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ABSTRACT

Machine learning presents opportunities to improve the scale-specific accuracy of mechanistic
models in a data-driven manner. Here we demonstrate the use of a machine learning technique
called Sparse Identification of Nonlinear Dynamics (SINDy) to improve a simple mechanistic model
of algal growth. Time-series measurements of the microalga Chlorella Vulgaris were generated
under controlled photobioreactor conditions at the University of Technology Sydney. A simple
mechanistic growth model based on intensity of light and temperature was integrated over time
and compared to the time-series data. While the mechanistic model broadly captured the overall
growth trend, discrepancies remained between the model and data due to the model's simplicity
and non-ideal behavior of real-world measurement. SINDy was applied to model the residual error
by identifying an error derivative correction term. Addition of this SINDy-informed error dynamics
term shows improvement to model accuracy while maintaining interpretability of the underlying
mechanistic framework. This work demonstrates the potential for machine learning techniques like
SINDy to aid simple mechanistic models in scale-specific predictive accuracy.
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INTRODUCTION

Within process design and system analysis, mecha-
nistic models have long stood as pillars for understanding
and predicting the behavior of complex systems. Rooted
in fundamental physical and chemical principles, these
models offer a structured approach to dissecting system
dynamics, providing insights that are crucial for industrial
applications [1]. However, as we delve deeper into the
nuances of these systems, particularly at varying scales,
the limitations of mechanistic models become apparent.
A key challenge lies in their generalization; while these
models are adept at capturing overarching trends and
basic interactions, they often fall short in accurately rep-
resenting the intricate dynamics of specific systems un-
der varied conditions.

This is especially true in biological and ecological
modeling, where the complexity of interactions and the
sensitivity to environmental variables pose significant
hurdles. The modeling of microalgal growth, such as that
of Chlorella vulgaris, exemplifies this challenge. Here, the
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transition from laboratory-scale observations to com-
mercial-scale operations is fraught with complexities, as
the models struggle to account for the myriad of factors
influencing algal growth dynamics at different scales
[3,4].

Yet the uptick of machine learning methods bolster-
ing traditional system identification offer a beacon of
hope in this landscape. Among the various machine
learning techniques, Sparse ldentification of Nonlinear
Dynamics (SINDy) emerges as a particularly promising
tool. SINDy is a novel algorithm that seeks to identify the
governing equations of a dynamical system in a sparse,
interpretable form [2-4]. This approach is particularly rel-
evantin process modeling, where understanding the fun-
damental dynamics is as crucial as achieving predictive
accuracy [5].

The objective of this study is to showcase the appli-
cation of SINDy in refining a mechanistic model of algal
growth. Focusing on the microalga Chlorella vulgaris, we
utilize time-series data collected under controlled photo-
bioreactor conditions at the University of Technology
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Sydney (Unpublished Data).

The following paper delves into the methods, where
we describe the initial mechanistic model based on light
intensity and temperature, followed by the integration of
the SINDy algorithm derived error term. The results sec-
tion presents a comparative analysis between the original
and the enhanced models, highlighting the improvements
in accuracy and interpretability. In the discussion, we ex-
plore the implications of these findings for process de-
sign, particularly in the scaling of microalgal growth sys-
tems. Finally, the paper concludes with a summary of our
key findings and their significance in the broader context
of industrial applications.

BACKGROUND

Process Design

Historically, process design has been deeply rooted
in the principles of chemical engineering, with a strong
emphasis on understanding and manipulating material
and energy balances [6-8]. Mechanistic models, charac-
terized by their basis in fundamental scientific principles,
have been extensively applied across various domains of
process engineering [1, 9-13]. These models excel in their
ability to predict system behavior under a range of con-
ditions, providing a reliable foundation for process design
and optimization. However, their application is not with-
out limitations. One significant challenge is their general-
ization, which can lead to inaccuracies when applied to
specific systems or at different scales [14]. Biological
systems are inherently complex, and their dynamics can
vary significantly with changing environmental conditions
and scales, posing a substantial challenge to traditional
mechanistic modeling approaches.

Machine Learning

In recent years, the emergence of machine learning
as a complementary tool in scientific research has
opened new avenues in process design. Machine learn-
ing's data-driven nature allows it to uncover complex,
non-linear relationships within high-dimensional data
sets, offering a level of insight and prediction that is often
beyond the reach of traditional models [15, 16]. This has
been particularly advantageous in process modeling,
where machine learning algorithms have been success-
fully integrated with mechanistic models to enhance their
accuracy and adaptability [14].

