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Attribute-Aware RBFs: Interactive Visualization of Time Series
Particle Volumes Using RT Core Range Queries

Nate Morrical* Stefan Zellmann† Alper Sahistan* Patrick Shriwise‡ Valerio Pascucci*

Fig. 1: The “Cabana Dam Break” data set, rendered interactively with our method at 46 FPS, 4 samples-per-pixel per-frame with
volumetric shadows (left is 1 frame, right is 1024 averaged frames, bottom row are progressing time steps). GPU-accelerated tree
construction and blue noise approach enable interactive animation and improved perception over time. (See supplemental for a video)

Abstract—Smoothed-particle hydrodynamics (SPH) is a mesh-free method used to simulate volumetric media in fluids, astrophysics,
and solid mechanics. Visualizing these simulations is problematic because these datasets often contain millions, if not billions of
particles carrying physical attributes and moving over time. Radial basis functions (RBFs) are used to model particles, and overlapping
particles are interpolated to reconstruct a high-quality volumetric field; however, this interpolation process is expensive and makes
interactive visualization difficult. Existing RBF interpolation schemes do not account for color-mapped attributes and are instead
constrained to visualizing just the density field. To address these challenges, we exploit ray tracing cores in modern GPU architectures
to accelerate scalar field reconstruction. We use a novel RBF interpolation scheme to integrate per-particle colors and densities, and
leverage GPU-parallel tree construction and refitting to quickly update the tree as the simulation animates over time or when the user
manipulates particle radii. We also propose a Hilbert reordering scheme to cluster particles together at the leaves of the tree to reduce
tree memory consumption. Finally, we reduce the noise of volumetric shadows by adopting a spatially temporal blue noise sampling
scheme. Our method can provide a more detailed and interactive view of these large, volumetric, time-series particle datasets than
traditional methods, leading to new insights into these physics simulations.

Index Terms—Ray Tracing, Volume Rendering, Particle Volumes, Radial Basis Functions, Scientific Visualization

1 INTRODUCTION

In high-performance simulation, the use of volumetric particle repre-
sentations is widespread. Their memory representation is relatively
compact, as a particle requires only a position and a radius. Particles
can also carry corresponding scalar attributes, like velocity or temper-
ature. Similar to finite element meshes, particles have the advantage
that they can be placed anywhere in the computational domain and
adapt to the underlying frequency of the data. However, unlike finite
elements, these particles do not require memory-intensive connectivity
information. Instead, they can be modeled using radial basis functions
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that naturally combine and blend together. This has the additional
benefit of allowing particles to move freely in space without concern
over re-meshing. Because of this ease of expression, particle repre-
sentations often lend themselves to mesh-free simulation methods like
Smoothed Particle Hydrodynamics (SPH) [6, 21].

However, this flexibility poses challenges to interactive visualiza-
tion tools, as these often need to structure the data a priori or on the
fly. Approximate methods splat particles onto the screen or into struc-
tured grids, causing overdraw issues or atomic contention. When parti-
cles have color attributes, post-interpolated grids (where cells average
particle attributes before colormapping) produce incorrect results for
categorical data, while pre-interpolated grids (where cells average pre-
colormapped attributes) consume a lot of memory, and both fail to
capture fine details; while splats require sorting particles from front to
back to composite, which fails when particles overlap.

As various methods have been proposed to visualize these particle
volumes, GPU architectures themselves have greatly evolved. Today,
many GPU vendors include ray tracing cores, otherwise known as “RT
cores”, where ray traversal through an acceleration structure is imple-
mented in the silicon of the GPU itself. GPU ray tracing frameworks
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also include high performance tree construction routines, reducing pre-
processing times and implementation complexity.

Leveraging these RT cores, recent work by Knoll et al. [15] visual-
ize volumetric particles in a very different manner from prior methods.
Their approach marches rays through the volume from front to back,
and as rays intersect particles out-of-order, these particles are stored
in a ray payload stack. Then, each ray segment sorts this stack of
particles front to back before compositing these particles together.

This method is very enticing, as it does not require particles be
sorted on the CPU during camera manipulation. Instead, only a small
intersected subset of particles need to be sorted. Then, when pixels
reach a saturation in opacity, the marching process can return without
needing to process occluded particles further back. Regarding visual-
ization quality, this approach can composite particles directly without
the need for voxelization. And because this method is compatible with
RT core frameworks, visualization tools can offload the technical com-
plexity of GPU ray tracing to the driver and leverage the included, fast
tree construction routines to avoid long preprocessing times.

Unfortunately, this approach also comes with several compromises.
One issue is that particles are interpreted as view-aligned disks, which
prevents them from overlapping and blending volumetrically. Instead,
the disks discretely pop over or under each other as the camera moves.
Another challenge is that the size of the ray payload stack is fixed, as
per current GPU architectures. If the stack is too small, it will over-
flow when many particles overlap a ray segment, resulting in missing
or dropped particles. If it is too large, registers spill to global mem-
ory, impeding interactivity. This problem are particularly apparent
with large radii for smoother blending, as the particles become more
likely to intersect rays. Then, despite ray intersection being hardware-
accelerated, intersecting many particles can still cause overdraw-like
issues where compositing becomes the bottleneck. Still, if these issues
could be addressed, it might very well be possible to use RT cores to
achieve truly interactive particle volume visualization with little to no
preprocessing times or visual compromises.

Therefore, we explore a more robust solution to RT core acceler-
ated particle volume rendering, taking inspiration from recent works
on SPH particle rendering [14,25,40] that focus on visualization qual-
ity. We substitute stack-based particle intersection with a stackless ra-
dius range query, collecting and interpolating particles surrounding the
query point to reconstruct the underlying scalar field. Then, to support
per-particle attributes, we describe a novel radial basis function (RBF)
integration scheme that computes a weighted color average in addition
to local particle density. These blended colors can be combined with
an RBF density map to gain insights into where particles overlap, what
they represent, and how they contribute to the final result.

From there, we explore another key advantage of RT core
frameworks—namely GPU-parallel tree construction—to enable inter-
active time series rendering. We leverage acceleration structure refit-
ting to allow for interactive control over the degree of overlap of the
particles. Then, to reduce memory consumption, we take inspiration
from recent methods [7, 25] and cluster particles at the leaves.

