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Abstract—1In this paper, the performance optimization of
federated learning (FL), when deployed over a realistic wireless
multiple-input multiple-output (MIMQO) communication system
with digital modulation and over-the-air computation (AirComp)
is studied. In particular, a MIMO system is considered in which
edge devices transmit their local FL models (trained using
their locally collected data) to a parameter server (PS) using
beamforming to maximize the number of devices scheduled for
transmission. The PS, acting as a central controller, generates
a global FL model using the received local FL. models and
broadcasts it back to all devices. Due to the limited bandwidth
in a wireless network, AirComp is adopted to enable efficient
wireless data aggregation. However, fading of wireless channels
can produce aggregate distortions in an AirComp-based FL
scheme. To tackle this challenge, we propose a modified federated
averaging (FedAvg) algorithm that combines digital modulation
with AirComp to mitigate wireless fading while ensuring the
communication efficiency. This is achieved by a joint transmit
and receive beamforming design, which is formulated as an
optimization problem to dynamically adjust the beamforming
matrices based on current FL model parameters so as to minimize
the transmitting error and ensure the FL performance. To achieve
this goal, we first analytically characterize how the beamforming
matrices affect the performance of the FedAvg in different
iterations. Based on this relationship, an artificial neural network
(ANN) is used to estimate the local FL. models of all devices
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and adjust the beamforming matrices at the PS for future
model transmission. The algorithmic advantages and improved
performance of the proposed methodologies are demonstrated
through extensive numerical experiments.

Index Terms— Federated learning, MIMO, AirComp, digital
modulation.

I. INTRODUCTION

EDERATED learning (FL) has been extensively studied

as a distributed machine learning approach with data
privacy [1], [2], [3], [4], [5], [6], [7]. During the FL training
process, edge devices are required to train a local learning
model using its collected data and transmit the trained learning
model to a parameter server (PS) for global model aggregation.
The PS, acting as a central center, can coordinate the process
across edge devices and broadcast the global model to all
devices. This procedure is repeated across several rounds until
achieving an acceptable accuracy of the trained model.

Since the PS and edge devices must exchange their trained
models iteratively over the wireless channels, FL.  perfor-
mance can be significantly affected by imperfect and dynamic
wireless transmission in both uplink and downlink. Compared
to the PS broadcasting FL models to edge devices, edge
devices uploading local models to the PS is more challenging
due to their limited transmit power [8], [9], [10], [11], [12].
To tackle this challenge, over-the-air computation (also known
as AirComp) techniques have recently been integrated into
the implementation of FL [13], [14], [15], [16], [17]. Instead
of decoding the individual local models of each device and
then aggregating, AirComp allows edge devices to transmit
their model parameters simultaneously over the same radio
resources and decode the average model (global model)
directly at the PS [18], [19], [20]. However, most of these
existing works, such as [21] and [22], focused on the use of
AirComp for analog modulation due to its simplicity for FL
convergence analysis, which may not be desirable for practi-
cal wireless communication systems that almost exclusively
use digital modulations. In consequence, it is necessary to
study the implementation of AirComp-based FL over digital
modulation-based wireless systems.

A. Related Works

Recent works such as [23], [24], [25], [26], [27], [28],
[29], [30], [311, [32], and [33] have studied several important
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problems related to the implementation of AirComp-based FL
over wireless networks. The authors in [23] minimized the
mean-squared error (MSE) of the FL model during AirComp
transmission under transmit power constraints in a multiuser
multiple-input multiple-output (MIMO) system. In [24], the
authors maximized the number of devices that can partici-
pate in FL training under certain MSE requirements in an
AirComp-based MIMO framework. A joint machine learning
rate and receiver beamforming matrix optimization method
was proposed in [25] to reduce the aggregate distortion and
satisfy an FL performance requirement. The authors in [26]
investigated the deployment of FL over an AirComp-based
wireless network to minimize the energy consumption of
edge devices. In [27], the authors optimized the set of par-
ticipating devices in an AirComp-assisted FL. framework to
speed up FL convergence. A receive beamforming scheme
was designed in [28] to optimize FL performance without
knowing channel state information (CSI). The authors in [29]
minimized the FL model aggregation error under a channel
alignment constraint in a MIMO system. The authors in [30]
derived the optimal threshold-based regularized channel inver-
sion power control solution to minimize the mean squared
error (MSE) for an analog AirComp system with imperfect
CSI. A channel inversion-based power control policy was
developed in [31] to resist channel fading and meet the SNR
threshold in an AirComp FL framework. In [32], the authors
minimized the computation error by jointly optimizing the
transmit power at devices and a signal scaling factor at the
PS. The authors in [33] minimized the transmit power of
each device while ensuring a minimum MSE performance.
One key challenge faced by these works is their limited
practical applicability to high-order digital modulation-based
wireless systems. By harnessing high-order digital modulation,
individual devices can encode FL model parameters into dis-
crete symbols and transmit multiple symbols simultaneously
within the same frequency band. This approach optimizes
bandwidth utilization and enhances data transmission effi-
ciency. Moreover, digital modulation leverages error correction
coding and modulation schemes such as quadrature amplitude
modulation (QAM) to enhance resistance against noise and
interference. Hence, it is important to note that these works
do not explicitly consider the incorporation of coding and
digital modulation techniques, which are crucial components
in real-world wireless communication systems.

Recently, several works [34], [35], [36], [37], [38], [39],
[40], [41], [42] have studied the implementation of Air-
Comp FL over digital modulation-based wireless systems. The
authors in [34] designed one-bit quantization and modula-
tion schemes for edge devices. One-bit gradient quantization
scheme is proposed in [35] to achieve fast FL. model aggre-
gation. In [36], the authors designed a joint channel decoding
and aggregation decoding scheme based on binary phase shift
keying (BPSK) modulation for AirComp FL. The authors
in [37] evaluated the performance of FL gradient quan-
tization in digital AirComp. In [38], the convergence of
FL implemented over an AirComp-based MIMO system is
derived. The authors in [39] proposed a digital transmission
protocol tailored to FL over wireless device-to-device net-
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works. In [40], the authors proposed an AirComp method
that utilizes non-coherent detection and digital modulation
to achieve high test accuracy. The authors in [41] adopted
BPSK for over-the-air computations to minimize the normal-
ized MSE. A joint transmission and local computing strategy
was designed in [42] that utilizes multiple amplitude shift
keying (MASK) symbols to minimize the energy consumption
used for FL training. However, these prior works [34], [35],
[36], [37], [38], [39], [40], [41], [42] mainly used low order
digital modulation (i.e., BPSK) and hence their designed
AirComp FL cannot be easily extended to modern wireless
systems that use high-order digital modulation schemes such
as QAM. This is because the transmitted symbols that are pro-
cessed by low-order digital modulation (such as the symbols
—1 and +1 in BPSK) are linearly superimposed. This linear
superimposition does not exist in high-order digital modulation
schemes with complex mapping relationships between bits and
symbols (such as Gray code).

B. Contributions

The main contribution of this paper is to develop a novel
AirComp FL framework over high-order digital modulation-
based wireless systems. Our key contributions include:

e We propose a novel AirComp-based MIMO system in
which distributed wireless devices utilize high-order mod-
ulations to encode their trained local FL. parameters into
symbols and simultaneously transmit these modulated
symbols over unreliable wireless channels to a PS that
directly generates the global FL. model via its received
symbols. However, the introduction of high-order digital
modulations leads to the loss of linearity and superpos-
itivity among the symbols transmitted by each device,
which in turn affects the convergence of the trained FL
model and poses challenges to FL performance. To tackle
this issue, the PS and devices must cooperatively adjust
the transmit and receive beamforming matrices to cap-
ture the nonlinearity relationship among the modulated
symbols and improve FL performance. To this end,
we formulate this joint transmit and receive beamforming
matrix design problem as an optimization problem whose
goal is to minimize the FL training loss.

