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Abstract: Economic damages of hurricanes and tropical cyclones are increasing faster than the populations and wealth of many coastal
areas. There is urgency to update priorities of agencies engaged with risk assessment, risk mitigation, and risk communication across
hundreds or thousands of water basins. This paper evaluates hydrology and social vulnerability factors to develop a risk register at a subbasin
scale for which the priorities of agencies vary by storm scenario using publicly available satellite-based Earth observations. The novelty and
innovation of this approach is the quantification and mapping of risk as a disruption of system order, while using social vulnerability indices
and sensor data from disparate sources. The results assist with allocating resources across basins under several scenarios of hydrology
and social vulnerability. The approach is in several parts as follows: first, a baseline order of basins is defined using the CDC/ATSDR
social vulnerability index (SVI). Next, a set of storm scenarios is defined using Earth Observations and modeled data. Next, a swing-weight
technique is used to update factor weights under each scenario. Lastly, the importance order of basins relative to the baseline order is used
to compare the risk of scenarios across the study area. The risk is thus quantified (by least squares difference of order) as a disruption to
the ordering of basins by social and hydrologic factors (i.e., SVI, precipitation, wind speed, and soil moisture), with attention to the most
disruptive scenarios. An application is described with extensive mapping of hydrologic basins for Hurricane Ian to demonstrate a versatile
method to address uncertainty of scenarios of storm nature and extent across coastal mega-regions. DOI: 10.1061/AJRUA6.RUENG-1228.
This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/
licenses/by/4.0/.
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Introduction

Tropical cyclones historically result in social, economic, and envi-
ronmental losses in coastal mega-regions such as the southeastern
United States. Compared to other disasters in the US, tropical
cyclones result in the most damages and fatalities, averaging ap-
proximately $30.9 billion in damages and 157 fatalities per year
since 1980 (NOAA 2023). The southeastern US is a hotspot for
disproportionately high losses from climate-sensitive hazards
because of elevated exposure and concentrations of socially vulner-
able populations (Cutter et al. 2003; Emrich and Cutter 2011). With
predictions that climate change will increase the frequency and
intensity of future tropical cyclones, there is a need to reduce
tropical cyclone risk and improve system resilience (Lavell et al.
2012; UNDRR 2015). Evidence-based decision making has been
identified as an essential tool to support sustainable, resilient, and
risk-informed societies across organizational boundaries during

disasters (Kavvada et al. 2022; Shittu et al. 2018). To support this,
there is a need to quantify risk using social and environmental data.

The social vulnerability of an individual or community refers
to their “capacity to anticipate, confront, repair, or recover from
the effects of a disaster” (Flanagan et al. 2018). Previous studies
have shown that communities of high social vulnerability face
significant short- and long-term challenges following disasters,
which limits their ability to recover (Flanagan et al. 2011, 2018;
Fothergill and Peek 2004; Yarveysi et al. 2023). Disparities of
social vulnerability are observable within neighboring blocks,
meaning communities with varying social vulnerability will likely
suffer different impacts if exposed to the same tropical cyclone con-
ditions (Bakkensen et al. 2017; Yarveysi et al. 2023). For example,
the overall economic cost of repairs may be larger within an afflu-
ent community, but the losses are disproportionately higher for the
socially vulnerable community (Flanagan et al. 2011). Examples of
tropical cyclone disaster challenges associated with social vulner-
ability during each phase of the disaster cycle (mitigation, prepar-
edness, response, and recovery) are provided in the Appendix I.

Previous research quantified the relative social vulnerability
of the United States at various spatial resolutions including the
county level, Census-tract level, and block level (Cutter et al. 2003;
Flanagan et al. 2011; Yarveysi et al. 2023). These data sets have
been applied to natural and anthropogenic hazards to show the
spatial and temporal variability of social vulnerability across the
United States. Three social vulnerability indices are described
below:
1. County-level social vulnerability index (SoVI): Cutter et al.

(2003) developed the county-level SoVI by using principal com-
ponents analysis with socioeconomic and demographic data that
were identified as influential to natural hazards vulnerability
(Cutter et al. 2003; Emrich and Cutter 2011). Findings included
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observable variations in SoVI across widespread regions, such
as neighboring states, and the need for higher spatial resolution
data to resolve hazard vulnerabilities at the subcounty level
(Cutter et al. 2003; Emrich and Cutter 2011). Due to the coarse
county-level resolution, SoVI was not used in this study.

2. Block-level socio-economic-infrastructure vulnerability index
(SEIV): Yarveysi et al. (2023) developed the SEIV by leverag-
ing machine learning algorithms to provide high-resolution vul-
nerability data at the block level (Yarveysi et al. 2023). This
allows for analyses at finer spatial resolutions compared to SoVI
and SVI. It showed significant inequities among neighboring
blocks (Yarveysi et al. 2023). However, SEIV is not currently
recommended to be applied to disasters with high levels of dam-
age (>$250 million) since losses at the fine resolution of SEIV
are unreasonable to distinguish (Yarveysi et al. 2023). Since this
study provides a demonstration of the methodology for a hur-
ricane with damages of over $114 billion, SEIV was not used.

3. Census-tract level social vulnerability index (SVI): The Centers
for Disease Control (CDC) and Prevention Agency for Toxic
Substances and Disease Register (ASTDR) constructed a
Census-tract level SVI designed to support disaster management
(Flanagan et al. 2011). The index is available for multiple years
(2000, 2010, 2014, 2016, 2018, and 2020) using 16 variables to
calculate SVI at national and state levels (see Appendix II;
Flanagan et al. 2011). SVI has been validated and applied to
natural and anthropogenic disasters including tropical cyclones,
wildfires, sea level rise, rural/urban studies, migrant and refugee
population studies, etc. (Flanagan et al. 2018). For this study, we
have chosen to use SVI as it is the finest resolution social vul-
nerability data appropriate for disasters with extensive damage
greater than $250 million.
A factor of tropical cyclone damage is exposure to intense hy-

drometeorological conditions. Generally, adequate spatial and tem-
poral ground-based in situ observations are not possible to collect
during tropical cyclones due to widespread instrument failures
(Bucci et al. 2022). Satellite-based Earth observations can fill this
data gap by collecting high-resolution spatial and temporal data
during the disaster, which may have otherwise been unobservable.
For this study, precipitation, wind speed, and soil moisture esti-
mates were obtained from Earth observations and models. Since
hurricane damages can occur from exposure to a single extreme
environmental variable as well as a combined exposure to multiple
environmental variables, this study considers both individual and
multiple variables (Clark et al. 2022).

With the above motivation, this paper will address a need for
regularly updated disaster risk maps, as outlined in the United
Nations Sendai Framework for Disaster Risk Reduction, by provid-
ing a methodology to combine disparate sources of information in a
risk register at a subbasin scale (Bonato et al. 2022; Hamilton et al.
2015; Kaplan and Garrick 1981; Karvetski et al. 2009; UNDRR
2015; You et al. 2014). Within this risk register of basins, hydro-
logical and social vulnerability factors (specifically SVI, cumula-
tive precipitation, maximum hourly precipitation, maximum hourly
wind speed, and 5-day antecedent soil moisture) are combined in
several storm scenarios that disrupt the system order relative to a
baseline scenario of SVI. A swing-weight technique is used to cal-
culate new ordering functions for each basin under a given scenario
(Karvetski et al. 2009). The swing-weight technique allows for
tradeoffs of higher consideration of one or more variables in ex-
change for lower consideration of other variables (Karvetski et al.
2009). This is advantageous for risk analysis of hydrological disas-
ters because the relative importance of one variable (social or
hydrological) over another is uncertain. Thus, comparison of storm
scenarios derived from a swing-weight technique reveals the

sensitivity of the system to both single and multiple variables input
into the model.