Finally, we explore stochastic volumetric shadows to achieve higher
fidelity visualizations with improved depth perception. Noise from
volumetric path tracing can make it difficult to track particle move-
ment over time. To address this, we implement a single-scattering
model using a blue noise stochastic ray marching approach [41]. This
improves the structure of the resulting noise in single-sample-per-pixel
images, making it easier to track particle movement.

More specifically, we present the following contributions:

• an "Attribute-Aware RBF" interpolation scheme,
• an application of RT core range queries to accelerate particle

field reconstruction,
• an exploration of GPU-parallel tree construction and refitting to

enable user-driven per-particle radii and time series data,
• an application of Hilbert clusters to reduce the size of these trees

to enable visualization of larger particle volumes,
• and lastly, a strategy to utilize blue noise for stochastic volumet-

ric shadows for improved time series visualization analysis.

2 RELATED WORKS

2.1 Particle Volume Rendering

One class of methods to visualize particles is to rasterize them as el-
liptical Gaussian “splats” onto the screen [9], using additive composit-
ing to determine a density of particles through a pixel [5, 34]. But
when particles have color-mapped attributes associated with them—
attributes like temperature or velocity—they must be sorted from front
to back, then composited one by one [8]. This compositing is an ap-
proximate solution, as it cannot handle when colored particles overlap
and mix together volumetrically. And as these volumes grow, this sort
slows down the visualization to non-interactive framerates.

Another common strategy is to rasterize particles into structured
grids [2,4,29], then visualize those grids using methods like ray march-
ing [22] or null collision methods [18,42], whose algorithmic complex-
ities are independent of data size. However, this particle-to-grid raster-
ization preprocess is costly, especially when many particles influence
a common voxel and atomic contention serializes execution. In some
methods, this grid splatting process must occur every frame [4]. Low-
resolution grids can undersample data, making it impossible to dif-
ferentiate particles during visualization, particularly when they have
categorical attributes (e.g., electrons, protons, neutrons). Too high a
resolution can lead to excessive memory usage due to empty voxels;
and both problems often occur together as different parts of the simu-
lation have different particle densities.

Other works visualize volumetric particles directly through ra-
dial basis function (RBF) field reconstruction, reducing algorithmic
complexity using linearly indexed particles into BSP trees [12], oc-
trees [32], bounding volume hierarchies [16], and structured grids [33,
35,40]. These methods traverse those data structures during ray march-
ing or tracking to achieve a high quality image. However, building
these data structures is an arduous task, and often prevents user in-
teraction with particle radii or the time dimension of the simulation.
These data structures can consume a significant amount of memory,
and traversing these data structures on GPU architectures introduces
load balancing issues or thread divergence that serializes execution,
lowering GPU utilization and degrading visualization interactivity.

2.2 RT Core Methods

In scientific visualization, ray tracing cores have been used with great
success to visualize otherwise challenging data modalities on GPU ar-
chitectures. Early works by Wald et al. [28, 37, 38] and Morrical et
al. [27, 28] use ray tracing cores to accelerate point location of finite
element meshes, by substituting a point-based traversal for a ray traver-
sal. Later work by Wald et al. [39] and Zellmann et al. [47] explored
data transformations enabling these ray tracing cores to interpolate
neighboring same-level-cell regions in the context of adaptive mesh
refinement (AMR) visualization. Zellmann et al. build off this latter
work and describe the system using ray tracing cores for rendering
time series AMR data [45] and AMR flow visualization [44].

Closely related to our work, Zellmann et al. [46] demonstrate a
connection between point location queries and range queries, and
use this connection to implement a fast physics-driven graph layouter.
Their work demonstrates significant performance improvements over
software-based traversal strategies, and leverages GPU-parallel tree
construction to allow the graph to change from step to step. Later
work by Evangelou et al. [3] extend this idea to implement a trun-
cated K-nearest-neighbors query. These concepts have successfully
been used by Zhao et al. [48] to accelerate particle-based simulations.

Also closely related to our work is the method by Knoll et al. [15],
which as described before uses RT cores to accelerate a particle vol-
ume splatter. Gralka et al. [7] observe that constructing hardware ac-
celerated trees over particles consumes a significant amount of mem-
ory. Their work proposes a hybrid strategy which clusters particles
into memory-efficient PKD treelets, which are then stored at the leaves
of hardware compatible trees. This reduces memory consumption
while maintaining benefits from hardware acceleration. Recent work
by Morrical et al. [25] propose a simpler and faster Hilbert clustering
strategy, in the context of finite elements.
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(a) Attribute-Aware Radial Basis Functions (1) use a world-space color
blending, overcoming compositing limitations of prior splatting meth-
ods (2). Since our approach uses a stackless traversal over overlap-
ping points (3), we safely avoid stack overflow issues exhibited by prior
work [15] when ray-particle overlap is large (4).
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(b) Prior works visualize particle volumes using only the integrated RBF
density field (1). Additionally, we can use our Attribute-Aware-RBFs to
visualize per-particle properties, for example, per-particle colors (2).
These attributes can additionally weight per-particle RBF contributions
(3) or control per-particle radii (4).

Fig. 2: An illustration of RBF field reconstruction as ten particles move towards each other from left to right. (Also see the supplemental.)

3 RENDERING COLORED TIME SERIES PARTICLE VOLUMES

Taking inspiration from these prior works, here we describe our
method for interactively rendering colormapped time series particle
volumes on modern GPU architectures using RT cores.

In Section 3.1 we explain how to interpolate points in space to re-
construct the volumetric field. In addition to particle density, here we
also describe how to interpolate color-attributed particles using a ra-
dial basis integration scheme. Then, we show how ray tracing cores
can be used to accelerate this reconstruction process.

In Section 3.2 we describe how to leverage GPU-parallel tree con-
struction routines to enable interactive exploration of particles over
time. We also leverage a variant of tree construction, called “tree re-
fitting”, to allow users to manipulate particle radii by corresponding
scalar attributes. Then, we adapt these construction routines to reduce
memory consumption and improve build time.

