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ABSTRACT 13 

Plasmids are so closely associated with pathogens and antibiotic resistance that their potential 14 

for conferring other traits is often overlooked. Few studies consider how the full suite of traits 15 

encoded by plasmids is related to a host’s environmental adaptation, particularly for gram-16 

positive bacteria. To investigate the role that plasmid traits might play in microbial communities 17 

from natural ecosystems, we identified plasmids carried by isolates of Curtobacterium (phylum 18 

Actinomycetota) from a variety of soil environments. We found that plasmids were common, but 19 

not ubiquitous, in the genus and varied greatly in their size and genetic diversity. There was little 20 

evidence of phylogenetic conservation among Curtobacterium plasmids even for closely-related 21 

bacterial strains within the same ecotype, indicating that horizontal transmission of plasmids is 22 

common. The plasmids carried a wide diversity of traits that were not a random subset of the 23 

host chromosome. Further, the composition of these plasmid traits was associated with the 24 

environmental context of the host bacterium. Together, the results indicate that plasmids 25 

contribute substantially to the microdiversity of a soil bacterium and that this diversity may play 26 

a role in niche differentiation and a bacterium’s adaptation to its local environment. 27 
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A high degree of genetic variation is encompassed within traditional operational 32 

taxonomic units (OTUs) of bacteria [1]. This so-called microdiversity encompasses an enormous 33 

amount of variability in traits that influence a bacterium’s ecological role and its contributions to 34 

community functioning [2–4]. Plasmids may contribute to this microdiversity as they can encode 35 

a diversity of traits [5] that may allow a bacterium to adapt rapidly to environmental changes [6]. 36 

The most striking examples of this are the transfer of metal and antibiotic resistance, particularly 37 

in the human gut microbiome and clinical environments [7–10]. Beyond toxin resistance, 38 

however, evidence of the importance of plasmids to broader niche-adaptation is sporadic [11, 12] 39 

Most of what we currently know is based on a handful of well represented genera (e.g., Vibrio, 40 

Pseudomonas, and Burkholdaria) within the phylum Pseudomonadota (e.g., reference [13]) and 41 

few studies consider gram-positive bacteria (e.g., reference [14]) but see, Finks and Martiny, 42 

2023 [5]. 43 

A general understanding of plasmid evolution, the diversity of traits that they carry, and 44 

their importance for adaptation in most bacterial communities thus remains elusive [5, 15]. To 45 

investigate these unknowns in a soil bacterium, we focused on the widespread genus 46 

Curtobacterium [16] for which we have isolated a number of closely-related strains from the top 47 

layer of soil (plant litter) in different environments. Curtobacterium strains associated with plant 48 

disease can carry plasmids encoding for putative virulence encoded genes [17]. However, 49 

plasmid prevalence and diversity for this genus, as in other soil bacteria, is largely 50 

uncharacterized.  51 

Plasmids can mobilize across broad bacterial host ranges [18], interact with other types of 52 

mobile genetic elements [19], and recombine with their hosts [20]. We thus expected that 53 

Curtobacterium plasmids would also be subject to a high degree of mobility and recombination. 54 
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However, plasmids are also vertically transmitted to daughter cells during host cell replication 55 

such that, at some level of genetic resolution, they will be phylogenetically conserved. Thus, 56 

plasmids might be conserved within Curtobacterium ecotypes, previously defined as genetic 57 

clades with similar phenotypes that are adapted to local environmental conditions including 58 

temperature and moisture [21]. Alternatively, selection might act on plasmids separately from 59 

that of an ecotype’s chromosome such that plasmid traits vary by environment rather than host 60 

phylogeny. To test these alternatives, here we asked: (1) Are plasmids within the Curtobacterium 61 

genus phylogenetically conserved? (2) What traits do the plasmids encode and how do these 62 

compare to the chromosome? (3) Are plasmid traits correlated with the environment from which 63 

they were isolated?  64 

Long-read sequencing of 23 strains and additional reference genomes resulted in analysis 65 

of 26 putative plasmids from 18 Curtobacterium strains (Figure 1; Supplemental Methods). 66 

Three lines of evidence suggest that these sequences are indeed plasmids. First, the average 67 

plasmid GC content was approximately 7% lower relative to the host chromosomes (Figure 1D). 68 

