘC(τi/2)Δτ= 0.7 for Run A and 4ΘC(τ)Δτ= 0.9 for Run B.
Thus, in both runs, the radiation is in the marginally fast

Table 2
Parameter Values Used in Figure 4

Parameter Run A Run B

τi 50 50
τf 10 3
αinj −1.9 –1.6

( ¯)C r ¯-r 2 1
z 2 0
tE/tdyn 1 1

Note. Both runs use  = -10min
4 and  = 1max .

6 The factor ( )+ -z1 1 accounts for the fact that we use the luminosity
distance together with the spectral flux (e.g., Hogg 1999).
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Compton regime and we expect the relation β≈ α− 1 at early
times.

At later times, the observed signal is a mix of the leading and
trailing parts of the slice, emitting at lower and higher optical
depths, respectively, as well as emission from various angles.
For Run A, the downscattering of the high-energy radiation in
the comoving frame leads to a softening of the high-energy
spectrum with time. At the peak of the light curve, the spectrum
exhibits a hardening at ∼2MeV. This corresponds to the cutoff
energy estimated in Equation (11). However, the contribution
from trailing parts at higher optical depths transforms the cutoff
in the comoving frame to a hardening in the observer frame.

For Run B, the additional dissipation in the decoupling zone
changes the spectral evolution. As more and more photons are
injected at lower optical depths, the comoving photon
distribution starts to increasingly resemble the injected
distribution (see Section 4). In the case of Run B, this leads
to a rising peak energy, which only starts to decrease due to
adiabatic cooling once injection ceases at τ= 3. The high-
energy power law also hardens and the spectral peak broadens
during the light-curve rise.

Apart from the parameter values given in Table 2, the
simulations assume L= 1053 erg s−1, Γ= 100, R0= 1010 cm,
and Γ0= 4, where R0 and Γ0 are the radius and Lorentz factor
at the base of the jet, respectively. Note that these four
parameters only affect the absolute value of the luminosity and
the variability time, none of which change the observed
spectral shape as a function of tobs/tvar.

5.2. Peak Energy and Spectral Indices

To investigate the changing spectrum more quantitatively, in
this section we study the evolution of the peak energy, Ep, the
low-energy spectral index, α, and the high-energy spectral
index, β. We will calculate these quantities theoretically, as
well as estimate what would be obtained in actual data.
The theoretical peak energy is calculated as the maximum of

the òFò spectrum at each observer time. The spectral indices are
subsequently obtained as

  
  

 [ ( )] [ ( )]
( ) ( )

( )a b
d
d

=
+ -
+ -

a b a b

a b a b

N N
,

log log

log log
. 14, ,

, ,

Figure 4. Observed spectral evolution for Run A (top) and Run B (bottom). Left: four snapshot spectra from early time (yellow) to late time (red). The gray dashed
line shows the time-integrated spectrum. The purple shading shows the Fermi-GBM energy window, with darker shading implying higher sensitivity. Right: evolution
of the peak energy and the spectral indices as calculated theoretically (dashed lines) and as obtained by fitting a Band function to 30 mock data sets (points with error
bars). Each mock data set has been forward-folded through the Fermi-GBM response matrix, as explained in the main text. The flux in each bin is shown by the purple
shading. In Run A, the fitted high-energy power law softens with time as comoving photons are downscattered. The peak energy decreases steadily due to adiabatic
cooling. In Run B, the peak energy initially increases due to the injection of high-energy photons at low optical depths. The parameter values are given in Table 2.
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Here, òα and òβ are the energies at which the spectral indices α
and β are estimated, respectively, δò is a small increment in
energy, and Nò= Fò/ò. The evolutions of α, β, and Ep thus
calculated are shown in the right-hand side of Figure 4 with the
dashed green, red, and yellow lines, respectively. For the
figure, we use òβ= 5Ep in Run A, òβ= 3Ep in Run B, and
òα= Ep/10 in both runs.