In Section 3.3 we describe how we use this accelerated field re-
construction for direct volume rendering. There, we cover how to
achieve stochastic volumetric shadows for improved depth perception,
and also how to reduce noise in these shadowed regions to improve
perception of data over time.

3.1 Field Reconstruction
By themselves, mathematical points have no volume, and only define a
location in space. But for visualization purposes, we want these points
to represent a sampling of the volumetric field around them. There-
fore, we need to clarify the behavior we expect when transforming a
cloud of particles into a continuous field of values. We refer to this
transformation process as field reconstruction.

As this field is sampled closer and closer to a particle, that particle
should influence the sampled location more and more; and as this field
is sampled further away, that particle’s influence should fall off with
distance. Neighboring particles should combine together to achieve a
smooth field; and to enable the exploration we want to remap this field
to hide certain values and reveal others. This will also give us control
over how particles blend together since we can choose only to show
locations where multiple particles overlap.

We also want to use a colormap to visualize the attributes associated
with each particle, in addition to the relative density of those particles
in space. When particles are nearby, we aim to have a natural blending
between color-mapped attributes. To our knowledge, no prior work on
high-quality particle sampling accounts for this. So in Section 3.1.2,
we rethink the idea of RBF-based particle sampling, and modify these
RBFs to drive a weighted color averaging.

3.1.1 Density Field Φ
To visualize particle density, we implement an integration scheme over
radial basis functions (RBF). An RBF is a real-valued function ϕ
which takes as input two points in space, a sample point x and a center
point ci, and returns a value based on the distance between these two.
We use a truncated Gaussian variant of this RBF definition, where this
value drops to zero if the distance between these two points exceeds a
given radius ri. In practice, we chose this RBF to be a Gaussian distri-
bution truncated three standard deviations away from the mean, as this
value tightly bounds the particle while still producing an artifact-free
volumetric field. Lastly, we supply a weight w, used to enable or dis-
able a particle’s influence on the field, which we define as a user-driven
mapping from the per-particle attribute si.

ϕ̂(d,r,w) = w∗ e−
1
2
( 3d

r )2

(1)

ϕi(x,ci,ri,si) =

{
ϕ̂(||x− ci||,ri,w(si)), if ||x− ci|| ≤ ri

0, if ||x− ci||> ri
, (2)

Using these density RBFs, we can define a scalar density field Φ as
the sum of all RBFs contributing to a point in space:

Φ(x) =
n

∑
i

ϕi(x,ci,ri,si) (3)

We can then map this RBF density field to an optical density field to
direct what final density values constitute surfaces or volumes in our
visualization, and can also directly colormap this RBF density field to
gain visual insights on where particular density values occur.

3.1.2 Attribute Field Θ
Alternatively, we may want to visualize per-particle attributes using
a colormap. In quantitative cases—for example, a temperature or
mass associated with each particle—we want to show a direct spa-
tial blending of these attributes; and for particles that are qualitative—
e.g. an enumeration of particles as either “electrons”, “neutrons”, or
“protons”—we want to classify the presence of these in space using
distinct colors. This is often referred to as pre-vs-post-interpolative
classification and ultimately we want to support both of these cases.

Therefore, rather than visualizing the RBF density field directly, we
use these basis functions to interpolate per-particle attributes. For post-
classifications, continuous attributes blend gradually in space; and for
pre-classifications, overlapping particles of different classes can be
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(a) (b) (c) (d) (e)

Fig. 3: An illustration of RT core range queries being used for radial basis function (RBF) field reconstruction. Given a collection of particles (a)
with varying positions, colors and radii, we want to efficiently reconstruct the density field Φ and attribute field Θ at the query point (the open circle
in white). Particles are bound by their support radius r (b), which in turn are bounded by axis aligned boxes compatible with RT cores (c). We trace
a zero-length ray whose origin is the query point, and RT cores cull away all particles whose support do not overlap the query point (d). The RBF
contributions of all particles within range are integrated during traversal, producing the desired Φ and Θ values in (e).

Fig. 4: (left) The influence of a particle ϕ falls off with distance and is
truncated to radius r, while a particle’s color θ remains uniform through-
out this radius. (right) These radial basis functions are summed to pro-
duce a volumetric density Φ , and produce a weighted color average Θ .

identified by the presence of mixed colors, such as purple in a field
of blue electrons and red protons—albeit with careful curation of a
colormap to avoid ambiguities.

To achieve this intended behavior, we can extend our previous RBF
density field. We start by defining a single particle’s attribute as a uni-

form θ̂ throughout the particle’s radius ri, and zero otherwise. This

θ̂ is defined as either the per-particle attribute si, or a user-driven col-
ormapping of si.

θi(x,ci,si,ri) =

{
θ̂(si), if ||x− ci|| ≤ ri

0, if ||x− ci||> ri
, (4)

Using these attributed RBFs, we can define an attribute field Θ as a
weighted average of all particle attributes influencing a given location
in space, where the weight of each attribute is derived from the previ-
ously defined density RBF ϕi of that particle at the same location.

Θ(x) =
∑n

i θi(x,ci,ri)∗ϕi(x,ci,ri)

Φ(x)
(5)

This weighted average results in a natural blending of colormapped
attributes while still retaining a uniform color for when particles do
not overlap, and whose influence falls off with distance.

3.1.3 Optimizing Field Reconstruction
With the definitions of Φ and Θ above, we can now visualize our par-
ticle data volumetrically. However, to visualize these datasets interac-
tively, we must be capable of sampling this scalar field hundreds of
times per pixel per frame in only a couple milliseconds. A naive ap-
proach would be to iterate over all particles in our data, summing up
each particle’s density and averaging all contributing colors together;
but as the number of particles increase, this will quickly become a bot-
tleneck. However, because we truncate the influence of a particle to a
finite radius around it, only a small set of particles will actually influ-
ence our field at any given point in space. Therefore, we can substi-
tute this exhaustive traversal for a search that returns only the particles
within range of our query point.

