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Abstract

Microbial communities are not the easiest to manipulate experimentally in natural ecosystems.
However, leaf litter — topmost layer of surface soil — is uniquely suitable to investigate the
complexities of community assembly. Here, we reflect on over a decade of collaborative work to
address this topic using leaf litter as a model system in southern California ecosystems. By
leveraging a number of methodological advantages of the system, we have worked to
demonstrate how four processes — selection, dispersal, drift, and diversification — contribute to
bacterial and fungal community assembly and ultimately, impact community functioning.
Although many dimensions remain to be investigated, our initial results demonstrate that both
ecological and evolutionary processes occur simultaneously to influence microbial community
assembly. We propose that the development of additional and experimentally tractable microbial
systems will be enormously valuable to test the role of eco-evolutionary processes in natural

settings and their implications in the face of rapid global change.

Introduction

Community assembly describes the processes that shape the identity and abundance of organisms
in ecological communities [1]. These processes are key to understanding foundational principles
of ecology including biogeographic patterns, community responses to environmental change, and
the relationship between biodiversity and ecosystem functioning [2-4]. Understanding the
assembly of microbial communities (or microbiomes) specifically can also facilitate our ability

to modify or engineer them to improve human and environmental health [5, 6].
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Four processes influence the assembly of ecological communities, microbial or otherwise:
selection, dispersal, ecological drift, and diversification [7-9]. Ideally, one would like to
manipulate the influence of each process separately and in combination while allowing
community assembly to proceed over many generations, but such experiments are often
impractical for plant and animal systems. Some clever experiments have been conducted that, for
instance, modify dispersal or drift [10-13], but investigating diversification (i.e., evolution)
during community assembly is particularly difficult [8, 14, 15]. Thus, most support for how these
four interacting processes come together to shape the composition of ecological communities are

derived from observed patterns, theoretical models, or laboratory studies [16-19].

Microbial communities have been useful for testing community assembly theory in the lab [e.g.,
20, 21, 22], but they are not the most obvious system for testing these theories in natural
ecosystems. Unlike plants, microbes are not easily “seeded” into plots, and unlike animals, they
cannot be marked and recaptured. Microbial communities are also orders of magnitude more
diverse than their plant and animal counterparts, and many taxa have yet to be cultured and
described. At the same time, microbial communities can be easy to replicate and manipulate.
Their relatively fast generation times allow for experiments to take place over many generations.
And for studying community assembly in particular, an underappreciated advantage of microbial
communities is that the ecological and evolutionary processes shaping them often occur
simultaneously [23]. With new methods for genome-resolved sequencing, it is therefore possible
to track both the ecological dynamics of a diverse microbiome and, simultaneously, the evolution

of many “species” within it.
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Here, we review more than a decade of collaborative efforts to study microbial community
assembly in the field. We first summarize some of the benefits of our model system, the leaf
litter layer of surface soil in southern California ecosystems. Our field methods are easily
deployable (involving nylon mesh, duct tape, hair straighteners, and coffee grinders!) and
repeatable, as confirmed by trial and error over many years. Then, we present evidence for each
of the four community assembly processes working alone to influence microbial composition
and, sometimes, in concert (Figure 1A). Finally, we discuss the implications of these results for
ecosystem functioning and suggest future directions for research. We hope that these initial
results provide inspiration for possibilities in other systems with their own unique advantages,
while recognizing that parallel efforts by other researchers are already ongoing. After all, we will
need a variety of experimental systems where eco-evolutionary processes can be iteratively
examined and manipulated to develop a general understanding of microbial community assembly

and its implications in the face of global environmental change.

Leaf litter microbiome as a model for community assembly

Decomposition of leaf litter is an essential component of terrestrial carbon and nutrient cycling
largely governed by microorganisms. The leaf litter layer is the collection of dead and decaying
plant biomass (leaves, shoots, and woody debris) that makes up the topmost layer of soil. Leaf
litter influences the bulk (mineral) soil below, altering abiotic properties such as light, moisture,
and temperature. During decomposition, microorganisms both mineralize carbon compounds in

leaf litter producing CO> and contribute to the production of stable, recalcitrant soil organic



