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Abstract

Code LLMs have the potential to make it easier

for non-experts to understand and write code.

However, current CodeLLM benchmarks rely

on a single expert-written prompt per problem,

making it hard to generalize their success to

non-expert users. In this paper, we present a

new natural-language-to-code benchmark of

prompts written by a key population of non-

experts: beginning programmers. STUDEN-

TEVAL contains 1,749 prompts written by 80

students who have only completed one intro-

ductory Python course. STUDENTEVAL con-

tains numerous non-expert prompts describing

the same problem, enabling exploration of key

factors in prompt success. We use STUDEN-

TEVAL to evaluate 12 Code LLMs and find

that STUDENTEVAL is a better discriminator of

model performance than existing benchmarks.

Our analysis of student prompting strategies

reveals that nondeterministic LLM sampling

can mislead students about the quality of their

descriptions, a finding with key implications

for Code LLMs in education.

1 Introduction

Large language models trained on code (Code

LLMs) have the potential to democratize program-

ming by enabling less-experienced programmers

to write code in natural language. A growing body

of work shows their utility to professional program-

mers (Vaithilingam et al., 2022; Ziegler et al., 2022;

Barke et al., 2023), but to broaden the accessibility

of programming, models must also work well for

non-experts. Code LLM benchmarks (Kulal et al.,

2019; Hendrycks et al., 2021; Chen et al., 2021;

Austin et al., 2021; Lai et al., 2023) are largely mod-

elled after experts, both in the choice of task, and

by having professionals write benchmark prompts.

Achieving good performance on these benchmarks

indicates that a model will perform well if the user

can write prompts equally as well as the expert.

Our goal is to facilitate research on how to bet-

ter align Code LLMs with non-expert program-

mers, who may talk about code differently than

experts. Towards this goal, we present STUDEN-

TEVAL, a dataset with 1,749 prompts written by

beginning CS students and validated with expert-

written test cases. Prompts were collected using

48 beginner-appropriate problems, with numerous

different prompts for each problem. Our prompts

exhibit the variation in technical vocabulary and

lack of familiarity with how to describe code that

are common with non-experts.

While other work explores Code LLM use in

classrooms (Leinonen et al., 2023; Kazemitabaar

et al., 2023; Prather et al., 2023), STUDENTEVAL

is the first benchmark based on student interac-

tions. It differs from existing benchmarks in three

key ways: 1) Other benchmarks have prompts au-

thored by experienced programmers, whereas STU-

DENTEVAL has prompts authored by students who

have only completed one computer science course.

2) Other benchmarks contain tricky problems de-

signed to stress-test the problem solving capabili-

ties of Code LLMs. In contrast, STUDENTEVAL

has problems that are easily solved with expert de-

scriptions, but often fail with student descriptions.

3) Other benchmarks only have a single prompt per

problem, whereas STUDENTEVAL has on average

36 prompts per problem, representing a variety of

prompting skill levels. This diversity lets us explore

what it means to write a “good” prompt.

Our key contributions are:

• STUDENTEVAL, a benchmark consisting of

1,749 student-written descriptions of natural-

language-to-code tasks.

• Using four key subsets of the STUDENTE-

VAL benchmark, consisting of descriptions

that pass (fail) on the first (last) attempt by a

student, we evaluate 12 state-of-the-art Code

LLMs. Our results show that STUDENTEVAL
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is better able to discriminate between models

than the popular HumanEval benchmark.

• We conduct an in-depth analysis of the

prompts and find that even successful student

prompts lead models to generate multiple se-

mantically distinct programs.

2 Background

Although Code LLMs allow both code and natu-

ral language prompting, we focus on the natural-

language-to-code task. Liang et al. (2023) report

that this is a popular and effective strategy for Code

LLM use among experts; it is also more accessible

to non-experts than code prompting.

Existing benchmarks pair natural language de-

scriptions of code with test cases to check the

validity of generated programs. The two most

widely used benchmarks, HumanEval (Chen et al.,

2021) and MBPP (Austin et al., 2021), are in

Python. There are also multi-language benchmarks

that translate problems from one language to an-

other (Athiwaratkun et al., 2023; Cassano et al.,

2023). Finally, there are alternate formats, includ-

ing multi-turn evaluation (Nijkamp et al., 2023)

and docstring generation (Lu et al., 2021).

General-purpose benchmarks Most existing

benchmarks have a single natural language descrip-

tion of a problem, typically written by an expert

programmer. There are a few exceptions that scrape

the web or crowdsource (Hendrycks et al., 2021;

Lai et al., 2023; Amini et al., 2019), but expert-

written benchmarks predominate. These bench-

marks provide wide coverage, but come with limita-

tions. First, they have a single prompt per problem.

Consider this HumanEval prompt:

Imagine a road that’s a perfectly straight in-

finitely long line. n cars are driving left to right;

simultaneously, a different set of n cars are driving

right to left. The two sets of cars start out being

very far from each other. All cars move in the same

speed. Two cars are said to collide when a car

that’s moving left to right hits a car that’s mov-

ing right to left. However, the cars are infinitely

sturdy and strong; as a result, they continue moving

in their trajectory as if they did not collide. This

function outputs the number of such collisions.