To obtain how the spectral evolution would be observed by a
real telescope, we do as follows. First, we generate 30 spectra
as a function of time for both Run A and Run B. To account for
detector and background effects, we forward-fold each
spectrum through the GBM response matrix. This implies that
the fitting procedure can only account for the signal within the
energy range of the GBM (8 keV to 40MeV; Meegan et al.
2009). For each spectrum, a mock data set is generated. The
strength of the signal over the background in the mock data is
determined by requiring a specific signal-to-noise ratio (S/N) at
the peak of the light curve,  . In other words, the mock data set
in the brightest time bin has S/N = . The S/Ns of all other
time bins are given by the relative luminosity at that specific
time. Each mock data set is subsequently fitted with a Band
function (Band et al. 1993). The Band function describes a
smoothly broken power-law photon spectrum using four
parameters: α, β, Ep, and an overall normalization. The
analysis is performed in the Multi-Mission Maximum Like-
lihood framework (Vianello et al. 2015).

The best-fit values obtained for α, β, and Ep from the Band
fits in Run A and Run B are shown by points with error bars in
Figure 4. For the two figures, we used  = 1000. The very
high S/N was chosen so that the spectral evolution is more
clearly visible. The error bars indicate 1σ.

The evolution of the parameters confirms the discussion in
the subsections above.

High-energy spectral index, β. In both cases, the early
spectra have β≈ α− 1. For Run A, the downscattering of
photons in the comoving frame leads to a shortening of the
high-energy power-law segment. Part of the power law persists
until late times, as is visible from the theoretically calculated
value of β, which stays more or less constant. However, the
fitted values of β soften quickly during the pulse rise. The high
S/N of the mock data set means that the cutoff is “seen” in the
fit, making the fitted values of β very low. At late times, the
Band function is not a good fit for the input spectrum, which is
better described at high energies by a high-energy power law
plus an exponential cutoff.

In Run B, β hardens initially due to the continued injection.
The fitted value of β remains high, since the high-energy cutoff
is outside of the GBM sensitivity window, and, thus,
unaccounted for in the fit. After the peak of the pulse, most
of the comoving radiation spectra have lost their high-energy
tails. This leads to a rapid decrease of the flux above the peak
energy in the observed spectrum. When the cutoff enters the
GBM energy window at tobs/tvar∼ 1.2, the fitted value of β
drops dramatically.

Peak energy, Ep. Due to the smooth curvature of the Band
function, together with the low value of α, the fitted value of Ep
is always a factor of ∼2 lower than that of the input spectrum in
Run A. However, the general evolution is the same: with no
injection of new photons in the decoupling zone, Ep decreases
continuously across the pulse. The rate at which the peak
energy decreases stalls somewhat between tobs/tvar= 0.7 and
tobs/tvar= 1.2. The duration of the stalling is related to tE, with

higher values of tE corresponding to longer-lasting stalling (this
is true when the properties of the central engine are constant).
For Run B, the continued injection of photons in the

decoupling zone means that Ep increases from its initial value.
This spectral change is rapid enough to overcome the decrease
of the peak energy due to adiabatic cooling. The peak energy
starts decreasing at tobs/tvar∼ 1.33, which corresponds to line-
of-sight emission from the trailing parts of the slice at τf= 3.
When injection stops, adiabatic cooling starts to dominate and
the observed peak energy drops.
Low-energy spectral index, α. For both runs, the theoretical

and fitted values of α stay roughly constant throughout the
pulse. This implies that the Compton temperature in the
decoupling zone is not high enough for any visible upscattering
of the low-energy photons.
It is clear from the figure that the best-fit Band parameters

follow the theoretical estimates quite well, with the notable
exception of β in Run A. However, it is important to remember
that the fitted values obtained depend on the S/N, redshift,
energy window of the current detector, and spectral model used
in the fitting. Another key factor is that the duration of the pulse
in the observer frame must be longer than the chosen temporal
bin size. Otherwise, a time-resolved spectral analysis is
impossible.

5.3. Light Curve

In Figure 5, the observed light curves for the two pulses are
shown. The gray dashed line shows the bolometric light curve,
while the blue and red lines show the light curves in the Fermi
NaI (8–1000 keV) and the Fermi BGO (0.4–40MeV) energy
ranges, respectively. The pulse profile is asymmetric. The
duration of the rise time is related to the value of tE, with
smaller tE producing shorter rise times. Due to adiabatic
cooling of the comoving radiation, the BGO light curve
decreases quicker than the NaI light curve after the peak.
Apart from the light curve, we also plot the hardness as a

function of time. The hardness is calculated as the ratio of the
flux between 100 and 300 keV to the flux between 50 and
100 keV. The hardness evolution depends mostly on the
position of the peak energy. In Run A, the hardness decreases
continuously once the peak energy drops below 300 keV at
tobs/tvar∼ 0.25. In Run B, Ep remains much larger than
300 keV throughout the pulse. Thus, the hardness remains
constant after the first early evolution.
The light curve in Run A at very late times (tobs/tvar? 1) is