In computational geometry, this problem is otherwise known as a
“radius range query”. Traditionally, these queries are implemented on
the GPU either using linearly indexed particles in a regular grid, or
by using bounding volume hierarchies. Unfortunately, both of these
schemes come with certain disadvantages. With grids, load balancing
is an issue in cases where particle density is highly non-uniform, where
the majority of particles will fall into a select few cells and result in
near-exhaustive traversals. On the other hand, tree traversal on Single-
Instruction-Multiple-Data (SIMD) units introduces thread divergence
on GPU architectures, which serializes execution.

Fortunately, modern GPU architectures support hardware-
accelerated tree traversal as part of ray tracing coprocessors. These
RT cores act more like Multiple-Instruction-Multiple-Data (MIMD)
units [31], which are more resilient to divergent tree traversal. As
demonstrated by Zellmann et al. [46], we can (ab)use these units
to implement a hardware-accelerated range query. Their work uses
range queries in a two-dimensional graph context to simulate the
repulsive forces between nearby nodes, but we can easily extend this
idea to support our three-dimensional particle RBF integration (cf. to
Equations 3 and 5).

We begin by building a bounding box over every particle in our
data with a radius ri. Then, we pass these bounding boxes to our ray
tracing API, using the built-in tree constructor. By constructing our
tree this way, we “bake” the ranges of our particles into the tree. Then,
when we want to traverse through all particles within range of a given
location, we trace a ray whose origin is set to that query location. We
set the tmin and tmax values of the ray to 0, turning the ray query into
a point query. Due to the inner workings of these RT cores, we must
set the ray direction to something with non-zero length, so we set the
direction to a constant (1,1,1). Finally, as this ray intersects boxes
at the leaves of our tree, if the ray origin lies within the radius range
of the corresponding particle, we can conclude that particle is within
range. An illustration of this method can be found in Figure 3.

To use these range queries for field reconstruction, we reserve sev-
eral ray payload registers, one to hold our density field value Φ and
a small number of registers to hold our attribute field values Θ . We
initialize these values to 0, and then call the appropriate intrinsic to
dispatch ray traversal to our RT cores. As rays intersect our range
boxes, RT cores return for intersection testing. We test to see if our
ray origin is contained within the intersected particle’s radius, and if
so, we report a potential intersection, passing the evaluated particle’s
distance d, scalar attribute s and radius r as “hit attributes”.

From there, execution in the fixed function ray tracing pipeline
moves to “any hit” evaluation. We use the given particle’s scalar at-
tribute s to determine that particle’s weight w. For post-interpolation

we use the attribute s as our θ̂ directly, but for pre-interpolation we
use this s to instead lookup a color for the given particle, and assign

that to our θ̂ . Then we use the given distance d, radius r and weight w
to evaluate our particle’s RBF density ϕ̂ at the queried location. Once
this is evaluated, we add our particle’s contributing density ϕ̂ to our
total density field value Φ(x) in our ray payload. We also weight our

θ̂ by this RBF density ϕ̂ and add the result to our total attribute field
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value Θ in our ray payload. Finally, we ignore the hit, tricking our RT
cores to continue traversal to the next particle within range.

When ray traversal completes, the returned value stored in Θ techni-
cally represents just the numerator of our weighted average. We divide
this accumulated value by the returned Φ density value to solve for the
true Θ value. If pre-interpolating the attribute field, this attribute field
Θ can be colormapped; and with post-interpolation, this attribute field
can be visualized directly. From here, we can also map the integrated
density field value Φ to an optical density using a user-driven density
map. If users wish to visualize the density field directly, we can sub-
stitute the previously returned color value with a colormapping of the
returned density field value Φ .

3.2 Tree Construction and Refitting
By using hardware accelerated ray tracing, we also benefit from high
performance tree construction. Prior particle volume rendering meth-
ods construct a hierarchy offline on the CPU [14]; but if particles move
or radii are edited, this hierarchy must be rebuilt. Because we are no
longer limited to offline tree construction, we now have the opportu-
nity to interactively move and resize particles to enable additional ex-
ploration. (See also Table 1).

3.2.1 Interacting with Time

To handle particle movement between time steps, we allocate a buffer
of axis-aligned bounding boxes in advance, with one box per particle.
Then, whenever the simulation progresses or the user interacts with
the time dimension of the data, we compute these bounding boxes in
parallel on the GPU using a compute shader. This compute shader
adds and subtracts the given particle’s radius from its current origin,
storing these two extremes into the bounding box buffer.

Some simulation codes also introduce new particles or remove par-
ticles as the simulation progresses. For our application, we assume
a maximum theoretical number of particles to avoid expensive reallo-
cation of the bounding box buffer. Then, if a box contains no points,
possibly due to one timestep having fewer particles than another, we
set the minimum and maximum bounding box coordinates to floating
point NaN. This disables the box from being considered by our ray
tracing graphics API during tree construction. Finally, we pass this
buffer directly to our ray tracing framework’s real-time tree construc-
tion routine, recycling existing scratch memory required by this tree
construction to avoid stalls from buffer reallocations.

3.2.2 Interacting with Particle Radii

To handle particle radii manipulation, we can refit our trees rather than
rebuilding them. This refitting process is significantly faster than full
tree construction, and allows for smoother particle radii manipulation,
especially for very large particle volumes. Here, refitting is allowed,
since radii manipulation does not change the underlying tree topology.

In practice, we introduce another user-driven map, which we call a
“radius map”, which allows users to control individual particle radii,
and can be used as a more efficient means of hiding particles. With
the RBF weight in Equation 1, near-zero weighted particles are still
intersected by range queries, and result in redundant computation. By
instead hiding particles by radii, users reduce bounding box overlap in
the tree and avoid this unnecessary computation, effectively enabling
empty-space skipping.

To enable per-particle RBF manipulation, we modify our bounding
box compute shader to read the current particle’s scalar attribute s from
the radius map to set a unique particle radius. For convenience, we
specify a global RBF particle radius, then have this radius map return
a percentage, which we multiply by the global RBF particle radius
to compute our final particle radius. Then, we use the appropriate
refitting instructions supplied by our ray tracing framework to account
for these updated particle bounds.

3.2.3 Reducing Memory Consumption by Clustering

Finally, with some large datasets, memory consumption can be an
issue—especially for consumer GPUs with limited memory resources.