The disruption of tropical cyclone disaster scenarios compared
to the baseline order is mapped to identify basins of top priority and
basins of greatest change in priority. The sum of squares of differ-
ences in order of basins relative to the baseline order is used to
identify scenarios that are most and least disruptive. A regional
demonstration of this approach with features of Hurricane Ian is
provided. The approach is an example of multidisciplinary innova-
tion toward providing high-resolution risk communication to dis-
aster managers and policymakers for systems analysis and resource
allocation. The maps and other results can inform priorities and
strategies aimed to decrease or transfer tropical cyclone risk and
improve system resilience within basins of high tropical cyclone
exposure and high social vulnerability.

Hurricane Ian Damages

In September 2022, Hurricane Ian became the third costliest
hurricane in US history with more than $114 billion in estimated
damage (Smith 2023; Smith and Katz 2013). Hurricane Ian caused
156 direct and indirect fatalities, 150 of which occurred in Florida,
making this the deadliest storm in Florida since 1935 (Bucci et al.
2022; Karimiziarani and Moradkhani 2023).

Conditions for Hurricane Ian were described by the National
Oceanic and Atmospheric Administration (NOAA) National
Hurricane Center and the media as catastrophic, life-threatening,
and deadly (Bucci et al. 2022). Damages included, but were not
limited to, storm surge up to 5 m above ground level, extensive
flooding, destruction and damage to infrastructure, multiple torna-
does, and tropical-storm force winds (Bucci et al. 2022). Hundreds
of water rescues were necessary, and an estimated 9.62 million
people were without power (Bucci et al. 2022). In the aftermath
of Ian, receding stormwater transported pollutants and debris to
the Gulf of Mexico, which caused harmful algal blooms off the
Florida coast (Bucci et al. 2022).

Hurricane Ian Meteorology

Ian originated off the west coast of Africa, rapidly intensified in
warm Atlantic Ocean water, and made its first landfall in western
Cuba as a Category III hurricane on the Saffir-Simpson Hurricane
Wind Scale on September 27 (Bucci et al. 2022). The system con-
tinued into the Gulf of Mexico, where it strengthened to a brief
peak intensity of a Category V hurricane (Bucci et al. 2022). Ian
weakened slightly to a Category IV hurricane before making land-
fall near Punta Gorda, Florida, on September 28 (Bucci et al. 2022).
As Ian slowly traversed Florida, it weakened to tropical storm status
before reentering the Atlantic Ocean near Cape Canaveral, Florida,
on September 29 (Bucci et al. 2022). Once in the Atlantic Ocean,
Ian intensified to a Category I hurricane and made its final landfall
near Georgetown, South Carolina. Ian gradually weakened in the
Carolinas and dissipated on October 1 (Bucci et al. 2022).

Hurricane Ian Data Collection

Numerous data collection methods were employed before, during,
and after Hurricane Ian to support forecasting, response, and recov-
ery efforts. For example, data were collected using ground-based
weather radars, networks of buoys, dropwindsonde observations,
satellite observations, Hurricane Hunter flights, and meteorological/
environmental models (Bucci et al. 2022). It is important to note that
during Hurricane Ian’s landfall in the US, many in situ observation
stations suffered instrument failures due to their exposure to the
hurricane and were unable to capture the peak meteorological
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conditions (Bucci et al. 2022). Thus, satellite-based Earth observa-
tions provide a valuable contribution to hurricane data collection by
providing high-resolution spatial and temporal data during the dis-
aster that could have been unobservable otherwise.

Hurricane Ian Social Vulnerability Challenges

Forecast and warnings for Hurricane Ian were issued 39–48 h in
advance of its landfall in both Florida and South Carolina (Bucci
et al. 2022). Even with relatively good forecasting and early issues
of warnings, as was the case with Hurricane Ian, previous studies
have shown that social vulnerability factors decrease the ability of
individuals to safely evacuate (Anand et al. 2023; Flanagan et al.
2011, 2018; Meyer et al. 2018). Social vulnerability may explain
the high number of fatalities during Hurricane Ian, particularly con-
sidering that reports of indirect causes of death included lack of
access to timely medical care, accidents (such as falling during
power outages), cardiac events, etc. (Bucci et al. 2022). Addition-
ally, the elderly composed the highest proportion of fatalities during
Hurricane Ian, which is generally observed during disasters (Bucci
et al. 2022; Flanagan et al. 2011).

Geographic Area of the Demonstration

The NOAA National Weather Service estimates of Hurricane Ian’s
path and wind swath over the contiguous United States were used
to define a study area of 922 subbasins within and traversing por-
tions of the following five southeastern states: Alabama, Florida,
Georgia, North Carolina, and South Carolina (Fig. 1). The subba-
sins were defined using the Level 08 HydroBASINS product
(Lehner and Grill 2013). The study area encompassed approxi-
mately 700,000 km2.

A digital elevation model (DEM) for the study area is shown
in Fig. 1(a) and was derived from the National Aeronautics
and Space Administration (NASA) Shuttle Radar Topography
Mission (SRTM). Due to the variability of low-lying terrain and
the Appalachian Mountains, elevation within the study area ranged

from approximately −29 to þ1,977 m relative to mean sea level
(MSL). The mean elevation was þ145 m MSL.

Sources of Data for the Demonstration

Descriptions of data used in this study for social factors (i.e., SVI)
and hydrology factors (i.e., precipitation, wind speed, and soil mois-
ture) are provided in the following subsections. Table 1 summarizes
the temporal resolution, native spatial resolution, resampled resolu-
tion, resampling method, study period, and source for each data set.

Subbasin Delineations from HydroBASINS

HydroBASINS, a secondary data set of the World Wildlife Fund’s
HydroSHEDS product, provides hierarchical subbasin boundaries
at a global scale (Lehner and Grill 2013). For this demonstration,
the Level 08 HydroBASINS product is used because it is the finest
subbasin resolution, which guarantees at least one unique Earth ob-
servation pixel per subbasin. In total, the study area has 922 sub-
basins with a mean area of 748 km2 and a median area of 533 km2.
Additional details of HydroBASINS are available in Appendix III
(HydroSHEDS, n.d.).

CDC/ASTDR Social Vulnerability Index

Social vulnerability data are obtained from the Center for Disease
Control and Prevention Agency for Toxic Substances and Disease
Registry Social Vulnerability Index (CDC/ASTDR SVI, henceforth
referred to as SVI). This data set provides vulnerability estimates at
the United States Census Tract level for select years between 2000
and 2020 (CDC/ATSDR 2023). The US wide SVI product for 2020
is used to allow for multistate analyses and since it was the most
up-to-date version available at the time of this study.

A summary of 16 variables contributing to overall SVI calcu-
lations is provided in Appendix II. SVI indices range from 0 to 1,
with 1 indicating the most vulnerable and 0 indicating the least

Fig. 1. Area of demonstration within the Southeastern United States: (a) digital elevation model (DEM) and HydroBASINS Level-08 subbasins; and
(b) hurricane Ian track and wind swath estimates from NOAA National Weather Service and HydroBASINS Level-08 subbasins.
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vulnerable regions. Additional details of the SVI data are available
in Appendix II (CDC/ASTDR 2023).

Precipitation Data from GPM IMERG

Precipitation data are derived from the Integrated Multi-satellitE
Retrievals for Global Precipitation Measurement (GPM IMERG)
missions, which provide up to half-hourly precipitation observa-
tions at a spatial resolution of 0.1° (Huffman et al. 2020).