While the correct solution is simply n
2, the

prompt is designed to be confusing. Models suc-

ceed or fail based on this specific phrasing. Hav-

ing a single prompt precludes explorations of how

crucial word choice, grammar, etc. is to model suc-

cess. STUDENTEVAL’s non-expert, multi-prompt

construction enables us to analyze what makes a

successful prompt: each problem has at least 14

prompts that describe the task in a different way.

Second, existing benchmarks contain problems

at widely varying difficulty levels. Compare

the problem above, which requires mathemati-

cal reasoning that may challenge many program-

mers, with a trivial problem from the same bench-

mark (Chen et al., 2021): Return length of given

string. Although these benchmarks cover a wide

range of programming tasks, it is difficult to inter-

pret their results as evidence that a model will or

won’t suit a particular group of programmers, since

they aggregate over very different skill levels.

Domain-specific benchmarks There are also a

handful of domain-specific benchmarks, such as

DS-1000 (Lai et al., 2023) and MathQA (Austin

et al., 2021). Like these domain-specific bench-

marks, we target a specific population of program-

mers; however, we target a particular skill level

rather than an application area. In addition, we pro-

vide numerous non-expert prompts per problem.

Scalable oversight Our study is related to the

problem of scalable oversight (Bowman et al.,

2022). Models are capable of solving our problems,

since we selected ones for which reliable prompts

exist. However, models are unaligned with students.

The students understand the task at hand (we re-

move cases where they did not), but they do not

have the prompt-writing skills to guide the model.

Our work is thus a first step towards aligning Code

LLMs with non-expert programmers.

3 The STUDENTEVAL Dataset

In this section we describe STUDENTEVAL, a

many-prompt-per-problem benchmark that targets

a specific programmer skill level. The dataset con-

sists of 1,749 English-language prompts for 48 pro-

gramming problems, with at least 14 prompts per

problem. All prompts were written by university

students who had completed a single semester of

computer science in Python (CS1). These students

represent a population of programmers with a uni-

form knowledge base, allowing us to choose prob-

lems that they all should be able to solve.

Problem Selection and Format Given our goal

of collecting many non-expert descriptions for each
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Function signature (visible) def convert(lst):

Expert tests (visible to stu-

dent; hidden from model; au-

tomatically run on generated

code)

Input Expected Output

[0,1,2,3] [’ABCD’]

[0,-1,1,-1,2] [’A’,’B’,’C’]

[1,1,1,-1,25,25,-1,0,1,2] [’BBB’,’ZZ’,’ABC’]

Student description

(pass@1 = 0.8)

takes a list of numbers. Create a ABC list with the capital letters in the

alphabet and create an answer string. Iterate through the input list, if

there is "-1" then add ’ ’ to the answer string, or otherwise, add the letter

with the corresponding index of the answer string. Split the answer string

at ’ ’. return the answer string.

Student description

(pass@1 = 0.0)

Assign a number from 0~25 to each alphabet, and create a list of string

of alphabetical letters based on their assigned numbers in the lst. When

there is -1 in the lst, create a new string and add it to the list. Return a

list of created strings.

Figure 1: An example STUDENTEVAL problem. Our web-based experiment platform shows students the signature

and expert-written tests. When students submit their description, we use a Code LLM to generate code, test it, and

flag failed tests for the students. STUDENTEVAL has numerous student-written descriptions of each problem.

problem, we compiled a suite of 48 tasks at an ap-

propriate level for students. The majority were

pulled directly from CS1 course materials, with

light editing to avoid publishing answers to assign-

ments still in use. Thus, we expect participants to

be able to understand and solve the problems in

Python themselves. We explore whether they can

also describe them in natural language so that Code

LLMs can solve them. The problems exercise a

variety of Python features. For topic diversity, we

define 8 core concepts: lists, loops, strings, condi-

tionals, math, nested data, sorting, and dictionaries.

Each STUDENTEVAL problem consists of three

components: a function signature, a reference im-

plementation, and 3+ test cases (Figure 1). When

we gather student data, which we describe below,

we show participants the function’s signature and

test cases. From this information, they produce a

description, which we we automatically validate

using the problem’s test cases.

Our participants had taken a CS1 course that

routinely uses input/output pairs and signatures to

present tasks, so this problem format is familiar to

them. Since this format does not show students nat-

ural language descriptions, it avoids biasing student

prompts with expert descriptions. Thus it mimics a

realistic situation in which a student has a task to

solve and tries to describe it in natural language to

a Code LLM.

Problem Validation We validated our problems

in several ways. For common problems (e.g. facto-

rial), LLMs can produce working implementations

from the function name alone. To weed out these

problems, we produced Codex (Chen et al., 2021)

generations from each function signature with no

docstring and measured mean pass@1 rate. Over-

all, the mean pass@1 for our signatures without

docstrings is 0.0519 with a variance of 0.0364. The

maximum pass@1 is 0.925, for the problem exp.