Second, the topology (usually circular) and replicon sizes (smaller than the chromosome) of the 69 

sequences are well-known signatures of plasmids [22, 23]. Third, all but one plasmid (pD03b) 70 

carried some kind of plasmid feature. Interestingly, two plasmids of strain P990 showed % GC 71 

contents that were half that of other plasmids (32.3 % and 35.3 % versus ~ 67 %; Table S1), 72 

suggesting more recent acquisition of these mobile genetic elements. Approximately half of the 73 

plasmid sequences encoded genes for known plasmid replicon types (RepA-type, n=4; Table S6) 74 

or MOB relaxases (MOBF or MOBP, n=12; Table S7). In addition, some plasmids carried genes 75 

necessary for conjugative, cell-to-cell DNA transfer (e.g., trwC) and for partitioning to daughter 76 

cells during host replication and division (e.g., parA/B/G; Figure S1). Based on sequencing 77 
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coverage, most plasmids appeared to be present in single copies, whereas some smaller ones 78 

were present in high-copy numbers (Table S1). None of the Curtobacterium plasmid sequences 79 

grouped into known plasmid taxonomic units (PTUs), although this is not surprising given the 80 

low representation of Actinomycetota in databases (Supplementary Methods [18, 24]). 81 

Plasmids were common among Curtobacterium strains, but their distribution across the 82 

phylogeny was not random. Plasmids were notably absent from ecotype IV and very common in 83 

ecotype I (Figure 1A). That said, plasmid size varied greatly even within clades (1.5 – 607 kb, 84 

mean=136 kb), supporting the idea that plasmids are not phylogenetically conserved in this 85 

genus (Figure 1C). Indeed, genetic (mash) similarity of the plasmids was not correlated with the 86 

genetic similarity of the host chromosomes (Figure 1B; RELATE: r = 0.28; P = 0.08).  87 

Curtobacterium plasmids encoded more than 4,000 gene calls that clustered into 2,396 88 

distinct orthologous groups (Figure S1). Despite making up only 3% of the gene content of the 89 

entire dataset, this genetic diversity spanned 22 COG functional categories. Based on whole 90 

genome alignments, Curtobacterium plasmids did not appear to share a conserved backbone, 91 

such as is commonly observed for some IncF type plasmids found in Enterobacteriaceae [25]. 92 

Only one gene, lsr2 (a putative histone-like protein), was shared by 38% of the 26 plasmids, 93 

whereas most other genes were shared by fewer than 3 plasmids (Figure S1). BlastP searches of 94 

consensus amino acid sequence alignments of Lsr2 against the NCBI Reference Proteins 95 

(refseq_protein) database reveals this small protein (~12 kDa) is ubiquitous throughout the 96 

genus. In M. smegmatis, this protein appears to be involved in the biosynthesis of mycolyl-97 

diacylglycerols, an apolar lipid in the cell wall, as well as a DNA-binding function having a 98 

transcriptional regulatory role [26–28]. 99 
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The Curtobacterium plasmids encoded a diversity of traits that were not a random subset 100 

of chromosomal traits (G (21) = 1203.2, P < 0.001; Figure 2A). Not surprisingly, genes 101 

associated with the mobilome, prophages and transposons (X) were relatively more prevalent on 102 

plasmids than the chromosome, but other functions including those associated with cell motility 103 

(N) were relatively more abundant on plasmids than on chromosomes (Figure 2B). Conversely, 104 

carbohydrate transport and metabolism functions (G) were more prevalent on Curtobacterium 105 

chromosomes than plasmids. Given their role in soil carbon cycling, it is notable that 11 106 

plasmids carried 46 CAZyme (carbohydrate active enzyme) genes (Table S9; Figure S2A), and 107 

in more than half of these cases, the CAZyme family was not present on the associated host 108 

chromosome. We also identified two genes encoding nitrate assimilation (narB) on a plasmid 109 

(Figure S2B). 110 

Finally, plasmid trait composition differed significantly by the environment from which 111 

the host was isolated, explaining ~14% of variation in COG functional categories 112 

(PERMANOVA: Pseudo-F (7): 1.424, P = 0.042). For instance, plasmids isolated from grassland 113 

and alpine environments encoded a higher prevalence of carbohydrate transport and metabolism 114 

(G) genes, whereas those isolated from two arid environments (Desert and Salton-Sea), encoded 115 

a relatively high number of genes associated with cell motility (N) and translation, ribosomal 116 

structure and biogenesis (J) (Figure 2B).  117 

Our results indicate that plasmids contribute substantially to the microdiversity of 118 

Curtobacterium and that this diversity may play a role in its adaptation to the local environment. 119 

