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ABSTRACT 
Designing a digital twin will be crucial in developing automation-based future manufacturing sys-
tems. The design of digital twins involves data-driven modelling of individual manufacturing units 
and interactions between the various entities. The goals of future manufacturing units such as 
zero waste at the plant scale can be formulated as a model-based optimal control problem by 
identifying the necessary state, control inputs, and manipulated variables. The fundamental as-
sumption of any model-based control scheme is the availability of a “reasonable model”, and 
hence, assessing the goodness of the model in terms of stability and sensitivity around the optimal 
parameter value becomes imperative. This work analyses the data-driven model of an acetamino-
phen production plant obtained from SINDy, a nonlinear system identification algorithm using 
sparse identification techniques. Initially, we linearize the system around optimal parameter values 
and use local stability analysis to assess the stability of the identified model. Further, we use what 
is known as a conditional sloppiness analysis to identify the sensitivity of the parameters around 
the optimal parameter values to non-infinitesimal perturbations. The conditional sloppiness anal-
ysis will reveal the geometry of the parameter space around the optimal parameter values. This 
analysis eventually gives valuable information on the robustness of the predictions to the changes 
in the parameter values.  We also identify sensitive and insensitive parameter direction. Finally, we 
show using numerical simulations that the linearized SINDy model is not good enough for control 
system design. The pole-placement controller is not robust, and with high probability, the control 
system becomes unstable to very minimum parameter uncertainty in the gain matrix.   
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INTRODUCTION 
Design of future manufacturing systems will benefit 

from building digital twins that can inform the controller 
design at plant scale. Several future manufacturing goals 
such as planning and scheduling for zero waste at the 
plant scale can be formulated as a control system design 
problem, where an optimal control problem can be for-
mulated and solved. 

The design of optimal control mandates a reasona-
ble model. Developing a mechanistic model at the plant 
scale might involve hundreds of state variables and pa-
rameters; hence we adopt a data-driven nonlinear 

system identification approach known as SINDy to iden-
tify a reduced-order parsimonious model in this work. 
SINDy uses the idea of sparse identification to discover 
the underlying governing equations [2]. The SINDy algo-
rithm has already been used to design an entire algal bio-
diesel industrial network for sustainable design of carbon 
capture and utilization technologies [3]. In addition to 
this, SINDy has also been used to identify governing 
equations of unit operations in a plant and natural sys-
tems [7]. In previous work, the authors have used the 
SINDy algorithm to identify a reduced order dynamical 
model for the distillation column [6].  

The models developed in the above works were 
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satisfactory in replicating the system dynamics; however, 
the model has to satisfy additional requirements for de-
signing control systems. The critical factors that affect 
the control system design are stability, model and param-
eter uncertainty. The seminal work of Bhattacharyya et al 
[5] showed that while designing robust and optimal con-
trollers such as  H2 and H∞;  a very small parameter un-
certainty in the controller parameters will result in an un-
stable control system. They argue that the fragility of the 
controller is a result of the parameter sensitivity of the 
plant that is transferred to the controller. Hence, it be-
comes imperative to assess the sensitivity of the plant 
before the controller design; otherwise, uncertainty in the 
controller output will impact the overall performance 
metrics.   

In this work, we propose a method to analyze the 
control relevance of the SINDy model; even though this 
method is applied to models developed from SINDy, in 
general, this proposed method can be used for any sur-
rogate dynamical model.  The novelty in the present work 
is proposing a new method to assess the robustness of a 
pole-placement control system design by assessing the 
model's parameter space by introducing the concept of 
conditional sloppiness. In general, it is a novel method to 
assess whether the estimated model is control-relevant. 
As a first step, we analyze the stability of the linearized 
model around the operating point. We use sloppiness 
analysis as a next step to characterize the model's be-
haviour around the nominal parameter set. Sloppiness is 
a phenomenon where there are regions in the parameter 
space over which model predictions are nearly identical. 
The role of sloppiness in system identification has been 
extensively studied in the past two decades [1,4]. Here, 
we use what is known as conditional sloppiness to assess 
the model sensitivity. Together with stability and sloppi-
ness analysis we provide directions to refine the esti-
mated model. When the model sensitivity index is very 
high in the vicinity of the parameter space, the model is 
unsuitable for controller design. This has been demon-
strated using a simple pole-placement controller design. 

The rest of the paper is organized as follows: Sec-
tion 2 presents the preliminary concepts, Section 3 illus-
trates the detailed methodology for assessing the model 
structure, we assess the goodness of the model of a 
pharmaceutical node (single plant) in Section 4, and the 
paper ends with some concluding remarks in Section 5. 