For this study, the GPM IMERG Late Precipitation V06 Half
Hour Precipitation data set from September 27 to October 2, 2022,
is used to calculate maximum hourly precipitation (i.e., precipita-
tion intensity) and cumulative precipitation (i.e., precipitation
duration). Additional information for GPM IMERG is available
in Appendix III (NASA, n.d.).

Wind Speed Data from ECMWF ERA5

Wind speed data were obtained from the Copernicus Climate Change
Service (C3S) European Centre for Medium-Range Weather
Forecast (ECMWF) Reanalysis Version 5 (ERA5). For this study,
hourly wind speed data from September 27 to October 2, 2022, are
calculated using Eq. (1), where u is the u-component of wind in the
longitudinal direction 10 m above the surface of the Earth and v is
the v-component of wind in the latitudinal direction 10 m above the
surface of the Earth. Both u and v are utilized at hourly temporal
resolutions:

Wind speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
ð1Þ

Additional information for ERA5 is available in Appendix III
(ECMWF, n.d.).

SMAP-Derived 1-km Downscaled Surface Soil Moisture
Product

The soil moisture active passive (SMAP) derived 1-km downscaled
surface soil moisture product is used to calculate the 5-day ante-
cedent near-surface soil moisture (0–5 cm depth below the surface
of the Earth) (Lakshmi and Fang 2023). For this study, antecedent
soil moisture is examined because of fallen tree damage reports
during Hurricane Ian attributed to saturated soil, high winds, and
widespread flooding (Bucci et al. 2022). The study period of
September 23–27, 2022, provided 5-day antecedent soil moisture

data prior to landfall of Hurricane Ian in Florida. This was the short-
est antecedent period with sufficient observational coverage since
the data set is limited by cloud cover. Additional details on the
SMAP-derived 1-km downscaled surface soil moisture product are
available in Appendix III (NSIDC, n.d.).

Methods

This section describes the methodology in several parts as follows:
first, all variables are resampled to a subbasin scale as defined by
the Level 08 HydroBASINS data set. Second, the subbasins are
characterized from highest to lowest order for each variable. Third,
the basin order using SVI is defined as the baseline scenario, which
represents initial conditions of the study area prior to the hurricane
disturbance. Fourth, storm scenarios are defined based on the hy-
drology and SVI variables. Fifth, a swing-weight technique is used
to update factor weights for each scenario. Sixth, risk is calculated
for each scenario as the difference in basin order of the baseline
scenario versus a given scenario. Seventh, a score of disruptiveness
is calculated for each scenario using the normalized sum of squares
of differences in order. Further details of each step are provided in
the subsequent paragraphs.

Hydrology and social vulnerability variables are first resampled
to each subbasin (defined by the Level 08 HydroBASINS data set)
to allow for comparisons regardless of the native resolution of each
data set. For SVI and 5-day antecedent soil moisture (SM), a spatial
average is used. For cumulative precipitation (P1), a spatial sum is
used. For maximum hourly precipitation (P2) and maximum hourly
wind speed (W), a spatial average of maximum observed values
is used. Fig. 2 provides spatial plots of the original resampled
variables.

The subbasins are then characterized by ordering from highest
to lowest value and assigning an integer value from 1 to the total
number of basins using Eq. (2):

SnðbiÞ ¼ 100 ×
Xk
j¼1

wjvij ð2Þ

where

�
wj

����
Xk
j¼1

wj ¼ 1; 0 ≤ wj ≤ 1; j ¼ 1; : : : ; k

where the basin order for the ith basin (bi) under the nth
scenario (Sn) is defined as the summation of j to k variables for

Table 1. Summary of hydrology and social vulnerability data used in this study, including the variable, sensor/model, native spatial resolution, resampled
resolution, resampling method, temporal resolution, study period, and sources

Variable Sensor/model
Native spatial
resolution

Resampled
resolution

Resampling
method

Temporal
resolution Study period References

Social
vulnerability
index (SVI)

CDC/ATSDR social
vulnerability index 2020
database, US

Census tracks Level 08
Hydro-BASINS

Spatial average 1 year 2020 CDC/ATSDR
(2023)

Precipitation GPM IMERG late
precipitation L3 half
hour precipitation V06

0.1° Level 08
Hydro-BASINS

Spatial sum and
spatial maximum

1 h September 27–
October 1, 2022

Huffman et al.
(2020)

Soil moisture
(near-surface,
0–5 cm)

UVA 1-km downscaled
soil moisture product

1-km Level 08
Hydo-BASINS

Spatial average 12 h September 23–
September 27,
2022

Lakshmi and
Fang (2023)

Wind speed ECMWF ERA5 0.25° Level 08
Hydro-BASINS

Spatial maximum 1 h September 27–
October 2, 2022

Hersbach et al.
(2020)

Subbasins HydroBASINS Level 08 N/A N/A N/A N/A Lehner and Grill
(2013)
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the ith basin (vi) multiplied by the jth defined weight (wj). For
example, the basin with the most observed cumulative precipitation
during Hurricane Ian has an order value of 1, whereas the basin
with the least observed cumulative precipitation will have an order
of 922 (the maximum value of i).

Then, the swing-weight technique is used to update factor
weights for each of the 20 scenarios for the study. As previously
mentioned, the swing-weight technique allows for tradeoffs of
higher consideration of one or more variables in exchange for lower
consideration of other variables within a scenario. Table 2 summa-
rizes the scenarios and weights for each hydrology and social vul-
nerability variable. Scenarios using a single variable are S1–S5.
Scenarios using a combination of variables (up to five in total) are
S6–S20. The uncertainty is addressed by the identification of the
several scenarios, without assessing probabilities. Subsequently the
risk is quantified as of the degree of disruption of system order by
each of the scenarios (Hassler et al. 2019). Since the motivation
of this study is to understand the extent by which hydrological
extremes disrupt social vulnerability, S1 is defined as the baseline
order as it exclusively uses SVI and is assumed to represent con-
ditions prior to the hurricane disturbance. For S6–S20, a constant
SVI weight of 0.5 was used. This ensures a balance between
SVI and the hydrological contributions within each new order

calculation, as well as equal contributions of SVI across the remain-
ing scenarios.

For each scenario, we define risk (R) as the difference between
the baseline order and scenario order for a given basin using
Eq. (3):

RnðbiÞ ¼ BðbiÞ − SnðbiÞ ð3Þ

In Eq. (3), the risk of a given scenario and basin RnðbiÞ equals
the difference between the baseline order of the basin BðbiÞ and the
scenario order of the basin SnðbiÞ. A positive value for R indicates
the basin increased in order due to the disruption. A negative R
indicates the basin decreased in order following the disruption.
For the demonstration of Hurricane Ian, a positive value for R
would occur for a basin with low SVI and high hydrological ex-
posure. A negative value for R would occur for a basin with high
SVI and low hydrological exposure. A near-zero Rwould occur for
a basin either with high SVI and high hydrological exposure or a
basin with low SVI and low hydrological exposure. Spatial plots of
scenario basin orderings SnðbiÞ and risk RnðbiÞ are used to examine
spatial patterns of social vulnerability and hydrology across the
study area.