Horizontal transfer appeared to break up any signal of vertical transmission of plasmids, even 120 

within Curtobacterium ecotypes. However, only about half the plasmids encoded for genes 121 

known to facilitate mobility from one bacterium to another. This result is similar to that of 122 
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marine Vibrio spp., where plasmids also appear to spread rapidly by horizontal gene transfer, 123 

many by unknown mechanisms [29]. 124 

This work also highlights the paucity in knowledge about which plasmid traits will be 125 

favored in natural ecosystems. Models investigating the evolutionary mechanisms that sustain 126 

plasmid diversity suggest that they should encode traits, like antibiotic resistance, that are widely 127 

beneficial to many bacterial species and come under relatively strong selection [30]. Future 128 

investigations into how, when, and where plasmid traits such as cell motility provide soil bacteria 129 

with an advantage would provide a more in-depth understanding of the eco-evolutionary role of 130 

these mobile genetic elements in soil. 131 

 132 

DATA AVAILABILTY 133 
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FIGURE LEGENDS 234 

Figure 1. Curtobacterium plasmids by host ecotype and their genetic similarity, size 235 

distribution, and GC content. (A) Cladogram of complete chromosomes of Curtobacterium 236 

constructed from a phylogenomic analysis of 916 single-copy core genes. All branches displayed 237 

represent bootstrap values of 95% confidence or greater. Bolded values next to strain identifiers 238 

are nucleotide lengths of plasmids in bp. The branches are colored by ecotype designation with 239 

adjacent color tiles indicating the environment from which the strain was isolated. Note: asterisks 240 

indicate the two plasmids in host P990 with relatively lower % GC content (see panel D) 241 

compared to the others (B) Heatmap of plasmids constructed from mash pairwise similarities. 242 

The strain identifiers are listed by row and the plasmid identifier (Table S1) as columns. The 243 

color tiles beside the row labels indicate the environment as in panel A. (C) The frequency of 244 

plasmid sizes in kilobases across all strains, where the x-axis is the lower bound of each 25kB 245 

bin. (D) Percent GC content for each plasmid and its corresponding chromosome. 246 

 247 

Figure 2. Curtobacterium plasmid COG functions are distinct from chromosomal functions 248 

and vary by environment. (A) Percentages (Log10 scaled) of COG functional category counts 249 

of the Curtobacterium plasmids (top) and chromosome (bottom) sequences. The total number of 250 

COG functions identified on Curtobacterium plasmids and chromosomes are shown in 251 

parentheses. No COG functions for category Z were identified on the plasmids, and plasmids 252 

pCff2, pCff3, and pD03b are not included as no COG functions were identified. (B) Normalized 253 

frequencies of COG categories encoded by the plasmids by environment. The counts of COG 254 

functions were first converted into proportional abundances within an environment after removal 255 

of COG functions (n = < 6), and COG counts were then normalized across environments using 256 
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Z-scores to standardize for uneven representation of plasmids across environments. C - Energy 257 

production and conversion; D - Cell cycle control, cell division, chromosome partitioning; E - 258 

Amino acid transport and metabolism; F - Nucleotide transport and metabolism; G - 259 

Carbohydrate transport and metabolism; H - Coenzyme transport and metabolism; I - Lipid 260 

transport and metabolism; J - Translation, ribosomal structure and biogenesis; K – Transcription; 261 

L - Replication, recombination and repair; M - Cell wall/membrane/envelope biogenesis; N - 262 

Cell motility; O - Posttranslational modification, protein turnover, chaperones; P - Inorganic ion 263 

transport and metabolism; Q - Secondary metabolites biosynthesis, transport and catabolism; R - 264 

General function; S - Unknown function; T - Signal transduction mechanisms; U - Intracellular 265 

trafficking, secretion, and vesicular transport; V - Defense mechanisms; X - Mobilome: 266 

prophages, transposons.  267 
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SUPPLEMENTAL METHODS  

Culture collection and reference genomes. We long-read sequenced 23 Curtobacterium 

strains from our culture collection that were obtained from senescent plant litter (the top 0-5 cm 

of soil) along an elevation gradient in Southern California. The strains were stored in 25% v/v 

glycerol at -80 ºC and had been previously sequenced on an Illumina platform [1–3]. In addition, 

we retrieved 14 complete plasmid sequences (and associated host chromosomes) representing 

diverse Curtobacterium spp. hosts that were deposited in NCBI GenBank and RefSeq databases 

on March 31, 2022. The search criteria we used included: ‘Curtobacterium’ and ‘Plasmid’ or 

‘Chromosome’. In total, we include 39 Curtobacterium genomes in our analyses (Table S1). 

Notably, several attempts were made to isolate plasmids from several strains in our culture 

collection using Qiagen® Plasmid Maxi Kit (Qiagen, Hilden, Germany) and ZymoPURE™ II 

Plasmid Midiprep Kit (Zymo Research, Irvine, CA, USA), and custom protocols designed to 

extract plasmid DNA from gram-positive taxa. However, these approaches missed many of the 

plasmids that the long read sequencing revealed, presumably because larger plasmids and those 

with low copy numbers can evade detection with traditional approaches. 