88  matter through plant biomass processing and necromass formation [24, 25]. Microbial
89  degradation also releases nutrients into the surrounding bulk soil, altering resource availability
90 for plants and soil fauna and mediating the flow of carbon and nutrients from the surface into
91  deeper soil [26]. In temperate ecosystems where we work, the litter layer is seasonally dynamic.
92 A large pulse of litter accumulates at the end of the wet season and then slowly decays
93  throughout the rest of the year. The physical architecture of the leaf litter layer varies greatly
94  across ecosystem types. In forests and shrublands, fallen leaves constitute a large portion of the
95  leaf litter, whereas in grasslands and some croplands, standing dieback contributes a large
96  amount of litter mass.
97
98 Beyond its role in ecosystem functioning, leaf litter has several useful features that lend itself to
99  studying community assembly. First, it is naturally patchy, allowing the easy application of a
100 metacommunity framework to the system [1]. A community can be defined by a single leaf or
101  patches of leaves connected by dispersal. Second, the leaf litter layer experiences more
102  environmental variation than the bulk soil below. At our field site, and in many locations, the soil
103  surface can be quite hostile in terms of UV and moisture stress, and temperature and moisture
104  fluctuate daily and seasonally. Thus, leaf litter communities are likely more sensitive to
105  environmental change and experimental treatments than are communities deeper in the soil
106  profile [27]. Third, the leaf litter layer is readily accessible and naturally replenishes. Repeatedly
107  sampling leaf litter is less destructive than taking soil cores, allowing for longitudinal sampling
108  in the same locations without disrupting the bulk soil structure. Finally, microbial diversity in
109  leaf litter is high, but manageable. Both the bacterial and fungal communities are more diverse

110 than laboratory consortia, while less diverse (both in richness and evenness) than those in bulk



111  soil or sediments. Consequently, there is hope of attaining a detailed understanding of the

112 biology of the most abundant members of the community, while studying complex community
113 dynamics in the environment.

114

115  We have further developed and refined several methods that make leaf litter a practical field
116  system. First, it is relatively easy to measure key ecological metrics of leaf litter compared to
117  bulk soil. For instance, quantifying microbial abundance by microscopy (for fungi) or flow

118 cytometry (for bacteria) is easier than in bulk soil [28]. It is also straightforward to assess

119  decomposition by measuring mass loss from the litter bags over time [29] and to measure

120  potential extracellular enzyme activity and leaf litter chemistry [30, 31]. We have also isolated
121  many of the most abundant bacterial and fungal taxa from our local leaf litter by culturing them
122 on media made from litter leachate. Hence, we can create ecologically relevant consortia [32, 33]
123 and investigate the phenotypic diversity of these taxa [34, 35].

124

125  Most importantly for studying community assembly, however, the microbial community in leaf
126 litter can be manipulated separately from the abiotic environment and the litter substrate (which
127  may differ in carbon and nutrient resources, pH, and moisture retention). To do this, we reduce
128  the abundance of the resident community using gamma irradiation and/or autoclaving and then
129  re-inoculate the litter with a small amount (1% w/w litter) of an intact field community.

130  Although completely sterilizing the litter is unlikely (and nearly impossible to demonstrate), the
131  procedure successfully “grafts” the inoculum community onto the original litter substrate such
132 that the new community closely matches the inoculum community and not the original

133 community [36]. The community is then enclosed in a mesh litterbag that allows moisture and
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nutrients to flow through and, depending on the membrane pore size, either blocks or allows
dispersal of bacteria, fungi, soil fauna, and larger animals (Figure 1B,C). These microbial
“cages” provide a way to replicate a homogenized inoculum community into replicate patches

and to transplant them into different environments (treatments or sites) [37].

There are also caveats to using these cages for manipulating the leaf litter community. Although
microbial composition within the bags is similar to the surrounding leaf litter, nylon mesh blocks
sunlight and may trap moisture, altering the abiotic environment compared to the surrounding
area. In addition, viruses and very small cells may still get into the “closed” cages that aim to
exclude microbial dispersal. Similarly, there may be undetectable damage to the integrity of the
cages in the field that allows for mixing with nearby communities. For these reasons, we always
include controls, such as litterbags that are open to dispersal and/or bags inoculated with the

local community, to account for these potential issues.

Evidence of the four assembly processes at work

Leveraging the methodological advantages of leaf litter, we have conducted a variety of field

(and lab) experiments on their microbial communities. Below we summarize these studies and

synthesize key outcomes from this system. Although the assembly processes are highly

intertwined, we discuss them separately for organizational purposes.

Selection
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Evolutionary biologists define selection as shifts in allele frequencies within a population due to
differential fitness of individuals. However, this definition of selection can be expanded to the
community level whereby shifts in the frequencies of species (or taxa or other units) reflect
fitness differences among phenotypes [8]. Thus, the effect of selection by abiotic or biotic factors
on the relative abundance of microbial taxa, also known as species sorting [38], can be assessed

within an entire community.

In leaf litter, we have focused on how selection by environmental change may influence
microbial community assembly. Our main site for studying this has been the Loma Ridge Global
Change Experiment (LRGCE) in Irvine, California. This experiment was established in 2007 to
simulate the increased frequency of drought and nitrogen availability in two dominant ecosystem
types (a semi-arid grassland and coastal sage scrubland, CSS) in the area [39]. We have
characterized the effects of the experimental treatments on the bacterial and fungal communities

in leaf litter from these plots for over a decade (Figure 2A).