We also validated the test suites for each prob-

lem. The test cases serve two purposes: helping

students understand the problem, and ensuring that

the generated code is correct. Liu et al. (2023)

show that the test cases for widely-used Code LLM

benchmarks frequently miss important corner cases.

To avoid this, we use test coverage and mutation

testing of the reference implementation to validate

the STUDENTEVAL test cases. Unlike in Liu et al.

(2023), the STUDENTEVAL tests need to be under-

stood by beginners. We strive for a balance be-

tween exhaustiveness and comprehensibility: each

problem has 3-4 tests that achieve 100% code cov-

erage. Mutation testing (Jia and Harman, 2010) is

a more rigorous measure of test suite quality; we

used MutPy (Hałas, 2013) to compute mutation

scores. All mutation scores below 90 are the result

of MutPy only producing trivial mutants that are

semantically identical to the reference solution.
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Subset Items Word Count

First Failure 450 28.8 (25.5) ± 16.7

First Success 187 28.8 (25.0) ± 17.4

Last Failure 205 35.9 (30.0) ± 22.6

Last Success 185 37.8 (35.0) ± 18.4

(a) Sizes and word counts.
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(b) Attempts per problem.

Figure 2: The four subsets of STUDENTEVAL.

Gathering 1,749 Student-Written Prompts We

recruited 80 beginning CS students from three U.S.

higher education institutions to build the STUDEN-

TEVAL benchmark. The IRB-approved study was

conducted over Zoom, using a web-based platform

designed for STUDENTEVAL (see Appendix). The

platform presents the function signature and tests

for one problem at a time. Students enter a problem

description into a text box. Our server constructs a

prompt with the function signature and their prob-

lem description formatted as a Python docstring,

and sends this prompt to Codex to produce the

function body. The server then tests the function

in a sandbox and presents the test results to the

participant. Students had the option to reattempt

the problem or move on. Participants completed

3 tutorial and 8 STUDENTEVAL problems in 75

minutes, receiving a $50 gift card for participation.

Dataset Subsets and Basic Statistics Students

generated 1,749 prompts, with an average of 36

prompts per problem. There is significant variation

in how prompts differ from each other: some are

small, iterative changes (+/- a few words) whereas

a student’s first, last, and successful prompts tend

to be very different. To refine the dataset for evalua-

tion, we partition STUDENTEVAL into four disjoint

subsets (Figure 2a): students most frequently failed

to solve problems on their first attempt, and this is

the largest subset of problems (First Failure); about

half as many first attempts were successful (First

Success); slightly fewer students gave up after mul-

tiple attempts (Last Failure); and others succeeded

after multiple attempts (Last Success).

These subsets omit “Middle” prompts (Fig-

ure 2b), which are intermediate failures. When

a student succeeded on their first try, or gave up af-

ter their first try, we classified that prompt as a First

Success and First Failure respectively. Students

never resubmitted after all tests passed. Figure 2a

shows that Last descriptions are significantly longer

than First, which suggests students add detail even

when starting afresh might be better.

Filtering Prompts A prompt may fail not be-

cause the model could not understand the descrip-

tion, but because the student did not understand the

problem. We had two expert annotators with ex-

tensive CS1 teaching experience label each failing

prompt independently. We asked the annotators to

determine Reading the prompt, is it clear that the

student understood the problem?1 We removed 74

prompts (11%) from the Failure subsets using this

criterion.

4 Results

We evaluate 12 Code LLMs. We focus our compar-

ison on gpt-3.5-turbo, the three “Python specialist”

Code Llama models (Baptiste Rozière et al., 2023),

the four StarCoderBase models (Li et al., 2023),

and Phi-1 (Gunasekar et al., 2023). Appendix H

presents results for several other models. We con-

firm that none of the STUDENTEVAL prompts ap-

pear in The Stack, the open training dataset for

StarCoderBase and other models.

As with other benchmarks, we use hidden unit

tests to evaluate the correctness of model-generated

code. To account for their nondeterminism, we use

the standard pass@1 metric (Chen et al., 2021),

which estimates the probability that the Code LLM

produces a solution that passes all hidden unit tests

in one shot, calculated over 200 samples.

1The annotators studied the gold solution and test cases to
understand the task themselves before labeling any prompts.
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Table 1: Mean pass@1 for the models that we evaluate on the four subsets of STUDENTEVAL.