Among the various machine learning techniques,
SINDy has emerged as a promising tool for process de-
sign. Developed as an algorithm to identify governing
equations of dynamical systems, SINDy distinguishes it-
self by its ability to distill complex data sets into sparse,
interpretable models [2, 3]. This capability makes SINDy
particularly suitable for process design applications
where understanding the fundamental dynamics is as
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crucial as achieving predictive accuracy.

Microalgae

The modeling of microalgal growth, specifically the
growth dynamics of Chlorella vulgaris, provides a com-
pelling case study for the application of SINDy in process
design [17, 18]. Microalgae, recognized for their potential
in industrial applications, present significant challenges in
scaling up from laboratory to commercial operations [18].
Traditional mechanistic models, while providing a basic
understanding of algal growth, struggle to capture the full
complexity of these biological systems at different scales
[19, 20]

METHODOLOGY

Algae Mechanistic Model

We attempt to improve upon a simplified model that
based on two key environmental factors: light intensity
and temperature. This model combines the principles of
Haldane kinetics and the Cardinal Temperature Model
with Inflection (CTMI), offering a comprehensive under-
standing of algal growth dynamics. The model's first
component, based on Haldane kinetics, addresses the
effect of light intensity on algal growth. It recognizes that
growth rate increases with light intensity up to an optimal
level, after which it starts to decline due to photoinhibi-
tion. This relationship is mathematically represented by
the equation:

u() = popt = I[ 1 + (“‘Z’t) . ((10’?)- 1)2 )

Here, u(1) represents the growth rate as a function
of light intensity 7 poptis the maximum growth rate, /opt
is the optimal light intensity, and « is a parameter that
moderates the effect of light intensity on the growth rate.

The second component of the model, the CTMI,
quantifies the influence of temperature on algae growth.
This model defines the growth rate within a range of tem-
peratures, specifying minimum ( 7min), optimal ( 7op¢), and
maximum (7max) temperatures for growth. The CTMI
model is encapsulated in the following equation:

((T — Tmin) * (Topt — T))

wry =k« ((Topt — Tmin) * (Tmax — T))

(2)

In this formulation, x(7) denotes the growth rate as

a function of temperature 7, with Tmin, Topt, and Tmax

being the minimum, optimal, and maximum temperatures
for algal growth, respectively. kis a scaling constant.

The final model, encapsulating both the temper-

ature and light components, is then the product of u(7)

and (D).
Data Source and Preparation
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Our study utilizes data collected from the PBR 1250L
photobioreactor system from Industrial Plankton as the
primary cultivation equipment. This system provides a
substantial working volume of 1250 liters, enabling a con-
tinuous harvesting capacity of up to 500 liters daily. Data
collection was centered around minute measurements of
pH level, irradiation, temperature, and relative density of
the growth media within the photobioreactor. The pH
control was managed by adjusting its setpoint and stabi-
lized through automatic CO: injection. Irradiation was
provided by LED light columns. Temperature control was
maintained externally and the relative density of the al-
gae was monitored through an optical density sensor.

The study involved a batch culture maintained over
eleven days with alternating irradiation and pH setpoints,
keeping the temperature constant and assuming a suffi-
cient initial nutrient supply. The operational sequence
was adjusted bi-daily, and the bioreactor was prepared
with specific concentrations of culture media, followed
by a regulated air bubbling process to maintain optimal
growth conditions. This resulted in 22,301 data points for
use in training and testing models.

SINDy-Derived Error Model

We employ the SINDy algorithm [21] to identify a dif-
ferential equation to model the rate of change of error
between the actual and predicted Chlorella vulgaris den-
sities. Here, the error given by Equation 4 as

e = Density_actual — Density_model (4)

varies over time. The state data, represented by X4, in-
cludes the error, capturing the essential aspects of the
model's performance over time. Additionally, control
data, denoted as Ugyqy, incorporates key environmental
factors, namely temperature 7, light intensity 7, and pH
that significantly influence algal growth.

Xsindy =e (5

Xsindy =é (6)
Usindy =[TIpH] (7)

We develop a control-only error model using the
SINDy framework with the introduction of a dummy state
variable. This dummy variable, a zero-valued array, is de-
signed to match the dimensions of Xg;,4,, the derivative
of the error. Its primary function is not to represent a 'real’
state variable in the traditional sense; instead, it serves
as a tool for facilitating the SINDy algorithm process of
system dynamics identification, which typically expects
state variables to influence the system dynamics. The
SINDy algorithm is thus attempting to fit sparsity matrix
@ such that:

X{sindy} = Usindch )]
To capture the complexity of biological growth
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processes in our SINDy model, we included a variety of
custom functions in the feature library. Each function rep-
resents a specific biological growth dynamic, such as lo-
gistic growth, exponential growth, and other well-known
biological models shown in Table 1.