« To solve this problem, we first analytically characterize
how the errors introduced by the proposed AirComp
system affect FL training loss. Our analysis shows that the
introduced errors caused by wireless transmission (i.e.,
fading and additive white Gaussian noise) and digital
post-processing (i.e., digital demodulation) determine the
gap between the optimal FL model that the FL targets
to converge and the trained FL model. In particular, the
errors caused by wireless transmission depend on the
channel conditions and the trained FL. model parameters.
However, the errors caused by digital post-processing
depend on the adopted modulation scheme and the
number of devices participated in FL training. Hence,
to minimize the errors caused by both wireless trans-
mission and digital post-processing, the PS and the
devices must dynamically adjust the transmit and receive
beamforming matrices based on the adopted modulation
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scheme, the trained FL model parameters, and channel
conditions.

o To find the optimal transmit and receive beamforming
matrices, we first introduce an artificial neural network
(ANN)-based algorithm to predict the FL. model parame-
ters of all devices since optimizing beamforming matrices
requires the information of each trained local model
parameter which cannot be obtained by the PS. Then,
given the predicted parameters, we derive a closed-form
solution of the optimal transmit and receive beamforming
matrices based on the adopted modulation scheme and
channel conditions that minimize the distance between
the received signals of all devices and the predicted
parameters in the decision region, which ensures the
accuracy for model aggregation and FL performance.
We show that the added latency introduced by the
ANN inference is marginal compared to the improve-
ment in convergence speed provided by our beamforming
optimization.

o Numerical evaluation results on real-world machine
learning task datasets show that our proposed
AirComp-based system can improve the test accuracy by
10%-30% compared to the AirComp-based system with
analog modulation and BPSK, respectively.

The rest of this paper is organized as follows. The system
model and problem formulation for the AirComp-based system
in FL framework are described in Section II. Section III
analyzes the convergence of the designed FL framework
and derives a closed-form optimal design of the transmit
and receive beamforming matrices based on the analysis.
In Section IV, our numerical evaluation is presented and
discussed. Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an FL system implemented over a cellular
network, where K wireless edge devices train their individual
machine learning models and send the machine learning
parameters to a central PS through a noisy wireless channel
by using a media access control (MAC) protocol as shown in
Fig. 1. In the considered model, the PS is equipped with N,
antennas while each device k is equipped with [V, antennas.

Each device has Ny, training data samples and each training
data sample n in device k consists of an input feature vector
Zrn € RN and a corresponding label vector Ypn €
RYNo*! where N; and No are the dimension of input and
output vectors, respectively. Table I provides a summary of
the notations used throughout this paper. The objective of the
training is to minimize the global loss function over all data
samples, which is given by

K Ny

1
F(g) = nglnﬁ Z Z f (gamk,ﬂmyk,n) ) (1)

k=1n=1
where g € RV ! is a vector that represents the global FL
n}?del of dimension V trained across the devices with N =

>~ Nj being the total number of training data samples of all
k=1
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TABLE I
LIST OF NOTATIONS
Notation Description
K Number of devices
M Adopted modulation order
N, Number of antennas on the PS
Ny Number of antennas on devices
N Number of training data samples on device k
(Tk,n, Yk,n) Training data sample n on device k

Number of training data samples of all devices
gt Global FL model

Wi ¢ Local FL model
Awy ¢ Updates of wy
Wi ¢ Modulated symbol vector of wy
Awy ¢ Prediction of Awy, +
AWy, ¢ Modulated symbol vector of Awy,
N Additive white Gaussian noise
A+ Transmit beamforming matrix
B: Receive beamforming matrix
H Channel vector between device k and the PS
Py Maximal transmit power on device
I3 Minimum Euclidean distance in decision region
al, a? Constellation point of symbol ¢
a® Vector of predicted constellation point
M Set of all constellation points

devices. f (g,mkm,,ykm) is the local loss function of each
device k with FL model g and data sample (x5, Yy ,,)-

To minimize the global loss function in (1) in a distributed
manner, each device can update its FL. model using its local
dataset with a backward propagation (BP) algorithm based on
stochastic gradient descent (SGD), which can be expressed as

af (g> Lhn, yk,n)
dg ’

A
Wrt = G — Nl Z 2

ENk¢t
where A is the learning rate, N ; is the subset of training
data samples (i.e., minibatch) selected from device £’s training
dataset \Vj, at iteration ¢ with |\ ¢| being the number of data
samples in Nk,t, and wy, ¢ is the updated local FL. model of
device k at iteration ¢t. Here, each device must perform ‘-l/\/'Nlet‘l
local updates to traverse the entire local training dataset.

Given wy, distributed devices must simultaneously
exchange their model parameters with the PS via
bandwidth-limited wireless fading channels for model

aggregation. The equation of model aggregation is given by

K
N
9= Wil N’“lwk,t, 3)
k=1

where |Vj| represents the number of data samples in N.

To ensure all devices can participate in FL model exchang-
ing via wireless fading channels, each device adopts digital
modulation to mitigate wireless fading and the PS adopts
beamforming to maximize the number of devices scheduled
for FL parameter transmission. Next, we will mathematically
introduce the FL training and transmission process integrated
with digital modulation in the considered MIMO communi-
cation system. In particular, we first introduce our designed
digital modulation process that consists of two steps: (i) digital
pre-processing at the devices and (ii) digital post-processing
at the PS.
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Fig. 1.

Illustration of our methodology and system model. An FL algorithm is deployed over multiple devices and one PS in a MIMO communication

system. We design the transmit and receive beamforming matrices to optimize the FL training process.

A. Digital Pre-Processing at the Devices

To transmit wy, ; over wireless fading channels, each device
k leverages digital pre-processing to represent each numerical
FL parameter in wy,; using a symbol vector, which is

“4)

where wy; € R"Y is a modulated symbol vector with W
being the number of symbols, and [ (-) denotes the digital
pre-processing function that combines decimal-to-binary con-
version and digital modulation, where the decimal-to-binary
conversion is used to represent each numerical FL. parameter
with a binary coded bit-interleaved vector, and the digital
modulation is used to modulate several binary bits as a
symbol [43]. For convenience, the modulated signal vy ; is
normalized (ie., |Wwg,| = 1). We use rectangular M-QAM
for digital modulation and it can be extended to other types
of digital modulation schemes.

Given the transmit beamforming matrix Ay, € CNe*W
and the maximal transmit power P, at device k, the power
constraint can be expressed as [44], [45], and [46]

ﬁ)k?;t = l(wkyt) )

E (\Ak,tﬁik,t 2) = |Ak,t|2 < F. )

where E (z) represents the expectation of 2 and the equality
in (5) is achieved since the modulated signal is normalized.

B. Post-Processing at the PS

Considering the multiple access channel property of wire-
less communication, the received signal at the PS is given by

K
s¢ (Ay) = Z HpAp W + 1y (6)
k=1
where A; = [A14, -, Ak ] denotes the transmit beam-

forming matrices of all devices, Hy € CNrxNt denotes the
MIMO channel vector for the link from device k to the PS,
and n, € CM is the complex additive Gaussian noise with
zero mean and identity covariance matrix scaled by the noise
power o2, i.e., ny ~ CN(0,0°1).

