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ABSTRACT 
Machine learning presents opportunities to improve the scale-specific accuracy of mechanistic 
models in a data-driven manner. Here we demonstrate the use of a machine learning technique 
called Sparse Identification of Nonlinear Dynamics (SINDy) to improve a simple mechanistic model 
of algal growth. Time-series measurements of the microalga Chlorella Vulgaris were generated 
under controlled photobioreactor conditions at the University of Technology Sydney. A simple 
mechanistic growth model based on intensity of light and temperature was integrated over time 
and compared to the time-series data. While the mechanistic model broadly captured the overall 
growth trend, discrepancies remained between the model and data due to the model's simplicity 
and non-ideal behavior of real-world measurement. SINDy was applied to model the residual error 
by identifying an error derivative correction term. Addition of this SINDy-informed error dynamics 
term shows improvement to model accuracy while maintaining interpretability of the underlying 
mechanistic framework. This work demonstrates the potential for machine learning techniques like 
SINDy to aid simple mechanistic models in scale-specific predictive accuracy.  
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INTRODUCTION 
Within process design and system analysis, mecha-

nistic models have long stood as pillars for understanding 
and predicting the behavior of complex systems. Rooted 
in fundamental physical and chemical principles, these 
models offer a structured approach to dissecting system 
dynamics, providing insights that are crucial for industrial 
applications [1]. However, as we delve deeper into the 
nuances of these systems, particularly at varying scales, 
the limitations of mechanistic models become apparent. 
A key challenge lies in their generalization; while these 
models are adept at capturing overarching trends and 
basic interactions, they often fall short in accurately rep-
resenting the intricate dynamics of specific systems un-
der varied conditions.  

This is especially true in biological and ecological 
modeling, where the complexity of interactions and the 
sensitivity to environmental variables pose significant 
hurdles. The modeling of microalgal growth, such as that 
of Chlorella vulgaris, exemplifies this challenge. Here, the 

transition from laboratory-scale observations to com-
mercial-scale operations is fraught with complexities, as 
the models struggle to account for the myriad of factors 
influencing algal growth dynamics at different scales 
[3,4]. 

Yet the uptick of machine learning methods bolster-
ing traditional system identification offer a beacon of 
hope in this landscape. Among the various machine 
learning techniques, Sparse Identification of Nonlinear 
Dynamics (SINDy) emerges as a particularly promising 
tool. SINDy is a novel algorithm that seeks to identify the 
governing equations of a dynamical system in a sparse, 
interpretable form [2-4]. This approach is particularly rel-
evant in process modeling, where understanding the fun-
damental dynamics is as crucial as achieving predictive 
accuracy [5]. 

The objective of this study is to showcase the appli-
cation of SINDy in refining a mechanistic model of algal 
growth. Focusing on the microalga Chlorella vulgaris, we 
utilize time-series data collected under controlled photo-
bioreactor conditions at the University of Technology 
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Sydney (Unpublished Data).  
The following paper delves into the methods, where 

we describe the initial mechanistic model based on light 
intensity and temperature, followed by the integration of 
the SINDy algorithm derived error term. The results sec-
tion presents a comparative analysis between the original 
and the enhanced models, highlighting the improvements 
in accuracy and interpretability. In the discussion, we ex-
plore the implications of these findings for process de-
sign, particularly in the scaling of microalgal growth sys-
tems. Finally, the paper concludes with a summary of our 
key findings and their significance in the broader context 
of industrial applications. 

BACKGROUND 

Process Design 
Historically, process design has been deeply rooted 

in the principles of chemical engineering, with a strong 
emphasis on understanding and manipulating material 
and energy balances [6-8]. Mechanistic models, charac-
terized by their basis in fundamental scientific principles, 
have been extensively applied across various domains of 
process engineering [1, 9-13]. These models excel in their 
ability to predict system behavior under a range of con-
ditions, providing a reliable foundation for process design 
and optimization. However, their application is not with-
out limitations. One significant challenge is their general-
ization, which can lead to inaccuracies when applied to 
specific systems or at different scales [14]. Biological 
systems are inherently complex, and their dynamics can 
vary significantly with changing environmental conditions 
and scales, posing a substantial challenge to traditional 
mechanistic modeling approaches. 