(a) (b) (c)

(d) (e) (f)

Fig. 5: Illustrations of bounding boxes over a dynamic scene: On the
top figure we see particles(a) with expanding radii(b) that can be han-
dled by tree refitting(c); on the bottom, we see particles with chang-
ing positions(d) that may create suboptimally overlapping bounding
boxes(denoted with dotted lines)(e) hence requiring rebuilds(f).

Fig. 6: Sorting the particle along a Hilbert curve to quickly and efficiently
create spatially coherent clusters(denoted in solid lines).

At the moment, we need to account not only for the particles them-
selves, but also their bounding boxes. However, a buffer of bounding
boxes over each particle will alone be twice as large as the particle
data itself, since each axis-aligned box must be defined using two ad-
ditional points, a minimum corner and a maximum corner. To reduce
memory consumption, we can reduce the number of bounding boxes
we create by clustering nearby particles into the same box.

To do this clustering, we follow in the footsteps of recent works [7,
28], and reorder particles along a Hilbert space filling curve. This
reordering operation can be done either on the CPU, or on the GPU
using a parallel radix sort. By reordering particles this way, nearby
particles in space will also be nearby in memory. Then, rather than
compute an individual bounding box over every particle, we can build
“cluster” bounding boxes over sets of N neighboring particles in mem-
ory. The first cluster contains particles 0 → N − 1, the second cluster
contains particles N → 2N −1 and so on (See Figure 6).

This will come at a slight cost to field reconstruction performance,
as now with every intersected cluster, all particles in the cluster must
be tested for intersection against our query point. However, when
neighboring groups of particles are likely to overlap the query point
already, processing all of these nearby particles together in a memory
coherent linear process can be more efficient than a more intensive
depth first search through the same set of particles.

3.3 Direct Volume Rendering

Using radial basis functions, we can reconstruct our scalar field at
any point in space, including both the integrated RBF density field
Φ as well as our colormapped attribute field Θ . We also have the
means to quickly reconstruct this scalar field thanks to hardware accel-
eration. Then, we can use GPU-parallel tree construction to animate
these fields interactively, and can use tree refitting to manipulate par-
ticle radii. With this, we have a solid framework in place to enable
direct volume rendering of our time series particle volumes.
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Fig. 7: An illustration of different volume rendering strategies for the Cabana Dam Break dataset over time from left to right (rendered interactively
at 45 FPS). Single-Scattering (4K-SPP) highlights depth through shadows, but requires time to converge. Null Collision methods (NC 1-SPP)
decorrelate input random numbers from output luminance, causing to significant noise in single sample per pixel configurations. Stochastic Ray
Marching (SR 1-SPP) preserves this correlation, allowing for blue noise patterns in the final image structure of single-sample-per-pixel images,
greatly improving image clarity. (We recommend zooming in to evaluate noise levels, or observing these results in the supplemental material.)

3.3.1 Emission and Absorption
One common approach to direct volume rendering is to use the emis-
sion and absorption lighting model. With this model, samples within
participating media emit light that can be observed directly by the
viewer. This emission is absorbed exponentially by the volume de-
pending on the optical thickness of the media. We see the effects of
this absorption in the form of occlusion, where opaque media in front
occludes other media further back.

Starting at the camera origin, we generate a set of view-aligned rays
to test for intersection against a global bounding box containing our
particle data. We then march these rays from their entry point in the
box to their exit, sampling our scalar field at every step. We use the
RBF density field Φ as our optical density and the Beer-Lambert law
to compute the transmittance along the ray, which we use to composite
the corresponding Θ color values from front to back until the ray exits
the bounding box or the pixel’s opacity reaches saturation. To avoid
“wood grain” artifacts from the regular step size, we jitter each ray
with a random number, and average these results together over time.

3.3.2 Stochastic Volumetric Shadows
A draw back of the emission and absorption lighting model is that
viewers can find it difficult to comprehend depth within the data. This
is because we often depend on external light sources and shading to
give shape to the implicit geometry within our volume [20,43]. There-
fore, to enable better recovery of depth information during visualiza-
tion, we can extend this emission and absorption model to include vol-
umetric shadows. These shadows provide more insight into the volume
by allowing viewers to discern cracks and crevices through the inter-
action of light with surfaces inside the volume. Additionally, shadows
cast by these surfaces can offer additional depth cues, especially if the
user is able to manipulate the origin of the light.

To implement volumetric shadows, we can move over from an emis-
sion and absorption model to a single scattering model. Rather than
interpreting sampled colors as emission sources, we instead interpret
these colors as the albedo—or reflectiveness—of our media. With this
change, the appearance of our media now depends on how much light
is received at a given location in space. This can be controlled by ma-
nipulating the location of the light, or by rendering certain locations of
the media optically transparent.

Unfortunately, with alpha-composited ray marching we run into a
scalability issue, since as is, we have many samples along our viewing
rays that need shading. To shade a given sample point, we must trace
a secondary shadow ray to our light source. These shadow rays must
march through the media—just like our primary rays—to determine
how much light our volume transmits. Though our field reconstruc-
tion is fast, if every primary ray traces secondary shadow rays at each

sampling point, we will quickly reach performance limits and lose our
visualization interactivity.

Instead, we can reduce shadow sampling expense by substituting
ray marching for a null collision method. This uses a Monte Carlo
sampling process to sample equally likely distances into the volume
(called “free flight distances”). Since the Beer Lambert law produces
absorbance given a distance, we can invert this function to generate
free flight distances given random absorbance values. In heteroge-
neous media, inverting absorbance is difficult, since optical thickness
varies spatially. Null collision methods solve this problem by introduc-
ing “null particles” that homogenize the volume and enable inverting
absorbance without altering the volume’s appearance. Then, a rejec-
tion sampling process is used to determine if the current sample is a
null collision event or a scattering event. For a more fully detailed
explaination of null collision methods, we recommend the distance
sampling section of the SIGGRAPH course by Novak et al. [30].

By sampling free flight distances, we can reduce the number of
shade points along our viewing ray from N to 1. Therefore, we only
need to trace one shadow ray for that one shade point, which signif-
icantly reduces sampling expense per frame. The compromise with
this approach is the introduction of significant noise, similar to Monte
Carlo path tracing, which must be converged over time.