PRILIMINARIES  

Local Stability Analysis 
Analysing the stability of the model plays a crucial 

role in designing the controllers. The dynamics of indus-
trial systems are predominantly represented by a set of 
first-order nonlinear differential equations, these are 
known as state-space models. The set of solution to 

these nonlinear differential equations are known as state 
trajectories. A system is completely characterized by the 
values of the state variables at any given instance of 
time. The generic nonlinear model representation is given 
below 

        𝛭𝛭: �
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝜃𝜃)
𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝜃𝜃)

       (1) 

where, x(t) is the state vector, u(t) is the input vector 
and  θ is the parameter vector.  Even though the dynam-
ics is nonlinear, in most cases it can be approximated to 
a linear dynamics around the operating region. Hence, in 
this work we use linear stability analysis on the linearized 
state space model of Eqn 1. The linearized model is given 
in Eqn 2.  

                          𝛭𝛭� : � 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡)
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡)          (2)     

where A, B, C and D are state-space matrices obtained by 
evaluating Jacobin of Eq (1) at the operating point 
(x∗, u∗)The eigenvalues of the 𝐴𝐴 matrix will indicate the 
stability of the linear perturbation system (2). 

Sloppiness 
In models with nonlinear predictors, often there are 

large regions in the parameter space over which the 
model predictions are nearly identical, this is known as 
sloppiness or model sloppiness. For infinitesimal pertur-
bations sloppiness is quantified by the inverse of the con-
dition number of the Hessian of the cost-function.   The 
Hessian of the cost function can be approximated as  

 

                               𝐻𝐻𝑖𝑖𝑖𝑖 = 1
𝑁𝑁
∑ 𝜕𝜕𝜕𝜕

𝜕𝜕 log𝜃𝜃𝑖𝑖

𝜕𝜕𝜕𝜕
𝜕𝜕 log𝜃𝜃𝑗𝑗

𝑁𝑁
𝑛𝑛=1                (3) 

 
where y denotes model output. More formally, for non-
infinitesimal perturbations, sloppiness can be condi-
tioned on the experiment space known as conditional 
sloppiness.  A model ℳ is conditionally (ϵ, δ) sloppy with 
respect to an experiment space 𝒵𝒵ℳ  at θ∗ ∈ ℐ ⊂ 𝒟𝒟ℳ ,if 

                         �|θ∗ − θ1|�2 > δ  ∀ θ ∈ 𝒮𝒮 ⊂ ℐ                   (4) 

                 �|𝑦𝑦(θ∗, 𝑡𝑡) − 𝑦𝑦(θ1, 𝑡𝑡)|�2
2 < ϵ∀ 𝑢𝑢 ∈ 𝒵𝒵 ⊂ 𝒵𝒵ℳ         (5) 

for every (θ1, θ∗) satisfying (4) and (5). ϵ is arbitrarily 
small .  δ ≫ ϵ.          

 The role of sloppiness in the system identification 
has been extensively studied in. Sloppiness often affects 
the uncertainty in the parameter estimates. it is well 
known the uncertainty in the model structure and 
parameter estimates affects the robustness of the 
controller and hence, assessing the parameter 
uncertainty of the model becomes imperative to a 
satisfactory control system design. In this work, we use 
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conditional sloppiness analysis to assess the insensitivity 
in the parameter directions in SINDy models. 

 
Figure 1: Algorithm for model assessment. 

METHODOLOGY 

This section illustrates the method proposed for 
assessing the goodness of the model estimated using the 
SINDy algorithm. However, the method proposed, in 
general, can be used to evaluate any model. The 
proposed method has two significant steps: Firstly, 
assessing the stability of the local perturbation model 
(Linearized) and model sloppiness. As a next step,  we 
construct what is known as a (δ − γ) plot as proposed in 
[1] for conditional sloppiness analysis around the optimal 
parameter estimated from the SINDy algorithm. The cen-
tral idea of this analysis is to characterize the model's be-
haviour around the point of interest in the parameter 
space; this is done by constructing an n-ball and evalu-
ating the change in the model's output for all the param-
eters inside the n-ball with respect to the reference point. 
The procedure for constructing the (δ − γ) plot is in Fig-
ure 2.  

One of the main advantages of the proposed 
method is its ability to identify the parameters that are 
likely to be estimated with poor precision. When those 
parameters belong to stiff region/sensitive region, then 
with high probability, the controller system designed may 
become fragile. In the next section, we demonstrate the 
working of the proposed method in a dynamical model of 
an industrial node developed from the SINDy algorithm. 

Numerical Results 
In this section, we demonstrate the working of the 

proposed method in a model developed for acetamino-
phen production plant. 

