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tial use cases.

II. MOTIVATION

Property inference attacks are performed to infer a property
of the input dataset that does not necessarily related to the tar-
get task. The core principle behind these attacks lies in exploit-
ing the vast function approximation capacity of deep models
where model captures unintended patterns as well as intended
ones. The literature includes various works demonstrating
the potency of such attacks. Examples include estimating
whether a person is wearing glasses from a gender classifier,
determining a doctor’s specialty and identity from healthcare
review sentiment analysis, and inferring the authorship of
comments from healthcare review sentiment analysis [4]. It is
worth noting that simply discarding ’sensitive’ input features
may not suffice, as correlations between sensitive features
and others can still lead to information leakage. This issue
could pose problems for legal documents that are redacted
before release or for facial recognition-based payment systems,
as they may unintentionally disclose sentiment/demographic
information related to shopping preferences. Furthermore, in
image-based applications, private features are often entangled
with non-private ones, making it impossible to discard the pri-
vate features. In such scenarios, differential privacy becomes
an option. However, because DP does not differentiate between
features, it can disproportionately impair utility. Consequently,
in such cases, we believe that our system can serve as
a lightweight alternative to differential privacy. In the next
section, we compare our work with existing studies.

III. RELATED WORKS

[5] and [6] use adversarial training for information obfusca-
tion, but only within a centralized setting. Conversely, [7] and
[8] consider distributed setups, with [8] focusing specifically
on the context of fairness. Notably, none of these prior studies
consider the possibility of data scarcity or provide comparisons
to the de-facto privacy standard, Differential Privacy (DP).
This limits their practical applications.

IV. DIFFERENTIAL PRIVACY

Due to space constraints, we include a very brief treatment
of regular notion of DP in this manuscript. Interested reader
can refer to [3]. Differential privacy is defined as:

Definition 1 ((ϵ, δ)-DP): A randomized mechanism K with
domain Z and A ⊆ Range(K) is (ϵ, δ) differentially private
if for any two neighboring datasets z, z′ ∈ Z:

P (K(z) ∈ A)

P (K(z′) ∈ A)
≤ eϵ + δ (1)

Definition 1 implies that outcomes of the randomized
mechanism K have bounded dissimilarity across neighboring
datasets. When δ = 0, the randomized mechanism is said to be
ϵ-DP, which, obviously, provides stricter privacy guarantees.
It is straightforward to extend this definition of differential

privacy to attribute-based differential privacy (ADP).

Definition 2 ((ϵ, δ)-ADP): Given input dataset x =
{x1, x2, ..., xM} where xi ∈ X p for ∀i ∈ {1, ...,M}, define a
new dataset u = {u1, u2, ..., uM} where each ui is the vector
set of sensitive attributes corresponding to dataset entry xi,
i.e., ui ∈ U t for ∀i ∈ {1, ...,M}. Then, given two neighboring
datasets u and u’, (ϵ, δ)-Attribute-based DP is defined as:

P (K(x|u) ∈ A)

P (K(x’|u’) ∈ A)
≤ eϵ + δ (2)

Intuitively, an (ϵ, δ)-ADP mechanism K assures that the gen-
erated outputs will not permit differentiation between different
sets of sensitive attributes, thereby effectively obscuring them.

V. THEORY

In this section, theoretical backbone of the proposed priva-
tization system is introduced.

A. GIB Principle

The Generalized Information Bottleneck (GIB) principle is
the fusion of two existing frameworks in the literature [9],
[10], namely Information Bottleneck and Privacy Funnel. GIB
framework provides a disciplined way of finding a compressed
representation Ŷ of an input observation X that is maximally
informative about a target attribute V -subject to a rate
constraint- and minimally informative about private attributes
U . Graphical representation of the GIB-based data generation
process is given in Fig. 1.

Fig. 1: Graphical model representing the dependencies among
variables.

B. Optimization Objective

Moving from the GIB framework, let’s first consider the
problem of finding ‘privatized’ representations. Using Fig. 1,
the optimization objective can be formulated as:

min− I(V ; Ŷ) + βI(U; Ŷ) (3)

where Ŷ ∈ Yd, U ∈ U t, and β determines the trade-off
between privacy and utility. Intuitively, the first term encour-
ages Ŷ to preserve information about V while the second
term supports the removal of information about U. Given that
mutual information is hard to compute and minimize for high
dimensional variables, we employ variational approximations
to transform the objective in eqn. (3) into a form that can be
optimized in practice.
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C. Variational Bounds on Optimization Objective

1) Utility Upper Bound on 1st Term of Eqn. (3):

T1 = −I(V ; Ŷ) (4)