Since s; (A;) is the weighted sum of all users’ local FL
models, we consider directly generating the global FL model
g4, from s;(A;). This is a major difference between the

existing works and this work. The digital beamformer output
signal can be expressed as

3; (B, Ay) = By''si(Ay), (7)

where B; € CMN-*W s the digital receive beamforming
matrix.

Given the received symbol vector §; (B, A;), the PS can
reconstruct the numerical parameters in global FL model g, , 1,
which can be expressed as

Gii1 (B, Ay) =171 (3, (By, Ay)) ¥

where (7! (-) is the inverse function with respect to ()
that combines the binary-to-decimal function and the digital
demodulation function. From (7) and (8), we see that the
designed transmit and receive beamforming matrices enable
the PS and devices to collaboratively adjust the weights of
the transmitted and received signals, thus achieving FL. model
aggregation.

C. Problem Formulation

Next, we introduce our optimization problem. Our goal is
to minimize the FL training loss by designing the transmit and
receive beamforming matrices under the total transmit power
constraint of each device, which is formulated as follows:

min F(g(Br,Ar)), ©)
st [Ag? < Py,Vke KVt eT. (9a)
where A = [A4,...,Ar| and B = [Bjy,...,By]| are the

transmit and receive beamforming matrices for all iterations,
respectively. T is a constant which is large enough to guarantee
the convergence of FL.

From (9), we can see that the FL training loss
F (g (B, Ar)) depends on the global FL. model g (B, Ar)
that is trained iteratively. Meanwhile, as shown in (6) and (7),
edge devices and the PS must dynamically adjust A; and
B, based on current FL. model parameters to minimize the
gradient deviation caused by AirComp in the considered
MIMO system with digital modulation. However, the PS does
not know the gradient vector of each edge device and hence
the PS cannot proactively adjust the receive beamforming
matrix using traditional optimization algorithms. To tackle this
challenge, we propose an ANN-based algorithm that enables
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the PS to predict the local FL gradient parameters of each
device. Based on the predicted local FLL model parameters,
the PS and edge devices can cooperatively optimize the beam-
forming matrices to improve the performance of FL. Next,
we first mathematically analyze the FL update process in the
considered AirComp-based system to capture the relationship
between the beamforming matrix design and the FL training
loss per iteration. Based on this relationship, we then derive the
closed-form solution of optimal A; and B; that depends on the
predicted FL. models achieved by an ANN-based algorithm.

III. SOLUTION FOR PROBLEM (9)

To solve (9), we first analyze the convergence of the
considered FL so as to find the relationship between digital
beamforming matrices A;, B;, and FL training loss in (9).
The analytical result shows that the optimization of beam-
forming matrices A; and B; depends on the FL. parameters
transmitted by each device. However, the PS does not know
these FL parameters since it must determine the beamforming
matrices A; and B; before the FL parameter transmission.
Therefore, we propose to use neural networks to predict the
local FL models of each device and proactively determine the
beamforming matrices using these predicted FL parameters.

A. Convergence Analysis of Designed FL

We first analyze the convergence of the considered FL
system. Since the update of the global FL model depends
on the instantaneous signal-to-interference-plus-noise ratio
(SINR) affected by the digital beamforming matrices A; and
B, we can only analyze the expected convergence rate of
FL. To analyze the expected convergence rate of FL, we first
assume that a) the loss function F'(g) is L—smooth with the
Lipschitz constant L > 0, b) F(g) is strongly convex with
positive parameter u, ¢) F'(g) is twice-continuously differen-
tiable, and d) |V £ (g, Tkn, ) I < G+ G [[VF(g,)])?, as
done in [47]. These assumptions can be satisfied by several
widely used loss functions such as mean squared error, logistic
regression, and cross entropy. Based on these assumptions,
next, we first derive the upper bound of the FL training loss
at one FL training step. The expected convergence rate of the
designed FL algorithm can now be obtained by the following
theorem.

Theorem 1: Given the optimal global FL model g*,
the current global FL. model g,, the transmit beamform-
ing matrix A;, and the receive beamforming matrix By,
E (F (g441(As, By)) — F (g*)) can be upper bounded as

E (F (Qt+1(At7Bt)) - F(Q*))
SE(F(g) - F(g) ~ 57 IVF ()

1 .
+ 57 E (lled] + llew(Ar Bo)ll)’ (10)
where
K
Z Z Vf (gtvmn,kayn,k)
k=1neNy
e = 7
> Nl
k=1
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K
kzll< % vf (gt7mn,kayn,k)>
1 = neNg ¢
- = +7T
> Wl
k=1
(11)

with the first term being the gradient trained by SGD, the
second term being the gradient demodulated from a sum of
all selected devices’ symbols, and Y being the variance bound
introduced by random sampling of mini-batches of all devices.
In particular, T depends on the variance of the local updated
gradient in minibatch SGD, which is [48], [49], [50]
Kl

Nl

where Wy, is the optimal updated local model without vari-

EHﬁ’kt - wk,t” = (12)

2
ance and o} is the variance of the local gradient. Given |X/’;|
2

on each device k, the relationship between T and |K/:| is

2
=Sk (13)
= Wil
and
ét(Atv Bt)
K
Z l ( Z vf (gtawn,kvyn,k)>
_ 171 k=1 nENg ¢+
K
> [Nl
k=1
K
(Bt (Z HkAk,tl< Z Vf (gt’ mn,myn,k)—‘rnt)
1 k=1 nENg ¢
—1 IR .
> Wil
k=1
(14)
Proof: See Appendix A. [ ]

From Theorem 1, we see that, since e; does not depend
on A; or By, the optimization of the digital beamforming
matrices cannot minimize e;. In consequence, we can only
minimize ||é;| to decrease the gap between the FL training
loss at iteration ¢ + 1 and the optimal FL training loss (i.e.,
E (F (9,11) — F (g*)))- Thus, problem (9) can be rewritten
as

. ~ 12
g, e "

st |Age> < Py, Vk e KVt € T. (15a)

To minimize ||é;|| in (15), the PS and edge devices must
obtain the information of MIMO channel vector H;, as well

Z vf (gt7wn,kayn,k) SO
nGNk7f,

as to adjust A; and B;. However, the trained FL gradients
Awp, = >, Vf (gt,wmk,yn,k) cannot be obtained by

neN; k.t
the PS before edge devices sending FL. model parameters.

Hence, the PS must predict Awy; for optimizing A; and
B, and minimizing ||é;]|.

as the trained gradients [
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B. Prediction of Local FL Models

Next, we explain the use of neural networks to predict the
local FL model updates of all devices at the PS. Formally, the
task is to predict parameters of device k’s FL model update
at time t, i.e., Awy, € RV*1, from the global aggregation
available at the PS at time t — 1, ie, g,_; € RY*L
This is considered as a regression task since the values of
the FL. model are continuous. Therefore, we propose to use
multilayer perceptrons (MLPs), a standard type of artificial
neural network (ANN) for handling regression tasks [51].