Model (Size) First Failure Last Failure First Success Last Success HumanEval

GPT-3.5-Turbo-0301 (?) 11.76 13.90 44.84 47.40 48.1

Phi-1 (1.3B) 12.59 9.64 59.16 36.36 51.22

Replit-Code-v1 (2.7B) 4.25 3.24 33.62 18.33 21.09

SantaCoder (1.1B) 2.32 2.42 30.87 21.71 17.81

StarChat-Alpha (15.5B) 11.23 10.07 63.58 51.06 30.03

StarCoderBase-1B (1B) 1.98 1.39 24.86 13.00 15.17

StarCoderBase-3B (3B) 6.60 6.52 51.73 32.20 21.46

StarCoderBase-7B (7B) 6.13 7.86 62.35 46.42 28.37

StarCoderBase (15.5B) 8.70 7.73 65.28 51.74 30.40

Code-Llama-Py-7B (7B) 7.26 9.88 66.88 55.36 40.48

Code-Llama-Py-13B (13B) 10.66 10.71 70.22 62.26 42.89

Code-Llama-Py-34B (34B) 12.65 11.68 73.51 64.65 53.29

4.1 Evaluating Models On STUDENTEVAL

Table 1 reports the mean pass@1 rate for every

model on the four subsets of STUDENTEVAL. We

include HumanEval pass@1 rates for comparison.

Code Llama models perform best We find that

the Code Llama models significantly outperform

all other models on the First/Last Success prompts.

The 13B model outperforms StarCoderBase-15B,

the closest competing model, by 5-10% (absolute).

The 34B model performs even better.

STUDENTEVAL reveals performance differences

between small and large models HumanEval

is the de facto standard code benchmark; many

Code LLM developers focus on HumanEval scores.

However, we observe that the difference between

pass@1 rates for large and small models is more

substantial with STUDENTEVAL. 1) For the Star-

CoderBase models, pass@1 on Last Success is

almost 4x higher with the 15B model vs the 1B

model, but the gap is much smaller (2x) on Hu-

manEval. 2) Phi-1 (1.3B) approaches Code Llama

(34B) on HumanEval, but Code Llama is 1.7x bet-

ter on Last Success than Phi-1. One possibility

is that Phi-1’s textbook training data helps with

HumanEval’s expert-written prompts, but not on

STUDENTEVAL: non-experts do not write textbook

quality prompts. This shows that small models may

perform competitively on expert-written prompts

while still struggling with student-written prompts.

4.2 Variation in Pass@1

Most Code LLM papers only report mean pass@1

for a benchmark, averaging over problems with

widely varying pass rates. Because STUDENTE-

VAL contains multiple prompts per problem, it il-

luminates the extent to which luck plays a role in

whether a Code LLM produces the right answer for

a user. In Figure 3, we group prompts by problem,

so the plots show the percentage of problems (Y )

with pass@1 lower than the indicated value (X).

For a given model, we define a reliable failure as

a First/Last Failure with pass@1 above 0.8 (to the

right of the 0.8 dashed line in the CDF). These are

unlucky cases: the prompt failed for the student,

but turned out to be reliable. We find that GPT-3.5-

Turbo-0301 and StarCoderBase have one and two

reliable failures. Similarly, we define an unreliable

success as a First/Last Success prompt with pass@1

less than 0.2. These are lucky cases: the prompt

worked once, but that success is hard to replicate.

We find that nearly 10% of successful prompts

are unreliable for small models, but less than 3%

are unreliable with larger models (Appendix Ta-

ble 7). This has implications for model selection. It

is not adequate to optimize a model to achieve high

pass@1 on any benchmark (including STUDEN-

TEVAL). Instead, an ideal Code LLM would both

maximize pass@1 and minimize its variability.

4.3 Participant Success Rates

Examining prompt success rates by participant re-

veals a wide spectrum of prompting ability among

participants (Figure 4). Although some achieve suc-

cess rates over 50% with StarCoderBase, a large

number struggle to write reliable prompts.
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STUDENTEVAL is the numerous natural language

descriptions per problem, written by beginning pro-

grammers with varying levels of prompting skill.

We show that larger models are more capable of

following student-written instructions than smaller

models. We also find that many student-written

prompts are unreliable (have low pass@1): stu-

dents get lucky (or unlucky) when using Code

LLMs, an issue for educational use of Code LLMs.

Finally, we investigate the question of what makes

a good prompt from several angles, finding that

models struggle to understand some valid strate-

gies, such as giving examples of complex data.

We hope that STUDENTEVAL will make it easier

to evaluate how well Code LLMs work for natural

language instructions written by non-experts, lead-

ing to the development of models that are better

aligned with this key group of users.
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Limitations

Although our findings shed light on how well Code

LLMs work with descriptions written by one key

group of non-experts, there is more work to be

done. We study only one group of non-experts (be-

ginning students); moreover, our participants were

recruited from three selective institutions within

the US. Other groups of students or other popula-

tions of non-experts may use different strategies

to describe code. Moreover, because there are few

multilingual Code LLM models, we look only at

prompting in English. This highlights the need for

more work exploring how diverse populations of

non-experts might interact with Code LLMs.

Our participants wrote their prompts interac-

tively while using a single model (Codex). It is

possible that they would have revised their prob-

lems differently with a different model. This is one

reason we do not emphasize comparisons between

Codex and other Code LLMs in our evaluation.