shown in Figure 6. In Figure 6, the light curve in the Swift-
XRT energy range (0.3–10 keV; Gehrels et al. 2004) is also
shown. When tobs/tvar? 1, the bolometric flux decreases as
Fbol∝ t−2, while the decrease of the peak energy stalls. These
results are in line with those presented in Pe’er & Ryde (2011).
The very-late-time light curve for Run B is qualitatively
similar.
The very-late-time behavior of the pulse is interesting with

regard to the early steep decay phase observed in X-rays in
many GRBs (Nousek et al. 2006). The evolutions of the
luminosity and peak energy in Figure 6 are quite similar to
those observed at the end of GRB pulses (Ronchini et al. 2021;
Tak et al. 2023). However, given the small values of tvar for
canonical GRB parameters, the early steep decay likely
requires a different explanation in photospheric models of
GRBs (Pe’er et al. 2006; Hascoët et al. 2012; Alamaa et al.
2024), unless Γ is small.
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6. Discussion

6.1. Assumptions

There are many simplifying assumptions in the current work.
In this section, we list a few of them and discuss how they may
affect our results.

6.1.1. Power-law-injected Spectrum

Simulations of GRB jets find that a lot of energy is dissipated
below the photosphere (Lazzati et al. 2009; Gottlieb et al.
2019). Several dissipation mechanisms are plausible and many
of them generate a power-law distribution of photons, e.g., bulk
Comptonization in a radiation-mediated shock (Ito et al. 2018;
Lundman et al. 2018; Samuelsson et al. 2022), shear
interactions in a structured jet (Ito et al. 2013; Vyas &
Pe’er 2023), pair cascades as a result of nuclear collisions
(Beloborodov 2010), and synchrotron emission from charged
particles accelerated at a collisionless subshock (Lundman &
Beloborodov 2019; Levinson 2020; Rudolph et al. 2024).

Thus, the choice of a power-law injection spectrum is
motivated.
However, the assumption of a power law that remains

constant in time as the jet evolves is a strong one. If high-
energy particles are present, as in the case of pair cascades and
synchrotron emission, inverse Compton scattering on the
charged particles can generate complicated radiation profiles
(Pe’er et al. 2005; Vurm et al. 2013). Highly relativistic
radiation-mediated shocks generate pairs and are subject to
Klein–Nishina effects (Ito et al. 2018; Lundman et al. 2018).
Furthermore, the injection is likely to evolve, specifically at
low optical depths (Levinson 2012).
In this paper, we have neglected a lot of physical complexity

in favor of a very simple model that more clearly highlights the
main points, which are the three spectral regimes at high optical
depths and the evolving observed signal. According to the
discussion in Section 3.3, the spectral regime of the radiation is
roughly determined during one single doubling of the radius,
across which the injection may be ∼constant. The two
examples in Figure 4 clearly show that the observed signal
evolves due to changes of the comoving radiation field. That
the observed signal is affected by the changing local radiation
in the jet is a general result. However, the details regarding how
the observed signal is going to evolve will depend on the
considered dissipation scenario. Thus, precise predictions for
each case require dedicated studies using physical models.

6.1.2. Other Assumptions

The photon distribution is modeled using the Kompaneets
Equation (8). However, at small optical depths, the radiation
field becomes increasingly anisotropic (Beloborodov 2011).
Equation (8) then overestimates the energy transfer between
photons and electrons (Vurm & Beloborodov 2016), which
leads to a quicker thermalization. If one accounts for this, the
high-energy power law in Run A would survive for a
longer time.
The interaction region was assumed to be devoid of photons

at optical depths τ> τi. As mentioned in Section 2.2, this
choice was inspired by the region downstream of a

Figure 6. Very-late-time light curve for Run A. Once tobs/tvar ? 1, the
bolometric flux decreases with time as t−2. After the light-curve peak, the peak
energy first decreases roughly as t−1. However, the decrease stalls around tobs/
tvar ∼ 100. Note that due to the different scales on the y-axes, the gray dashed
line indicating a t−2 decay is valid only for the flux.