Our proposed MLP-based prediction algorithm consists of
three layers: (a) input layer, (b) a single hidden layer, and (c)
output layer. These components are defined as follows:

e Input layer: The input to the MLP is a vector g; , €
RY'*! that represents the previous aggregated results of
the FL parameters being predicted. This is a subset of
g,_1 € RV*1, where the number of parameters V' <V
is adjustable. Since the total parameter dimension V'
may be large (e.g., for the CIFAR-10 experiments in
Sec. IV, V =1.17 x 107), selecting a smaller number V'
to predict can lead to complexity reduction advantages.
As we mentioned in (6), all devices are able to connect
with the PS so as to provide the input information for the
MLP to predict the local FL. models for next iteration.

o Output layer: The output of the MLP is a vector Aﬂ;;ﬁt €
RY'*1 that represents prediction of the V' parameters
in device k’s local FL model update for the current
iteration t. The resulting estimate Awj,,; € RYV*! of
Awy, ; used in the beamforming design in Section III-C
is then a combination of (a) the V' parameter predictions
Aﬁ)?w that the ANN has made, and (b) the other V —V’
parameters in g,_; that are not part of the ANN.

o Single hidden layer: We employ a single hidden layer of
dimension D to learn the nonlinear relationships between
the input g;_; and the output Aﬂ);,t. The weight matrix
between the input vector and the neurons in the hidden
layer for device k is denoted v} € RV %P Meanwhile,
the weight matrix between the neurons in the hidden layer
and the output vector is denoted v¢" € RP*V",

Based on this, the states of the neurons in the hidden layer
are given by

v =0 (Vi'gi_1 + b}), (16)

where o (x) = m — 1 is a sigmoidal activation and

v ¢ RP'*1 is the bias vector. Then, the output of the MLP
is given by

Aw), = vi™vg, + by, (17)

where by € RY'*1 is another bias vector.

The MLP is trained through an online gradient descent
method in parallel with the FL model updating. However,
in the considered model, the PS only has access to the value of
g, that is directly demodulated from the received signal from
all devices. Hence, the PS and the devices must exchange
information to train the MLP for each device cooperatively.
In particular, at each iteration, device k first calculates its local
update Awy; and g,_; received from the PS, and extracts
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Aw),, € RV'*! from Awy, ;. Then, it calculates the gradient
of the MLP parameters with respect to the MLP’s prediction of
Aw;c,t from g}_,. Finally, device k transmits these gradients
to the PS, which updates the MLP parameters accordingly.
We will see in Sec. I'V that the per-iteration latency introduced
by this MLP procedure is overcome by the reduction in the
number of training rounds needed for convergence, so long as
the size of the MLP is limited.

C. Optimization of the Beamforming Matrices

Having the predicted local FL model updates Awy ¢, the
PS can optimize the beamforming matrices A; and B; to
solve Problem (15). Substituting Awy, 1, (6), and (7) into (15),
we have

K
min D =t
B,A, K
> Wil
k=1
X N 2
Bt <Z HkAk’tl (A’lUk,t) —+ nt>
—1 k=1
1 - (18)
> Wil
k=1
st. [Ag > < Py,VkeKVteT (18a)
K
>0 l(Awyg,e)
In (18), ! "7 is independent of A; and
Z [N,

B; and can bek regarded as a constant. However, the
existence of the inverse function [~1(-) defined in (8) signifi-
cantly increases the complexity for solving (18). Considering
[=1(-) that is used to demodulate the symbols into numer-
ical FL parameters, the minimization of the gap between

K K
= 1B B, (kz HkAk,tzmﬂ:k.tHnt)
=1 =1

[t L and [~} —
> [Nl > Nl
k=1 k=1
K
> (Awy,)
is equivalent to minimize the distance between *=L
P [N el
=1

K
B, ( > HkAk,tl(Aﬁk,t)Jrnt)
and k=1

in the decision region of

K
kZ [N, ¢l
c=1
digital demodulation, as shown in Fig. 2. To this end, in this
K
> W(Awy,¢)
section, we first derive the position of *= in the
> [Nyl
k=1

decision region and remove [ ~!(-) from (18) for simplification.
Then, we present a closed-form optimal design of the transmit
and receive beamforming matrices.
Given Awy,, and the digital pre-processing function [(-)
defined in (4), the modulated symbol vector Aty: =
L(Awyy) = [ABL, A, ... Adk, A, ] can be
obtained where Awk +; and Aw]?t are the i-th in-phase and
quadrature symbols modulated by Awy, .+, respectively. Since
in-phase and quadrature-phase symbols that have vertical and
horizontal decision regions are mutually independent, the
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Fig. 2. An example of 16-QAM constellation at the PS with 4 devices.

value of [~! can be obtained via individually

Z [N ¢l
analyzing the dec1s10n region of each in-phase and quadrature-
phase symbols which are

K
1 . £
ZAw}c,tz - Gg < 5)
Z |Nk’t k=1
k=1
K
1 N £
= ZAka’tyz—a < 3 (19)
22 [N b=
k=1
where af ;,a% € M = I-yMe 3=YMe¢ \/Mglfi are
the constellation points in the decision region with M being

(\/%1713_01)2 is the

minimum Euclidean distance between two constellation points.
Using (19), a}f,i and a?i are given by

the set of all constellation points. £ =

Ay 4
LS ~1 K ~1
¢ > Ady t,i ¢ Z Awk,t,i
= x—§+k:}§ <x<§+"j§ nM
> Nkt > Wkt
k=1 k=1
(20)
and
agi
K K
5 Z Awl?,t,l 5 Z Awl?,t,z
= x—§+’“j§ <x<§+’“j§ nM
> Wil > Nl
k=1 k=1
(21)
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Given a; = [a} a0y, ..., a}, Wy <) problem (18) can be

rewritten as

K 2

i - B H H,. A, Al — B H 22
BoA ¢ 1; k Akt AWy ¢ P (22)
s.t. ||Ak:,tH2 S PQ,Vk‘ € /C,Vt c T. (22a)

where Awy,; = | (Awy,) is a modulated symbol vector of
Awy, ;. Problem (22) can be solved by an iterative optimiza-
tion algorithm. In particular, to solve problem (22), we first fix
By, then the objective functions and constraints with respect
to Ay are convex and can be optimally solved by using a dual
method [52]. Similarly, given ﬁit, problem (22) is minimized

* a;
as Bt -\ =
X Hi AL A

D. Implementation and Complexity

Next, we discuss the implementation and complexity of the
designed FL algorithm. With regards to the implementation of
the proposed algorithm, the PS must a) use MLPs to predict
the devices’ local FL. model update, and b) design the transmit
and receive beamforming matrices based on the predicted
updates. To train the MLPs that are used for the predictions of
devices’ local FL model update, the PS will use the global FL
model g, ; that is directly reconstructed from the received
symbol vector §;_; at iteration ¢t — 1. Additionally, the PS
needs the gradients of the MLP parameters v}, v{"* calculated
on the device. To design the optimal transmit and receive
beamforming matrices, the PS requires the maximal transmit
power Py and the MIMO channel vector Hj of each device
k. We ignore the overhead of each device transmitting Py to
the PS since it is a scalar. With regards to Hy, the PS
can use channel estimation methods to learn H over each
uplink channel so as to design optimal transmit and receive
beamforming matrices.

To satisfy the synchronization requirement in the proposed
AirComp framework, it is necessary to incorporate clock
synchronization for precise control of information transmis-
sion timing and channel state information (CSI) feedback, for
accurate estimation of transmission delay. For clock synchro-
nization, the PS can broadcast a shared block to all devices
to achieve time calibration, as in previous studies [53], [54],
[55]. For accurate estimation of transmission delay, the PS
can obtain the CSI directly from the uplink pilot signals
transmitted from devices, as done in previous studies [56],
[571, [58].