= −H(V ) +H(V |Ŷ) (5)
= −H(V )− EŶ[KL(pV |Ŷ(v|ŷ)||qV |Ŷ(v|ŷ))]

− EV,Ŷ[log(qV |Ŷ(v|ŷ))] (6)

≤ −H(V )− EV,Ŷ[log(qV |Ŷ(v|ŷ))] (7)

where q(v|ŷ) is the variational approximation to p(v|ŷ).
The upper bound in eqn. (7) follows from the non-negativity
of KL Divergence and its minimization serves to maximize
the utility. This upper bound is realized via a local encoder
neural network (NN) (with params. θϵ) that generates
privatized representations Ŷ from input and a FL model NN
(with params. θζ) that is responsible for prediction of digit
class (V̂ ) from Ŷ .

2) Encouragement Upper Bound on 2nd Term of Eqn. (3):

T2 = I(U; Ŷ) (8)

= I(Ŷ;X)− I(Ŷ;X|U) + I(Ŷ;U|X) (9)

= I(Ŷ;X)− I(Ŷ;X|U) (10)

= I(Ŷ;X)− EU,Ŷ[KL(pX|U,Ŷ(x|u, ŷ)||qX|U,Ŷ(x|u, ŷ))]
− EX,U,Ŷ[log(qX|U,Ŷ(x|u, ŷ))] +H(Ŷ|X) (11)

≤ I(Ŷ;X)− EX,U,Ŷ[log(qX|U,Ŷ(x|u, ŷ))] + CŶ|X (12)

= H(Ŷ|X)−KL(pŷ(ŷ))||qŷ(ŷ)))− EŶ[log(qŷ(ŷ))]
− EX,U,Ŷ[log(qX|U,Ŷ (x|u, ŷ))] + CŶ|X (13)

≤ EŶ[log(qŷ(ŷ))]− EX,U,Ŷ[log(qX|U,Ŷ (x|u, ŷ))] + 2CŶ|X
(14)

≤ EŶ[log(qŷ(ŷ))]− EX,U,Ŷ[log(qX|U,Ŷ (x|u, ŷ))] (15)

where transition from equation (10) to (11) follows from
the chain rule of mutual information and independence of
Ŷ and U conditioned on X. Upper bounds on eqn. (12)
and (14) follow from non-negativity of KL Divergence.
CŶ|X = H(Ŷ|X) is constant since Ŷ is a deterministic
function of X. qX|U,Ŷ(x|u, ŷ) is the variational approximation
to pŶ;X|U(ŷ; x|u) = pŶ;V |U(Ŷ; f(X) = V |U) and qŷ(ŷ) is
the variational approximation to pŶ;X(ŷ; x). The first term in
equation (13) can be interpreted as a rate constraint and hence
is upper bounded with a non-parametric rate estimator. This
estimator is realized with a encouragement helper NN (with
params. θη) that takes Ŷ as input and outputs an estimate
of rate EŶ[log(qŷ)]. Intuitively, the second term encourages
the system encouraged to contain information about target
attribute V orthogonal to private attribute U. This bound is
implemented with a encouragement helper NN (with params.
θη) that takes Ŷ and U as its input and outputs V̂ . However,
as experimentally demonstrated, when the dimension of Ŷ
is large, this bound may not by itself suffice and Ŷ can still
leak information about private attribute. Henceforth, we need
a term that explicitly enforces the removal of information,

bringing us to the lower bound presented in the next section.

3) Enforcement Lower Bound on 2nd Term:

T2 = I(U; Ŷ) (16)

= H(U)−H(U|Ŷ) (17)
= H(U) + EŶ[KL(pU|Ŷ(u|ŷ)||qU|Ŷ(u|ŷ))]

+ EU,Ŷ [log(qU|Ŷ (u|ŷ))] (18)

≥ H(U) + EU,Ŷ [log(qU|Ŷ (u|ŷ))] (19)

where q(u|ŷ) is the variational approximation to pU|Ŷ(u|ŷ)
and inequality follows from non-negativity of KL Divergence.
This bound explicitly enforces removal of private information
from Ŷ . One concern is that, however, minimizing lower
bounds may not be as effective as upper bounds if they are
loose. To address the issue, we make use of an adversarial
training framework to first tighten the lower bound, and
then perform minimization. The minimax training can be
accomplished with the help of a local privatizer NN (θψ) that
takes Ŷ as its input and outputs U . Putting all the bounds
together, the optimization problem reduces to:

min
θϵ,θζ ,θη,θϕ

max
θψ

EV,Ŷ[Dv(v; gd(ŷ; θζ))] + (λ+ β)EŶ[log(qŷ(ŷ; θϕ))]

+ βEV,U,Ŷ[Dv(v; (gd(ŷ; θζ), u))]− γEU,Ŷ[Du(u; gu(ŷ; θψ))]
(20)

where Dv is a distortion metric for V , and Du is a distortion
metric for U . The minimax objective in eqn. (20) can be
optimized via neural networks as presented in the next section.