Table 1: Functional basis for SINDy library.

Logistic growth

f(x) T e (10)
Exponential
grc?wth fx) = e (11)
Gompertz func- o
tion flere) = elae™ (12)
Allee effect
f(x, A) A _—x1g ®

Michaelis-Menten

X
kinetics fx,Kp) = Kotxtd (14)
Holling's Type Il ax
function foa)=ororg (19

Here, the logistic growth function represents a
growth process that accelerates rapidly at first and then
slows down as it approaches a maximum limit, commonly
used to model population growth. The exponential
growth function describes a process where the rate of
growth is proportional to the current amount, leading to
a rapid increase over time. The Gompertz function mod-
els growth that initially accelerates and then decelerates,
commonly used in biology to describe the growth of tu-
mors or certain populations [22]. The parameters ¢, and
¢, reflect the maximum value the function will reach and
the rate at which that point will be reached respectively.
The Allee effect function represents a scenario where
population growth is positively correlated with the popu-
lation size, highlighting the difficulties in growth at very
low densities, with A representing this population thresh-
old value [23]. The parameter € is used here as well as
the following functions to as a small value that prevents
division by zero. The Michaelis-Menten kinetics function
is typically used to describe the rate of enzymatic reac-
tions, showing how reaction rate varies with substrate
concentration [24]. The parameter K, is the substrate
concentration at which the growth rate is half of its max-
imum. Holling's Type Il function, models the rate of pre-
dation in an ecosystem, increasing linearly at low prey
density and saturating at higher densities [25]. The
growth rate a here represents the efficiency of resource
consumption by the growing population.

Mechanistic & Error Model Coupling

After the ODE model for the error derivative is re-
covered, this sum of functions representing the
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derivative is added directly to the original mechanistic
CTMI-light model, as shown in Figure 1. This updated, or
“corrected,” model can then be integrated overtime to re-
turn the specific density from the estimated growth rate.

\

Chiorella vulgaris
batch time-series

Compute Error

e= j u— Density

Recover Error ODE
&= g(T,1,pH)

Update Mechanistic Model
*p=p+é= f(TlI) +9(T-I:PH

Figure 1: Methodological flow resulting in an updated
mechanistic model for Chlorella vulgaris rate of change
of density.

Model Evaluation

In the evaluation of the error ODE model, key metrics
of RMSE, MAPE, and R"2 are calculated for each fold of
the time series cross-validation to assess model accu-
racy. RMSE is determined by taking the square root of the
average of squared differences between predicted and
observed values. MAPE is calculated as the average of
the absolute differences between predicted and ob-
served values, divided by the observed values, and ex-
pressed as a percentage. R*2 is computed as the propor-
tion of variance in the observed data that is predictable
from the model inputs.

Visual comparisons of both the corrected and non-
corrected models’ predictions against the observed cu-
mulative growth data are integrated and tested for each
validation fold through a process of data preparation,
plotting, visual analysis, and comparison. These plots al-
low for the assessment of how closely the predicted
growth curves follow the observed data and the extent
to which the corrected predictions improve alignment
with the observed data compared to the non-corrected
predictions.

RESULTS

Algae Mechanistic Model

We fit the combined CTMI-light model for density
using the full 22,301 measurement points available for
temperature, light intensity, and density. Since the mech-
anistic model is built for non-standardized relationships
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between components, we choose to pass in the raw data
without standardization or normalization. We employed
non-linear curve fitting techniques, utilizing the ‘curve_fit’
function from the Python ‘scipy.optimize’ library, to esti-
mate the parameters of the model with Topt=27.329C.
To check the performance of this model, we inte-
grate the fitted model over time and compare the result
to the measured specific density. As seen in Figure 2, the
combined model predicts a linear increase in algae den-

sity overtime.

Cumulative Growth over Time

51 — Model Density
—— Data Density

Relative Density

T T T T T
0 5000 10000 15000 20000
Time (hours)

=

Figure 2: Combined CTMI-light model for growth rate
integrated over time versus measured model specific
density over all 22,301 data points. Combined model
RMSE is 0.009.

Data Preparation

To make the SINDy optimization more robust
against outliers in feature weights, the inputs, tempera-
ture, light intensity, and pH are each normalized by sub-
tracting their time-series mean and dividing by standard
deviation. This approach was chosen since the inputs to
the batch were periodic, meaning their distribution was
close to Gaussian.