We identify two components of our algorithm that could
potentially impact complexity and latency: (1) the MLP and
(2) optimizing A; and B,;. The training complexity of the
MLP can be made small compared to the complexity of FL
training. Specifically, the computational complexity of the
MLP lies in the size of input gj_; and output Awy, ,, as well
as the number of the neurons in the hidden layer. As discussed
in Sec. III-B, the sizes of g}, and Aw;, + are both V', while
the number of neurons in the hidden layer is D. Hence, the
computational complexity is O(2V’ D), which implies that the
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Algorithm 1 Proposed FL Over AirComp-Based System
1: Init: Global FL model g, beamforming matrices A, and
By, MIMO channel matrix H.
2: for iterations ¢t = 0,1,--- ;7T do
3: for k€ {1,2,--- , K} in parallel over K devices do

4: Each device calculates and returns wy ; based on
local dataset and g, in (2).

5: Each device leverages digital pre-processing to mod-
ulate each model parameter into a symbol.

6: Each device sends the symbol vector iy to the
PS using the optimized transmit beamforming matrix
Ak,t-

end for

The PS directly demodulates the global FL. model g, 4
from the received superpositioned signal using (8).

9:  The PS predicts the local FL model Wy ¢+1 of each
device based on demodulated g, ; using trained ANNSs.

10  The PS proactively adjusts the transmit and receive
beamforming matrices using the augmented Lagrangian
method and broadcast the transmit beamforming matrix
Ay, 141 to each device k.

11: end for

training complexity of the MLP can be controlled directly
based on limiting the size of V/ and D. In Sec. IV, for the
ML task, we will set MLP to predict parameters for the last
layer of the neural network, so that V' < V. We can further
select D such that 2V'D <« V, so the MLP is substantially
smaller than the FL. model.

Regarding the optimization of A; and By, the complexity
scales in the number of iterations required for the solver
to converge. For finding optimal A; and B, problem (22)
can be solved by a traditional augmented Lagrangian method
that approaches the optimal solution via alternating updating
A;, By, and the Lagrangian multiplier vector. The introduced
Lagrangian multiplier vector consists of K constraints, where
K is the number of devices in the considered FL framework.
Hence, the PS is required to sequentially update /X Lagrangian
multipliers, A, = [Aq,,--- , Ax.], and By at each iteration.
Letting Lo be the number of iterations until the augmented
Lagrangian method converges, the complexity is O(LoK?).

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Simulation Setup

We consider a circular network area with a radius r =
1500 m with one PS at its center serving K = 20 uniformly
distributed devices. In particular, the PS allocates 64 subcar-
riers to all devices and the bandwidth of each subcarrier is
15 kHz. By default, the channels between the PS and devices
are modeled as independent and identically distributed with
Rayleigh fading and a pathloss exponent of 3 = 2. The other
default settings of parameters used in simulations are listed in
Table II.

For comparison purposes, we consider several baseline
AirComp FL frameworks: analog modulation, BPSK modu-
lation, 64 QAM without the assistance of MLP, 64 QAM
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TABLE II
DEFAULT SIMULATION PARAMETERS

Parameters | Values || Parameters | Values || Parameters | Values
K 20 M 64 o? -90 dBW
N, 2 Ny 2 Ny 2000
Py 1 mW T 50 w 7840
Ny 28 No 10 A 0.01
T 1500 m D 160 Lo 100

replacing the MLP with a tabular approach, and an ideal upper
bound of 64 QAM over noiseless channels. These considered
baselines are detailed as follows:

o The analog AirComp FL framework, from [27], enables
each device to use digital beamforming and analog modu-
lation for transmitting FL. parameters over wireless fading
channels (labeled “Analog FL” in plots).

¢ The BPSK AirComp FL framework, from [36], enables
each device to quantize its trained FL model parameters
into one bit and use digital beamforming and BPSK
for transmitting quantized FL parameters over wireless
fading channels (labeled “BPSK FL” in plots).

e An AirComp FL framework without the assistance of
MLP enables the devices to quantize their trained FL
model parameters into 6 bits and directly use digital
beamforming and 64 QAM for transmitting quantized
FL parameters over wireless fading channels (labeled
“Proposed method without MLP” in plots).

e An AirComp FL framework considering noiseless chan-
nels enables the devices to quantize their trained FL
model parameters into 6 bits and use digital beamforming
and 64 QAM for quantized FL parameter transmission
over noiseless channels. Then, the PS uses the receive
beamforming matrix optimized by MLP to adjust the
decision region of the received superimposed signals to
minimize the transmission error (labeled “Proposed FL
over noiseless channels” in plots).

e An AirComp FL framework where, as in our method,
the devices quantize their trained FL model parame-
ters into 6 bits and directly use digital beamforming
and 64 QAM for transmitting quantized FL parameters.
However, ChannelComp from [41] is employed to opti-
mize the transmission error instead of the ANN (labeled
“Proposed method with ChannelComp” in plots).

The Fashion-MNIST dataset [59] and CIFAR-10
dataset [60] are used as ML tasks in our performance
evaluation. For Fashion-MNIST, each local FL. model consists
of five convolutional layers and one fully-connected layer,
with V' = 9.2 x 10° total model parameters. For CIFAR-10,
each local FL model is a standard ResNet-18 that consists of
17 convolutional layers and one fully-connected layer, with
V =1.17 x 107 total model parameters.

For the MLP described in Sec. I1I-B, we focus on predicting
the parameters of the last layer in each ML model (i.e., the
fully connected layers). This leads to V' = 640 for both
the CNN in Fashion-MNIST and the Resnet-18 in CIFAR-
10. To restrict the ANN’s total size to a small fraction of the
ML model in each case, we set D = 160 for Fashion-MNIST
and D = 320 for CIFAR-10, in line with CIFAR-10’s higher
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Fig. 3. Test accuracy of the proposed AirComp-based FL system over
communication rounds, for an IID data allocation on the Fashion-MNIST
task. We see that our proposed method provides substantial improvements
over the baselines, approaching the noiseless channel case.

complexity (leading to the MLP being 22% and 3% of the
model sizes, respectively). As we will see in Sec. IV-C, we find
that this retains a strong MSE performance for each dataset.
Similar considerations can be made for other ML tasks.

Throughout the simulations, we will consider data samples
to be allocated across devices in either an independent and
identically distributed (IID) or non-IID manner. In the IID data
setting, each device is allocated data samples from all 10 class
labels, while in the non-IID case, they each only receive data
samples from a fraction of the labels, assumed to be 6 by
default [61], [62].

It is worth noting that the convolution kernels exhibit sen-
sitivity to errors, which significantly degrade the performance
of the FL model, as will be demonstrated in the simulations.
However, considering the relatively small number of param-
eters in convolution kernels, it is viable to utilize traditional
methods such as orthogonal frequency division multiple access
for transmitting the kernel parameters.

Finally, in some of our experiments (Fig. 4, Table III,
Table IV, Fig. 9), we will conduct accuracy comparisons
over time/latency incurred rather than communication rounds.
These calculations employ standard models for communication
and computation delays [63], [64], which we present in
Appendix B. For experiments that refer to convergence (in
particular, Tables III & IV), algorithms are considered to have
converged when the value of the FL loss variance calculated
over five consecutive iterations is less than 0.001.