D. System Architecture and Implementation

In the following subsections, we elaborate on the
implementation details of the proposed 3-stage training
process.

1) Stage 1: Initialization: This pre-training phase begins
with the joint training of the encoder and the local Federated
Learning (FL) model for the target task, while the local
privatizer remains frozen. Then, local privatizer is trained
for private attribute prediction while local encoder and the
FL model are frozen. This stage, in turn, allows local nodes
to have networks that are capable of predicting meaningful
results such that they can better optimize minimax objective.
Algorithm 1 details the process.

2) Stage 2: Privatization: After pretraining, block gradient
descent-based adversarial minimax optimization starts.
Maximization phase trains local privatizer for private attribute
prediction whereas competing minimization phase trains local
encoder, with the help of encouragement helper, rate estimator
and adversary, to generate representations that confuse the
adversary but still (along with FL model) useful for target
task. Steps of this stage is provided in Algorithm 2.
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3) Stage 3: Federated Learning: In this final stage,
local nodes possess privatized compressed inputs, which
are utilized for Federated Learning. According to the data
processing inequality, private representations retain their
privacy guarantees, irrespective of the FL model architecture.

Algorithm 1 Initialization. The set of clients is denoted
by C; Ej are respective number of training epochs; Dj are
appropriate distortion metrics.

Input:
⋃
i∈C

Dprivate,i
Initialize: ge(x; θϵ0)), gd(ŷ; θζ0)), gh((u, ŷ), gu(ŷ; θψ0

))
for i ∈ C do

repeat
Lge,d(t) = Dv(v; gd(ge(x; θϵi(t)); θζi(t)))
Lgu(t) = Du(u;Du((u, gu(ge(x; θϵi)); θψi(t))))
Lgh(t) = Dv((v; gh((u, ge(x; θϵi(t)); θηi(t)))), θηi(t)))
θϵi(t+ 1) = θϵi(t)−∇Lge,d(t)
θζi(t+ 1) = θζi(t)−∇Lge,d(t)
θψi(t+ 1) = θψii(t)−∇Lgu(t)
θψi(t+ 1) = θψii(t)−∇Lgh(t)

until convergence
end for

Algorithm 2 Local Privatization. The set of clients is denoted
by C; Ej are respective number of training epochs; Dj are
appropriate distortion metrics; λ, β and γ are hyperparameters.

Input:
⋃
i∈C

Dprivate,i
repeat

for i ∈ C do
while t ∈ 0, ..., Eminimization do

Lge,d,h,u(t) = Dv(v; gd(ŷ; θζi(t))) + (λ + β)

log(qŷ(ŷ; θϕi(t))) + βDv(v; (gd(ŷ; θζi(t)), u)) −
γDu(u; gu(ŷ; θψi(t)))
θϵi(t + 1) = θϵi(t) − ∇Lge,d,h,u(t) for ∆ =
ϵi, ζi, ϕi, ψi
while t ∈ 0, ..., Emaximization do
Lgu(t) Du((u, gu(ŷ; θψi(t))))
θψi(t+ 1) = θψi(t) +∇Lge,d,h,u(t)

end while
end while

end for
until convergence

E. Connection to Differential Privacy

Differential privacy provides its privacy guarantee through
a randomization mechanism such as the addition of Gaussian
or Laplacian noise. In situations where data is distributed
and a trusted aggregator does not exist, local differential
privacy becomes a viable option. However, it can severely

compromise utility [11]. In light of this, we propose a privacy
measure that doesn’t overly sacrifice utility, unlike differential
privacy. It is important to note that our work doesn’t intend
to replace differential privacy; rather, our goal is to provide
a lightweight alternative for use cases where the privacy
guarantees of differential privacy may be overly stringent.
We can establish the theoretical relationship between our
mechanism and differential privacy through statistical privacy
schema presented in [12]. For that matter, let’s first define
another privacy metric, namely information privacy:

Definition 3 [12]: (ϵ-Information Privacy): A privacy pre-
serving mapping pŶ|U(.|.) provides ϵ-information privacy if,
for all sensitive attributes u ⊆ U :

exp(−ϵ) ≤
pU|Ŷ(u|ŷ)
pU(u)

≤ exp(ϵ) (21)