Simulated global changes select for distinct bacterial and fungal communities in these
ecosystems, as observed previously in many other experiments [40, 41]. Drought, nitrogen
addition, and their interaction alter microbial community composition in the leaf litter (Figure
2B) as well as the bulk soil [27, 42, 43], even when controlling for differences in litter substrate
and its successional stage. Further, the responses of the microbial community to global change
depend on the plant community [43]. Drought does not select for the same microbial taxa within
the grassland as it does within the CSS, although these ecosystems are immediately adjacent to

one another and experience the same climate. This interactive effect thus indicates that the
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response to drought is mediated by biotic resources including, for instance, the chemical
composition of the leaf litter [44, 45]. As a result, some global change responses may be difficult
to transfer between ecosystems [46]. In contrast, bacterial community assembly after a wildfire
at the LRGCE did not depend on the ecosystem or precipitation history [47]. Instead, wildfire

selected for known, fire-loving taxa including the bacterial genus Massilia [48, 49].

We have further sought to understand the importance of global change relative to other factors
that influence microbial community assembly. In fact, a large amount of community variation
within our site can be attributed to seasonal or interannual variation (~10-39%) that is likely
driven by a combination of fluctuations in temperature, moisture, UV, and the successional stage
of the leaf litter (Figure 2C) [27, 42]. In comparison, simulated global changes have a more
modest effect on microbial community composition in the leaf litter. For instance, across our
studies, drought consistently explains about 4% of variation in bacterial composition, although
the strength of this effect increases to 10% if interactive effects (i.e., drought x time and drought
X ecosystem) are also considered [27, 43, 50]. Temporal variability in aquatic systems has long
been recognized [51, 52], yet such high intra- and inter-annual variability in surface soils has
been less studied. This bias may be partly due to the disruptive nature of taking soil cores from
the same plot over time, leading soil researchers to be cautious about the number of samples they
collect. Thus, another benefit of the leaf litter system is that its regenerative nature lends itself to

long-term longitudinal sampling.

This large “background” of temporal variability in our system has several important implications

for investigating community assembly processes. First, it means that selection by a treatment can
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be missed without enough replicates and/or longitudinal sampling due to a lack of statistical
power. Second, it suggests that the effect of global change factors may vary over time. For
instance, the timing of a drought — whether it occurs during a wet or dry year or season — may
alter its effect on community assembly. Indeed, we often detect an interactive effect between
drought and sampling time on the composition of the leaf litter community [42, 43]. Third, this
background variation is itself context dependent. The impact of environmental change on the soil
communities at our site — whether drought, wildfire, and more generally, temporal variability — is
strongest in the leaf litter layer and weakens with soil depth (Figure 2C) [27]. Together, these

results highlight the context dependency of selective forces on community assembly.

Moving forward, a goal is to understand the effects of selection on microbial community
composition in a more mechanistic way: can we predict the results of community assembly under
different abiotic and biotic conditions? Although we typically measure composition in terms of
taxa or other units of biodiversity, selection ultimately increases or decreases the abundance of a
taxon because of its traits, or characteristics. Thus, one approach that may provide a more
predictive understanding of community responses to particular conditions is to identify the key
traits under selection [53-55]. Unfortunately, it is not a simple task to identify which traits matter
under a particular selection regime [55]. Towards this end, we have focused on an abundant leaf
litter bacterium, Curtobacterium (family Microbacteriaceae, phylum Actinomycetota), that is
globally distributed [56] and easily cultured. Sequencing of our isolates revealed extensive
genomic diversity that clusters into clades and subclades within those clades [57]. Yet traditional
classification methods fail to capture this diversity; all Curtobacterium genomes would collapse

into two OTUs (defined at 97% 16S rRNA gene sequence similarity) or four exact sequence
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variants (ESVs) [58]. Physiological assays also revealed that clades within the genus could be
distinguished by their ability to degrade carbon sources, form biofilms, and grow under different
temperatures [59]. We therefore hypothesized that these traits would relate to the ability of the

strains to survive and reproduce on leaf litter across a range of temperatures and moisture stress.

The combination of genomic and physiological data allowed us to designate Curtobacterium
ecotypes [59], defined as highly similar genotypic and phenotypic strains that occupy the same
ecological niche [60, 61], a concept somewhat comparable to a eukaryotic species. The ecotypes
further vary in their biogeographic distribution in sites along a climate gradient (Figure 2D) [59].
After controlling for the litter substrate using our microbial cages, Curtobacterium traits
correlate with the climate gradient, indicating that both climate conditions and litter substrate
select for the composition of ecotypes present at a site [58]. Thus, even though predicting the
selective effects on microbial community composition is still overwhelming, it is not
inexplicable. A focus on a subset of diversity, combined with experimental manipulation,

allowed us to identify traits that underlie climatic responses.