Fig. 2. Spatial maps of the observed social vulnerability and hydrology variables resampled per subbasin for (a) social vulnerability index;
(b) cumulative precipitation; (c) maximum hourly precipitation; (d) 5-day antecedent soil moisture; and (e) maximum hourly wind speed.
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Lastly, the most and least disruptive scenarios were determined
using the normalized sum of squares of differences in order, as in
Eqs. (4) and (5):

xðSnÞ ¼
XN
i

ðBðbiÞ −DðbiÞÞ2 ¼
XN
i

RðbiÞ2 ð4Þ

XðSnÞ ¼
xðSnÞ − xðSÞmin

xðSÞmax − xðSÞmin
ð5Þ

In Eq. (4), xðSnÞ represents the score of disruptiveness for a
given scenario (Sn) as the sum over the basins of the squared differ-
ences of the baseline order and disrupted order. This calculation
quantifies risk as an influence of each scenario to the system order
(Bonato et al. 2022; Karvetski et al. 2009; You et al. 2014). The
normalized score of disruptiveness [XðSnÞ] is calculated [Eq. (5)]
as the score of disruptiveness for a given scenario xðSnÞ minus the
minimum score of disruptiveness [xðSÞmin] divided by the maxi-
mum score of disruptiveness [xðSÞmax] minus the minimum score
of disruptiveness [xðSÞmin]. The least disruptive scenario had the
lowest normalized score of disruptiveness. The most disruptive
scenario had the highest normalized score of disruptiveness.

Sample of Results

The results and discussion are organized into the following subsec-
tions: (1) single variable basin order results; (2) scenario results;
(3) basin ordering for select scenarios; and (4) basin risk for select
scenarios. For each of the variables and scenarios, lower order/
percentiles indicate greater concern and thus might be prioritized

for near-term disaster recovery, response, and future mitigation
efforts.

Single Variable Basin Order Results

Social Vulnerability Index Order
As previously discussed, the SVI order shown in Fig. 2(a) was de-
fined as the baseline order for this study. Even though SVI is based
on a national scale, a wide distribution of SVI was observed in the
study area with a minimum of 0.005, maximum of 0.974, mean
of 0.548, and median of 0.576 [Fig. 3(a)]. The spatial plot of
SVI order in Fig. 4(a) shows that the lowest order SVI basins are
concentrated in the southeastern portions of Alabama, Georgia,
South Carolina, and North Carolina.

Coastal basins tended to have higher order compared to adjacent
inland basins. This indicates that inland basins have populations
with more social vulnerability than coastal basins. This is particu-
larly apparent in Florida and may be explained by recent trends of
increased demand for ‘coastal lifestyle housing’ observed by
Florida real estate agents (Palm and Bolsen 2023).

Precipitation (P1 and P2) Orders
Precipitation is separately analyzed as cumulative precipitation
(mm, P1) and maximum hourly precipitation rate (mm/h, P2) to
account for both precipitation intensity and duration.

Fig. 3(b) shows a histogram of total precipitation within the
study area. Fig. 3(b) shows the spatial distribution of basin ordering
based on cumulative precipitation. While little to no precipitation is
observed in the western portion of the study area, basins located
within the path of Hurricane Ian were exposed to extreme pre-
cipitation amounts of up to 500 mm within the 6-day period.
The mean and median cumulative precipitation are, respectively,

Table 2. A swing-weight technique is used to update factor weights for each of the 20 scenarios of the contributing hydrology and social vulnerability
variables

Scenario (Sn)

Swing weights (wj) of contributing variables (vj)

v1: SVI v2: P1 v3: P2 v4: W v5: SM

S1: SVI (baseline order) 1 0 0 0 0
S2: Hurricane Ian cumulative precipitation 0 1 0 0 0
S3: Hurricane Ian maximum hourly precipitation 0 0 1 0 0
S4: Hurricane Ian maximum hourly wind speed 0 0 0 1 0
S5: Hurricane Ian 5-day antecedent soil moisture 0 0 0 0 1
S6: SVI and Hurricane Ian cumulative precipitation 0.5 0.5 0 0 0
S7: SVI and Hurricane Ian maximum hourly precipitation 0.5 0 0.5 0 0
S8: SVI and Hurricane Ian maximum hourly wind speed 0.5 0 0 0.5 0
S9: SVI and Hurricane Ian 5-day antecedent soil moisture 0.5 0 0 0 0.5
S10: SVI, Hurricane Ian cumulative precipitation and maximum hourly precipitation 0.5 0.25 0.25 0 0
S11: SVI, Hurricane Ian cumulative precipitation and maximum hourly windspeed 0.5 0.25 0 0.25 0
S12: SVI, Hurricane Ian cumulative precipitation and 5-day antecedent soil moisture 0.5 0.25 0 0 0.25
S13: SVI, Hurricane Ian maximum hourly precipitation and maximum hourly wind speed 0.5 0 0.25 0.25 0
S14: SVI, Hurricane Ian maximum hourly precipitation and 5-day antecedent soil moisture 0.5 0 0.25 0 0.25
S15: SVI, Hurricane Ian maximum hourly wind speed and 5-day antecedent soil moisture 0.5 0 0 0.25 0.25
S16: SVI, Hurricane Ian cumulative precipitation, maximum hourly precipitation, and maximum

hourly wind speed
0.5 0.167 0.167 0.167 0

S17: SVI, Hurricane Ian cumulative precipitation, maximum hourly precipitation, and 5-day
antecedent soil moisture

0.5 0.167 0.167 0 0.167

S18: SVI, Hurricane Ian cumulative precipitation, maximum hourly wind speed, and 5-day
antecedent soil moisture

0.5 0.167 0 0.167 0.167

S19: SVI, Hurricane Ian maximum hourly precipitation, maximum hourly wind speed, and 5-day
antecedent soil moisture

0.5 0 0.167 0.167 0.167

S20: SVI, Hurricane Ian cumulative precipitation, maximum hourly precipitation, maximum
hourly wind speed, and 5-day antecedent soil moisture

0.5 0.125 0.125 0.125 0.125

Note: Contributing variables include social vulnerability index (SVI), cumulative precipitation (P1), maximum hourly precipitation (P2), maximum hourly
wind speed (W), and 5-day antecedent soil moisture (SM).
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31 and 104 mm. The highest prioritization of basins follows the
path of Hurricane Ian over Central Florida and South Carolina.
Cumulative precipitation order is higher in Florida than in the
Carolinas. This is likely due to the duration of the hurricane’s pres-
ence over Florida because the system was relatively slow-moving
and took approximately 16 h for the eyewall to pass from Florida’s
Gulf Coast to the Atlantic Coast (Bucci et al. 2022). In the
Carolinas, it took approximately 6 h for the system to transition
to an extratropical cyclone after making landfall (Bucci et al. 2022).

Hourly maximum precipitation (P2) exhibited a similar distribu-
tion to the cumulative precipitation, particularly with western ba-
sins of the study period observing little to no precipitation rates
[Fig. 3(c)]. A wide distribution of precipitation rates was observed
with a maximum of 69 mm=h, mean of 12 mm=h, and median of
10.6 mm=h [Fig. 3(c)]. The spatial order plot of maximum hourly
precipitation showed the highest prioritization of basins in the
Carolinas, followed by Florida [Fig. 4(c)]. This indicates that the
Carolinas were exposed to more intense rainfall than Florida, de-
spite the greater cumulative precipitation observed in Florida.

Wind Speed (W) Order
The distribution of maximum hourly wind speed in Fig. 3(d) shows
the study area was exposed to varying wind speeds from a mini-
mum of 4.2 m=s to a maximum of 26.1 m=s. The median and mean
wind speeds are, respectively, 9.0 m=s and 10.3 m=s. In the spatial
order plot of maximum hourly wind speed shown in Fig. 4(e);
coastal basins tend to be higher priority than inland basins. This

is expected because of coastal convection processes. However,
the inland basins of Florida and the Carolinas tended to exhibit
higher prioritization over other basins outside of the path of
Hurricane Ian.

