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ABSTRACT

Designing a digital twin will be crucial in developing automation-based future manufacturing sys-
tems. The design of digital twins involves data-driven modelling of individual manufacturing units
and interactions between the various entities. The goals of future manufacturing units such as
zero waste at the plant scale can be formulated as a model-based optimal control problem by
identifying the necessary state, control inputs, and manipulated variables. The fundamental as-
sumption of any model-based control scheme is the availability of a “reasonable model”, and
hence, assessing the goodness of the model in terms of stability and sensitivity around the optimal
parameter value becomes imperative. This work analyses the data-driven model of an acetamino-
phen production plant obtained from SINDy, a nonlinear system identification algorithm using
sparse identification techniques. Initially, we linearize the system around optimal parameter values
and use local stability analysis to assess the stability of the identified model. Further, we use what
is known as a conditional sloppiness analysis to identify the sensitivity of the parameters around
the optimal parameter values to non-infinitesimal perturbations. The conditional sloppiness anal-
ysis will reveal the geometry of the parameter space around the optimal parameter values. This
analysis eventually gives valuable information on the robustness of the predictions to the changes
in the parameter values. We also identify sensitive and insensitive parameter direction. Finally, we
show using numerical simulations that the linearized SINDy model is not good enough for control
system design. The pole-placement controller is not robust, and with high probability, the control
system becomes unstable to very minimum parameter uncertainty in the gain matrix.
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INTRODUCTION

Design of future manufacturing systems will benefit
from building digital twins that can inform the controller
design at plant scale. Several future manufacturing goals
such as planning and scheduling for zero waste at the
plant scale can be formulated as a control system design
problem, where an optimal control problem can be for-
mulated and solved.

The design of optimal control mandates a reasona-
ble model. Developing a mechanistic model at the plant
scale might involve hundreds of state variables and pa-
rameters; hence we adopt a data-driven nonlinear
https://doi.org/10.69997/sct.110967
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system identification approach known as SINDy to iden-
tify a reduced-order parsimonious model in this work.
SINDy uses the idea of sparse identification to discover
the underlying governing equations [2]. The SINDy algo-
rithm has already been used to design an entire algal bio-
diesel industrial network for sustainable design of carbon
capture and utilization technologies [3]. In addition to
this, SINDy has also been used to identify governing
equations of unit operations in a plant and natural sys-
tems [7]. In previous work, the authors have used the
SINDy algorithm to identify a reduced order dynamical
model for the distillation column [6].

The models developed in the above works were
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satisfactory in replicating the system dynamics; however,
the model has to satisfy additional requirements for de-
signing control systems. The critical factors that affect
the control system design are stability, model and param-
eter uncertainty. The seminal work of Bhattacharyya et al
[5] showed that while designing robust and optimal con-
trollers such as H, and H,,; a very small parameter un-
certainty in the controller parameters will result in an un-
stable control system. They argue that the fragility of the
controller is a result of the parameter sensitivity of the
plant that is transferred to the controller. Hence, it be-
comes imperative to assess the sensitivity of the plant
before the controller design; otherwise, uncertainty in the
controller output will impact the overall performance
metrics.

In this work, we propose a method to analyze the
control relevance of the SINDy model; even though this
method is applied to models developed from SINDy, in
general, this proposed method can be used for any sur-
rogate dynamical model. The novelty in the present work
is proposing a new method to assess the robustness of a
pole-placement control system design by assessing the
model's parameter space by introducing the concept of
conditional sloppiness. In general, it is a novel method to
assess whether the estimated model is control-relevant.
As a first step, we analyze the stability of the linearized
model around the operating point. We use sloppiness
analysis as a next step to characterize the model's be-
haviour around the nominal parameter set. Sloppiness is
a phenomenon where there are regions in the parameter
space over which model predictions are nearly identical.
The role of sloppiness in system identification has been
extensively studied in the past two decades [1,4]. Here,
we use what is known as conditional sloppiness to assess
the model sensitivity. Together with stability and sloppi-
ness analysis we provide directions to refine the esti-
mated model. When the model sensitivity index is very
high in the vicinity of the parameter space, the model is
unsuitable for controller design. This has been demon-
strated using a simple pole-placement controller design.

The rest of the paper is organized as follows: Sec-
tion 2 presents the preliminary concepts, Section 3 illus-
trates the detailed methodology for assessing the model
structure, we assess the goodness of the model of a
pharmaceutical node (single plant) in Section 4, and the

paper ends with some concluding remarks in Section 5.