Dispersal

Compared to selection, the role of dispersal in microbial community assembly remains less clear
[22, 62]. Biogeographic patterns provide indirect evidence that dispersal — defined broadly as the
movement of organisms across space — might shape microbial composition [9, 63, 64], but more
direct evidence is desirable. Given their ease of manipulation, microorganisms have been used

extensively in lab experiments to test the influence of dispersal on community assembly,
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microbial or otherwise. Indeed, many studies demonstrate that dispersal has the potential to be a
powerful force in community assembly [e.g., 65, 66]. However, the details of these experiments,

including the rate and composition of the individuals dispersing, are somewhat arbitrary [67].

Experiments are thus needed to assess the impact of microbial dispersal in natural systems. Leaf
litter is a particularly interesting system to study dispersal given the regular inputs of new
resources (freshly fallen plant biomass) and its location at the soil-atmosphere interface.
Moreover, a first step to measuring the impact of dispersal on a community is to test the effect of
removing it [e.g., 68, 69]. In leaf litter, we can accomplish this by altering the mesh size of the
litter bag to compare microbial community assembly in closed litter bags (0.22 pm pores) versus
open litter bags (window screen or 18 um pores to exclude some fungi). Using this approach, we
find that dispersal consistently alters the richness, evenness, and composition of the leaf litter
microbial community (Figure 3A) [37, 70]. Further, dispersal and selection can interact to alter
leaf litter composition [37]. For instance, dispersal significantly contributed to the re-assembly of

bacterial and fungal communities after a wildfire, but this effect depended on the ecosystem [47].

Although these results provide in situ evidence that dispersal contributes to microbial assembly,
they do not consider which microbes are dispersing, from where, and how fast. Details of these
rates and routes are needed to develop a deeper understanding of microbial dispersal and how it
interacts with other assembly processes. Given that tracking the movement of individual
microbes in the field is impractical, we deployed sterile glass slides as microbial “traps” (Figure
3B). In this way, we can quantify the rate and composition of microorganisms landing on the

slides [67]. At the LRGCE, we observed an average of 7,900 bacterial cells/cm? immigrating

12
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daily into the soil surface and found distinct communities dispersing via different routes, defined
as a combination of the source community (e.g., air or soil) and the physical vector (e.g., rain or
wind) [71]. Further, exposure to different dispersal routes altered the succession of the microbial

community (Figure 3C) [71].

Together, this collection of experiments reveals that dispersal not only contributes to community
assembly, but that — like selection — its effects are context dependent. For instance, dispersal into
the soil surface from the bulk soil appears to be minimal at our site but became more important
after wildfire removed the surface litter layer [47]. Moreover, the effects of dispersal on
composition are highest during the early stages of litter succession such as after a wildfire or

from a green to a senescing leaf.

Drift

Ecological drift is the process by which random changes in species relative abundances lead to
diversity. Although thought of as its own process, drift is intricately connected to the processes
of selection and dispersal. Specifically, the impact of drift on community assembly is thought to
increase with weak selection pressures and low dispersal [8, 72]. Thus, disentangling the impact

of drift from other assembly processes is a significant challenge in microbial communities [73].

Given these challenges, we first investigated the role of ecological drift on leaf litter

communities using a theoretical model [74]. The Decomposition Model of Enzymatic Traits

(DEMENT) simulates microbial communities that produce extracellular enzymes and
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decompose decaying litter [75]. The impact of drift was assessed by quantifying the degree to
which random differences in births, deaths, and dispersal affected the composition of simulated
communities. Lower dispersal rates led to higher levels of stochasticity (i.e., higher
compositional variation among modelled communities). However, drift also played a large role
under high dispersal rates when selection pressure was also high. Communities on chemically
complex litter substrate were more susceptible to drift because this highly selective environment

reduced total microbial abundance (Figure 4A) [74].

To move from theory to the field, we next aimed to quantify the effect of ecological drift on leaf
litter communities by eliminating the effect of other processes, specifically selection and
dispersal. Just as evolutionary biologists measure the effect of genetic drift on populations using
highly controlled laboratory experiments [76], we can use our litter bags to minimize
confounding field variables to “isolate” the effects of stochastic variation — something that is
challenging to do in most other systems [37]. To reduce biological heterogeneity, we inoculated
a homogenized microbial community into multiple litter bags filled with irradiated leaf litter.
Then, to reduce environmental heterogeneity, we deployed the litter bags within a small (1m?)
area at the LRGCE site. Parallel to the theoretical experiments described above, we further
manipulated dispersal (open and closed litterbags) and the selective environment (added water
versus ambient rainfall) to test whether drift interacts with dispersal and selection, as observed in

the theoretical model [74].