Soil Moisture Order
Fig. 3(e) shows the distribution of 5-day antecedent soil moisture,
which had a minimum of 0.8 m3=m3, a maximum of 0.59 m3=m3,
a mean of 0.25 m3=m3, and a median of 0.24 m3=m3. In this study,
higher soil moisture is prioritized because soil with a high degree of
water saturation has less pore space readily available to store addi-
tional water. When exposed to extreme precipitation events, the de-
creased pore capacity to store water can result in flooding because
the volumetric water content of the soil increases to its porosity,
rendering it saturated.

The spatial plot of ordered 5-day antecedent soil moisture
shown in Fig. 4(d) reveals that the highest priority soil moisture
values are observed in Florida and coastal basins. Notably, the
lowest soil moisture values are opposite to the spatial distribution
of SVI order; basins of high SVI tend to be colocated with basins of
low soil moisture in the noncoastal basins of southern Alabama,
Georgia, South Carolina, and North Carolina. Future research
should be dedicated to comparing the spatial and temporal distri-
butions of SVI and soil moisture using a longer study period and
national scale. This would improve understanding of whether the
inverse relationship of SVI and soil moisture observed in this study
is correlated or coincidental.

Fig. 3. Histograms of the observed social vulnerability and hydrology variables resampled per subbasin in the area of demonstration for (a) social
vulnerability index (SVI); (b) total precipitation; (c) hourly maximum precipitation; (d) hourly maximum wind speed; and (e) 5-day antecedent soil
moisture.
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Scenario Results

To further investigate basin sensitivity to each scenario, the average
order of the top 10% of basins (92) from S20 is plotted across all
scenarios (S1–S20) in Fig. 5. When only one variable was used to
define a scenario (S1–S5), a wide distribution of average orders was
observed. As more variables contributed to a given scenario (three
variables for S10–S15, four variables for S16–S19, and five variables
for S20), the overall average basin orders stabilized and exhibited
less variability of order compared to scenarios with one to two
variables.

Notable peaks in order occurred during S5 and S9, both of which
relied on the 5-day antecedent soil moisture data for ordering. This
indicates that the soil moisture data contributes different ordering
priorities compared to the other variables, likely because it was the
only hydrology variable observed prior to the hurricane event.
However, when two or more variables contribute to a scenario
in combination with the 5-day antecedent soil moisture data, the
peaks are not pronounced. Thus, incorporating multiple hydrology
variables into a given scenario is important to reduce basin sensi-
tivity to an individual variable and to improve representation of
exposure to the extreme hydrological event.

Fig. 5.Average order of the top 10% of basins from scenario S20 across
all scenarios (S1–S20). The overall ordering stabilizes as more hydrol-
ogy and social vulnerability variables contribute to a given scenario.

Fig. 4. Maps of the ordered percentiles within the area of demonstration at the subbasin level for the following social vulnerability and hydrology
variables: (a) social vulnerability index (SVI); (b) cumulative precipitation; (c) maximum hourly precipitation; (d) 5-day antecedent 1-km soil
moisture; and (e) maximum hourly wind speed.
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Fig. 6 shows a bar graph of the normalized score of disruptive-
ness for each scenario, which was calculated using Eqs. (4) and (5).
The most disruptive scenarios were S5 (Hurricane Ian 5-day ante-
cedent soil moisture), S3 (Hurricane Ian maximum hourly precipi-
tation), and S2 (Hurricane Ian cumulative precipitation) because
they exhibited the highest normalized scores of disruptiveness.
Each of these scenarios had only one contributing variable with
different spatial orderings compared to the baseline order, resulting
in the highest disruption. The least disruptive scenarios, exhibiting
the lowest normalized scores of disruptiveness, were S19 (SVI,
Hurricane Ian maximum hourly precipitation, maximum hourly
wind speed, and 5-day antecedent soil moisture) and S14 (SVI,
Hurricane Ian maximum hourly precipitation and 5-day antecedent
soil moisture). These scenarios accounted for three and four hydrol-
ogy and social vulnerability factors, resulting in basin ordering that

were least different from the baseline order compared to the other
scenarios.

Table 3 describes the disruption of order of basins across sce-
narios compared to the baseline order, using 10% increments of
disruption. Similar to Figs. 5 and 6, the most disruptive scenarios
are S2, S3, S4, and S5 since each hydrology variable individually
orders the basins dissimilarly to SVI. Scenario S5 has the fewest
number of basins in the 0%–10% disruption category indicating
that antecedent soil moisture ordering differed the greatest from
the SVI order. As previously noted, this disruption may indicate
that low soil moisture corresponds to regions of high social vulner-
ability but would require additional research to confirm whether
this is correlated or coincidental.

Across all scenarios, disruptions of basin order are at least 50%
(Table 3). Scenarios S19 and S14 were previously identified as the
least disruptive scenarios (Fig. 6) with no basin disruptions greater
than 50% (Table 3). For S19, 37% of the study area (343 basins) had
0%–10% disruption, 33% (310 basins) had 10%–20% disruption,
19% (179 basins) had 20%–30% disruption, 6% (61 basins) had
30%–40% disruption, and 3% (29 basins) had 40%–50% disrup-
tion. For S14, 40% of the study area (371 basins) had 0%–10%
disruption, 29% (271 basins) had 10%–20% disruption, 20% (180
basins) had 20%–30% disruption, 8% (71 basins) had 30%–40%
disruption, and 3% (29 basins) had 40%–50% disruption.

Basin Ordering for Select Scenarios

Spatial plots of the basin ordering are provided in Fig. 7 to inves-
tigate spatial patterns of the following three selected scenarios:
(1) the most disruptive scenario that includes both social vulner-
ability and hydrology (S9); (2) the most disruptive scenario that
includes social vulnerability and three or more hydrology variables
(S16); and (3) the least disruptive scenario (S19). Even though each
scenario has a unique basin ordering spatial map, these three se-
lected scenarios (S9, S16, S19) adequately represent the range of
basin orders and risk across the scenarios and thus are provided
in this manuscript.

Fig. 7(a) shows the basin ordering of the most disruptive sce-
nario, S9, which was defined as equal contributions of SVI and
5-day antecedent soil moisture. Basins of the lowest order are found

Fig. 6. Normalized score of disruptiveness for scenarios (S2–S20) to
determine the most and least disruptive scenarios compared to the
baseline SVI order (S1).

Table 3. Summary of the number of basins within 10% increments of disruption across scenarios S2–S20 compared to the baseline order (S1)

Scenario
(Sn)

Number of basins within a percentage of disruption (%) compared to S1

0%–10% 10%–20% 20%–30% 30%–40% 40%–50% 50%–60% 60%–70% 70%–80% 80%–90% 90%–100%

S2 196 176 127 101 107 70 53 39 33 20
S3 196 169 128 111 97 80 49 39 34 19
S4 210 178 122 109 109 63 52 31 29 19
S5 166 130 115 118 113 92 75 53 42 18
S6 308 269 167 94 84 0 0 0 0 0
S7 300 274 165 110 70 3 0 0 0 0
S8 322 262 173 104 59 2 0 0 0 0
S9 263 217 182 144 104 12 0 0 0 0
S10 289 297 154 117 65 0 0 0 0 0
S11 326 249 166 126 55 0 0 0 0 0
S12 368 269 164 69 51 1 0 0 0 0
S13 327 254 181 117 43 0 0 0 0 0
S14 371 271 180 71 29 0 0 0 0 0
S15 387 259 168 69 38 1 0 0 0 0
S16 312 271 174 108 57 0 0 0 0 0
S17 320 308 186 80 28 0 0 0 0 0
S18 348 294 176 66 38 0 0 0 0 0
S19 343 310 179 61 29 0 0 0 0 0
S20 335 274 203 80 30 0 0 0 0 0
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in western Alabama and inland Florida because they had both high
soil moisture and social vulnerability.