When we piloted in November 2022, the Codex

model we used (code-davinci-002) was the most

capable Code LLM available. Despite being “old,”

it remains as good as gpt-3.5-turbo on established

benchmarks: gpt-3.5-turbo and code-davinci-002

score 48% and 46% respectively on HumanEval.

Code Llama 34B scores 48%. This suggests that

the Codex model we use is as capable at code com-

pletion as many newer models.

The capabilities of Code LLMs also vary by pro-

gramming language (Cassano et al., 2023, 2024).

Our results may not generalize to languages other

than Python.

Ethics Statement

There are two main ethical concerns for this work:

(1) ethical concerns about the involvement of stu-

dent research participants and (2) concerns about

how the dataset could be used in future work.

Our work was conducted in accordance with the

Brandeis University Human Research Protection

Program. Potential harms to student participants

were a first-class consideration in the design. We

sought to address power dynamics and protect par-

ticipant autonomy with a number of measures. We

collected data in an opt-in manner, outside of the

classroom, and with informed consent. The re-

searcher conducting the study was not affiliated

with the participant’s institution. Students were

asked to complete programming assignments with

familiar content and were alerted to potential dis-

comfort associated with using an AI-based tool.

All identifying information has been removed

from the dataset. We have released the full dataset

via the Open Science Framework; participants con-

sented to the release of their anonymized data. The

Appendix also contains a “Datasheet for Dataset”

outlining pertinent dataset information. We pro-

vide pertinent screenshots and text illustrating the

experimental platform in the Appendix. The full ex-

perimental protocol is available through the Open

Science Framework.

Our second ethical concern is that releasing this

dataset may lead to the development of technology

that we would not build ourselves, such as attempts

to automate education in a way that negatively im-

pacts the educational experience of students. We

feel that the benefits of providing this data, which

we hope will lead to Code LLMs that work better

for non-expert users, outweigh this risk.

It is also possible that future users may general-
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ize results from the dataset beyond what is appro-

priate; our study involves early CS students in a

particular educational context (selective US institu-

tions) and may not generalize to other populations.

Finally, this research was only possible due to

model access and funding. To obtain the bench-

mark results from the 12 LLMs, we used around

2 weeks of GPU time on an H100 GPU. There are

ongoing ethical concerns about access to models

and infrastructure. The evaluation of the dataset in

this paper centers both open-source and small-scale

models, but fully addressing these issues should be

a priority for the broader community.
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A Access

The dataset can be accessed on the Open Science

Framework (https://doi.org/10.17605/OSF.

IO/WDPSX). Analysis and evaluation code are avail-

able through Github (github.com/Wellesley-

EASEL-lab/StudentEval). The benchmark prob-

lems are also part of the BigCode Evaluation Har-

ness (github.com/bigcode-project/bigcode-

evaluation-harness) and available on the Hug-

ging Face Hub (huggingface.co/datasets/

wellesley-easel/StudentEval).

B Author Statement

As authors, we acknowledge that we bear all re-

sponsibility in case of violation of rights, etc. Our

dataset is licensed under an OpenRAIL-D license.

C Hosting, Licensing, and Maintenance

Plan

Our dataset is hosted on the Open Science Founda-

tion and licensed under an OpenRAIL-D license.

We plan to maintain public access to the dataset,

but we do not plan to accept new contributions to

it. For more details, see our Datasheet (below).

D Datasheet for Dataset

D.1 Motivation

For what purpose was the dataset created? Was

there a specific task in mind? Was there a spe-

cific gap that needed to be filled? This dataset

was created as a benchmark for code generation

models. It was created with the goal of filling two

gaps in the existing benchmarks: 1) the need for a

benchmark with multiple natural language descrip-

tions per problem and 2) the need for a benchmark

targeting a specific programmer skill level.

Who created the dataset and on behalf of which

entity? This dataset was created by researchers

at Northeastern University, Wellesley College, and

Oberlin College: Drs. Arjun Guha, Carolyn An-

derson, and Molly Feldman, along with students in

their labs. Dr. Arjun Guha is also affiliated with

Roblox Research.

Who funded the creation of the dataset? This

work was funded by the National Science Foun-

dation (SES-2326173, SES-2326174, and SES-

2326175).
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D.2 Composition

What do the instances that comprise the dataset

represent? Are there multiple types of in-

stances? The dataset consists of programming

tasks where each task has the following compo-

nents: a function signature; a test suite; an expert-

written implementation; an expert-written prompt;

and a set of student-written prompts (minimum 14).

How many instances are there in total? There

are 48 programming tasks and 1,749 student-

written prompts.

Does the dataset contain all possible instances

or is it a sample of instances from a larger set?

The dataset is not a sample of a larger set, but

it does not contain all possible instances, since

additional programming tasks or prompts could be

devised.

What data does each instance consist of? “Raw”

data or features? Each instance consists of text.

The dataset as a whole is stored in CSV format.

Is there a label or target associated with each

instance? Each prompt is labeled with the name

of the programming task it is associated with.