3.3.3 Reducing Image Variance with Blue Noise

Null collision methods work well for visualizing static datasets where
the image has time to converge. However, the high degree of noise
present in single-sample-per-pixel images make it difficult to compre-
hend data that animates over time. Traditional methods use some vari-
ation of temporal antialiasing to converge these stochastic effects in
the presence of motion, but these techniques require motion vectors,
which we cannot easily compute due to the volumetric nature of our
data. Alternatively, we could increase the number of samples taken
per-pixel per-frame, but this would slow down our visualization to non-
interactive framerates.

We observe that the difficulty in comprehending single-sample-per-
pixel images from null collision tracking stems from a lack of structure
in the noise, especially in the shadowed regions we depend on to per-
ceive depth and form. At the same time, this noise is unavoidable,
since null collision trackers use rejection sampling to handle null scat-
tering events along the ray. Even with a high-quality random number
generator, this rejection sampling process destroys any correlation be-
tween the input random noise and the output image structure.

Fortunately, there are other methods to compute free-flight dis-
tances. First, we can describe absorbance F as a function of t, where t
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represents a distance along a ray:

F(t) = ξ = 1− e−
∫ t

0 μt (s)ds (6)

In the equation above, μt(s) represents the volumetric extinction
at a point along our ray. The exponential term represents the Beer-
Lambert Law, which models the transmittance of light through the vol-
ume as an exponential decay dependent on the distance traveled and
the overall extinction along that distance.

In effect, the equation above produces an absorbance ξ between 0
and 1 given a free-flight distance t. Our objective then is to invert the
above function, such that we can supply a single random absorbance
value ξ between 0 and 1 to obtain a free flight distance t. Note, it is
important that we require only one such random value ξ , so that we
can maintain a strong correlation between the input random numbers
and the output sampled distance.

If we attempt to invert the equation above, we will discover that this
function can only partially be inverted:

∫ t

0
μt(s)ds =−ln(1−ξ ) (7)

This is because the extinction values μ are a function of t, which
we simultaneously want to solve for. Fortunately, we can solve for an
approximation of the above equation by converting this integral into a
Riemann sum:

n

∑
i=1

μt,iΔ =−ln(1−ξ ) (8)

If we can solve for the right hand side analytically, then we perform
a linear search over the left hand side until we find a solution to this
equation. Therefore, we begin by solving for the right hand side of
this equation by generating a random value ξ . Then, we use a ray
marching process to search numerically for a solution to this equation,
computing a running sum of the sampled extinction values μ along our
ray multiplied by our step size until this sum exceeds the solution to the
right hand side. The distance at which the left hand side exceeds the
right hand side is an approximate solution to the free-flight distance.

The advantage of the above stochastic ray marching technique to
computing our free-flight distance is that we no longer need to use
rejection sampling, since we no longer need null particles to homog-
enize the volume in order to invert absorbance. With this alternative
ray marching method, the sampled shading positions into our volume
require one random number, and will have a high correlation with
the input random number generator. Therefore, we can improve the
structure of the volumetric noise by using Spatio-Temporal Blue Noise
(STBN) textures, as described by Wolfe et al. [41]. The results of this
transformation can be seen in Figure 7.

4 EXPERIMENTAL RESULTS

To evaluate our method, our rendering backend [26] uses Vulkan 1.3
along with the VK_KHR_raytracing_pipeline extension to access
hardware-accelerated ray tracing functionality on NVIDIA, AMD and
Intel GPUs in a Linux based environment. Unless otherwise stated,
measurements were taken using an NVIDIA RTX 4090 and an Intel i9
12900K processor. For Figure 10, we additionally include evaluations
on an NVIDIA RTX 3060 Ti, an Intel ARC A770, and an AMD RX
6750 XT. All images were rendered at a resolution of 1024×1024 up
to 64 samples per pixel, with one sample per frame.

4.1 Datasets
With this hardware, we performed a series of tests on a collection of
time series particle volumes of varying sizes (cf. Figure 8):

1) Nozzle represents a simulation used to model jet fuel injection [11].
This dataset consists of an opaque cylindrical structure made of static
particles, which serves to concentrate the jet. Over time, this simu-
lation injects new matter into the simulation, resulting in increasing

memory size and density variations that present a challenge for RBF
particle visualization.

2) Coal Boiler represents a real-world simulation of coal particles be-
ing injected into a boiler [1]. Our copy of this data consists of 4.6
million particles at the beginning of the simulation to 41.5 million par-
ticles upon simulation completion. This simulation was produced us-
ing the Uintah computational framework [23].

3) Cabana Dam Break represents a free surface water column col-
lapse simulation over 138 timesteps, with each timestep containing
768K particles. Particles repel each other, creating a relatively uniform
distribution. This simulation was produced with the Cabana particle
toolkit from the Exascale Computing Project [36].

4) Viscus Fingers models transient fluid flow obtained through a finite
pointset method [17]. A cylinder is filled with pure water, then an
unlimited salt concentration is placed on top. Over the course of 120
timesteps, (with approximately 550K particles per step), the highly
concentrated salt solution sinks down the cylinder, creating “viscous
fingers”. This dataset comes from the 2016 Scientific Visualization
Contest.

5) HACC Cosmology is an evolution of dark matter and baryon parti-
cles over the course of 5 million years, obtained using a CRK-HACC
cosmological simulation [10]. This simulation studies the impact that
Active Galactic Nuclei (AGN) have on the surrounding matter distri-
bution. This AGN comes from matter building near black holes at the
center of galaxies. This dataset comes from the 2019 Scientific Visu-
alization Contest.

4.2 Evaluation
With these datasets, we measure preprocessing time, compression ef-
fectiveness, and rendering performance on various datasets and at-
tributes. For “Nozzle”, we configured a constant RBF map with 100%
density, while all others use a linearly increasing density map. “Boiler”
includes a larger particle radius to show overlap, while “Dam Break”
and “Viscus Fingers” use a spiky transfer function to demonstrate a
mix of volumetric and surface-like behavior. Finally, “Cosmology”
demonstrates small features in a large domain.