For scenarios S16 [Fig. 7(b) and S19 Fig. 7(c)], the lowest order
basins were found in Central Florida and the southeastern por-
tions of the Carolinas. This is consistent with the first landfall of
Hurricane Ian in Florida and its second landfall in South Carolina.
Conversely, the highest order basins occurred safely beyond the
path of Hurricane Ian in Alabama, northern Georgia, and the
northwestern portions of the Carolinas.

Surprisingly, coastal basins within the path of Hurricane Ian ex-
hibited higher order than their adjacent inland basins, even though
the single variable basin ordering (Fig. 4) reveals that coastal basins

tend to exhibit the lowest order. Thus, this pattern is due to SVI,
which is the only variable to prioritize inland basins more than
coastal basins.

Table 4 shows the top-20 basins (2%) of prioritization based on
the basin ordering of scenario S16. A reference map of the basin
locations is shown in Fig. 9(a). This serves as a conservative esti-
mate of which basins should be prioritized because it had the lowest
score of disruptiveness. Basins in Florida, South Carolina, and
North Carolina are all represented in the top 2% of prioritization.
Moreover 20% (4) were coastal basins and 80% (16) were inland.
The baseline orders of these basins are within the top 16% of the
overall SVI order of the study area. Since these basins ordered in
the top 2% of the S16 order, it indicates they were also exposed to
extreme hydrological conditions due to Hurricane Ian.

Risk as the Disruption of Basin Order

Fig. 8 provides a map of the risk basin order results [calculated
using Eq. (3)] for the three scenarios previously examined: S9,
S16, and S19. It is important to note that if a basin experienced high
order in both the baseline map and the disrupted order map, it is
reflected as low risk in Fig. 8; the order did not significantly change.
The greatest increases in order are found in basins with low social
vulnerability but high hydrological exposure. Conversely, the great-
est decreases in order are found in basins with high social vulner-
ability but low hydrological exposure. Thus, this tool is intended
to be used in conjunction with the disrupted basin order map (Fig. 7)
to identify basins that were disrupted due to exposure to the extreme
hydrological conditions.

In Fig. 8(a), the risk map of scenario S9 had approximately 466
basins (51%) experience an increase in order and thus positive risk
(depicted in red). Conversely, 454 basins (49%) decrease in order
(depicted in green). Only two basins (less than 1%) have no change
in order. This indicates that few basins have both low social vul-
nerability and low soil moisture conditions.

Similar to the disrupted basin order maps shown in Fig. 7, the
risk basin maps are consistent with the path of Hurricane Ian in
Figs. 8(b and c). The highest risk basins are found in the Carolinas,
while the lowest risk basins are found in Alabama and Georgia. For
scenario S16 [Fig. 7(b)], 458 basins (∼50%) increase in order while

Fig. 7. Spatial plot of the basin ordering for the following scenarios: (a) S9—SVI and Hurricane Ian 5-day antecedent soil moisture; (b) S16—SVI,
Hurricane Ian maximum cumulative precipitation, maximum hourly precipitation, and maximum hourly wind speed; and (c) S19—SVI, Hurricane Ian
maximum hourly precipitation, maximum hourly wind speed, and 5-day antecedent soil moisture.

Table 4. Summary of top-20 basins (2% of the study area) prioritized
highest in the disrupted order (D) for scenario S16

S16
order

Basin
name (bi) State

Basin
type

Baseline
order (S1)

1 7080044390 FL Coastal 10
2 7080044450 FL Coastal 1
3 7080789240 FL Inland 4
4 7080696960 SC Inland 45
5 7080791760 FL Inland 2
6 7080791840 FL Inland 20
7 7080684980 SC Inland 35
8 7080791630 FL Inland 11
9 7080684850 SC Inland 73
10 7080691080 SC Inland 25
11 7080791790 FL Inland 6
12 7080676370 SC/NC Inland 36
13 7080667100 SC/NC Inland 97
14 7080677550 SC/NC Inland 69
15 7080043160 SC Coastal 135
16 7080675620 SC Inland 98
17 7080684690 SC Inland 96
18 7080690650 SC Inland 39
19 7080043100 SC Coastal 147
20 7080675700 SC Inland 142

Note: The HydroBASINS Level-08 basin name, state, basin type (coastal or
inland), and baseline order (S1) are provided. A reference map of the basin
locations is available in Fig. 9(a).
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462 (∼50%) decrease in order. Few basins had no change in order
(two basins, less than 1%). 312 basins (33%) have less than a 10%
increase or decrease in order. In scenario S19 [Fig. 8(c)], approx-
imately 422 basins (45%) increase in priority and 496 basins (54%)
decrease in priority. Only four basins (less than 1%) have no change
in order. However, 343 basins (37%) experience less than 10% in-
crease or decrease in order.

The largest increase in prioritization for the top 10 basins (1%)
occurs under scenarios of only one hydrological variable (S2, S3,
S4, S5), with the majority occurring during S5 (Table 5). The mini-
mum orders under these scenarios are all within the top 2%, indi-
cating these basins had high hydrological exposure. However, the
social vulnerability of these basins is within the bottom 95%–100%
of the baseline order (i.e., low social vulnerability). The reference
map in Fig. 9(b) shows that these basins correspond to areas of
protected national parks, national and state preserves, and wildlife
management areas and have low populations. Thus, these basins
experience large increases in prioritization since their baseline
order was low (SVI) but their exposure to hydrological conditions
during Hurricane Ian was high.

Similarly, the largest decrease in prioritization for the top 10
basins (1%) occurs under scenarios of only one hydrological
variable (S2, S4, and S5), with the majority occurring during S2
(Table 6). The baseline order of all 10 basins is within the top
9% of the baseline order. This indicates these basins are among
the most socially vulnerable in the study area. However, the sce-
nario results indicate how these regions had low exposure to hydro-
logical extremes. The reference map shown in Fig. 9(c) shows the
basins were located outside of the hurricane path. For the two
basins located within the path of Hurricane Ian in the Carolinas,
the S5 scenario was responsible for the highest order, indicating
that these basins had very low antecedent soil moisture conditions.

Discussion

Machine Learning for Basin-Level Risk Assessment

One might consider machine learning, a subset of artificial intelli-
gence, in the theory part of this paper. Machine learning has

Fig. 8. Spatial plot of the basin risk for the following scenarios: (a) S9—SVI and Hurricane Ian 5-day antecedent soil moisture; (b) S16—SVI,
Hurricane Ian maximum cumulative precipitation, maximum hourly precipitation, and maximum hourly wind speed; and (c) S19—SVI, Hurricane
Ian maximum hourly precipitation, maximum hourly wind speed, and 5-day antecedent soil moisture. Basins that increased in order are depicted in
red. Basins that decreased in order are depicted in green.

Table 5. Summary of top 10 basins (1%) with largest increase in priority across scenarios compared to the baseline order (S1)

Rank of
largest increase
in priority

Basin
name
(bi)

Increase in
prioritization

(%)

Baseline
order
(S1)

Scenario of
minimum order

(Sn)
Minimum
order

1 7080044540 99.35 921 5 5
2 7080044200 98.16 912 3 7
3 7080044210 98.05 913 2 9
4 7080044520 97.94 922 5 19
5 7080044600 97.94 920 5 17
6 7080044460 97.61 901 5 1
7 7080044610 97.51 906 4 7
8 7080044910 96.96 896 2 2
9 7080796400 95.88 893 5 9
10 7080042770 95.01 877 3 1

Note: The rank of largest increase in priority, HydroBASINS Level-08 basin name, increase in prioritization percentage, baseline order (S1), scenario of
minimum order, and minimum order are provided for each basin. A reference map is shown in Fig. 9(b).