Machine Learning 
In recent years, the emergence of machine learning 

as a complementary tool in scientific research has 
opened new avenues in process design. Machine learn-
ing's data-driven nature allows it to uncover complex, 
non-linear relationships within high-dimensional data 
sets, offering a level of insight and prediction that is often 
beyond the reach of traditional models [15, 16]. This has 
been particularly advantageous in process modeling, 
where machine learning algorithms have been success-
fully integrated with mechanistic models to enhance their 
accuracy and adaptability [14]. 

Among the various machine learning techniques, 
SINDy has emerged as a promising tool for process de-
sign. Developed as an algorithm to identify governing 
equations of dynamical systems, SINDy distinguishes it-
self by its ability to distill complex data sets into sparse, 
interpretable models [2, 3]. This capability makes SINDy 
particularly suitable for process design applications 
where understanding the fundamental dynamics is as 

crucial as achieving predictive accuracy. 

Microalgae 
The modeling of microalgal growth, specifically the 

growth dynamics of Chlorella vulgaris, provides a com-
pelling case study for the application of SINDy in process 
design [17, 18]. Microalgae, recognized for their potential 
in industrial applications, present significant challenges in 
scaling up from laboratory to commercial operations [18]. 
Traditional mechanistic models, while providing a basic 
understanding of algal growth, struggle to capture the full 
complexity of these biological systems at different scales 
[19, 20] 

METHODOLOGY 

Algae Mechanistic Model 
We attempt to improve upon a simplified model that 

based on two key environmental factors: light intensity 
and temperature. This model combines the principles of 
Haldane kinetics and the Cardinal Temperature Model 
with Inflection (CTMI), offering a comprehensive under-
standing of algal growth dynamics. The model's first 
component, based on Haldane kinetics, addresses the 
effect of light intensity on algal growth. It recognizes that 
growth rate increases with light intensity up to an optimal 
level, after which it starts to decline due to photoinhibi-
tion. This relationship is mathematically represented by 
the equation:  

𝜇𝜇(𝐼𝐼) =  𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 ∗  𝐼𝐼 �𝐼𝐼 +  �
𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇
𝛼𝛼 � ∗  ��

𝐼𝐼
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼� −  1�

2

�    (1) 

Here, μ(I) represents the growth rate as a function 
of light intensity I, μopt is the maximum growth rate, Iopt 
is the optimal light intensity, and α is a parameter that 
moderates the effect of light intensity on the growth rate. 

The second component of the model, the CTMI, 
quantifies the influence of temperature on algae growth. 
This model defines the growth rate within a range of tem-
peratures, specifying minimum (Tmin), optimal (Topt), and 
maximum (Tmax) temperatures for growth. The CTMI 
model is encapsulated in the following equation: 

𝜇𝜇(𝑇𝑇) =  𝑘𝑘 ∗
�(𝑇𝑇 −  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∗  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −  𝑇𝑇)�

�(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∗  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −  𝑇𝑇)�
   (2) 

In this formulation, μ(T) denotes the growth rate as 
a function of temperature T, with Tmin, Topt, and Tmax 
being the minimum, optimal, and maximum temperatures 
for algal growth, respectively. k is a scaling constant.  

 The final model, encapsulating both the temper-
ature and light components, is then the product of μ(T) 
and μ(I). 

Data Source and Preparation 
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Our study utilizes data collected from the PBR 1250L 
photobioreactor system from Industrial Plankton as the 
primary cultivation equipment. This system provides a 
substantial working volume of 1250 liters, enabling a con-
tinuous harvesting capacity of up to 500 liters daily. Data 
collection was centered around minute measurements of 
pH level, irradiation, temperature, and relative density of 
the growth media within the photobioreactor. The pH 
control was managed by adjusting its setpoint and stabi-
lized through automatic CO2 injection. Irradiation was 
provided by LED light columns. Temperature control was 
maintained externally and the relative density of the al-
gae was monitored through an optical density sensor. 