Figure 5. Observed light curves for Run A (top) and Run B (bottom). The
dashed gray line shows the bolometric light curve, while the blue and red lines
show the light curves in the NaI and BGO energy bands, respectively. The
dotted–dashed line in the top (bottom) panel shows a scaled version of the light
curve in the BGO (NaI) energy band, to more clearly show the difference
between the two light curves. Due to adiabatic cooling, the BGO light curve
decreases more rapidly after the peak. The hardness as a function of time is
shown on the right y-axis.
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subphotospheric shock. However, in other dissipation scenar-
ios, the energized photons may exist in the same local region as
an initial thermal photon population at low temperature. The
thermal population would decrease the Compton temperature in
the interaction region, which in turn would increase the
parameter space for the slow and the marginally fast Compton
regimes. Such a situation may be interesting to investigate in a
future work.

We ignored Klein–Nishina suppression of the cross section.
However, this does not significantly affect the result. The
angle-integrated Klein–Nishina cross section is only lower by a
factor of ∼2 compared to the Thomson cross section at ò= 1.
Including the Klein–Nishina corrections, the highest-energy
photons would arrive earlier.

We assumed a constant Γ throughout the jet evolution. In
reality, the high internal energy could lead to a re-acceleration
of the plasma and a second fireball. If the outflow accelerates in
the decoupling zone, the radiation would suffer from greater
adiabatic losses. However, the increased Doppler boost would
cancel out this effect in the observer frame (Beloborodov 2013)
and the evolution of the peak energy would be the same. The
observed light curve would be slightly different compared to
that shown in Figure 5.

The spectra shown in Figure 3 are very “clean” compared to
the complicated radiation profiles found in several other works
(e.g., Pe’er et al. 2005; Vurm et al. 2013; Ahlgren et al. 2015).
The main reason is the lack of relativistic electrons in the
present work. Indeed, since the electrons are always kept at the
Compton temperature, and we assumed  1max  , the electrons
are always nonrelativistic. That  1max  also ensures that there
is no pair production. With relativistic electrons, the radiation
profile becomes more complicated due to inverse Compton
scattering creating bumps in the spectrum. However, relativistic
charged particles are difficult to produce below the photosphere
in GRBs (Levinson & Nakar 2020) and simpler spectral shapes
similar to the ones presented in Figure 3 are, therefore,
expected.

We assumed tE= tdyn. This is based on radial spreading of
the plasma, which causes even an originally infinitesimally thin
shell to have a width of δr∼ Rph/Γ

2 at the photosphere (e.g.,
Pe’er 2015). With an assumption of constant Γ, this causes a
perceived jet activity period of tE∼ tdyn. However, tE can be
both smaller and larger. If dissipation is due to a subphoto-
spheric shock, compression of the plasma would lead to
tE∼ tdyn/3 (Samuelsson & Ryde 2023). If the jet instead varies
on timescales that are much longer than tdyn, the pulse duration
would increase.

Finally, we assumed injection of high-energy photons up to
 = 1max . If  0.1max  , then no high-energy photons have time
to downscatter in the decoupling zone. In this case, observed
spectral evolution, apart from adiabatic cooling, requires
additional dissipation in the decoupling zone.

6.2. α – β Relation

The relation β= α – 1 is a theoretical prediction that applies
to radiation in the marginally fast Compton regime. Due to
adiabatic cooling in the comoving frame and the observed
signal being a superposition of many comoving spectra, this
relation is going to be approximate in the observer frame,
β≈ α – 1. The best chance of detecting it is at early times,
during the rise time of the pulse.

As mentioned in Section 3.1, the α – β relation is valid only
when αinj<−1. When αinj−1, the Compton temperature is
so high that the photon distribution in the interaction region
quickly forms a pronounced Wien peak around
ΘC7

7 This assumes that max is high. (indeed, Q »4 2C max
for the injected photon distribution when αinj=−1; see
Equation (10)).
Thus, a clear prediction is that the α− β relation should only

be observed when the detected low-energy slope is quite soft,
α−1. Bursts with harder α must be in the fast Compton
regime, in which case we expect a cutoff above the peak.7

There could still be some signature at higher energies above the
cutoff, as in the bottom panels of Figure 3. If such a feature is
detected, it would be a clear sign of Comptonization, as the
spectral shape in the bottom panels of Figure 3 is quite complex
and unique.
On the other hand, when the injection is very soft, αinj<−2,

the νFν peak corresponds to min (the top two panels in
Figure 3). In this scenario, one has an observed spectrum with a
very hard α, a low Ep, and a broken power law at high energies,
whose indices are related as β2= β1−1.