© ASCE 04024051-11 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2024, 10(3): 04024051 

 T
hi

s w
or

k 
is

 m
ad

e 
av

ai
la

bl
e 

un
de

r t
he

 te
rm

s o
f t

he
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n 

4.
0 

In
te

rn
at

io
na

l l
ic

en
se

. 



emerged as a technology to support disaster management given its
ability to efficiently process large volumes of data (Reda Taha et al.
2021; Sreelakshmi and Vinod Chandra 2022). This is valuable for
supporting disaster predictions, early warnings, response, and re-
covery efforts (Sreelakshmi and Vinod Chandra 2022).

Theoretically, basin-level risk management could work in part-
nership with machine learning by using the methodology of this
study as a foundational framework. One opportunity for future
work is using machine learning to increase the number of factors
and complexities of scenarios. However, it is important to ensure
any additional data input into the model are derived from reliable,
accurate, and spatially complete data (Sreelakshmi and Vinod
Chandra 2022). Human supervision may be necessary to avoid un-
intended algorithm bias, discrimination, and unfairness (Köchling
and Wehner 2020).

Validation

Validation of the new approach of this paper has the following
considerations. The quantification of risk as a disruption of system

order (following Hassler et al. 2019) is an artifact of an importance
model that is grounded in part in the social sciences (social vulner-
ability) and in part in the physical sciences; the disruption of basin
order is not a quantity that is observable either in a storm instance or
as a frequency over time. It is useful rather for an integrated com-
parison of hurricane scenarios and for the allocation of resources to
basins in anticipation of hurricane scenarios.

Conclusions

This study developed a methodology to quantify risk as the disrup-
tion of basin order by combining social and hydrology factors de-
rived from disparate sources. A swing-weight technique was used
to update factor weights of scenarios. This is advantageous for risk
analysis using multidisciplinary factors because the relative impor-
tance of one variable over another is uncertain. Spatial plots at a
subbasin scale of the most and least disruptive scenarios (defined
by sum of squares of differences in order) and risk (calculated as
the difference in baseline and scenario order) showed geographic

Fig. 9. Reference maps for the following: (a) top 20 basins (2%) with highest prioritization in the disrupted order for scenario S16. A table summary
of these basins can be found in Table 4. (b) Top 10 basins (1%) with greatest increase in priority across any scenario compared to the baseline order S1.
A table summary of these basins can be found in Table 5. (c) Top 10 basins (1%) with greatest decrease in priority across any scenario compared to the
baseline order S1. A table summary of these basins can be found in Table 6.

Table 6. Summary of top 10 basins (1%) with largest decrease in priority across scenarios compared to the baseline order (S1)

Rank of
largest decrease
in priority

Basin
name
(bi)

Decrease in
prioritization

(%)

Baseline
order
(S1)

Scenario of
maximum order

(Sn)
Maximum

order

1 7080649710 −97.40 23 4 921
2 7080719300 −95.23 18 2 896
3 7080719830 −94.47 26 2 897
4 7080659420 −93.49 33 5 895
5 7080676370 −93.49 36 5 898
6 7080719170 −93.28 34 2 894
7 7080715300 −93.17 14 5 873
8 7080705670 −91.97 17 2 865
9 7080703900 −91.87 8 2 855
10 7080743880 −90.67 85 5 921

Note: The rank of largest decrease in priority, HydroBASINS Level-08 basin name, decrease in prioritization percentage, baseline order (S1), scenario of
maximum order, and maximum order are provided for each basin. A reference map is shown in Fig. 9(c).
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distribution of basin priority. Stakeholders may use the results as a
tool for allocating resources at a basin level to decrease risk and
increase resilience.

An application to Hurricane Ian was demonstrated using pub-
licly available data derived from census, models, and Earth obser-
vations. A qualitative summary of key findings is provided in
Table 7. Scenarios of only hydrology factors identified coastal
basins as high-risk areas. However, scenarios of both social vulner-
ability and hydrology factors identified inland basins as higher risk
than coastal basins. Basins of exception to these patterns included
protected wildlife management areas within the hurricane path
(basins of greatest increase in priority) and basins of high social
vulnerability outside the hurricane path (basins of greatest decrease
in priority).

It is important to note how the model results can be sensitive to
the baseline scenario. For example, medical first responders tasked
with selecting locations for temporary medical tents could define
the baseline scenario as the SVI subvariable “Aged 65 and Older”
(see Appendix II). The differences of system order from the base-
line to each of the other scenarios are the focus of interest, and
modelers should thus remind the source(s) of the baseline scenario
in interpreting the results to stakeholders [see, e.g., (Hassler et al.
2019)].

Future work includes using this study as a framework to ex-
plore the capacity of machine learning to increase the number of
factors considered and the complexities of scenarios. For the ap-
plication to major tropical cyclones, future work should explore
the relationship of multiple hydrological disasters and social vul-
nerability over an extended period of time. This would improve
understanding of the spatial and temporal patterns of hurricane
exposure and social vulnerability in climate-sensitive-hazard
regions.

Given the disproportionate impacts of major tropical cyclones
and hydrological disasters on socially vulnerable communities, this

study provides a tool for risk assessment at the basin level to order
basins considering multidisciplinary factors. As demonstrated by
the application to Hurricane Ian, results of this work can be used
by policymakers and disaster managers to inform future invest-
ments designed to decrease the impacts of future major tropical cy-
clones for vulnerable populations.

Appendix I. Examples of Tropical Cyclone Disaster
Challenges Associated with Social Vulnerability

Examples of tropical cyclone disaster challenges associated with
social vulnerability during each phase of the disaster cycle include
the following:
• Mitigation: Socially vulnerable individuals are less likely to

have the financial means to purchase insurance or to live out-
side of hazard-prone areas (Cutter et al. 2003; Flanagan et al.
2011, 2018; Fothergill and Peek 2004; Yarveysi et al. 2023).
Housing structures, such as mobile homes, are typically ill-
equipped to withstand exposure to tropical cyclone conditions
(Flanagan et al. 2011; Fothergill and Peek 2004; Yarveysi
et al. 2023).

• Preparedness: The socially vulnerable are less likely to have the
physical or financial means to evacuate prior to a tropical cyclone
(Anand et al. 2023; Flanagan et al. 2011; Meyer et al. 2018). This
may stem from a lack of transportation access (i.e., no vehicle, no
affordable public transportation alternatives, etc.), an inability to
afford evacuation costs (i.e., hotels/temporary lodging, food, fuel,
etc.), or a need for increased evacuation assistance (i.e., for the
elderly, disabled, and children) (Cutter et al. 2003; Emrich and
Cutter 2011; Flanagan et al. 2011).

• Response: Emergency notifications and messaging may not be
readily available in languages other than English, making
it difficult for racial and ethnic minorities to receive timely

Table 7. Summary of qualitative results of this study including descriptions and figures/tables to reference within this paper

Types of results Specific results Comments Sources

Most disruptive
scenarios

S5–Hurricane Ian 5-day antecedent soil moisture, Scenarios of only one contributing variable exhibited
the disruptive spatial patterns, relative to the baseline
order (S1).