We render the representative view points in Figure 8, showing sin-
gle sample-per-pixel images on the left and converged 64 sample-per-
pixel images on the right. Here we also present timing estimates
in both frames/second (FPS) and in milliseconds (ms) per frame for
1024 × 1024 viewports. Because our sample space is so large, we
generally observe a large variation in framerate. Data sets with more
particles per step, larger particle overlap, presence of more translucent
particles, and small yet dense particles within a larger computational
domain all contribute to slower framerates, and vice versa.

Another important aspect of our method is data structure construc-
tion and update performance. Ray tracing based methods are well
known for their efficiency with respect to the number of input prim-
itives. However, a typical characteristic for SPH simulations is time-
varying particle data. While interaction over time series data is trivial
with a raster-based splatter, a common criticism towards ray tracing
methods is that they are traditionally reserved for visualizing static
datasets, due to long acceleration structure construction times. For-
tunately, we can build these structures interactively, and are not con-
strained to these prior assumptions. We report acceleration structure
construction time (when time steps change) and update times (when
radii change) in Tab. 1. Note that these times are in milliseconds.

Finally, we present benchmarks that explore the influence of spe-
cific parameters (particle radius, Hilbert cluster size, hardware accel-
eration, and the impacts of spatio-temporal blue noise) on rendering
times, as we found that our method is particularly sensitive to these.

4.2.1 Increasing Particle Radii
Using a range query sampling-based approach means that our method
is especially sensitive to particle overlap. Samples taken in dense re-
gions where numerous RBFs overlap have a higher cost because more
primitives need to be tested and contribute to the weighted average
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(a) Nozzle
100 M Points

768K Points / Step
105 FPS (9.5 ms)

(b) Uintah Boiler
253 M Points

23,079 K Points / Step
6.79 FPS (147.2ms)

(c) Dam Break
105 M Points

768 K Points / Step
46 FPS (21.7 ms

(d) Viscus Fingers
67 M Points

550 K Points / Step
24 FPS (41.7 ms)

(e) Cosmology
330 M Points

500 K Points / Step
64.5 FPS (17.2 ms)

Fig. 8: Datasets used for testing. All datasets are colored using per-particle velocity magnitude. Animations of all these datasets can be found in
the supplemental material. All timings above measure noisy single-sample-per-pixel images. Left sides of images show single-sample-per-pixel
images, while right sides show converged images at 64 samples per pixel, with both sides using spatio-temporal blue noise (STBN).

from Equations 3 and 5. With large particle clusters, smaller radii also
can incur potential costs due to potentially excessive empty space.

To evaluate this, we first explore the influence of varying particle
radii. For this evaluation, we visualize datasets over multiple random-
ized viewpoints representative of a typical explorative visualization
session, as culling effectiveness, empty space removal, etc. not only
depend on spatial arrangement, but also on camera parameters. This
averaging over a number of camera positions also allows us to report
a performance envelope rather than a static performance estimate.

Based on the representative viewpoints from Fig. 8, we orbit around
the centroid of the given datasets/time step and average rendering
times over 50 different positions. Then, we pick ranges of radii that
we find are sensible choices for our five datasets (the lower end of the
range allowing to see through most of the data while the upper end of
radii results in significant overlap), and probe that range at uniformly
spaced positions. We present results in Fig. 9 (a-e) (the blue polylines)
for cluster sizes of 1 (solid) and 16 (dotted).

We observe that render times generally go up with increasing radii,
which we primarily attribute to an increase in the number of primitives
intersected per sample taken. With decreasing particle radii, we ob-
served that any introduced empty space does not significantly impact
visualization performance. This is likely because queries in empty re-
gions intersect very few internal nodes in the containing tree, making
these queries inexpensive. Very similar observations were also drawn
by prior work [27]. To our surprise, clustering actually improves vi-
sualization performance in three of the five datasets tested. We sus-
pect this clustering helps more in cases where particles are themselves
highly clustered and overlap is high, where a linear search is more
efficient than exhaustive tree traversal.

4.2.2 Particle Clustering
Next, we evaluate Hilbert cluster sizes and their influence on ren-
der times and memory consumption. We generally find that sensi-
ble choices for cluster sizes are power of two’s in the (discrete) range
[20,24]. We perform the same benchmark from before using the 50 dif-
ferent camera orbits and now vary the cluster sizes in that range, while
keeping the RBF radius fixed as the median particle radius used in the
prior test. These results are reported in the same Figure 9, marked
using red lines. By sharing a common figure, we can compare the
relative sensitivity of our method to cluster size versus particle radius.
We contrast these results to the reduction in acceleration structure size
reported in Table 2, for the same discrete range of cluster sizes.

Interestingly, we observe that, unlike the radius variable, rendering
times are less dependent on cluster sizes. For example, with “Boiler”,
the effect when increasing cluster size is actually positive, and the red
“cluster size” curve is in general lower than the solid blue “unclustered”
line. At the same time, the improvement in memory consumption
when increasing cluster size is an order of magnitude; cluster and ac-
celeration structure sizes exhibit a near perfect linear correlation. Clus-
tering also yield improvements to tree construction and update times,

Table 1: Rebuild and Refit Times (in ms, rebuild before “/” and refit after)
for increasing particles per leaf from left to right. We observe faster tree
updates with more particles per leaf.

particles/leaf
data set 1 2 4 8 16

Viscus 1.0 / 0.0 0.8 / 0.3 0.6 / 0.2 0.5 / 0.1 0.5 / 0.1
Boiler 65. / 10. 34. / 5.9 18. / 3.6 9.4 / 2.1 4.3 / 1.4
Cabana 1.2 / 0.4 0.9 / 0.3 0.7 / 0.2 0.6 / 0.2 0.5 / 0.2
Nozzle 0.9 / 0.3 0.7 / 0.2 0.6 / 0.2 0.5 / 0.2 0.4 / 0.2
Cosmology 1.5 / 0.3 0.9 / 0.6 0.7 / 0.3 0.7 / 0.2 0.6 / 0.2

Table 2: Accel Structure Size for increasing particles per leaf from left
to right. We observe that more particles per leaf result in linear memory
savings. (in MB. OOM indicates "Out Of Memory")

Particles / Leaf
Data set Particles (in MB) 1 2 4 8 16

Viscus 9.0 81.1 40.1 20.3 10.1 5.1
Boiler 704 6200 3100 1600 797 398
Cabana 11.7 106 53.1 26.5 13.3 6.6
Nozzle 6.0 54.4 27.2 13.6 6.8 3.4
Cosmo 500K 8.0 72.5 36.2 18.1 9.1 4.5
Cosmo 50M 563 5000 2500 1200 637 318
Cosmo 500M 7400 OOM OOM OOM 8400 4200

(cf. Tab. 1), though these times are already quite low, so we suspect
the primary advantage of clustering lies in memory consumption.