Using this highly controlled field litterbag experiment, we found that stochasticity (ecological

drift, potentially amplified by priority effects) influenced bacterial community assembly,
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contributing three times more to compositional variation than dispersal [37] (Figure 4B).
Contrary to our model, however, stochasticity (as quantified by beta-diversity) decreased, rather
than increased, with reduced dispersal. Further, the effects of drift were not restricted to
taxonomic composition but also permeated to impact other key aspects of the community
including functional potential and extracellular enzyme activity. We also found that much of the
measured variation among replicates could be attributed to methodological factors such as
technical error and spatial heterogeneity within bags; this residual variation accounted for ~75%
of the observed variation in community composition (Figure 4B). This result highlights that the
effect of drift on microbial community assembly will be overestimated if these sources of

variability are not quantified.

Diversification

The fourth process of community assembly, diversification, is often mentioned, but rarely
investigated within the time frame of an ecological study. Even though bacteria can evolve quite
rapidly, entirely new bacterial “species” (as measured by the divergence of the 16S rRNA gene)
will not emerge for millions of years [77]. Nonetheless, evolution may be occurring within a
microbial community at a finer-scale genetic resolution. However, detecting these changes
amongst hundreds or thousands of microbial species within a microbiome is a challenge. Thus,
the ability for microbes to evolve, let alone to adapt, on ecological timescales remains largely

unexplored in natural ecosystems.
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To investigate the potential for rapid evolution in leaf litter microbial communities, we first
asked whether we could detect the emergence of de novo mutations. Once again, we used our
microbial cages to conduct a field experiment. Mirroring laboratory evolution experiments [76,
78], we inoculated replicate litter cages with a single isogenic Curtobacterium strain. We then
deployed the cages across an elevational gradient of temperature and precipitation. Every 6
months, we reisolated bacterial colonies from each cage and identified a variety of nonrandom,
parallel single nucleotide polymorphisms (SNPs) that we confirmed with metagenomic
sequencing. SNPs were found in genes related to nutrient acquisition, stress response, and
exopolysaccharide production (Figure 5A) [58]. These mutations provide a new source of
genetic diversity that might allow for adaptation, but further work is needed to determine if these

mutations impact organismal fitness.

Evolution occurs not only through new mutations, but also through shifts in standing genetic
variation within a population. Microbial species, or ecotypes, encompass standing genetic
variation that often coexists within an ecosystem [79, 80]. This so-called “microdiversity” is also
observed within Curtobacterium in leaf litter. To track this finer diversity, we developed genus-
specific primers of a protein encoding gene (groEL). Curtobacterium microdiversity — here, the
relative abundance of exact sequence variants of the groEL gene — responded to selection by
drought and the litter substrate within the global change experiment (Figure 5B) [81]. Thus,
responses at this fine level of genetic resolution reflect shifts in allele frequencies, a phenomenon

that, among larger organisms, would be thought of as an evolutionary process [82].
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The evolutionary process that we arguably know least about within microbial communities is
recombination. This is an unfortunate gap as gene flow, or the exchange of genetic variation, is
what delineates populations, which are often considered the fundamental unit of evolution. Using
a collection of Curtobacterium isolates from across southern California, we identified at least
three recombining populations of Curtobacterium within one subclade of an ecotype [83]. The
populations were delineated using gene flow discontinuities, where we quantified signals of
increased “recent” recombination among strains that were clustered into discrete populations
(Figure 5C) [84]. Strains within a population shared more flexible genes than expected by
chance, and recombination of population-specific genes appeared mediated by homologous
recombination. Bacteria can also exchange genes via horizontal gene transfer by plasmids, a
pattern we also observed among our Curtobacterium isolates. Using long-read sequencing our
isolates, we identified numerous plasmids that vary greatly in their size and genetic content, even
among very closely related isolates [85]. The plasmids encode a diversity of traits that are not a
random subset of chromosomal traits, ranging from genes involved in carbon and nitrogen
cycling to cell motility. Yet, the time-scale upon which recombination (through homologous
replacement of short gene segments or transfer of an entire plasmid) contributes to
Curtobacterium diversity in leaf litter remains unclear. We do not yet know how often strains are
exchanging genetic information — either via plasmids or recombination — in leaf litter for the

observed patterns to emerge.

Overall, zooming into just a single bacterial genus allowed us to highlight the potential for rapid

evolution to influence genetic diversity in the leaf litter microbiome. This picture is admittedly

still limited. We have yet to assess the time-scale of recombination, including horizontal gene
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transfer, within soil microbial communities despite its inferred importance for microbial
adaptation [86]. These details are needed to provide a holistic understanding of the potential for
microbial communities to adapt to future environmental change. The answer, for instance, could
depend on the relative importance of diversity generated by rapid evolution versus that

contributed through dispersal [19, 77].

Implications for community functioning

Our work in leaf litter illuminates how a range of ecological and evolutionary processes can
contribute to the assembly of environmental microbiomes. These results in themselves provide
useful examples for the generation and maintenance of diversity within microbiomes and
ecological communities more generally. Yet the question remains: does community assembly

lead to communities that are functionally distinct?