The study involved a batch culture maintained over 
eleven days with alternating irradiation and pH setpoints, 
keeping the temperature constant and assuming a suffi-
cient initial nutrient supply. The operational sequence 
was adjusted bi-daily, and the bioreactor was prepared 
with specific concentrations of culture media, followed 
by a regulated air bubbling process to maintain optimal 
growth conditions. This resulted in 22,301 data points for 
use in training and testing models. 

SINDy-Derived Error Model 
We employ the SINDy algorithm [21] to identify a dif-

ferential equation to model the rate of change of error 
between the actual and predicted Chlorella vulgaris den-
sities. Here, the error given by Equation 4 as 

𝑒𝑒 =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   (4) 

varies over time. The state data, represented by 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠in-
cludes the error, capturing the essential aspects of the 
model's performance over time. Additionally, control 
data, denoted as 𝑈𝑈sindy, incorporates key environmental 
factors, namely temperature T, light intensity I, and pH 
that significantly influence algal growth.   

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑒𝑒   (5) 

𝑋̇𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑒̇𝑒   (6) 

𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [𝑇𝑇 𝐼𝐼 𝑝𝑝𝑝𝑝]   (7) 

We develop a control-only error model using the 
SINDy framework with the introduction of a dummy state 
variable. This dummy variable, a zero-valued array, is de-
signed to match the dimensions of 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, the derivative 
of the error. Its primary function is not to represent a 'real' 
state variable in the traditional sense; instead, it serves 
as a tool for facilitating the SINDy algorithm process of 
system dynamics identification, which typically expects 
state variables to influence the system dynamics. The 
SINDy algorithm is thus attempting to fit sparsity matrix 
Φ such that:  

𝑋̇𝑋{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠} =  𝑈𝑈sindyΦ   (9) 

To capture the complexity of biological growth 

processes in our SINDy model, we included a variety of 
custom functions in the feature library. Each function rep-
resents a specific biological growth dynamic, such as lo-
gistic growth, exponential growth, and other well-known 
biological models shown in Table 1.  

Table 1: Functional basis for SINDy library. 

Logistic growth 
𝑓𝑓(𝑥𝑥) =

1
{1 +  𝑒𝑒{−𝑥𝑥}}   (10) 

Exponential 
growth 𝑓𝑓(𝑥𝑥) =  𝑒𝑒{𝑥𝑥}   (11) 

Gompertz func-
tion 𝑓𝑓(𝑥𝑥, 𝑐𝑐1, 𝑐𝑐2) =  𝑒𝑒�𝑐𝑐1𝑒𝑒{−𝑐𝑐2𝑥𝑥}�   (12)    

Allee effect 
𝑓𝑓(𝑥𝑥,𝐴𝐴) =

𝑥𝑥
{𝐴𝐴 −  𝑥𝑥 +  𝜖𝜖}   (13) 

Michaelis-Menten 
kinetics 𝑓𝑓(𝑥𝑥,𝐾𝐾𝑚𝑚) =

𝑥𝑥
{𝐾𝐾𝑚𝑚 +  𝑥𝑥 +  𝜖𝜖}   (14) 

Holling's Type II 
function 𝑓𝑓(𝑥𝑥, 𝑎𝑎) = 𝑎𝑎𝑎𝑎

{1 + 𝑎𝑎𝑎𝑎 + 𝜖𝜖}    (15)   