The full timeseries data, with standardized control
inputs, is then broken into twenty folds of sequential
data. Cross-validation is employed such that in each iter-
ation, the model is trained on an expanding window of
past data and validated on a subsequent, non-overlap-
ping window of future data. This strategy allows the
model to learn from a progressively larger dataset, cap-
turing more of the underlying temporal patterns and dy-
namics as it moves through the folds.

SINDy Error ODE Model Recovery

We leverage the sequentially thresholded least
squares (STLSQ) algorithm as the optimization engine for
Sparse Identification of Nonlinear Dynamics (SINDy). In
this implementation, the STLSQ sparsity threshold is set
at 0.0001, allowing the model to focus on the most im-
pactful predictors and enhance its transparency. Addi-
tionally, the maximum iteration limit is set to 2000,
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balancing computational efficiency with sufficient con-
vergence time for the optimizer. These carefully chosen
parameters ensure that the STLSQ algorithm effectively
extracts the underlying dynamics of the system while
maintaining interpretability and computational efficiency.

Fold 12: Validation Set Cumulative Growth
415
— Observed Cumulative Growth i

=== Corrected Cumulative Growth
4.10 4 === Non-Corrected Cumulative Growth

3.95 1

12800 13000 13200 13400 13600 13800
Time step [min]

Fold 9: Validation Set Cumulative Growth

—— Observed Cumulative Growth
=== Corrected Cumulative Growth
340 1 ——- Non-Corrected Cumulative Growth o

Relative Density

~_s"
" 4
pd S 4
o
Sl I
9600 9800 10000 10200 10400 10600
Time step [min]

Figure 3: Updated growth rate model (integrated model
versus actual specific density) showing better
performance than original CTMI-light model.

We use a combination of custom, Polynomial, and
Fourier libraries in SINDy. The custom library included lo-
gistic growth, exponential growth, Gompertz, Allee ef-
fect, Michaelis-Menten kinetics, and Holling's Type Il
functions, with all parameters uniformly set to one. This
simplified configuration allowed for a consistent and
straightforward interpretation of the model's outcomes
while retaining the flexibility to model complex biological
phenomena. The Polynomial Library, configured to in-
clude terms up to the second degree, enables the model
to identify both linear and quadratic relationships. Mean-
while, the Fourier Library plays a key role in capturing re-
maining periodicity.

An ensemble method is utilized to enhance the mod-
el's robustness and accuracy [26]. This approach in-
volves fitting the model multiple times using subsets of
the training data, allowing for a comprehensive capture
of potential dynamics and mitigating the impact of outli-
ers or anomalous data points. The ensemble method
generates 1000 models, each trained on a random subset
comprising half of the training data.
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Model Performance

A SINDy model is trained for each of the 20 valida-
tion folds and the error metric scores for RMSE, MAPE,
and R*2 are tabulated in Table 2. Scores across the early
folds reflect completely unbounded and divergent be-
havior in the corrected model when integrated over time,
due to the limited training data up to that point. Scores
continue to improve (RMSE and MAPE decreasing and
R”2 increasing) until Fold 6, where a measurement fluke
in specific density temporarily biases the training data.
These high RMSE and MAPE and highly negative R*2 are
seen again in Folds 14 and 15, reflecting completely di-
vergent behavior likely the result of similar poor data
quality around that point in time.

Table 2: Error metric scores across full 20 validation
folds.

Fold Uncorrected Corrected

# RMSE RMSE
MAPE MAPE
R"2 R"2

1.15e+8, 2.31e+10%, -
7.52e+17
0.075, 5.353%, 0.585

1.055e+12, 1.50e+14%, -
6.29e+25
1.80e+10, 1.25e+12%,

2 2.38e+22

0.0925, inf%, 0.160 1.64e+11,inf%, -
3 2.64e+24
4 0.0300, 1.34%, 0.876 0.399, 18.7%, -20.9
5 0.117,4.62%, 0.328 0.867, 32.5%, -36.1
6 0.0969, 3.77%, 0.0973 3.92,125%, -1475
7 0.0884, 2.75%, 0.361 0.0817, 2.71%, 0.455
8 0.0364, 1.06%, 0.805 0.0909, 1.95%, -0.215
9 0.0827, 1.80%, -4.90 0.0479, 1.28%, -0.981
10 0.055, 1.40%, 0.639 0.0684, 1.47%, 0.443
11 0.0235, 0.541%, 0.913 0.0480, 1.16%, 0.635
12 0.0595, 1.35%, -1.17 0.0132,0.278%, 0.893
13 0.0138,0.242%, 0.948 0.0263, 0.549%, 0.811