Is any information missing from individual in-

stances? If so, please provide a description, ex-

plaining why this information is missing. This

does not include intentionally removed informa-

tion, but might include, e.g., redacted text. We

have intentionally de-identified the dataset so that

prompts cannot be traced back to the students who

wrote them.

Are relationships between individual instances

made explicit? If so, please describe how these

relationships are made explicit. Yes. Each

prompt is associated with the programming task

it described, and we have also provided an ID link-

ing together prompts written by the same student.

Are there recommended data splits? If so, please

provide a description of these splits, explaining

the rationale behind them. No.

Are there any errors, sources of noise, or re-

dundancies in the dataset? Some prompts may

appear multiple times in the dataset, either because

multiple students described the problem in the same

way, or because a student re-submitted a prompt

without editing it.

Is the dataset self-contained, or does it link to

or otherwise rely on external resources? The

dataset is self-contained and does not link to or rely

on external resources.

Does the dataset contain data that might be con-

sidered confidential? No.

Does the dataset contain data that, if viewed di-

rectly, might be offensive, insulting, threatening,

or might otherwise cause anxiety? No.

Does the dataset relate to people? Yes.

Does the dataset identify any subpopulations?

No.

Is it possible to identify individuals, either di-

rectly or indirectly from the dataset? If so,

please describe how. We believe that this is not

possible. We have de-identified the dataset, remov-

ing participant usernames and replacing them with

randomly generated numeric IDs. We have also

manually reviewed the dataset to ensure that there

is no personally-identifying information that could

link prompts back to participants.

Does the dataset contain data that might be con-

sidered sensitive in any way? No.

D.3 Collection Process

How was the data associated with each in-

stance acquired? Was the data directly ob-

servable, reported by subjects, or indirectly in-

ferred/derived from other data? If data was re-

ported by subjects or indirectly inferred/derived

from other data, was the data validated/verified?

The data was collected during a human-subjects

experiment, where participants wrote prompts to

describe a function. Participants were then pre-

sented with a solution generated by the Codex code

generation model (Chen et al., 2021), as well as

the results of running a suite of test cases on the

solution. Participants could submit any number of

prompts for a particular problem (within the time

limit of the experiment).

Participants submitted the data using our web-

based experiment platform. There was no valida-

tion of their submissions, but the experiment was

overseen in real time by an experimenter, who was

available to answer questions and intervene when

participants ran into issues with the task.
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What mechanisms or procedures were used to

collect the data? How were these mechanisms

or procedures validated? The experiment was

conducted on a web-based experiment platform

built by the research team. We conducted a small-

scale pilot study to assess the functionality of the

platform.

If the dataset is a sampled from a larger set,

what was the sampling strategy? The dataset is

not sampled.

Who was involved in the data collection process

and how were they compensated? We recruited

participants who had taken an introductory Python

programming course at Northeastern, Wellesley, or

Oberlin within the past two years. Each participant

was given a $50 Amazon gift card for particpating

in the approximately 75 minute task.

Over what timeframe was the data collected?

Does this timeframe match the creation time-

frame of the data associated with the instances?

The data was collected between November 2022

and May 2023.

Were any ethical review processes conducted?

If so, please provide a description of these re-

view processes, including the outcomes, as well

as a link or other access point to any supporting

documentation. The study was conducted under

supervision of the Brandeis Human Research Pro-

tection Program, which acts as Wellesley College’s

IRB. Northeastern and Oberlin entered into autho-

rization agreements with Brandeis. If you have

questions or concerns about this project, you can

contact the Brandeis HRPP: hrpp@brandeis.edu.

Does the dataset relate to people? Yes.

Did you collect the data from the individuals in

question directly, or obtain it via third parties

or other sources? We collected the data directly

from participants as part of a lab-based study.

Were the individuals in question notified about

the data collection? If so, please describe how

notice was provided, and provide a link or other

access point to, or otherwise reproduce, the ex-

act language of the notification itself. Partici-

pants submitted an informed consent form prior to

participating. They verbally affirmed their ongoing

consent at the beginning of the study.

Did the individuals in question consent to the

collection and use of their data? If so, please

describe how consent was requested and pro-

vided, and provide a link or other access point

to, or otherwise reproduce, the exact language

to which the individuals consented. Yes. The

informed consent form is available to view on the

Open Science Framework site for this dataset.

If consent was obtained, were the consenting in-

dividuals provided with a mechanism to revoke

their consent in the future or for certain uses?

If so, please provide a description, as well as

a link or other access point to the mechanism.

Participants were allowed to retract their data prior

to its public release, by contacting the researchers.

Has an analysis of the potential impact of the

dataset and its use on data subjects been con-

ducted? Yes, the impact of releasing this data

was considering during the IRB process.

D.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the

data done? If so, please provide a description. If

not, you may skip the remainder of the questions

in this section. The dataset was de-identified to

preserve participant anonymity; we removed all

usernames and replaced them with randomly gener-

ated numeric IDs. We filtered out 74 prompts from

the benchmark (section 3).

Tokenization was done to facilitate the analysis

presented in the paper, but the released dataset con-

tains the submitted responses, not the tokenized

ones. The tokenization script is available on the

Github for this dataset.