 Here, the logistic growth function represents a 
growth process that accelerates rapidly at first and then 
slows down as it approaches a maximum limit, commonly 
used to model population growth. The exponential 
growth function describes a process where the rate of 
growth is proportional to the current amount, leading to 
a rapid increase over time. The Gompertz function mod-
els growth that initially accelerates and then decelerates, 
commonly used in biology to describe the growth of tu-
mors or certain populations [22]. The parameters 𝑐𝑐1 and 
𝑐𝑐2 reflect the maximum value the function will reach and 
the rate at which that point will be reached respectively. 
The Allee effect function represents a scenario where 
population growth is positively correlated with the popu-
lation size, highlighting the difficulties in growth at very 
low densities, with 𝐴𝐴 representing this population thresh-
old value [23]. The parameter 𝜖𝜖 is used here as well as 
the following functions to as a small value that prevents 
division by zero. The Michaelis-Menten kinetics function 
is typically used to describe the rate of enzymatic reac-
tions, showing how reaction rate varies with substrate 
concentration [24]. The parameter 𝐾𝐾𝑚𝑚 is the substrate 
concentration at which the growth rate is half of its max-
imum. Holling's Type II function, models the rate of pre-
dation in an ecosystem, increasing linearly at low prey 
density and saturating at higher densities [25]. The 
growth rate 𝑎𝑎 here represents the efficiency of resource 
consumption by the growing population.  

Mechanistic & Error Model Coupling 
After the ODE model for the error derivative is re-

covered, this sum of functions representing the 
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derivative is added directly to the original mechanistic 
CTMI-light model, as shown in Figure 1. This updated, or 
“corrected,” model can then be integrated overtime to re-
turn the specific density from the estimated growth rate.  

 
Figure 1: Methodological flow resulting in an updated 
mechanistic model for Chlorella vulgaris rate of change 
of density.   

Model Evaluation 
In the evaluation of the error ODE model, key metrics 

of RMSE, MAPE, and R^2 are calculated for each fold of 
the time series cross-validation to assess model accu-
racy. RMSE is determined by taking the square root of the 
average of squared differences between predicted and 
observed values. MAPE is calculated as the average of 
the absolute differences between predicted and ob-
served values, divided by the observed values, and ex-
pressed as a percentage. R^2 is computed as the propor-
tion of variance in the observed data that is predictable 
from the model inputs.   

Visual comparisons of both the corrected and non-
corrected models’ predictions against the observed cu-
mulative growth data are integrated and tested for each 
validation fold through a process of data preparation, 
plotting, visual analysis, and comparison. These plots al-
low for the assessment of how closely the predicted 
growth curves follow the observed data and the extent 
to which the corrected predictions improve alignment 
with the observed data compared to the non-corrected 
predictions.   

RESULTS 

Algae Mechanistic Model 
We fit the combined CTMI-light model for density 

using the full 22,301 measurement points available for 
temperature, light intensity, and density. Since the mech-
anistic model is built for non-standardized relationships 

between components, we choose to pass in the raw data 
without standardization or normalization. We employed 
non-linear curve fitting techniques, utilizing the ‘curve_fit’ 
function from the Python ‘scipy.optimize’ library, to esti-
mate the parameters of the model with Topt = 27.329 C . 

To check the performance of this model, we inte-
grate the fitted model over time and compare the result 
to the measured specific density. As seen in Figure 2, the 
combined model predicts a linear increase in algae den-
sity overtime.  

 
Figure 2: Combined CTMI-light model for growth rate 
integrated over time versus measured model specific 
density over all 22,301 data points. Combined model 
RMSE is 0.009. 

Data Preparation 
To make the SINDy optimization more robust 

against outliers in feature weights, the inputs, tempera-
ture, light intensity, and pH are each normalized by sub-
tracting their time-series mean and dividing by standard 
deviation. This approach was chosen since the inputs to 
the batch were periodic, meaning their distribution was 
close to Gaussian.  

The full timeseries data, with standardized control 
inputs, is then broken into twenty folds of sequential 
data. Cross-validation is employed such that in each iter-
ation, the model is trained on an expanding window of 
past data and validated on a subsequent, non-overlap-
ping window of future data. This strategy allows the 
model to learn from a progressively larger dataset, cap-
turing more of the underlying temporal patterns and dy-
namics as it moves through the folds. 