PRILIMINARIES

Local Stability Analysis

Analysing the stability of the model plays a crucial
role in designing the controllers. The dynamics of indus-
trial systems are predominantly represented by a set of
first-order nonlinear differential equations, these are
known as state-space models. The set of solution to
Jagadeesan et al. / LAPSE:2024.1607

these nonlinear differential equations are known as state
trajectories. A system is completely characterized by the
values of the state variables at any given instance of
time. The generic nonlinear model representation is given
below

dt
y(©) = g(x(6), u(t),6)

where, x(t) is the state vector, u(t) is the input vector
and 6 is the parameter vector. Even though the dynam-
ics is nonlinear, in most cases it can be approximated to
a linear dynamics around the operating region. Hence, in
this work we use linear stability analysis on the linearized
state space model of Eqn 1. The linearized model is given
in Eqn 2.

. {"“‘“) = £G(©),u(®), 0)

~_{ x = Ax(t) + Bu(t)

y(©) = Cx(® + Du(®) P

where A, B, C and D are state-space matrices obtained by
evaluating Jacobin of Eqg (1) at the operating point
(x*,u*)The eigenvalues of the A matrix will indicate the
stability of the linear perturbation system (2).

Sloppiness

In models with nonlinear predictors, often there are
large regions in the parameter space over which the
model predictions are nearly identical, this is known as
sloppiness or model sloppiness. For infinitesimal pertur-
bations sloppiness is quantified by the inverse of the con-
dition number of the Hessian of the cost-function. The
Hessian of the cost function can be approximated as

_lyny _O0y Oy
Hy = NZn:lalogOialogBj (3)

where y denotes model output. More formally, for non-
infinitesimal perturbations, sloppiness can be condi-
tioned on the experiment space known as conditional
sloppiness. A model M is conditionally (g, 8) sloppy with
respect to an experiment space Z;, at 8" € J c Dy,if

16" —6l],>8voescyT (4)

2
|ly(6%,6) = y(81, O], <eVueZc2Zy  (5)

for every (8,,6*) satisfying (4) and (5). eis arbitrarily
small. § » e.

The role of sloppiness in the system identification
has been extensively studied in. Sloppiness often affects
the uncertainty in the parameter estimates. it is well
known the uncertainty in the model structure and
parameter estimates affects the robustness of the
controller and hence, assessing the parameter
uncertainty of the model becomes imperative to a
satisfactory control system design. In this work, we use
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conditional sloppiness analysis to assess the insensitivity
in the parameter directions in SINDy models.
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Figure 1: Algorithm for model assessment.
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This section illustrates the method proposed for
assessing the goodness of the model estimated using the
SINDy algorithm. However, the method proposed, in
general, can be used to evaluate any model. The
proposed method has two significant steps: Firstly,
assessing the stability of the local perturbation model
(Linearized) and model sloppiness. As a next step, we
construct what is known as a (& — y) plot as proposed in
[1] for conditional sloppiness analysis around the optimal
parameter estimated from the SINDy algorithm. The cen-
tral idea of this analysis is to characterize the model's be-
haviour around the point of interest in the parameter
space; this is done by constructing an n-ball and evalu-
ating the change in the model's output for all the param-
eters inside the n-ball with respect to the reference point.
The procedure for constructing the (8§ —y) plot is in Fig-
ure 2.

One of the main advantages of the proposed
method is its ability to identify the parameters that are
likely to be estimated with poor precision. When those
parameters belong to stiff region/sensitive region, then
with high probability, the controller system designed may
become fragile. In the next section, we demonstrate the
working of the proposed method in a dynamical model of
an industrial node developed from the SINDy algorithm.

Numerical Results

In this section, we demonstrate the working of the
proposed method in a model developed for acetamino-
phen production plant.