DNA preparation and sequencing. Cultures were revived from glycerol stocks, and 

DNA extractions performed using the Qiagen Blood and Cell Culture DNA Mini Kit (Qiagen, 

Hilden, Germany). The DNA extraction generated high molecular weight gDNA (> 60 ng), free 

of small DNA contamination, which was suited for sequencing on Oxford Nanopore 

Technologies (ONT) platform. DNA quality was assessed via Nanodrop (Thermo Fisher; 

Massachusetts, USA) and quantified by Qubit (BioTek; Vermont, USA). ONT sequencing 

libraries were prepared with Ligation Sequencing Kit V14 with Native barcoding (Oxford 

Nanopore Technologies; Oxford, UK), multiplexed, and run on three different MinION devices 
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with R9.4.1 flow cells by The SeqCenter Team, formerly known as The Microbial Genome 

Sequencing Center (Pennsylvania, USA), generating 300 Mbp per isolate. Basecalls of the raw 

nanopore reads were performed using Guppy v5.0.16. 

Sequence assemblies. De novo ‘hybrid’ assemblies of ONT and Illumina sequenced 

Curtobacterium strains were performed with quality checked short and long reads using the 

default settings of Unicycler version 0.4.8 [4]. Prior to assembly, quality checks for both ONT 

and Illumina sequencing data were checked using FastQC version 0.11.9 and reports compiled 

using MultiQC version 1.9 [5]. For ONT generated reads, low quality (PRED < 8), adaptor, and 

chimeric sequences were removed using Porechop version 0.2.4 along with sequences < 2 kbp in 

length per previously described methods [6]. For Illumina generated reads, low quality (PHRED 

< 30), adapter, and PhiX sequences were removed using FastP version 0.20.0 [7]. The read 

quality for both ONT and Illumina quality filtered reads were reassessed with FastQC and 

MultiQC. A ‘hybrid’ assembly (combining long and short read sequencing data) approach was 

used to obtain complete replicon assemblies, as many long reads can exceed the length of repeats 

in bacterial genomes, which are also a characteristic of many types of MGE, and short reads can 

improve accuracy of detecting plasmids in WGS data [6]. Notably, for the Scrubland-52 (W52) 

and Pine-Oak-43 (P43) genomes, these hybrid assemblies failed, and long-read only assemblies 

using Trycycler v0.5.3 was performed along with a final polishing step using Medaka version 

1.6.0 [8]. All assembly graphs were assessed using Bandage version 0.8.1 [9], and completeness 

of genome assemblies (e.g., contiguity, N50, and %GC) determined using the web interface of 

Quast [10].  

Phylogenomic analysis. To determine the similarity of NCBI retrieved plasmid and 

chromosomes sequences to previously described ecotypes (genetic clades with similar 
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phenotypes that are adapted to local environmental conditions including temperature and 

moisture) of Curtobacterium [1] from our culture collection, reference sequences were imported 

into Anvi’o version 7.0 [11]. First, 916 single-copy core genes within chromosomes sequences 

were identified, concatenated, and nucleotide positions that were gap characters in more than 

50% of the sequences removed using trimAl version 1.4.1. Next, IQ-TREE [12, 13] with the 

‘WAG’ [14] general matrix model was used to construct a maximum likelihood tree, which was 

visualized using iTOL version 5 [15]. Except for three strains (AA3, BH2-1-1 and W02), the 

Curtobacterium strains in this study fell within five previously described ecotypes (based on 

clade designations).  

Putative plasmids were identified as closed, circular sequences that were distinct from the 

chromosome (those having similar percent GC content to known Curtobacterium plasmids). No 

genes were conserved across all plasmid sequences, and the nucleotide lengths of putative 

plasmids varied significantly. Therefore, pairwise estimates of plasmid similarities were 

calculated using Mash version 2.3 [16, 17]. The parameters for calculating mash distances were 

as follows: K-mer = 21 and minimum-hashes per sketch = 1000 (Table S2 and S3). This 

comparison method was chosen because it allows for the similarity of the original sequences to 

be rapidly estimated with a bounded error. It depends only on the size of the sketch (i.e., the 

mash similarities are independent of the genome sizes) and is strongly correlated with ANI [16]. 