Thus far, we have limited ourselves to discussing the results of our experiments as they pertain to
community assembly. However, in many of the studies, we also measured functional metrics of
decomposition, allowing us to also address the idea of functional redundancy. Specifically, the
microbial cages allow us to disentangle the influence of the abiotic environment from the initial
microbial community composition on functional outcomes, which we measure later in an
experiment [87]. For instance, we found that drought communities (leaf litter communities
assembled under drought conditions at the LRGCE) altered litter decomposition rates separate
from the abiotic effect of drought itself (Figure 6A). Indeed, the effect of community

composition was as large as the abiotic effect of drought (Figure 6B) [29, 88]. Similarly, leaf
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litter communities assembled along a climate gradient in Southern California decomposed litter
at different rates when transplanted to a common environment along the gradient [36]. Further,
the resulting chemistry of the decomposed leaf litter depended on the initial microbial inoculum,
revealing that different communities utilize unique sets of compounds in the litter. Both of these
studies demonstrate that selection altered community assembly that, in turn, resulted in

functionally divergent communities.

The processes of dispersal and drift can also influence the functioning of leaf litter communities.
Communities exposed to dispersal initially decomposed leaf litter more than twice as fast as
communities closed to dispersal, an effect that dampened during later stages of leaf
decomposition (Figure 6C) [71]. And, as previously mentioned, ecological drift not only
impacted taxonomic composition, but permeated to impact functional potential and extracellular

enzyme activity (Figure 4B) [37].

We would also like to understand the particular traits in a community that are responsible for
changes in overall functioning. In the lab, leaf litter bacteria vary widely in their use of simple
carbon substrates and the rate at which they decompose complex leaf litter [34]. In the field,
metagenomic sequencing reveals that nitrogen cycling genes and carbohydrate degradation genes
vary between the global change treatments at the LRGCE [31, 89]. In one particular experiment,
we examined the composition of glycoside hydrolase (GH) genes that degrade different
polysaccharides in leaf litter bags transplanted into the different LRGCE treatments. Drought,

but not nitrogen addition, shifted GH gene composition, suggesting a mechanistic reason for why
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decomposition was more resilient to changes in nitrogen than to changes in rainfall (Figure 6C)

[88].

Moving forward

By focusing on the leaf litter system, we have derived a more detailed understanding of the
drivers and context-dependency of the processes driving microbial community assembly.
However, despite many years of work, there are still large gaps in our knowledge about this one
system. In particular, we have focused on bacteria and (some) fungi but have neglected the
impact of macro- and microfauna that breakdown larger fragments of leaf litter and potentially
disperse microorganisms in the field. Some of these organisms, like nematodes, also graze on
microbes and thus may considerably impact the microbial community [90, 91]. For instance,
shifts in microbivore composition contributed to the differential assembly of microbial
communities exposed to dispersal and those that were not [92, 93]. We have also nearly
completely ignored how microbe-microbe interactions, including synergistic and antagonistic
interactions between bacteria and fungi, impact community assembly [94, 95]. Similarly,
bacteriophages may modify bacterial communities through predator-prey interactions and are

known to be abundant and dynamic in ecosystems like ours [96].

Thus far, we have primarily focused on quantifying the effects of one process at a time, they will
co-occur and likely interact. In particular, although we have only begun to explore the role of
contemporary evolution for community assembly in leaf litter, it is clear that ecological and

evolutionary processes occur simultaneously. Selective forces such as those imposed by global
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environmental changes shift allele frequencies within Curtobacterium species and the frequency
of other, broader taxa in the community. And, just as we have observed interactions between
ecological processes [37], we expect that evolutionary and ecological processes will also interact,
resulting in eco-evolutionary feedbacks [97]. Microbial communities thus offer an opportunity to
test the role of eco-evolutionary feedbacks in natural settings and, with further advancement of
genome-resolved tools, assess their effects at different biological scales of organization within
the same community. Given the central role of microorganisms to ecosystem functioning, these

dynamics may indeed be important for climate feedbacks and mitigation [98, 99].
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Figure legends

Figure 1. Leaf litter as an experimental system in the field. (A) An overview of the four
processes, their links to microbial community assembly and functioning, and the types of
experiments and measurements that we have used to investigate each link. (B) Leaf litter-
containing bags, or microbial “cages,” on the soil surface of a pine-oak and (C) grassland
ecosystem. The cages are made from nylon mesh that prevents microbial dispersal and placed in

larger metal screening to prevent animal disturbance.