SINDy Error ODE Model Recovery 
We leverage the sequentially thresholded least 

squares (STLSQ) algorithm as the optimization engine for 
Sparse Identification of Nonlinear Dynamics (SINDy). In 
this implementation, the STLSQ sparsity threshold is set 
at 0.0001, allowing the model to focus on the most im-
pactful predictors and enhance its transparency. Addi-
tionally, the maximum iteration limit is set to 2000, 
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balancing computational efficiency with sufficient con-
vergence time for the optimizer. These carefully chosen 
parameters ensure that the STLSQ algorithm effectively 
extracts the underlying dynamics of the system while 
maintaining interpretability and computational efficiency. 

 
Figure 3: Updated growth rate model (integrated model 
versus actual specific density) showing better 
performance than original CTMI-light model. 

We use a combination of custom, Polynomial, and 
Fourier libraries in SINDy. The custom library included lo-
gistic growth, exponential growth, Gompertz, Allee ef-
fect, Michaelis-Menten kinetics, and Holling's Type II 
functions, with all parameters uniformly set to one. This 
simplified configuration allowed for a consistent and 
straightforward interpretation of the model's outcomes 
while retaining the flexibility to model complex biological 
phenomena. The Polynomial Library, configured to in-
clude terms up to the second degree, enables the model 
to identify both linear and quadratic relationships. Mean-
while, the Fourier Library plays a key role in capturing re-
maining periodicity. 

An ensemble method is utilized to enhance the mod-
el's robustness and accuracy [26]. This approach in-
volves fitting the model multiple times using subsets of 
the training data, allowing for a comprehensive capture 
of potential dynamics and mitigating the impact of outli-
ers or anomalous data points. The ensemble method 
generates 1000 models, each trained on a random subset 
comprising half of the training data.  

Model Performance 
A SINDy model is trained for each of the 20 valida-

tion folds and the error metric scores for RMSE, MAPE, 
and R^2 are tabulated in Table 2. Scores across the early 
folds reflect completely unbounded and divergent be-
havior in the corrected model when integrated over time, 
due to the limited training data up to that point. Scores 
continue to improve (RMSE and MAPE decreasing and 
R^2 increasing) until Fold 6, where a  measurement fluke 
in specific density temporarily biases the training data. 
These high RMSE and MAPE and highly negative R^2 are 
seen again in Folds 14 and 15, reflecting completely di-
vergent behavior likely the result of similar poor data 
quality around that point in time.    

Table 2: Error metric scores across full 20 validation 
folds. 

Fold 
# 

Uncorrected  
RMSE  
MAPE  
R^ 
 

Corrected  
RMSE  
MAPE  
R^ 
 

 
e+ e+% -
e+ 

e+ e+% -
e+ 

 
 %  e+ e+% -

e+ 

 
 inf%  e+ inf% -

e+ 
  %   % - 
  %   % - 
  %   % - 
  %   %  
  %   % - 
  % -  % - 
  %   %  
  %   %  
  % -  %  
  %   %  

 
 % - e+ e+% -

e+ 
  % -  % - 
  % -  % - 
  % -  % - 
  %   % - 
  %   %  
  % -  % - 

The fold models not exhibiting this fully divergent 
behavior either outperform the original combined CTMI-
light model both visually quantitatively (for example mod-
els for Folds 9 and 12, see Table 2) or capture some pat-
tern or periodicity not found in the original mechanistic 
models, while simultaneously slowly diverging from the 
actual truth specific density (for example models for 
Folds 8 and 18, see Table 2). In Fold 9, we see that the 
corrected model outperforms the original mechanistic 
model even with experimental error due to the drop in 
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specific density.   

Model Trends  
The SINDy error-based models are provided as Sup-

plementary Material. The natural functions are given only 
by name and variable they operate on (see Table 1). For 
example, 13.512 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡) refers to 
the Gomperz function applied to both temperature and 
light variables (separately) but with a coefficient of 
13.512 for each.   