6.3. Early-time Spectra

During the pulse decay, emissions at different optical depths
and angles reach the observer simultaneously. In contrast, the
first observed photons are all emitted within the same local
region of the jet. The early-time spectrum is, therefore, the
spectrum that most resembles the comoving one, Doppler-
boosted into the observer frame. As such, it should be similar to
one of the typical spectra in the three Compton regimes in
Figure 3, given that dissipation has occurred at low optical
depths.
This part of the pulse can be very difficult to detect due to the

low count rate. However, if detected, it can give information
regarding the physical properties of the comoving radiation, the
dynamics of the jet, and the details of subphotospheric
dissipation. Furthermore, it allows for observation of the jet
at a radius of up to an order of magnitude smaller the
photospheric radius.

6.4. Pulse Duration

The observed duration is highly sensitive to the value of Γ
(see Equation (13)). The duration of the light curve shown for
Run A in Figure 5 is ∼1 s for the chosen parameters. If Γ is
increased to 300, the observed duration shrinks to only 5 ms, and
for Γ= 50 the duration is ∼40 s. Since the Lorentz factor also
scales the Doppler boost, pulses with shorter duration should
have higher peak energies on average, scaling as d µ -t Epobs

5.
Dereli-Bégué et al. (2022) suggested that GRBs that exhibit

an X-ray plateau may have low Lorentz factors, in the order of
a few tens. Therefore, this sample may be interesting to
investigate as the lower Lorentz factor can facilitate a time-
resolved analysis.

6.5. Dissipation Radius and Central Engine Activity

Imagine a scenario where most of the subphotospheric
energy dissipation takes place over a small distance, equal to

7 This is true in the current framework, when  1max  and with the current
model assumptions. It may not always be the case—see, e.g., Beloborodov
(2010) and Vyas & Pe’er (2023).
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one doubling of the radius or less. In this case,
Δτ= τi− τf£ τf. As long as αinj>−2 and  t> D1max ,
the comoving peak energy equals  [ ]t» Q Dmax 4 , 1p C at the
end of the dissipation zone (adiabatic cooling is small over one
doubling of the radius). Since 1/τf< 1/Δτ, all injected
photons have time to be downscattered before the ejecta
reaches the photosphere and the observed spectrum is well
described by a cutoff power-law function.

As long as 4ΘC is not much larger than 1/Δτ at τf, then τf
can be estimated from the peak energy of the observed cutoff
power-law spectrum as

⎡⎣⎢ ⎤⎦⎥( )
( ) ( )

t ~
G
+

» G +- -

z
m c

E

E z

2
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3 1
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e
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2 3 5

2
3 5

,2
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where we used Equation (7), a Doppler factor of 5Γ/3
(Samuelsson & Ryde 2023), and Ep,2= Ep/(100 keV). With a
measured value of tvar from the light curve, the final dissipation
radius can be estimated as Rf= 2cΓ2tvar/(1+ z)τf, where we
used Rf= Rph/τf and Equation (13).

If the dissipation is due to an internal collision, the final
dissipation radius is related to the central engine duration Δteng
as Rf≈ 2cΓ2Δteng/ψ, where ψ, equal to the ratio of the Lorentz
factors of the fast- and slow-moving materials, is of the order a
few.8 Then the central engine duration can be estimated from
the observables as

( )
( )y

t
D ~

+
t

t
z1

, 16
f

eng
var

where τf is given by Equation (15).

6.6. Comparison to Shock Breakout Emission

Shock breakout is a likely explanation for the emission in
low-luminosity GRBs and for the prompt emission in GRB
170817 (e.g., Campana et al. 2006; Waxman et al. 2007; Nakar
& Sari 2012; Bromberg et al. 2018; Gottlieb et al. 2018;
Beloborodov et al. 2020). Lundman & Beloborodov (2021)
simulated the time-resolved observations from the shock
breakout in GRB 170817 using a hydrodynamic code coupled
to Monte Carlo photons (radshock; Lundman et al. 2018).
They also find a time-resolved spectrum whose shape evolves
with time. However, the evolution is quite different compared
to the two runs studied in this work.

There are at least two reasons for the different evolution.
First, their injection is very hard, leading to Q4 C max , in
which case the high-energy signature is indistinguishable from
the cutoff. Second, the dissipation is dynamic. The shock
travels in a speed gradient within the dynamical neutron star
ejecta and speeds up once it gets close to breakout, which
modifies the dissipation.