B. Training Speed and Accuracy Comparisons

We first conduct several experiments comparing our
methodology to the baselines in terms of convergence speed
and accuracy. In Fig. 3, we show how the test accuracy of all
considered algorithms changes over communication rounds,
on the Fashion-MNIST task, for the IID data setting. In this
figure, we can see that, the proposed algorithm improves the
test accuracy by up to 15.5% and 24.5% compared to analog
FL and BPSK FL, respectively. From Fig. 3, we can also
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Fig. 4. Test accuracy of the proposed AirComp-based FL system over time
on the Fashion-MNIST task, for an non-IID data allocation. The overall trends
are similar to those observed in Fig. 3.

TABLE III

LATENCY VS. ACCURACY TRADEOFF FOR TRAINING
ON THE FASHION-MNIST DATASET

Avg. Lat. for Avg. Lat. for Avg. Rounds Converged

Each Round Entire Training to Converge Test Acc.
Proposed 1.26 s 18.90 s 15 90%
Analog FL 1.03 s 23.69 s 23 76%
BPSK FL 0.21 s 1.05 s 5 67%

see that the performance of analog FL experiences noticeable
fluctuations. This is due to the noise over wireless channels
introducing dynamic errors into FL parameter transmission
process, thus affecting FL test accuracy. We also see that
the proposed method without using MLP for predicting FL
gradients cannot converge, which verifies that the optimal
beamforming matrices design depends on the prediction of
FL gradients.

Fig. 4 shows how the test accuracy changes over time
elapsed, measured in seconds, as opposed to iterations. Here,
the elapsed time consists of the FL model training time,
inference time that is used for predicting FL parameters, and
the model transmission time. The overall trends are similar
to those observed in Fig. 3: compared to BPSK FL, while
our proposed methodology converges more slowly, it ends up
improving the test accuracy by up to 27%. This is because the
proposed FL uses more bits instead of one bit in BPSK FL to
represent each FL parameter, thus increasing the dynamics of
global FL. model generation. In addition, this figure also shows
that the proposed algorithm can reduce the convergence time
by 20.3% compared to analog FL. This finding underscores the
fact that although the utilization of MLP introduces additional
inference latency, it ultimately results in a decrease in the
overall convergence time of FL. We will further investigate
the latency vs. accuracy tradeoff in Tables III and IV.

Fig. 5 shows how the test accuracy changes as the number
of communication rounds varies on the CIFAR-10 dataset,
for the IID data distribution setting. Overall, we make sim-
ilar observations from this figure as for Fashion-MNIST in
Fig. 3. We see that our proposed method can improve the test
accuracy by up to 20% compared to analog FL, due to the
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TABLE IV

LATENCY VS. ACCURACY TRADEOFF FOR TRAINING
ON THE CIFAR-10 DATASET

Avg. Lat. for Avg. Lat. for Avg. Rounds Converged
Each Round Entire Training to Converge Test Acc.
Proposed 21.46 s 966 s 45 73%
Analog FL 2092 s 1255's 60 52%
BPSK FL 295s 118 s 40 31%
Proposed FL over noiseless channels
M Analog FL i
1 BPSK FL 1
0.9 Proposed method with 64 QAM 1
2 os Proposed method with ChannelComp |
s
=}
Q
Q
=
o
2]
o
F

0.1 . . . . .
10 20 30 40 50 60

Number of communication rounds

Fig. 5. Test accuracy of the proposed AirComp-based FL system across
communication rounds, for an IID data allocation on the CIFAR-10 dataset.
Compared to Fig. 3, we observe significant improvements over the baselines.
The larger gap from the noiseless channel case shows the impact of noise on
more complex learning tasks (CIFAR-10 vs. Fashion-MNIST).

proposed FL approach utilizing digital modulation (i.e., 64
QAM) to mitigate channel impairments and misalignments.
We can also see that BPSK FL can only achieve 30% test
accuracy. The lower overall accuracies of each algorithm are
consistent with CIFAR-10 being a more difficult learning
task than Fashion-MNIST. Along these lines, the impact of
fading and additive white Gaussian noise is stronger for this
case compared with the Fashion-MNIST experiments, which
can be explained by CIFAR-10 having an ML model that is
more complex, causing the results to be more sensitive to
impairments. Fig. 5 also shows that our methodology with the
ANN model prediction strategy leads to an improvement of up
to 10% compared to employing ChannelComp [41]. This con-
firms that our prediction-based strategy obtains smaller errors
compared to the transmission error minimization employed by
this competing approach.

In Fig. 6, we repeat the experiment from Fig. 5, but this
time under a non-1ID setting, where the data samples of each
device are drawn from 6 (instead of 10) classes. From this
figure, we see that the proposed FL with 64-QAM can improve
the test accuracy by up to 18% and 13% compared with
analog FL and ChannelComp, similar to in the IID case. Fig. 6
also shows that under noiseless channels, the accuracy of the
AirComp-based system is 6% better, consistent with the IID
case.

Finally, in Tables III and IV, we compare the performance
of the proposed method with that of analog FL. and BPSK
FL in terms of (i) latency per iteration, (ii) overall training
time, (iii) average rounds to convergence, and (iv) converged
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Fig. 6. Test accuracy of the proposed AirComp-based FL system across

communication rounds, for a non-IID data allocation on the CIFAR-10 task.
The overall trends are consistent with the IID case in Fig. 5, showing that our
methodology obtains improvements under different data partitions.

test accuracy, on the Fashion-MNIST and CIFAR-10 datasets,
respectively, for the non-IID cases. Compared to analog FL
we see that while our method incurs a higher latency in each
round (e.g., 1.26 vs. 1.03 sec in Fashion-MNIST), it has
a smaller latency across the entire training process (e.g.,
18.90 vs. 23.69 sec in Fashion-MNIST), since it requires
less total rounds to converge. Employing the MLP within
our method introduces additional latency and computational
overhead, but aids in designing the beamforming matrices to
reduce transmission errors, thereby reducing the total number
of rounds required. BPSK FL has the lowest latencies of all,
but suffers from poor testing accuracy at convergence, due
to the fact that it quantizes the FL parameters to a single bit.
We observe too that the per-round and total latencies are higher
in CIFAR-10, which is the most complex of the tasks, with
the largest ML model being trained and transmitted.

C. Robustness of MLP Predictor

Given the importance of the ANN-based predictor at the PS
to our approach, we conduct further analysis to assess how it is
impacted by the learning environment. First, in Fig. 7, we show
the performance of the MLP predicting FL parameters on
the CIFAR-10 dataset as the data partitioning varies across
devices. In the non-IID cases, the data samples of each
device are from a fraction of the labels: 3 of 10, 6 of 10,
and 9 of 10, respectively. The MSE is used to evaluate the
performance of the MLP on the test dataset at each iteration
of training. In this figure, we see that the proposed ANN
algorithm achieves a predominantly linear convergence speed
prior to tapering off. This is because the proposed ANN
has only three fully-connected layers thus having a relatively
low computational complexity. Fig. 7 also shows that as the
proposed ANN method converges, the MSE approaches 0,
which implies the proposed ANN approach can predict FL
parameters accurately. We also see that the values of the MLP
MSE in both the IID and non-IID data distributions are similar.
This indicates that MLP is capable of capturing the nonlinear
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TABLE V

MSE PERFORMANCE OF THE PROPOSED ANN-BASED MODEL PARAMETER PREDICTOR WHEN THE DEVICE MODELS ARE TRANSMITTED OVER
DIFFERENT CHANNEL CONDITIONS, FOR CIFAR-10 WITH A NON-IID DATA PARTITION

. . . Rician Rician
MLP with perfect Rayleigh, Rayleigh, 2 _ _90 dBm 2 = _90 dBm
communication o2 = —90 dBm o2 = —95 dBm T = > T = K
k=7 k=10
Converged
_ 7.73 13.21 11.14 8.51 7.80
MSE (x10~7)
%107 1 -
4 T Proposed method without MLP
D case 0.9 BPSK FL with Nr=2 d
35 Three classes non-1ID BPSK FL with Nr=4
. 0.8 Proposed method with 64 QAM and Nr=2 4
Six classes non-IID Proposed method with 64 QAM and Nr=4
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Fig. 7. MSE performance of the proposed ANN-based model parameter

predictor across training iterations on the CIFAR-10 dataset. We see that the
ANN prediction quality is robust to the data distribution across devices.

relationships of the FL parameters for different distributions
of data samples across the devices.