Early fold equation coefficients (Folds 1-7) show no-
ticeable fluctuation in the impact of temperature. Initially, 
the effect is strongly negative (e.g., -104689.0 in Fold 1) 
but shows variability in subsequent folds, indicating 
changing sensitivity to temperature (see Supplementary 
Material). Light maintains a predominantly negative coef-
ficient, with large magnitudes (e.g., -43231100.0 in Fold 
1). pH coefficients show significant changes, starting 
positive and large (8179580.0 in Fold 1) but becoming 
negative by Fold 4, indicating a shifting role of pH in these 
systems. Squared terms like Temperature^2 and Light^2 
indicate evolving non-linear effects, with coefficients 
varying and reflecting changing dynamics. Interaction 
terms start to appear and vary in significance, suggesting 
the evolving interplay between factors. Logistic and ex-
ponential growth models are applied with varying coeffi-
cients, indicating differing growth dynamics under 
changing conditions.  

Folds (Folds 8-14) see the coefficient of Tempera-
ture stabilizing somewhat but continuing to show varia-
tion, possibly reflecting a nonlinear role not captured by 
the supplied function basis for SINDy. Light consistently 
shows a negative impact but with varying magnitudes, 
indicating a sustained but dynamically changing influ-
ence. The role of pH continues to evolve with coefficient 
changes. Cyclical terms become more pronounced, with 
sin and cos functions indicating more significant seasonal 
or cyclic effects.  

Late Folds (Folds 15-20) show temperature coeffi-
cients become more moderate, suggesting a refined un-
derstanding or a stabilizing effect. The influence of Light 
remains significant with large negative coefficients, indi-
cating a consistently crucial role. pH effects continue to 
show variability but within a narrower range, suggesting 
a more consistent but still variable role. The complexity 
in terms of diverse interactions and non-linear effects 
shows signs of convergence, with key relationships and 
factors becoming more defined. There is a tendency to-
wards more consistent use of growth models, indicating 
a stabilization in how growth or change processes are 
being represented. 
 

 
Figure 4: Updated growth rate model (integrated model 
versus specific density) showing divergent behavior. 

CONCLUSION 
This study demonstrates the potential of sparse ma-

chine learning techniques like SINDy to enhance the ac-
curacy of mechanistic models while retaining interpreta-
bility. However, it also highlights the limitations and chal-
lenges that can arise in applying data-driven methods to 
improve mechanistic insights, especially given con-
strained data availability. 

By focusing solely on a single experimental dataset 
for the microalga Chlorella vulgaris cultivated under 
tightly controlled photobioreactor conditions, the model's 
flexibility was restricted. While providing high temporal 
resolution measurements, spanning just one batch lim-
ited the diversity of growth dynamics captured. Periodic 
disturbances in the data, stemming from operational is-
sues, further hampered efforts to train robust models.  

Across 20 validation folds, adding the data-driven 
error dynamics equation resulted in improved error met-
rics. However, early folds suffered due to insufficient 
training data leading to a diverging trajectory with ex-
ploding error. Later folds demonstrated closer alignment 
with observed growth  trajectory or responded to oscil-
lation over time neglected by the linear mechanistic 
model. Inaccuracy in the phase of the oscillatory trajec-
tory predicted may be due to sensitivity to initial condi-
tions and warrants further exploration. The variation in 
types of biological growth functions applied over folds 
potentially indicated the model homing in on appropriate 
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representations for different mechanisms or growth 
phases as training data and timespan was increased. 
 These outcomes highlight the power of refining 
first-principles models with nuanced insights from real 
system observations. However, the instability across 
folds underscores the need for more comprehensive da-
tasets before operational deployment. Future efforts 
should focus on generating measurements encapsulating 
a wider array of cultivation conditions and durations. In-
creased scale and variance in datasets may enable ma-
chine learning to extract more robust patterns. Beyond 
SINDy, exploring alternative algorithms could further im-
prove the mechanistic correction. 

DIGITAL SUPPLEMENTARY MATERIAL 
The full set of error ODEs generated can be found 

here. Link: [Error_ODEs]. 

ACKNOWLEDGEMENTS 
The author William Farlessyost acknowledges the 

National Science Foundation for support under the Grad-
uate Research Fellowship Program (GRFP) undergrant 
number DGE-1842166. Thanks to Sebastian Oberst (UTS) 
for his help and support on this project. 