Figure 2. Selection by the abiotic and biotic environment affects leaf litter community
assembly. (A) A microbial cage experiment in the Loma Ridge Global Change Experiment
(LRGCE) simulated drought plots following a wildfire. Polyethylene sheets are pulled over the
plots during half of the annual rainfall events at the site to exclude ~50% of the annual
precipitation. (B) Non-metric multidimensional scaling ordination (NMDS) depicting how
bacterial community composition on grassland leaf litter varies across the four LRGCE treatment
combinations. Redrawn from elsewhere [42]. (C) Estimated percent variation explained by
factors significantly impacting bacterial community composition in the leaf litter layer, top 2 cm
of bulk soil, and top 10 cm of bulk soil at the LRGCE. Reprinted with permission from [27]. (D)
Absolute abundances (by cell count) of the most abundant Curtobacterium ecotypes (+/- 1 SD)

in the leaf litter layer at five sites across a climate gradient. Redrawn from elsewhere [59].

Figure 3. Dispersal from different routes alters microbial communities in the field. (A)

Effects of dispersal limitation on bacterial evenness from a field experiment. Line color

30



837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

represents the treatment type: litterbags closed to dispersal (orange), litterbags open to dispersal
(purple), nylon-containing bags open to dispersal (light blue), and leaf litter collected from the
surrounding environment (green). Reprinted from elsewhere [70]. (B) Glass slide “trap” used to
capture microorganisms dispersing into the soil surface. (C) NMDS of bacterial composition in
litterbags exposed to different dispersal routes in a grassland (closed = no dispersal; elevated =
dispersal from air; overhead = dispersal from air and surrounding environmental litter; open =

dispersal from air, environmental litter, and bulk soil). Reprinted from elsewhere [71].

Figure 4. In silico and experimental evidence that drift contributes to microbial community
assembly. (A) Dissimilarity (within-group distance) of replicate communities within lignin/N
treatments that were exposed to different dispersal rates for 6 years simulated by the
Decomposition Model of Enzymatic Traits (DEMENT). The bottom right of each panel shows P-
values for the null hypothesis that within-group distances across lignin/N treatments are equal in
a single dispersal level. Stochasticity increases (higher within-group distance) with low dispersal
rates and stronger selection (higher lignin/N values). Adapted from elsewhere [74]. (B)
Estimated percent variation of bacterial community composition (assayed by 16S rRNA gene
amplicon and metagenomic sequencing) from litterbags in the field explained by a precipitation
treatment, dispersal, and their interaction. Within-bag variation (stochasticity) and unexplained
(residual) variation was also estimated for ecosystem functioning metrics including extracellular

enzyme assays (EEA), litter chemistry, and litter mass loss. Reprinted from elsewhere [37].

Figure 5. Rapid evolution of a leaf litter bacterium in the field. (A) Mutations identified in a

Curtobacterium strain that was transplanted in litterbags across a climate gradient (red = Desert,
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orange = Scrubland, green = Grassland, blue = Pine-Oak, and purple = Subalpine). Mutations in
112 evolved strains isolated from five sites along the climate gradient at 6 (Time point 1), 12
(T2), and 18-month (T3) intervals. Nonrandom mutations also observed in the population
(metagenomic) data are denoted for synonymous (syn), nonsynonymous (nonsyn), and nonsense
mutations. Reprinted from elsewhere [58]. (B) NMDS of Curtobacterium microdiversity (ESVs
of the groEL gene) from grass litter collected from ambient and reduced precipitation plots in the
grassland and coastal sage scrubland (CSS) at the LRGCE. Centroids of each ecosystem x
precipitation treatment combination are marked by black circles, and the centroids of all samples
from each ecosystem are marked by a black X. Inset indicates the direction and strength of
correlation with Curtobacterium subclades. Reprinted from elsewhere [81]. (C) Recombination
network across all pairwise combinations of 26 Curtobacterium strains. Thicker edges represent
increased recombination between strains. Nodes are colored by population designation where
populations are defined as groups with the potential to exchange genetic material. Node size
indicates the number of clonal clusters (strains too closely related to differentiate recombination).
Isolation sources: D, desert; Sc, scrubland; G/MMLR, grassland; SS, Salton Sea; MCBA,

Boston, MA. Reprinted from elsewhere [83].

Figure 6. Differential assembly of leaf litter microbial communities impacts decomposition.
Effect of (A) microbial origin and (B) contemporary plot environment on percentage mass loss in
litterbags during the first year of a reciprocal transplant experiment. Microbial origin refers to
leaf litter community inoculum that was exposed to either ambient (control) or reduced (drought)
precipitation at the LRGCE. Adapted from elsewhere [29]. (C) Mass loss of leaf litter closed to

dispersal in the field compared to litter exposed to all dispersal (Open) and litter exposed to
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883

884

885
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887

dispersal from above the soil surface (Overhead). Exposure to dispersal accelerated leaf litter
decomposition in the first month of the experiment. Reprinted from elsewhere [71]. (D) NMDS
depicting that the drought, but not added nitrogen, treatment altered glycoside hydrolase

composition of the bacterial communities on leaf litter. Redrawn from elsewhere [88].