Next, in Table V, we show the MSE of the MLP when the
FL models of devices are transmitted over different channel
conditions, on the CIFAR-10 dataset. Here, we consider a
non-IID data distribution where the data samples of each
device are from 6 of 10 labels. We consider the implementation

of the proposed framework over four channel conditions:
(a) a Rayleigh model with noise variance 02 = —90 dBm,
(b) a Rayleigh model with noise variance 02 = —95 dBm,
(c) a Rician model with noise variance o2 = —90 dBm and

Rician factor £ = 7, and (d) a Rician model with noise vari-
ance 02 = —90 dBm and Rician factor k = 10. The pathloss
exponent is set to 3 = 2 for Rayleigh and § = 4 for Rician.
The MSE performance of the MLP without transmission errors
is considered as an optimal baseline. Overall, we can see that
the MLP demonstrates satisfactory performance in terms of
MSE regardless of the channel model, which indicates the
robustness of the proposed ANN algorithm. We also notice that
the MSE of the MLP transmitted through the Rician fading
channel is lower than the MSE of the MLP transmitted through
the Rayleigh fading channel due to the influence of the line-
of-sight signal. Additionally, as the Rician factor increases
and the noise variance decreases, the MSE of the MLP
transmitted over different channels approaches the optimal
baseline.

Finally, Fig. 8 assesses the error in the obtained aggre-
gated model g, at the PS for different methods. The error
is defined as the sum of the distances between all weights

Value of Error

Fig. 8. Cumulative distribution function (CDF) of the errors in the aggregated
models, for training on Fashion-MNIST dataset under the IID data partition.

in the aggregated model at the PS and that in the true
average of the models across the devices. The results are
shown as the cumulative distribution function (CDF) of the
value of the errors obtained over training rounds. We can
see that the proposed method achieves a lower error rate
compared to the proposed FL without using MLP for FL
gradient prediction. This is because without predicting FL
gradient vectors, the PS cannot proactively adjust the transmit
and receive beamforming matrices to minimize transmission
errors and can only use fixed beamforming design that directly
aggregates all local models via linear superimposition. This
linear superimposition is not available for digital modulation
schemes since digital modulation may introduce complex
mapping relationships between bits and symbols thus resulting
in additional demodulation errors.

D. Impacts of Channel Conditions and SNR

We next investigate the impact of channel conditions on
the performance of our methodology. In Fig. 9, we show the
performance of the proposed method on the Fashion-MNIST
dataset under various channel models. In particular, we con-
sider the Rayleigh fading channel and the Rician fading
channel. For each model, we consider three different settings,
varying the noise variance 02 = —90 dBm, pathloss exponent
0B, and Rician factor k. Overall, from this figure, we can
see that the proposed algorithm is reasonably robust to the
specific channel conditions, with the testing accuracy staying
within a window of 40.04. The best performance occurs
when the channel is Rician and & = 10. This is consistent
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Fig. 9. Impact of Rician (dashed lines) and Rayleigh (solid lines) channel

models on training performance, for the Fashion-MNIST dataset under an IID
data partition. Overall, we see that our methodology is reasonably robust to
variations in the channel model.
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Fig. 10. Impact of SNR on test accuracy for the Fashion-MNIST dataset,
for an IID data partition. We see that the performance of all methods begins
to decay once the SNR drops below 10 dB.

with the Rician factor being the ratio of the power of the
dominant path component to the power of the whole signal.
Thus, £k = 10 is the case of the largest dominant path,
which reduces FL transmission errors and improves the FL
performance.

We next consider the impact of the received SNR. Fig. 10
shows how the test accuracy of considered FL algorithms
changes as SNR decreases, for the Fashion-MNIST dataset.
In Fig. 10, we can see that the test accuracy of the proposed
method decreases as SNR decreases, while the test accuracy
of BPSK FL remains unchanged, when the SNR is larger
than 10 dB. Additionally, the test accuracy of BPSK FL is
lower than the proposed method at any SNR values. This is
because the quantization error in BPSK significantly affects
the model training process and results in a degeneration of
test accuracy. Fig. 10 also shows that the proposed method
with N, = 4 receiver antennas can achieve 8% gains in
terms of test accuracy compared to that with NV, = 2 receiver
antennas when SNR is 10 dB. Thus, an increase of the number
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Fig. 11. Impact of SNR on convergence performance for the Fashion-MNIST
dataset, for the same settings as in Fig. 10. We see that our method converges
significantly faster at higher SNRs, with less transmission errors occurring.
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Fig. 12. Impact of network size on obtained accuracy for the Fashion-MNIST
dataset under an IID data partition. A larger network has a positive impact
on accuracy performance.

of receiver antennas can improve the test accuracy in the
proposed FL framework. This is because an increase of the
number of receiver antennas enables the PS to exploit transmit
diversity and reduce transmission error in the AirComp-based
system.

Finally, in Fig. 11, we show how the number of commu-
nication rounds that the considered FL algorithms require to
converge changes as SNR decreases, for the same settings as
in Fig. 10. We can see that, compared with BPSK FL, the
number of communication rounds required to converge for
our methodology decreases noticeably as the SNR increases.
This is due to the fact that, as SNR decreases, the probability
of introducing additional transmission errors increases thus
reducing the FL convergence speed.

E. Impact of Network Size

Finally, we consider the impact of the number of devices on
the performance. Fig. 12 shows how the test accuracy changes
as the number of devices varies. In Fig. 12, we can see that
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Fig. 13. Impact of network size on convergence performance, for the same
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the test accuracy increases as the number of devices increases.
This is because as the number of devices increases, the
number of data samples available in the network for training
increases. This helps improve the performance for both of
our higher-order modulation method as well as for BPSK
FL. Fig. 12 also shows that as the number of receiver
antennas increases from N, = 2 to N, = 4, the test
accuracy of the proposed methodology experiences a slight
improvement, because of the PS’s ability to exploit transmit
diversity.

In Fig. 13, we show how the number of rounds required
to converge varies as the number of devices changes, for the
same dataset and settings as Fig. 12. Overall, we see that as the
number of devices increases, the number of rounds needed to
converge decreases, in addition to improving the overall testing
accuracy. Fig. 13 also shows that our method can exploit a
larger number of antennas to reduce the iterations required
for convergence, with appropriate design of the beamforming
matrices.