REFERENCES 
1. L. Mears, S. M. Stocks, M. O. Albaek, G. Sin, and K. 

V. Gernaey, “Mechanistic Fermentation Models for 
Process Design, Monitoring, and Control,” Trends 
Biotechnol, vol. 35, no. 10, pp. 914–924, Oct. 2017, 
doi: 10.1016/J.TIBTECH.2017.07.002. 

2. M. Quade, M. Abel, J. Nathan Kutz, and S. L. 
Brunton, “Sparse identification of nonlinear 
dynamics for rapid model recovery,” Chaos: An 
Interdisciplinary Journal of Nonlinear Science, vol. 
28, no. 6, p. 63116, 2018. 

3. S. L. Brunton, J. L. Proctor, and J. N. Kutz, 
“Discovering governing equations from data by 
sparse identification of nonlinear dynamical 
systems,” Proceedings of the national academy of 
sciences, vol. 113, no. 15, pp. 3932–3937, 2016. 

4. E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse 
identification of nonlinear dynamics for model 
predictive control in the low-data limit,” 
Proceedings of the Royal Society A, vol. 474, no. 
2219, p. 20180335, 2018. 

5. F. Harirchi, “On sparse identification of complex 
dynamical systems: A study on discovering 
influential reactions in chemical reaction networks,” 
Fuel, vol. 279, p. 118204, 2020. 

6. G. Towler and R. Sinnott, Chemical Engineering 
Design: Principles, Practice and Economics of Plant 

and Process Design. Elsevier, 2021. doi: 
10.1016/B978-0-12-821179-3.01001-3. 

7. M. Sharifzadeh, “Integration of process design and 
control: A review,” Chemical Engineering Research 
and Design, vol. 91, no. 12, pp. 2515–2549, Dec. 
2013, doi: 10.1016/J.CHERD.2013.05.007. 

8. B. W. Bequette, “Prentice Hall PTR : Process 
Control: Modeling, Design, and Simulation,” 2002. 

9. K. V. Gernaey, A. E. Lantz, P. Tufvesson, J. M. 
Woodley, and G. Sin, “Application of mechanistic 
models to fermentation and biocatalysis for next-
generation processes,” Trends Biotechnol, vol. 28, 
no. 7, pp. 346–354, Jul. 2010, doi: 
10.1016/J.TIBTECH.2010.03.006. 

10. S. Esplugas, S. Contreras, and D. F. Ollis, 
“Engineering Aspects of the Integration of 
Chemical and Biological Oxidation: Simple 
Mechanistic Models for the Oxidation Treatment,” 
Journal of Environmental Engineering, vol. 130, no. 
9, pp. 967–974, Sep. 2004, doi: 
10.1061/(ASCE)0733-9372(2004)130:9(967). 

11. R. T. Kapoor, M. Danish, R. S. Singh, M. Rafatullah, 
and A. K. Abdul, “Exploiting microbial biomass in 
treating azo dyes contaminated wastewater: 
Mechanism of degradation and factors affecting 
microbial efficiency,” Journal of Water Process 
Engineering, vol. 43, p. 102255, Oct. 2021, doi: 
10.1016/J.JWPE.2021.102255. 

12. A. K. Datta, “Toward computer-aided food 
engineering: Mechanistic frameworks for evolution 
of product, quality and safety during processing,” J 
Food Eng, vol. 176, pp. 9–27, May 2016, doi: 
10.1016/J.JFOODENG.2015.10.010. 

13. Q. Lu and F. Jiao, “Electrochemical CO2 reduction: 
Electrocatalyst, reaction mechanism, and process 
engineering,” Nano Energy, vol. 29, pp. 439–456, 
Nov. 2016, doi: 10.1016/J.NANOEN.2016.04.009. 