Fig. 6, Table 3
S3–Hurricane Ian maximum hourly precipitation,
S2–Hurricane Ian cumulative precipitation

Least disruptive
scenarios

S19–SVI, Hurricane Ian maximum hourly
precipitation, maximum hourly wind speed, and
5-day antecedent soil moisture

Scenarios of four hydrology and social variables
resulted in spatial patterns that were least disruptive to
the baseline order (S1).

Fig. 6, Table 3

S18–SVI, Hurricane Ian cumulative precipitation,
maximum hourly wind speed, and 5-day
antecedent soil moisture

Highest priority basins
in disrupted orders

Inland basins of Florida and South Carolina
followed by coastal basins of Florida, South
Carolina, and North Carolina

Basins of high social vulnerability located within the
hurricane path were exposed to the most extreme
hydrological conditions and may be prioritized for
near-term recovery, response, and future mitigation
efforts.

Fig. 7, Table 4,
Fig. 9(a)

Lowest priority basins
in disrupted orders

Alabama and North Georgia basins Basins of low social vulnerability located outside the
hurricane path had low priority.

Figs. 7 and 8

Greatest increase in
basin priority

Coastal basins of Florida These basins had very high exposure to hydrological
conditions during Hurricane Ian but low social
vulnerability in the baseline order. They are protected
wetlands, nature preserves, parks, and affluent
communities with low social vulnerability.

Fig. 8, Table 5,
Fig. 9(b)

Greatest decrease in
basin priority

Inland basins of Alabama, South Carolina, and
North Carolina

These basins had the highest social vulnerability in the
baseline order but were located outside the hurricane
path, meaning they had low hydrological exposure.

Fig. 8, Table 6,
Fig. 9(c)
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emergency information if they are not proficient in English
(Cutter et al. 2003; Flanagan et al. 2011). If English is not
the first language, cultural and language barriers can increase
the difficulty of navigating access to postdisaster funding and
aid for the socially vulnerable (Cutter et al. 2003).

• Recovery: Communities of high social vulnerability tend to be
the slowest to recover following major disasters (Flanagan et al.
2018). Their livelihoods are disproportionately affected by post-
disaster damages such as water contamination, loss of sewer
systems, power outages, etc. (Cutter et al. 2003).

Appendix II. Summary of Themes and Variables
Contributing to Census-Tract Level Social
Vulnerability Index Calculation

Themes Variables

Socioeconomic
status

1. Below 150% poverty
2. Unemployed
3. Housing cost burden
4. No high school diploma
5. No health insurance

Household
characteristics

1. Aged 65 and older
2. Aged 17 and younger
3. Civilian with a disability
4. Single-parent households
5. English language proficiency

Racial and ethnic
minority status

1. Hispanic or Latino (of any race)
2. Black and African American, not Hispanic or

Latino
3. American Indian and Alaska Native, not

Hispanic or Latino
4. Asian, not Hispanic or Latino
5. Native Hawaiian or other Pacific Islander, not

Hispanic or Latino
6. Other races, not Hispanic or Latino

Housing type and
transportation

1. Multiunit structures
2. Mobile homes
3. Crowding
4. No vehicle
5. Group quarters

Source: Data from CDC/ATSDR (2023).

Appendix III. Data Sets Used for Demonstration of
the Methodology for Hurricane Ian

Additional details about the data sets used for demonstration of
the methodology for Hurricane Ian are given in the subsequent
sections.

HydroBASINS

HydroBASINS is a global data set of hierarchical subbasin boun-
daries at up to 12 scales (Lehner and Grill 2013). This data set
is derived from NASA SRTM DEMs at a spatial resolution of
approximately 3 arcsec. The nested subbasins are determined by
continually delineating two subbasins where two rivers converge,
so long as each subbasin maintains a minimum upstream area of
at least 100 km2 (Lehner and Grill 2013). Additional details of
HydroBASINS are available from HydroSHEDS (n.d.).

GPM IMERG

Precipitation data are derived from the Integrated Multi-satellitE
Retrievals for Global Precipitation Measurement (GPM IMERG)
missions. This satellite constellation of infrared and passive micro-
wave sensors is a joint mission between NASA and the Japan
Aerospace and Exploration Agency (JAXA), which provides up to
half-hourly precipitation observations at a spatial resolution of 0.1°
(Huffman et al. 2020). Previous studies have demonstrated that
GPM IMERG adequately detects the spatial variability of major
hurricanes, albeit with tendencies to underrepresent precipitation in
coastal areas and near the core of hurricanes (Omranian et al. 2018;
Pradhan et al. 2022). However, GPM IMERG remains a useful ob-
servation for spatial and temporal precipitation estimates during ex-
treme meteorological events because in situ observation systems
may suffer instrument failures during hurricanes, as occurred dur-
ing Hurricane Ian (Bucci et al. 2022). The technical documentation
for GPM IMERG is available from NASA (n.d.).

ECMWF ERA5

Wind speed data were obtained from the Copernicus Climate
Change Service (C3S) European Centre for Medium-Range
Weather Forecast (ECMWF) Reanalysis Version 5 (ERA5). This
global reanalysis product, ERA5, is derived from physics-based
modeling using both observations and model data as inputs to
achieve an atmospheric spatial resolution of approximately 0.25°
(Hersbach et al. 2020). Recently, ERA5 has demonstrated an im-
proved representation of tropical cyclones compared to previous
ERA versions (Hersbach et al. 2020; Slocum et al. 2022; Zarzycki
et al. 2021). The technical documentation of ERA5 is available
from ECMWF (n.d.).

SMAP-Derived 1-km Downscaled Surface Soil Moisture
Product

The soil moisture active passive (SMAP) derived 1-km downscaled
surface soil moisture product is used to calculate the 5-day ante-
cedent near-surface soil moisture (0–5 cm depth below the surface
of the Earth) (Lakshmi and Fang 2023). This global data set is de-
rived from the SMAP L-band radiometer and utilizes the moderate
resolution imaging spectroradiometer (MODIS) land surface tem-
perature data to downscale soil moisture to a high spatial resolution
of 1 km (Fang et al. 2022). This data set has been validated across
various biomes and topographies, including within the continental
United States, by using networks of in situ soil moisture instru-
ments (Fang et al. 2020, 2022; Pavur and Lakshmi 2023). The data
and additional details on the SMAP-derived 1-km downscaled
surface soil moisture product are available from NSIDC (n.d.).

Data Availability Statement

All data, models, or code that support the findings of this study are
available from the corresponding author upon reasonable request.
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for Advanced Logistics Systems, as well as for engagement and
feedback from some of the following entities: the United States
Army Corps of Engineers (USACE), the United States Agency
for International Development (USAID), the Iraq Ministry of
Water Resources, attendees of the 2023 European Geophysical
Union (EGU) General Assembly, and other local and international
collaborators.

Notation

The following symbols are used in this paper:
P1 = cumulative precipitation;
P2 = maximum hourly precipitation;
R = risk; the difference between the baseline order and

scenario order of a given basin;
SM = 5-day antecedent soil moisture;
SVI = basin order using social vulnerability index data; the

baseline order;
u = u-component of wind in the longitudinal direction 10 m

above the surface of the Earth;
w = maximum hourly wind speed;

XðSnÞ = normalized score of disruptiveness for a given scenario
(Sn); the score of disruptiveness for a given scenario xðSnÞ
minus the minimum score of disruptiveness (xðSÞmin:)
divided by the maximum score of disruptiveness
(xðSÞmax:) minus the minimum score of disruptiveness
(xðSÞmin:); and

xðSnÞ = score of disruptiveness for a given scenario (Sn); the sum
over the basins of the squared differences of the baseline
order and disrupted order.
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