7. Conclusion

In this paper, we have studied how the evolution of the
comoving radiation in the region of last scattering in an
optically thick relativistic jet affects the time-resolved observed
spectrum. As photons leave the plasma over a range of optical

depths (Figure 1), the average photon experiences multiple
interactions within the decoupling zone. The photons that
decouple at high optical depths are the first to reach the
observer. We may therefore expect an evolving observed signal
if dissipation or significant thermalization occurs in the
decoupling zone.
To model the energy dissipation, we assumed a simple

injection of a power-law photon spectrum across a range of
optical depths (the injection zone; see Figure 2). All photons
were accumulated in an interaction region, where they were
allowed to interact with the local plasma. No other photons
apart from those injected existed in the interaction region. We
assumed that the photons vastly outnumbered the electrons,
such that the electrons were always kept in a thermal
distribution at the Compton temperature, ΘC. In this case, we
found that the radiation at high optical depths exists in one of
three different characteristic regimes, depending on the value of
4ΘCΔτ, where Δτ is the duration of the injection.
In the slow Compton regime (4ΘCΔτ< 1) and the margin-

ally fast Compton regime (4ΘCΔτ∼ 1), the spectrum consists
of two power laws. Low-energy photons, ò< 1/Δτ, do not
have time to be significantly affected by Compton scattering.
Thus, the slope of the low-energy power law coincides with the
slope of the injected spectrum, αinj. In contrast, the high-energy
photons lose energy efficiently to the electrons, generating a
high-energy power law with index αinj− 1. In the fast
Compton regime, photons pile up around 4ΘC. The different
spectral shapes in the three regimes are given in Figure 3.
The photon distribution in the interaction region was tracked

from the onset of injection to far beyond the photosphere,
accounting for thermalization and adiabatic cooling. The
observed signal as a function of time was obtained via
Equation (A6), which correctly accounts for the probability of
emission at various optical depths and angles to the line of
sight. We focused on a thin slice of the jet, whose emission
created an observed pulse of typical duration d ~tobs

( )= + G-t z L0.2 s 1var 53 2
5. A complex GRB light curve would

consist of many such subpulses. We assumed spherical
symmetry and a bulk Lorentz factor Γ? 1.
The evolution of the observed signal across the pulse

depends on the comoving photon distribution in the decoupling
zone, and we classified three different scenarios. In the case of
no dissipation and no high-energy photons (comoving energies
100 keV), the observed spectral shape is constant, but the
whole spectrum decreases in energy by a factor of ∼7 across
the pulse due to adiabatic cooling. In the case of no dissipation
but high-energy photons, the high-energy photons have time to
downscatter within the decoupling zone. This leads to a
spectral softening of the high-energy index, which is most
pronounced during the rise time of the pulse. This scenario is
shown in the two top panels in Figure 4. In the case of
additional dissipation within the decoupling zone, the observed
signal depends on the nature of the dissipation. One such
example is shown in the two bottom panels in Figure 4.
Finally, we discussed the importance of early-time spectra.

The early spectra consist only of photons originating from the
same local region within the jet and they are emitted at a fairly
high optical depth, τ∼ 10. If the comoving radiation is in the
marginally fast Compton regime at this time, one obtains a
relation between the high- and low-energy spectral indices as
β≈ α− 1. These early spectra require bright GRBs to be seen.
However, they would be highly illuminating if detected, since

8 This estimate assumes that the comoving densities in the fast and slow
moving material are roughly equal (Samuelsson et al. 2022).
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they can give us valuable insights into the jet behavior before it
becomes optically thin.
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Appendix
Obtaining the Observed Signal

To obtain the time-resolved observed spectrum, two things
are needed. The first is the probability distribution for any
given photon to escape the outflow as a function of optical
depth and angle. In a spherically symmetric, ultrarelativistic
outflow, this is given by Equation (1). The second is the
comoving specific photon number density at each point in
space and time,  . Under the assumption of spherical
symmetry, the photon density is assumed only to vary with
optical depth and time, i.e.,    ( )t= t, .