We had two expert annotators with extensive

CS1 teaching experience assess each of the prompts

in the failing subset. We asked the annotators to

determine whether it was clear from the prompt that

the student understood the problem. We removed

74 prompts (11%) from the Failure subsets using

this criterion.

Was the “raw” data saved in addition to the

preprocessed/cleaned/labeled data? If so, please

provide a link or other access point to the “raw”

data. We will only release the de-identified

dataset, not the raw dataset. This is in order to

preserve participant anonymity.

Is the software used to preprocess/clean/label

the instances available? Yes. All code is avail-
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able at the Github repository linked at github.

com/Wellesley-EASEL-lab/StudentEval.

D.5 Uses

Has the dataset been used for any tasks already?

No.

Is there a repository that links to any or all pa-

pers or systems that use the dataset? No.

What (other) tasks could the dataset be used

for? The primary intended use for this dataset is

as a benchmark. However, it could also be used to

fine-tune machine learning models. We imagine

that it could be useful to fine-tune a code generation

model to better handle the way students talk about

code. It could also be used in tandem with pass@k

rates to fine-tune a prompt classification model.

Is there anything about the composition of the

dataset or the way it was collected and prepro-

cessed/cleaned/labeled that might impact future

uses? For example, is there anything that a fu-

ture user might need to know to avoid uses that

could result in unfair treatment of individuals

or groups or other undesirable harms. If so,

please provide a description. Is there anything

a future user could do to mitigate these undesir-

able harms? Although a diverse population of

students was involved in this research, represent-

ing many dialects of English, we have not exam-

ined how representative it is of the population of

English-speaking students. As a result, benchmark

results calculated with this dataset might not gener-

alize to all populations of potential code generation

users.

Are there tasks for which the dataset should

not be used? If so, please provide a description.

This dataset should not be used to build artifical

intelligence that aims to deceive humans (e.g. by

spreading misinformation or by impersonating a

human). Certain uses are also restricted by the

OpenRAIL license under which this dataset has

been released.

D.6 Distribution

Will the dataset be distributed to third parties

outside of the entity on behalf of which the

dataset was created? The de-identified dataset

will be made public.

How will the dataset will be distributed? Does

the dataset have a digital object identifier

(DOI)? The dataset is distributed through the

Open Science Framework, available at https://

doi.org/10.17605/OSF.IO/WDPSX.

When will the dataset be distributed? The

dataset is currently available.

Will the dataset be distributed under a copy-

right or other intellectual property (IP) license,

and/or under applicable terms of use (ToU)? If

so, please describe this license and/or ToU, and

provide a link or other access point to, or other-

wise reproduce, any relevant licensing terms or

ToU, as well as any fees associated with these

restrictions. The dataset is licensed under an

OpenRAIL-D License Agreement. The license can

be found on the Open Science Framework project

associated with the dataset.

Have any third parties imposed IP-based or

other restrictions on the data associated with

the instances? If so, please describe these re-

strictions, and provide a link or other access

point to, or otherwise reproduce, any relevant

licensing terms, as well as any fees associated

with these restrictions. No.

Do any export controls or other regulatory re-

strictions apply to the dataset or to individual

instances? No.

D.7 Maintenance

Who will be supporting/hosting/maintaining the

dataset? The Open Science Framework will host

the dataset.

How can the owner/curator/manager of

the dataset be contacted (e.g., email ad-

dress)? Questions or concerns about this

dataset can be directed to Arjun Guha

(a.guha@northeastern.edu); Carolyn Ander-

son (carolyn.anderson@wellesley.edu); or Molly

Feldman (mfeldman@oberlin.edu).

Is there an erratum? No, but if errors are dis-

covered, we will post one to the Open Science

Framework project.

Will the dataset be updated? No. The dataset

is stable.

If the dataset relates to people, are there applica-

ble limits on the retention of the data associated

with the instances? If so, please describe these

limits and explain how they will be enforced.
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G Prompt Analysis Details

G.1 Tokenization & Pre-Processing

As a pre-processing step, we replace functionally

equivalent words with placeholders. This pre-

processing was done as, across all problems in

STUDENTEVAL, there are 48 different function

names (e.g., convert, fib) and 57 different argu-

ment names (e.g., val, meetings). Therefore, we

replace references to functions and parameters with

*FUNCTIONNAME* and *PARAM*, respectively.

Our approach does not handle capital function or

argument names, as their meaning is ambiguous

(e.g., “Convert” is a verb, but convert is a func-

tion name). We also replace “return”/“returns” with

*RETURN*.

Student prompts consist of a mix of Python ter-

minology (including code snippets) and English

words. Therefore, standard English tokenization

libraries were insufficient. We perform a best-effort

tokenization using a regex-based Python function

that performs multiple passes. The overall goal

was to maintain meaningful code-related items as

single terms. Specifically, we treat list indexing,

lists, dictionaries, single/double quote strings, num-

bers, and comparison operators as single tokens.