0.120, 2.37%, -310 2.53e+5, 3.76e+6%, -
14 1.38e+15
15 0.0949, 1.90%, -29.2 12.1,177%, -492000
16 0.0720, 1.39%, -7.01 0.223,3.97%, -76.1
17 0.0844,1.65%,-10.8 0.216,4.14%, -76.5
18 0.0144,0.260%, 0.942 0.0642,1.19%, -0.144
19 0.0192,0.326%, 0.873 0.0484, 0.806%, 0.197
20 0.0586,0.964%, -2.34 0.109, 1.81%, -10.6

The fold models not exhibiting this fully divergent
behavior either outperform the original combined CTMI-
light model both visually quantitatively (for example mod-
els for Folds 9 and 12, see Table 2) or capture some pat-
tern or periodicity not found in the original mechanistic
models, while simultaneously slowly diverging from the
actual truth specific density (for example models for
Folds 8 and 18, see Table 2). In Fold 9, we see that the
corrected model outperforms the original mechanistic
model even with experimental error due to the drop in
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specific density.

Model Trends

The SINDy error-based models are provided as Sup-
plementary Material. The natural functions are given only
by name and variable they operate on (see Table 1). For
example, 13.512 gompertz(Temperature, Light) refers to
the Gomperz function applied to both temperature and
light variables (separately) but with a coefficient of
13.512 for each.

Early fold equation coefficients (Folds 1-7) show no-
ticeable fluctuation in the impact of temperature. Initially,
the effect is strongly negative (e.g., -104689.0 in Fold 1)
but shows variability in subsequent folds, indicating
changing sensitivity to temperature (see Supplementary
Material). Light maintains a predominantly negative coef-
ficient, with large magnitudes (e.g., -43231100.0 in Fold
1). pH coefficients show significant changes, starting
positive and large (8179580.0 in Fold 1) but becoming
negative by Fold 4, indicating a shifting role of pH in these
systems. Squared terms like Temperature®2 and Light"2
indicate evolving non-linear effects, with coefficients
varying and reflecting changing dynamics. Interaction
terms start to appear and vary in significance, suggesting
the evolving interplay between factors. Logistic and ex-
ponential growth models are applied with varying coeffi-
cients, indicating differing growth dynamics under
changing conditions.

Folds (Folds 8-14) see the coefficient of Tempera-
ture stabilizing somewhat but continuing to show varia-
tion, possibly reflecting a nonlinear role not captured by
the supplied function basis for SINDy. Light consistently
shows a negative impact but with varying magnitudes,
indicating a sustained but dynamically changing influ-
ence. The role of pH continues to evolve with coefficient
changes. Cyclical terms become more pronounced, with
sin and cos functions indicating more significant seasonal
or cyclic effects.

Late Folds (Folds 15-20) show temperature coeffi-
cients become more moderate, suggesting a refined un-
derstanding or a stabilizing effect. The influence of Light
remains significant with large negative coefficients, indi-
cating a consistently crucial role. pH effects continue to
show variability but within a narrower range, suggesting
a more consistent but still variable role. The complexity
in terms of diverse interactions and non-linear effects
shows signs of convergence, with key relationships and
factors becoming more defined. There is a tendency to-
wards more consistent use of growth models, indicating
a stabilization in how growth or change processes are
being represented.
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Figure 4: Updated growth rate model (integrated model
versus specific density) showing divergent behavior.

CONCLUSION

This study demonstrates the potential of sparse ma-
chine learning techniques like SINDy to enhance the ac-
curacy of mechanistic models while retaining interpreta-
bility. However, it also highlights the limitations and chal-
lenges that can arise in applying data-driven methods to
improve mechanistic insights, especially given con-
strained data availability.

By focusing solely on a single experimental dataset
for the microalga Chlorella vulgaris cultivated under
tightly controlled photobioreactor conditions, the model's
flexibility was restricted. While providing high temporal
resolution measurements, spanning just one batch lim-
ited the diversity of growth dynamics captured. Periodic
disturbances in the data, stemming from operational is-
sues, further hampered efforts to train robust models.

Across 20 validation folds, adding the data-driven
error dynamics equation resulted in improved error met-
rics. However, early folds suffered due to insufficient
training data leading to a diverging trajectory with ex-
ploding error. Later folds demonstrated closer alignment
with observed growth trajectory or responded to oscil-
lation over time neglected by the linear mechanistic
model. Inaccuracy in the phase of the oscillatory trajec-
tory predicted may be due to sensitivity to initial condi-
tions and warrants further exploration. The variation in
types of biological growth functions applied over folds
potentially indicated the model homing in on appropriate

Syst Control Trans 3:275-282 (2024) 280



representations for different mechanisms or growth
phases as training data and timespan was increased.
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