A linearized state-space model of
acetaminophen production network

METHODOLOGY To demonstrate the working of the proposed
method, we consider a process where Para-
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Figure 2: Algorithm to perform conditional sloppiness analysis
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Aminophenol(PAP) reacts with Acetic Anhydride to
produce Acetaminophen (A-PAP). Equation 7 is the
linearized model obtained from the non-linear SINDy
model. The detailed state variables and input variables
are given in Table 1. The nonlinear ODE model identified
using SINDy algorithm is linearized around the operating
point. The Operating point and the linearized model is
given in the Table 1 and equation 4

1634 —5.06 —15.83 9.04
o | 1222 —341 1072 343
MW=\ 007 78 —110 -s563/*®O7F
370  0.006 297 —3.90
1115 321 439 —7.56
284 —062 238 7.58
076 278 -191 —-352|%® ©)
—0.03 480 436 —096
y®=[1 0 0 0]x(®) 7

where xi(t) is APAP, xz(t), x3(t) and x4(t) are the waste
materials produced and wv;(t)is PAP.Fm, uz(t)is Acetic An-
hydride.Fm, us(t)is water and wa4(t)is water

The Eigen values of the system matrix A are given
below

AA) = [-19.27 —5.28 —0.1+3.43i -0.1-—3.43i]

The system has both real and complex poles with
negative real parts, which guarantees that the system is
capable of damped oscillations. It is also worth noting
that the complex poles have real parts that are close to
zero value, which says that the system is on the verge of
instability. However, the system is in the verge of insta-
bility. In the next section we perform conditional sloppi-
ness analysis to study the sensitivity of the system to the
parameter perturbations.

Conditional Sloppiness Analysis

In this section, we do the conditional sloppiness
analysis for the unforced system, i.e. the input is turned
off in the Eq (6) and the x(1) is measured as the output.
The model output is generated with the same initial con-
ditions for t=0 to t=10 seconds. In this work, we analyzed
the system for & = 1075, an infinitesimal distance from its
optimal parameter. The visual plots for the model assess-
ment are given below.

From Fig. 3 itis clear that the model is extremely sensitive
in the vicinity of the operating initial condition. The
system clearly becomes unstable. In addition to that, it is
observed that the system is sensitive is almost identical
in all the directions. The Model sensitivity index shows
that the model is locally unidentifiable, ie there exist
several parameter sets in the vicinity that results in an
unstable model. In summary, the model identified by
SINDy is extremely sensitive to parameter perturbations
and a very small perturbation leads to instability. In the
next section we demonstrate the role of this insensitivity
Jagadeesan et al. / LAPSE:2024.1607

in the controller design.
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Figure 3: Minimum and Maximum sensitivity plot
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Analysis of controller design

In the previous section, using conditional sloppiness
analysis, we showed that the model is very sensitive in
the vicinity of the operating region, and an infinitesimal
perturbation from the equilibrium position has
destabilized the system. In this section, we show that
designing the controller for such a system leads to a
fragile controller, in the sense a very small perturbation in
the controller parameters will destabilize the system. To
demonstrate this, we adopt a pole-placement controller
design. We place the poles on the following location to
stabilize the oscillations in the system p =[-0.5-1-1-0.5].

The gain matrix is obtained for the given A, B and p.
The gain matrix is given below. We add a Gaussian
random matrix with the controller gain matrix to analyse
the controller fragility. We generate a hundred such
matrices and compute eigenvalues of the closed-loop
system matrix. Ak=A-BK and plot the histogram of the
real part of the eigenvalues in Figure 5. It is evident that
the controller design is not robust with respect to very
small uncertainty in the controller parameters as the
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distributions shows that are positive real eigen values
with significantly hight probability. This analysis shows
that the presence of sloppy and stiff directions in the
parameter space of the plant affects controller
robustness.
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Figure 5: Histogram of real part of the closed loop
system matrix.

CONCLUSION

In this work, we proposed a novel method to assess
the goodness of data driven surrogate dynamical models
developed using the SINDy algorithm for control system
design. We analyzed the model generated from the
acetaminophen production plant. The original model is a
nonlinear ODE. The model is then linearized for the
stabilized operating conditions. The analysis revealed
that the linearized model is on the verge of instability, and
the sloppiness analysis revealed that a tiny perturbation
leads to instability. To assess the role of sensitivity in the
controller design, we designed a pole placement
controller to stabilize the oscillations. We added a small
amount of noise to the controller parameters. The Monte
Carlo simulations revealed that the closed-loop system
would become unstable with a significant probability of
minimal uncertainty in the controller parameters. This re-
emphasizes that the model identified using the SINDy
algorithm is not good enough for control system design.
As a logical extension to this work, we propose to
formulate and solve a multi-objective robust-optimal
control problem to ensure stability, achieve zero waste
and maximize the productivity of acetaminophen. This
study opens up new avenues in the controller design for
sloppy systems.
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