There may be possessives and/or contractions that

are tokenized as strings rather than separate terms

in the dataset. Terms were additionally lowercased

and basic stopwords which are not meaningful in a

programming context were filtered out.

G.2 TF-IDF Analysis

We used scikitlearn’s TfidfVectorizer with

our tokenizer to generate the TF-IDF values pre-

sented in this paper. The list of all prompts was

provided to fit_transform. Figure 14 presents

the mean values for each of the top 25 words for

each of the four subsets.

G.3 Regression Analysis

We fitted mixed-effects regression models to pre-

dict STUDENTEVAL pass@1 rates estimated with

completions obtained from StarCoderBase. Mod-

els were fitted using the lme4 library in R. All

models included random intercepts for problems;

random slopes were omitted due to model complex-

ity. For vocabulary-level features, we use indicator

variables: a 1 if the prompt uses the word and a 0

otherwise. Values that are statistically significant

with a threshold of p = 0.5 are displayed in bold.

Prompt length Prompt length was calculated by

number of tokens using the tokenizer discussed in

Section G.1. The raw token count was divided by

100 for scaling purposes. The full estimates are

shown in Table 3.

Fixed effects β̂ z p

Intercept 0.15 (+/-0.04) 3.5 0.001

totalLength 0.06 (+/- 0.02) 2.8 0.008

Table 3: Mixed-effects regression results for problem

length

Input/output wording We explored the impact

of mentioning “return”, “input”, “print”, and “out-

put”. We counted all stemmed mentions. The full

estimates are shown in Table 4.

Fixed effects β̂ z p

Intercept 0.20 (+/- 0.03) 6.2 < 0.0001

returnInd 0.07 (+/- 0.02) 4.2 < 0.0001

inputInd 0.022 (+/- 0.03) 0.8 0.45

printInd -0.008 (+/- 0.03) -0.3 0.76

outputInd 0.025 (+/- 0.02) 1.1 0.27

Table 4: Mixed-effects regression results for input/out-

put terms

Datatype mentions We explored the impact of

mentioning “list”, “dictionary”, “array”, “variable”,

“number”, “int”, as well as giving example lists and

dictionaries (indicated by use of square or curly

braces). The full estimates are shown in Table 5.

Fixed effects β̂ z p

Intercept 0.22 (+/- 0.03) 6.9 < 0.0001

list 0.042 (+/- 0.02) 2.3 0.02

dict 0.006 (+/- 0.05) 0.13 0.90

squareBrace -0.21 (+/- 0.4) -0.6 0.57

curlyBrace 0.37 (+/- 0.2) 1.7 0.08

array -0.07 (+/- 0.04) -2.0 0.048

variable 0.03 (+/- 0.04) 0.7 0.49

number 0.009 (+/- 0.02) 0.48 0.63

int 0.023 (+/- 0.02) 1.2 0.24

Table 5: Mixed-effects regression results for datatype

mentions

Function and parameter names We explored

the effect of mentioning the function name and the

name of parameters. The full estimates are shown

in Table 6.
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Table 7: Number of reliable and unreliable prompts by model and subset.

Rate pass@1 < 0.2 pass@1 > 0.8

Model Subset

Code-Llama-Py-13B failure (first attempt) 38 -

failure (last attempt) 34 1

success (first attempt) 6 19

success (last attempt) 3 12

Code-Llama-Py-34B failure (first attempt) 36 -

failure (last attempt) 34 3

success (first attempt) 5 16

success (last attempt) - 13

Code-Llama-Py-7B failure (first attempt) 41 -

failure (last attempt) 36 1

success (first attempt) 8 15

success (last attempt) 3 10

GPT-3.5-Turbo-0301 failure (first attempt) 42 -

failure (last attempt) 31 2

success (first attempt) 9 6

success (last attempt) 5 7

Phi-1 failure (first attempt) 35 -

failure (last attempt) 37 -

success (first attempt) 7 7

success (last attempt) 13 4

Replit-Code-v1 failure (first attempt) 43 -

failure (last attempt) 40 -

success (first attempt) 18 2

success (last attempt) 25 -

SantaCoder failure (first attempt) 45 -

failure (last attempt) 42 -

success (first attempt) 21 3

success (last attempt) 23 1

StarChat-Alpha failure (first attempt) 38 -

failure (last attempt) 37 -

success (first attempt) 7 11

success (last attempt) 5 6

StarCoderBase failure (first attempt) 41 -

failure (last attempt) 37 1

success (first attempt) 8 12

success (last attempt) 4 7

StarCoderBase-1B failure (first attempt) 45 -

failure (last attempt) 41 1

success (first attempt) 26 2

success (last attempt) 32 1

StarCoderBase-3B failure (first attempt) 40 -

failure (last attempt) 38 -

success (first attempt) 15 8

success (last attempt) 17 3

StarCoderBase-7B failure (first attempt) 44 -

failure (last attempt) 39 1

success (first attempt) 9 9

success (last attempt) 10 8
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