A linearized state-space model of 
acetaminophen production network 

To demonstrate the working of the proposed 
method, we consider a process where Para-

 
 
 
 
                                           Figure 2: Algorithm to perform conditional sloppiness analysis 
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Aminophenol(PAP) reacts with Acetic Anhydride to 
produce Acetaminophen (A-PAP). Equation 7 is the 
linearized model obtained from the non-linear SINDy 
model. The detailed state variables and input variables 
are given in Table 1.   The nonlinear ODE model identified 
using SINDy algorithm is linearized around the operating 
point. The Operating point and the linearized model is 
given in the Table 1 and equation 4  

𝑥̇𝑥(𝑡𝑡) =  �

−16.34 −5.06 −15.83 9.04
12.22 −3.41 10.72 3.43
−0.07 7.85 −1.10 −5.63
3.70 0.006 2.97 −3.90

� 𝑥𝑥(𝑡𝑡) + 

�

11.15 3.21 4.39 −7.56
2.84 −0.62 2.38 7.58
0.76 2.78 −1.91 −3.52
−0.03 4.80 4.36 −0.96

� 𝑢𝑢(𝑡𝑡)  (6) 

              𝑦𝑦(𝑡𝑡) = [1 0 0 0]𝑥𝑥(𝑡𝑡)                                (7)      

where x1(t) is APAP, x2(t), x3(t) and x4(t) are the waste 
materials produced and u1(t) is PAP.Fm, u2(t) is Acetic An-
hydride.Fm, u3(t) is water and u4(t) is water 

The Eigen values of the system matrix A are given 
below 

𝜆𝜆(𝐴𝐴) =  [−19.27 −5.28 −0.1 + 3.43𝑖𝑖 −0.1 − 3.43𝑖𝑖]  

The system has both real and complex poles with 
negative real parts, which guarantees that the system is 
capable of damped oscillations. It is also worth noting 
that the complex poles have real parts that are close to 
zero value, which says that the system is on the verge of 
instability. However, the system is in the verge of insta-
bility. In the next section we perform conditional sloppi-
ness analysis to study the sensitivity of the system to the 
parameter perturbations. 

Conditional Sloppiness Analysis 
In this section, we do the conditional sloppiness 

analysis for the unforced system, i.e. the input is turned 
off in the Eq (6) and the x(1) is measured as the output. 
The model output is generated with the same initial con-
ditions for t=0 to t=10 seconds. In this work, we analyzed 
the system for δ = 10-5, an infinitesimal distance from its 
optimal parameter. The visual plots for the model assess-
ment are given below.  

From Fig. 3 it is clear that the model is extremely sensitive 
in the vicinity of the operating initial condition. The 
system clearly becomes unstable. In addition to that, it is 
observed that the system is sensitive is almost identical 
in all the directions. The Model sensitivity index shows 
that the model is locally unidentifiable, ie there exist 
several parameter sets in the vicinity that results in an 
unstable model. In summary, the model identified by 
SINDy is extremely sensitive to parameter perturbations 
and a very small perturbation leads to instability. In the 
next section we demonstrate the role of this insensitivity 

in the controller design.  

 
          Figure 3: Minimum and Maximum sensitivity plot 
 

 
                             Figure 4: Model sensitivy index  

Analysis of controller design 
In the previous section, using conditional sloppiness 

analysis, we showed that the model is very sensitive in 
the vicinity of the operating region, and an infinitesimal 
perturbation from the equilibrium position has 
destabilized the system. In this section, we show that 
designing the controller for such a system leads to a 
fragile controller, in the sense a very small perturbation in 
the controller parameters will destabilize the system. To 
demonstrate this, we adopt a pole-placement controller 
design. We place the poles on the following location to 
stabilize the oscillations in the system p =[-0.5 -1 -1 -0.5].  

The gain matrix is obtained for the given A, B and p. 
The gain matrix is given below. We add a Gaussian 
random matrix with the controller gain matrix to analyse 
the controller fragility. We generate a hundred such 
matrices and compute eigenvalues of the closed-loop 
system matrix. Ak=A-BK and plot the histogram of the 
real part of the eigenvalues in Figure 5. It is evident that 
the controller design is not robust with respect to very 
small uncertainty in the controller parameters as the 
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distributions shows that are positive real eigen values 
with significantly hight probability. This analysis shows 
that the presence of sloppy and stiff directions in the 
parameter space of the plant affects controller 
robustness.                  

 

 Figure 5: Histogram of real part of the closed loop 
system matrix. 

CONCLUSION 
In this work, we proposed a novel method to assess 

the goodness of data driven surrogate dynamical models 
developed using the SINDy algorithm for control system 
design. We analyzed the model generated from the 
acetaminophen production plant. The original model is a 
nonlinear ODE. The model is then linearized for the 
stabilized operating conditions. The analysis revealed 
that the linearized model is on the verge of instability, and 
the sloppiness analysis revealed that a tiny perturbation 
leads to instability. To assess the role of sensitivity in the 
controller design, we designed a pole placement 
controller to stabilize the oscillations. We added a small 
amount of noise to the controller parameters. The Monte 
Carlo simulations revealed that the closed-loop system 
would become unstable with a significant probability of 
minimal uncertainty in the controller parameters. This re-
emphasizes that the model identified using the SINDy 
algorithm is not good enough for control system design. 
As a logical extension to this work, we propose to 
formulate and solve a multi-objective robust-optimal 
control problem to ensure stability, achieve zero waste 
and maximize the productivity of acetaminophen. This 
study opens up new avenues in the controller design for 
sloppy systems. 
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