14. M. Mozaffar et al., “Mechanistic artificial 
intelligence (mechanistic-AI) for modeling, design, 
and control of advanced manufacturing processes: 
Current state and perspectives,” J Mater Process 
Technol, vol. 302, p. 117485, Apr. 2022, doi: 
10.1016/J.JMATPROTEC.2021.11748 

15. J. Huang, Y. Chen, S. Jiang, and C. Yuan, “Machine 
learning-enabled intelligent modeling and 
optimization of chemical processes,” Chem Eng 
Sci, vol. 203, pp. 290–310, 2019. 

16. H.-J. Song, D.-Y. Jeong, and J.-H. Ryu, “Prediction 
of chemical reaction yield using nonparametric 
regression and machine learning methods,” Ind Eng 
Chem Res, vol. 54, no. 44, pp. 10868–10876, 2015. 

17. C. Safi, B. Zebib, O. Merah, P. Y. Pontalier, and C. 
Vaca-Garcia, “Morphology, composition, 
production, processing and applications of 
Chlorella vulgaris: A review,” Renewable and 

https://purdue0-my.sharepoint.com/:u:/g/personal/wfarless_purdue_edu/EeUH7kRHMapBnMZz265y6mABvlBmGk-H4gPUQXZXvg692Q?e=hVg6Xg


 

Farlessyost et al. / LAPSE:2024.1538 Syst Control Trans 3:275-282 (2024) 282 

Sustainable Energy Reviews, vol. 35, pp. 265–278, 
Jul. 2014, doi: 10.1016/J.RSER.2014.04.007. 

18. M. T. Ahmad, M. Shariff, F. Md. Yusoff, Y. M. Goh, 
and S. Banerjee, “Applications of microalga 
Chlorella vulgaris in aquaculture,” Rev Aquac, vol. 
12, no. 1, pp. 328–346, Feb. 2020, doi: 
10.1111/RAQ.12320. 

19. M. F. Blair, B. Kokabian, and V. G. Gude, “Light and 
growth medium effect on Chlorella vulgaris 
biomass production,” J Environ Chem Eng, vol. 2, 
no. 1, pp. 665–674, Mar. 2014, doi: 
10.1016/J.JECE.2013.11.005. 

20. K. Rezaei, A. Javanshir, R. Barghbani, K. Rezaei, 
and A. Javanshir, “Investigating the Effects of 
Several Parameters on the Growth of Chlorella 
vulgaris Using Taguchi’s Experimental Approach,” 
Article in International Journal of Biotechnology for 
Wellness Industries, vol. 1, pp. 128–133, 2012, doi: 
10.6000/1927-3037/2012.01.02.04. 

21. S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse 
identification of nonlinear dynamics with control 
(SINDYc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 
710–715, 2016. 

22. P. Waliszewski and J. Konarski, “A Mystery of the 
Gompertz Function,” Fractals in Biology and 
Medicine, pp. 277–286, Jan. 2005, doi: 10.1007/3-
7643-7412-8_27. 

23. J. C. Gascoigne and R. N. Lipcius, “Allee effects 
driven by predation,” Journal of Applied Ecology, 
vol. 41, no. 5, pp. 801–810, Oct. 2004, doi: 
10.1111/J.0021-8901.2004.00944.X. 

24. B. Srinivasan, “A guide to the Michaelis–Menten 
equation: steady state and beyond,” FEBS J, vol. 
289, no. 20, pp. 6086–6098, Oct. 2022, doi: 
10.1111/FEBS.16124. 

25. H. N. Agiza, E. M. ELabbasy, H. EL-Metwally, and A. 
A. Elsadany, “Chaotic dynamics of a discrete prey–
predator model with Holling type II,” Nonlinear Anal 
Real World Appl, vol. 10, no. 1, pp. 116–129, Feb. 
2009, doi: 10.1016/J.NONRWA.2007.08.029. 

26. U. Fasel, J. N. Kutz, B. W. Brunton, and S. L. 
Brunton, “Ensemble-SINDy: Robust sparse model 
discovery in the low-data, high-noise limit, with 
active learning and control,” Proceedings of the 
Royal Society A, vol. 478, no. 2260, 2022, doi: 
10.1098/RSPA.2021.0904. 

© 2024 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 