A.1. Comoving Photon Distribution

If there is no dissipation and no high-energy photons in the
decoupling zone, the photon distribution is only affected by
adiabatic cooling. In this case, it is enough to know the spectral
shape at a single optical depth and how the spectrum is affected
by adiabatic cooling as a function of τ to obtain  . This is the
special case implicitly assumed in Samuelsson & Ryde (2023).
In Samuelsson & Ryde (2023), the photon distribution as a
function of optical depth was obtained using the spectrum at
the photosphere, ph, together with the photon-cooling
function given in Equation (3).

To obtain the photon distribution as a function of optical
depth in the general case, including the effects of scatterings
and potential dissipation, it is necessary to track  during the
jet evolution. The modeling of the photon distribution is done
as in Section 3.4. The distribution is followed from the onset of
the injection zone until well above the photosphere and
snapshot spectra are saved at even intervals.

Equation (8) assumes an ideal adiabatic cooling ∝ r−2/3.
However, the cooling changes close to the photosphere once
photons start to decouple. To account for this, we stop the
idealized cooling at τcool= 1.23/2 (see Equation (3) and the
discussion in Samuelsson & Ryde 2023). This prescription
gives the correct average energy at the photosphere. However,
it slightly overestimates the amount of cooling experienced
when τ 1 and slightly underestimates it when τ 1. To
correct for this, the energy grid in each saved snapshot is
shifted such that the mean photon energy ̄ ( )t is given by

⎧⎨⎩






¯ ( )
¯ ( ) ( )

¯ ( ) ( )
( )

( )t
t f t t t

t
f t

t t
t t=
>

if ,

if ,
A1

cool

cool
2 3 cool



where  ¯ ( )t is the mean photon energy in the snapshot before
the shift. This gives a very small correction to the observed
signal.

A.2. Observed Flux

Consider a relativistic outflow consisting of many thin
consecutive shells. We assume that each of the embedded
shells acts independently and focus on one specific shell with a
total number of photons, Nγ. The observed photon number
originating from a volume element dV relates to the emitted
photon number as (Pe’er & Ryde 2011; Lundman et al. 2013)

( ) ( ) ( )
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d
N f V dV

1 1
, .
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2
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2

Here, dl is the luminosity distance to the source, WdN d vem is
the emitted photon number into a solid angle dΩv,
 [ ( )] ( )bm bm= G - = G + ¢-1 11 is the Doppler factor, and

( )W ¢f V , v is the probability function for an arbitrary volume
element and viewing angle. The term ( )+ z1 2 is the correction
for redshift, which is necessary to include, since we are using
the luminosity distance but the equation is for the photon
number. The term 2 in the second equality comes from the
solid viewing angle transformation W = W ¢d dv v

2. For a
spherically symmetric outflow, this simplifies to

( ) ( ) ( )
p

t m t m=
+

¢ ¢gdN
N z

d
f d d

1

4
, . A3

l
obs

2

2

A photon that makes its last scattering at a time t, radius r,
and angle μ compared to the radial direction reaches the
observer at a time ˜ ( ) ( )m+ = + -t z t D r c1obs . Here, D is
the distance to the source, which is slightly different compared
to the luminosity distance dl. Since the arrival times for all
photons are delayed by a factor (1+ z)D/c, we define a new
observer time as ˜ ( )= - +t t z D c1obs obs . With this defini-
tion, a photon emitted at a time t= 0 s directly from the central
engine (r= 0 cm) would reach the observer at tobs= 0 s (such a
photon is called the trigger photon in Pe’er 2008).
If we assume that all photons in the shell that decouple

between an optical depth τ and τ+ dτ do so instantaneously
when the shell reaches the optical depth τ, then the time
dependence can be described by a Dirac δ-function. A shell that
was launched from the central engine at a time te and that
travels with a velocity v reaches an optical depth τ at time
t= te+ Rph/τv, where we used τ= Rph/r. Using this, and the
fact that ( ) [ ( )]bm bm- = G + ¢ -1 12 1, one obtains

⎜ ⎟⎛⎝ ⎞⎠
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e
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The total spectral flux in the observer frame from the shell,
Fò(tobs), is obtained by multiplying the above formula with
 ¢ ¢ and integrating over the entire emitting volume. Here,
  ( )¢ = + z1 is the photon energy as measured in the
comoving frame. Note that the term ( )m t m¢gN f r d d, already
ensures a correct number of decoupling photons. Therefore, 
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should be a probability distribution, normalized as
ò ¢ =¢d 1.