Mash distances for chromosomal sequences were also calculated using the same approach as for 

plasmids (Table S2). To evaluate whether putative plasmids of Curtobacterium grouped into 

known plasmid taxonomic units (380 PTUs constructed from 9,894 plasmid sequences from a 

curated reference database - RefSeq84), the web version of COPLA was used [18]. To 

investigate whether any of the plasmids shared conserved backbone region as is common with 
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other types of plasmids [19], whole genome alignments were performed using Mauve v1.1.3 [20] 

with a seed weight set to 15 and minimum LCB score of 30,000.  

Trait analyses. To determine the trait content of chromosomes and plasmids, gene calls 

were made in Anvi’o using Prodigal version 2.6.3 [21] and searched against the COG20 

(Clusters of Orthologous Groups of genes/proteins) [22] and Pfam version 33.1 [23] databases 

via DIAMOND v0.9.14 [24] in sensitive mode (Tables S4 and S5). Putative plasmid replicases 

(used in plasmid replicon typing/incompatibility grouping) were identified from hits to the Pfam 

databases (Table S6). Clustering analysis of plasmid and chromosome amino acid sequence 

similarities were performed in Anvi’o using the MCL algorithm [25], under the following 

parameters: exclude partial gene calls, minimum gene cluster occurrence = 1, and default settings 

for minbit heuristic and MCL inflation parameter. Gene clusters for plasmid and chromosome 

replicons, visualized via the anvio-display-pan feature of the interactive interface. All COG 

functions, Pfam hits, and corresponding gene calls were exported as tables from Anvi’o and 

merged into one data table before importing into R version 4.2.2 [26] for statistical analysis. To 

determine the potential for plasmids to be mobilizable, sequences were searched for MOB family 

relaxases, enzymes essential for conjugative DNA processing [27] using MobScan (Table S7) 

[28]. 

Additionally, chromosome and plasmid sequences were analyzed for genes involved in 

carbohydrate and nitrogen utilization. To identify carbohydrate active enzymes (CAZymes), we 

used run_dbcan 4.0.0 and dbCAN2 databases released in 2022 [29]. Query matches were 

included if two or more of the three search tools (HMMER, DIAMOND, Hotpep) identified the 

same CAZyme family annotation per the developer’s recommendation [29]. Query results were 

included in analyses for HMMER searches of dbCAN and dbCAN-sub with E-values < 1e-15 
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and coverage > 0.35; and for DIAMOND searches of the CAZy database with E-value < 1e-102 

(Tables S8 and S9). To identify genes associated with nitrogen-cycling pathways, BLASTp 

searches of queries against a curated database of nitrogen (N) gene families, the NCycDB release 

2019 [30] at 100% sequence identity were performed and gene calls having E-values 10-5 and > 

50 % query coverages were included in the analyses (Tables S10).  

Statistical analysis. To determine whether the pairwise similarities for plasmid and 

chromosome sequences varied by ecotype and/or environment type, similarity matrices for each 

sequence type were tested separately via permutational multivariate analysis of variance 

(PERMANOVA; permutations n = 999 with unrestricted permutations of raw data using type III 

sums of squares) in PRIMER-e version 6 [31, 32] with ecotype and/or environment designated as 

fixed factors. Distance-based tests for homogeneity of multivariate dispersions were also 

performed using the PERMDISP function in PRIMER-e, grouping by either ecotype or 

environment. To account for sampling biases for rare ecotypes (i.e., Curtobacterium 

chromosomes outside ecotype/clade I or V; Table S1) and environments (i.e., Curtobacterium 

isolated from algae or unknown origins; Table S1), the number of plasmids/chromosomes by 

category were grouped together into an ‘Other’ category. The estimated variance explained was 

determined by dividing terms with significant p-values plus the residual variation by the sum of 

the estimates of components of variation given as output from PRIMER-e. To test whether 

plasmids and chromosome genetic similarities varied similarly by ecotype and environment, a 

RELATE test [32] using Spearman correlation was performed in PRIMER-e.  

To determine whether the COG and CAZyme composition of plasmid and chromosomes 

varied by ecotype and/or environment type, euclidean distances were calculated from COG and 

CAZyme counts using the vegdist function of the ‘vegan’ package in R [33], and PERMANOVA 
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and RELATE tests performed as previously mentioned. Heatmaps for plasmid pairwise 

similarities and COG traits were passed to the heatmap.2 function of the ‘gplots’ package 

(https://github.com/talgalili/gplots) in R for visualization. Plasmid sequences and alignments 

were visualized and annotated in Geneious Prime® 2023.2.1, Build 2023-07-20 

(https://www.geneious.com). Additional, G-tests were performed on contingency tables of non-

standardize trait counts with rare traits (traits counts < 6 across all environments) removed to 

confirm trends were not stochastic attributes of these sequences.  
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