Then, connection between information privacy and
differential privacy is given by a straightforward extension of
Theorem 3 in [12] such that ϵ-information privacy implies
(2ϵ, 0)-differential privacy. In its attack, the adversary tries
to determine a revised distribution q ∈ PU where PU
is the all possible probability distributions over U such
that a cost function, i.e. C(U, q) = −loq(q(U)) (self-
information loss) is minimized. Then, the maximum gain
an adversary can achieve is ∆C∗ = c∗0 − minŷ∈Ŷ[c

∗
ŷ ] where

c∗0 = minq∈PU EU[−loq(q(U))] is the initial guess of the
adversary, i.e. prior distribution p(u), and c∗ŷ = H(U|Ŷ = ŷ)
is what adversary can infer after observing a particular sample
ŷ during the training process. It is possible to determine
an upper bound on this maximum information leakage per
any sample with the help of the following theorem and lemma:

Theorem 2: Given a randomization mechanism κ with ϵ-IP
guarantee over the distribution of private attributes PU , the
upper bound on the maximum information leakage of any
sample is given as (proof of which is an extension of Corollary
2 in [12]):

∆C∗ ≤ (1− eϵ)H(U) +
eϵϵ

ln2
(22)

Lemma 1: Assume that ∀ui ∈ U t, T ≤ p(ui), where
T ∈ (0, 1] is a positively lower bounded distribution and U

is a discrete random variable. Then, p(u|y’)
p(u) ≤ p(u|y’)

T ≤ 1
T .

The importance of Lemma 1 lies in the observation that it
offers a practical way of computing the ϵ term in information
privacy, as the prior p(u) is already assumed to be available
to adversary. Hence:

Corollary 1: Given the positively lower bounded prior
distribution p(U) of discrete random variable U, a privatization
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Fig. 2: Global Adv. Acc. (Left), FL Performance (Right)

scheme pU,Ŷ(u|ŷ) is ϵ-IP for ϵ = ln
(
1
T

)
.

Then, one can use Corollary 1 to determine an attribute-
based DP guarantee. In the next section, we validate our
theoretical findings through experimental results.

VI. SIMULATION RESULTS AND CONCLUSION

In our experiments, we adopted the procedure outlined
in [13] to create a colored MNIST dataset (with 10 colors
non-uniformly and randomly distributed among different digit
classes) where digit color is treated as private attribute and
prediction of the digit is target task. The training and test sets
are evenly split into 100 shards, which was done deliberately
to restrict the number of samples available to each participant.
Experiments are run for N = 2, 4, 6, 8, 10, 12 participants.
Local encoder, FL model, local privatizer, encouragement
helper, and rate estimator are all selected to be feedforward
neural networks. Specifically, the local encoder comprises two
hidden layers of 1024 neurons each with ReLU activation,
while the FL model features a single hidden layer of 32
neurons with ReLU activation and an intermediate 50-neuron
bottleneck layer. Moreover, two separate feedforward neural
networks with 1024 and 32 neurons in the hidden layers
with ReLU activation were employed as the encouragement
helper and local privatizer. As for the rate estimator, we used
the tensorflow-compression toolbox. We then subjected our
system to testing against a category of non-linear curious
inferential adversaries situated at the server. To ensure be able
to compare our notion of (ϵ, 0)-ADP to regular (ϵ, δ)-DP, we
use the Proposition 3 of [14] with a large α=100 value and
implement (ϵ, δ)-DP via Opacus AI toolbox.

We simulate three setups where in the baseline, only employ
local encoder and FL model are employed for digit classifi-
cation. Then, privacy protecting systems, where one of them
using only encouragement helper and other one using both
encouragement helper and local privatizer are simulated where
the former only uses encouragement bound (ECO) whereas
the latter uses both enforcement and encouragement bounds
(EEO). Finally, (ϵ, δ)-DP is simulated and results are presented
in fig. (2). The tests aimed to assess the performance of curious
adversaries’ predictions as well as the performance of FL.

As demonstrated in Table 1, the global adversary achieved
the highest success rate in the absence of privacy protection.
Interestingly, (ϵ, δ)-DP is not very effective in preventing
private attribute leak as it attempts to protect entire input
rather than a particular property. EO protection managed to
eliminate information to a certain extent, while EEO delivered
the most robust protection. Furthermore, both EO and EEO
privacy mechanisms successfully remove private information
even under limited data availability with relatively low effect
on FL performance. The effect of (ϵ, δ) local DP becomes
detrimental to FL performance with increasing number of
participants. Hence, we have shown that our proposed 3-
stage privacy protection system based on GIB principle is
successful at locally removing private attribute information in
FL setting with limited number of data points and relatively
low degredation to utility compared to DP.
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