V. CONCLUSION

In this article, we have developed a novel framework that
enables the implementation of FL algorithms over a digital
MIMO and AirComp based system. We have formulated
an optimization problem that jointly considers transmit and
receive beamforming matrices for the minimization of FL
training loss. To solve this problem, we analyzed the expected
improvement of FL training loss between two adjacent itera-
tions that depends on the digital modulation mode, the number
of devices, and the design of beamforming matrices. To obtain
this bound in practice, we introduced an ANN based algorithm
to estimate the local FL models of all devices; then, the
optimal solution of beamforming matrices can be determined
based on the predicted FL model and the derived expected
improvement of FL training loss. Numerical evaluation on
real-world machine learning tasks demonstrated that the pro-
posed methodology yields significant gains in classification
accuracy and convergence speed compared to conventional
approaches.
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APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we first rewrite F'(g, ;) using
the second-order Taylor expansion and the property of the
L-smooth in Assumption a), which can be expressed as

F(gi41) < F(gy) + (941 — 9¢) VF (9y)
2
Ty 9241 — g4l
Let g, — g, = VF (g,) — o; and the learning rate X\ = %,
we have

E (F (9t+1)) —E(F(g:)

L)\?
< —AE(VF (g,) —01) VF (g,) + 5-E[[VF (g,) — o]
@ 1 2 1 2
Y ——E|IVF (g1 + 57E (llecl) .
2 |VF (g,) — ol

+0"VF (g,)+ K (HOtH ? with o; being
ocal FL model

where (a) stems from the fact that £2-

st IVE (g0l -
a gradient deviatlon caused by the errors in

transmission, which can be given as follows

E (Jloi]*)

=E (HVF (gt) - (9t+1 - gt)HQ)
K Ny

kzl z_:l vf (gt’ Ln ks yn,k:)

neENy +

2
( Z v.f 9y Tn ks Yp k:)
K
=

Ny,
Z (gtva:n kyYn, k)
SE e

K Nzt
Z vf(gtvmﬂ kyYn k)

K
> Wil
k=1
K Ni:
Z vf (gtamn,k7yn,k)

k=1n=1
+ N

k=1 nENk,t

K
Z [ Z Vf (gt,wn,kvyn,k)
!

K
> Nl
k=1
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K
Z l ( Z vf (gtvmmlﬁyn,k))
k=1 neNk t

+ ||t =
=
) 2
8 DD V(96 @k Yng) (23)
nEN ¢
where  Vf(g,,®nk ¥,,) is the gradient trained

by (mn,k’ayn,k)' §t Z vf (gtamn,]myn,k)) =

nENk,t
K
B HkAkz< > Vf(gt,ccn,k,yn,k)>+3m
k=1 neNg . .
k; is the received
> Nl
k=1
K
ZU 2 VH(gema kv
signal. MK is the theoretical signal
> [Nl

that is obtained vi’;flmodulation at devices and demodulation
at the PS without channel impairments and misalignments.
Given V f (gt,mn7k,yn7,€), the first term in (23) represents
the discrepancy of gradients introduced by random sampling
of mini-batches, which can be rewritten as

K N
Z va (gtamn,k7yn,k)
E k=1n=1
N
K Nt
E E f(gtvmn,kayn,k)

K
Z W,
. k=1
Zﬁ? t_zwk:t
k=1 k=1
K o2

where Wy is the 0pt1mal updated local model without vari-

. o2
ance. Given T

on each device k, the variance bound of all
0'2
. . _ 2
devices is T = kE ) W

And then, we have E (Hot||2> =E (Het + ét(At,Bt)||2>

where
K
Z Z vf (gt7mn,kayn,k,)
- k=1n€eNj ¢
€ = e
> Wil
k=1
K
Z l Z Vf (gtvmn,lmyn,k)
7171 k=1 nGNkJ T T
> Nl
(24)
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and
et(At7Bt)
K
Z l Z Vf (gtawn,kayn,k>
_ k=1 nG/\fk,t
:l e
> [Nl
k=1
K
B Y HiyAp | Y Vg @k, Y i) +1
B l71 k=1 neNk :
Z | Nt
k=1

(25)
This completes the proof.

APPENDIX B
LATENCY MODELS

We present here the models employed for calculating
latency/delay in the experiments. For our algorithm, the
latency encompasses the time of updating and transmitting
both the MLP and the local FL. models. For the analog FL
and BPSK FL baselines, the latency consists of the time of
updating and uploading the FL parameters only. Our models
of the four components are given below.

A. MLP Updating Time

The updating time of the MLP depends on the computa-
tional complexity of the MLP and the computational power
of each device. The computational complexity of the MLP
depends on the size of input g;_; and output Aﬂ;;m, as well
as the number of the neurons in the hidden layer. As discussed
in Section III-B, the sizes of g; ; and Awy, are both V',
and the number of neurons in the hidden layer is D. Then,
following the latency models in [63], the updating time of the
MLP can be modeled as

202V'D
Lyvipu = ——,
efp
where 2V D is the total number of parameters, fp is the CPU
clock frequency of a device (in cycles/sec), € is the number
of parameter update operation executed by one CPU cycle, p
is the time-consumption coefficient depending on the specific
chip of each device, and « is the quantization precision.

(26)

B. FL Updating Time

The updating time of the FL model similarly depends on
the computational complexity of the adopted model and the
computational power of each device. For Fashion-MNIST and
CIFAR-10, we employ a series of convolutional layers and one
linear layer. The training complexity depends on the specific
structure of each layer. In each convolutional layer i, let
M; denote the size of the convolutional kernel, K; denotes
the side length of the output feature map generated by each
convolutional kernel, and C" and C"* denote the number
of input channels and output channels, respectively. Then, the
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number of operations required for training one of the models
I
is Op, = > M? x K2 x O™ x O™ 4 O X Loy, where

i=1
Loy is the output dimension of the entire network and I is
the number of convolutional layers [65]. Then, the updating
time of the FL. model is given by

OFLOz2

27
o 27)

Leru =

C. MLP Transmission Time

The transmission time of the MLP depends on the size of the
MLP and the channel states. Given the number of parameters
is 2V'D, the transmission time of the MLP can be modeled
as

1(2aV'D)

Lyvip,r = — (28)

where [(-) denotes the digital pre-processing function
described in Sec. II-A. C' is the channel capacity (in bits/sec),
which is given for MIMO channels as [64]

N
C=E [1og det (IN,, + SNR) HH*] ,

t

(29)

where SNR = P,/0? is the common signal-to-noise ratio
(SNR) at each receive antenna with o2 being the variance of
the additive white Gaussian noise, INV; and N, are the numbers
of transmitting and receiving antennas, respectively, and H is
the MIMO channel vector.

D. FL Transmission Time

The transmission time of the FL model depends on the
size of the adopted FL model and the channel state. Given
the neural network structures, the transmission delay can be
modeled as

LV
LyrT = (Ca),

(30)

where C'is as defined above and V = Zfil MZxCPx O +

}’“jl X Loy 1S the number of parameters in the adopted FL
model.

For the CIFAR-10 task, ] = 17,V = 1.17x 107, and Oy, =
1.7 x 10'2, and for the Fashion MNIST task, ] = 5, V =
9.2 x 10%, and Opy, = 1.2 x 10°. The value of « is variable for
different baselines: for BPSK, oo = 1 (i.e., single bit precision),
for analog FL, o = 32 (i.e., full precision computation), and
for our proposed method using 64 QAM, o = 6. We set € =
10°, p=1, and fp =1 GHz in our experiments.
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