33



A Processes Community assembly

Selection >

* Climate
* Nutrients
* Carbon chemistry

Dispersal

>
* Open vs. closed litterbags

* Glass slide traps * Litter mass loss & chemistry

+ Reciprocal transplants
* Functional gene composition

Drift

* Replicate communities
* Theoretical model
* Acct for methodological error

Diversification m—
* In situ single isolates

» Standing genetic variation
* Plasmids

>

Functioning

Functional
Implications

Community 1

Community 2

Environment-



C

Variation explained (%)

Factor(s)
Residuals [7 Ecosystem x Sampling date
I Block [ Precipitation treatment
M Ecosystem [l Sampling date

100

75

50

Leaf
litter

D

[ °
o]
®
o o o e
(o] QDO. © Ceq °
[
L4 ® *°0° e o © °
o * 9% o
& o8¢ %0 L,°
2 °s e g %o
o 0 (0] °
e & ®
L O% ° o]
(@]
o9 ¢ ® Drought, N+
O Drought
® Ambient, N+
o O Ambient
NMDS1

Ecotype IA

Ecotype IVA Ecotype IVC
. Ecotype IBC . Ecotype IVB Ecotype VA

1e+07

1e+06

Ecotype Abundance

. -

Desert Scrubland Grassland Pine-Oak Subalpine




T ¢ Litter
A i ] 8 -o- Closed
= £ -e- Open
g -~ Environment
C
C
8
%) Nylon
® Closed
-»- Open
T 1 T
Feb Apr Jun
0.25 ¢
0o . » Litterbag treatment
o) ’ Co ® Closed
@ 0.00 00, .. Elevated
a (@)
s @ ° ® Overhead
z 0 i 6
Y Open
. .
-0.25 °® 0 Environmental sample
Y O Environmental litter
®
¢ o
-0.50 ..
-0.25 0.00 0.25 0.50



o

A Dispersal=0.5%

® o o ° . ol 100-
®Q 0.8 ;\3 _ o
§ a = 75- . Residual variation
L O . - .
24 =
5 0.6 - 0.231 kS| . Bag + Residual variation
s Di 1=60% S 5o- . Bag (Stochasticiy)
3 Ispersal= (o S . s .
(o) _ o Precipitation-by-Dispersal
< ° © .
£ 08 - ® £ o5- . Dispersal
- — . -
= 7] . i . Precipiation

06, ° 0.001
— T T T 0-
T T T T T ]
10 20 30 40 50 Community  Community Functional Composite Litter Mass

Selection: Weak Strong composition  composition genes EEA chemistry loss

Lignin:N (16S rRNA genes) (Metagenomes)  (Metagenomes)



Coding Region: [l pEL [ INs [] syn [ Nonsyn ] Nonsense

Intergenic: [Joec [Jins ] snp
|' ' lutR—p 4 »
| |
L] I N | |
[ |
1 ] .
s : 1 W
" [ | Il | 5 M "
I
[ ' !
| . I
L :
3 - — — —
| | | | | |
T2 | : | ' |
10 L | X |
sl | . ' '8
|
T2 '
I - :
n I . [ |
T1
N (] — marR
= [ | | | . 5 |
N [ |
i ' .
I .
I ' ATk
[ I(— relA - 1
i iy S : | -
L= r 1
[ |
[ ' l—wcaJ
[ |
1 2 3

Ancestral strain genome position (Mbp)

NMDS2

B °
®
e | ] o ® .‘ -
® 4 o® )
[ .. - o [ J % o
° %o ‘ ot
= = = o "y o ®
* o e oo .8 ° /o
@ |
® °e E i
@ L ® °
® ° ) ©
'
IBC @ » 5
Ve
}[’ﬁlg 1A >
1IB 1]
@
°
NMDS1

C [ Population 1 [Jj Population 2 [I Population 3

i

SS05

MCBA15005
G54

MCBA15007

G45

G57
G55
Sc03 0
G44
D26
Sc18 G34 39
Sc5h1 SS16

G51 )

053 Sc21 G43 G42
se Q MMLR14002
G31 —’ MMLR14014

e CSS & Ambient
CSS & Reduced

® Grass & Ambient
Grass & Reduced

x Ecosystem Centroid



Microbial origin

Plot environment

20 —9 20 —
(2] / (2]
175} 175}
o / o
o 10 » 10—
175} 175}
= =
4 —®- Control g —@— Control
-O - Drought -O - Drought
\ I T T I T T T T T T G J I I T T I T T I T
Jan Apr Jul Oct Jan Apr Jul Oct
abb D
404 Plot environment
Ambient "
M Drought
30 i = ‘* ANitrogen u
X
»
8 2 * & 4 -
= A A
a =
s =z A
= . A A
104 Treatment A
B3 Closed n
B3 Overhead
01 B8 Open 4
2D Stress: 0.14
May June July  September October NMDSH1