Putting it all together, and inserting Nγ from Section A.5, we
obtain the observed flux from a series of multiple consecutive
shells emitted between te= 0 s and t= tE, assuming spherical
symmetry as

⎜ ⎟⎛⎝ ⎞⎠ 
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where k is the Boltzmann constant and ¢T 0 and Γ0 are the
temperature (given in Equation (A12)) and Lorentz factor at the
base of the jet, respectively.

A.3. Steady Source

A detailed study regarding the time-resolved observed signal
for different jet emission profiles—i.e., different functional
shapes for, e.g., L(te) and Γ(te)—was performed by Meng et al.
(2019). Here, we make the simplifying assumption that the jet
properties do not vary in time. We further assume that the
steady jet properties lead to a comoving spectrum,  , that is
steady in time, such that    ( )t= .

When the central object is a steady source, the coefficient
¢ GL kT4 0 0 in Equation (A5) can be evaluated outside the

integral. Note that even in this case, one still needs to perform
the integral over dte because of its dependence in the δ-
function. Using the δ-function to remove the integral over dte,
one obtains
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where te,δ is the value of te that satisfies the δ-function in
Equation (A5):
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In Equation (A6), H is the Heaviside step function, which
implies that
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The Heaviside functions are included so that only regions
emitted during the jet activity time contribute to the observed
flux. Note that Equation (A6) is only valid when L and Γ are
constant in time, otherwise there will be extra terms when the
δ-function is used to remove the integral over te.

A.4. Raylease

Raylease is the name of the numerical code used to obtain
the observed time-resolved signal. Raylease takes as input
L(te), Γ(te), and  ( )t t, e and gives as output Fò(tobs), by
solving Equation (A5). One also needs to specify R0 and Γ0,
which in principle could be functions of te as well. In the
simplified case of constant jet properties considered in this
paper, Raylease solves Equation (A6) for specified values of

L, Γ, R0, Γ0, and  ( )t . As the photon distribution is
unspecified before injection begins in the current framework,
the upper limit in the integral over the optical depth in
Equation (A6) is set to τi.
Currently, Raylease assumes a spherically symmetric jet,

but it can quite easily be extended to include jet structure and
an arbitrary viewing angle in the future.

A.5. Photon Number in an Infinitesimal Shell

This section derives the number of photons in each unit solid
angle. The derivation assumes that the net diffusion between
different solid angles is negligible. The subscript “0” used
throughout this section implies that the quantity is measured at
the base of the jet, where the internal pressure starts efficient
bulk acceleration. For the derivation in this section, the Lorentz
factor Γ is allowed to vary with radius.
The number of photons per unit solid angle in an

infinitesimally thin shell is given by

( )
W

=
W

g gdN

d

dN

d
dt . A9e

Assuming a negligible photon production once bulk accelera-
tion of the outflow begins (see below), the number of photons
follows the conservation of particle number as

= ¢ G Wg gdN n r d dr2 , which gives bW = ¢ Gg gdN d n r c2 , where
βc= dr/dt. Similarly, we obtain bW = ¢ GdM d m n r cp p

2 ,
where ¢n p is the baryon number density, which is assumed to
be dominated by protons.
Define the specific entropy per baryon, η(Ω), such that

( )hW = W WdL d c dM d2 , where dL/dΩ is the outflow power
per unit solid angle. The specific enthalpy, ¢h , and the Lorentz
factor, Γ, both of which vary with radius, have a product that is
independent of radius, as h¢G =h (e.g., Levinson &
Nakar 2020). At the base of the jet, the Lorentz factor is small
and the entropy is dominated by the pressure from the radiation
and the pairs ¢ » ¢/h p n m c4 p p0 0 ,0

2, where p0 is the total
pressure. Assuming a thermal equilibrium between the pairs
and the radiation, such that they can be described by a common
temperature ¢T 0, the pressure is given by » ¢ ¢p n kTq0 ,0 0, where
¢ = ¢ + ¢g n n n2q,0 ,0 ,0 is the photon plus pair density. As the
temperature drops, the pairs all recombine until ¢ = ¢gn nq .
Assuming that recombination is the only source of photon
production after the early hot phase, the ratio ¢ ¢n nq p is
conserved along streamlines and equal to ¢ ¢n nq p,0 ,0. Hence, we
get
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which gives
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Given that pairs and radiation are in thermodynamic
equilibrium at the base of the jet, ( )¢ WT 0 is given by
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(Levinson & Nakar 2020)
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