4.2.3 Impacts of Hardware Acceleration
With our method, we make use of ray tracing hardware to improve
query performance. These ray tracing cores cannot be disabled, mak-
ing performance improvements difficult to evaluate directly. Instead,
we compare our hardware accelerated traversal to a software-based,
stack-facilitated, depth-first traversal on the same GPU, using an opti-
mized linear bounding volume hierarchy (LBVH) [19], as these trees
can be built in parallel on the GPU at interactive rates [13] to facilitate
our time-series particle data.

We compare relative performance improvements in Figure 10 on
three different RT core architectures: Intel ARC Alchemist, NVIDIA’s
Ampere, and AMD’s RDNA 2. NVIDIA and Intel RT core implemen-
tations accelerate full tree traversal through a Multiple-Instructions,
Multiple-Data (MIMD) coprocessor, while AMD’s RDNA 2 sup-
ports intrinsics for direct ray-box intersection testing on their Single-
Instruction, Multiple-Data (SIMD) compute units. (Note that larger
speedups in Figure 10 do not necessarily equate to faster render times).

With this setup, we evaluate relative performance improvements on
two synthetic datasets and one “real-world” dataset (i.e., the “Cabana
Dam Break”). The “Uniform” dataset consists of 60 K particles gener-
ated using a Poisson sphere sampling process, while the “Random”
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Fig. 9: Render time (including shadows) in seconds, as a function of
particle radius (blue solid is 1 particle per cluster, blue dotted is 16 per
cluster) and as a function of particles per cluster (red solid varies parti-
cles per cluster for a fixed median radius taken from the prior sweep ).

(a) Speedups from RT Hardware (b) Speedups from Blue Noise

Fig. 10: Relative speedups when rendering three datasets on three
different GPU vendors (all including secondary shadow rays and one
particle per cluster). "Uniform" and "Random" consist of 60K synthet-
ically generated particles distributed throughout a unit cube, and "Ca-
bana" is the dam break seen in Figure 8. (a) demonstrates speedups
from RT Hardware over a software-based tree traversal, while (b) shows
speedups of blue noise over a white noise sampling distribution.

dataset perturbates these 60 K uniform samples by a displacement
whose magnitude is equal to the radius of the Poisson sphere.

Our findings show that for all architectures, we see performance
improvements by using the included RT cores and intrinsics made
available through VK_KHR_raytracing_pipeline; however, perfor-
mance improvements are much more significant for Intel and NVIDIA
architectures than on AMD’s RDNA 2. We speculate that this is due to
differences between MIMD and SIMD acceleration structure traversal,
as MIMD RT cores implementing full tree traversal are theoretically
more resiliant to divergent traversal processes. This hypothesis is fur-
ther backed by larger observed speedups on Intel ARC and NVIDIA
when comparing the randomized particle distribution over the uniform
particle distribution. In this case, AMD’s SIMD tree traversal intrin-
sics yield smaller improvements over pure software-based traversal.

4.2.4 Impacts of Spatio-Temporal Blue Noise

With our approach, we use Spatio-Temporal Blue Noise to improve
image quality when exploring particle volumes over the time dimen-
sion. To our surprise, this change resulted in a noticeable positive
impact to render times. The impacts of using a blue noise distribution
over a white noise distribution are shown on the right of Figure 10,
where we see speedups of 1− 2×. We suspect this positive impact
is because blue noise sampling patterns are more amenable to GPU

Table 3: A performance comparison against a pre-interpolated 5123

voxel grid and to Knoll et al.’s RT core splatter [15] for Emission and
Absorption versions of the images in Figure 8, using a pre-interpolated
classification. To capture time series exploration performance, we re-
build trees every frame for our method and Knoll et al.’s, and for voxels
we re-voxelize particles into the grid every frame. All numbers are re-
ported in milliseconds per frame for single-sample-per-pixel images.

Dataset
Data Set Viscus Boiler Cabana Nozzle Cosmo

Voxels 1564.5 4248.7 699.7 379.1 406.7
- Voxelization 1562.1 4244.6 692.9 375.4 401.9
- Rendering 2.4 4.1 6.3 3.7 4.8

Knoll et al. 204.1 370.4 23.8 5.3 30.2
Ours 41.0 27.9 13.3 6.7 12.0

caching mechanisms than white noise between neighboring threads.

4.2.5 Method Comparison
Finally, we evaluate the performance of our method against a prein-
terpolated voxel grid renderer and the method proposed by Knoll et
al. [15]. For all methods, we account for any necessary datastructure
construction to enable time series visualization. For the voxel grid, we
atomically sum particles’ RBF contributions into a 5123 grid using a
compute kernel, then divide this sum by the count of particles intersect-
ing each cell. Due to technical constraints of the reference splatter, we
limit our renderer to an emission and absorption lighting model. For
the method by Knoll et al., we reduce the step size slightly to reduce
any severe visual artifacting.

As shown in Table 3, we observe that in all cases, voxel based ren-
dering is dominated by the voxelization process, especially in cases
where particle overlap is high, as is the case with “Boiler”. This issue
is present for both time series exploration as well as colormap and par-
ticle radius manipulation. Rendering the resulting grid is fast, as par-
ticle RBF integration is done a priori, but results in visual artifacting
due to quantization, especially for fine structures like those in “Cos-
mology”. In contrast, both our method as well as that by Knoll et al.
can interactively update the required acceleration structures, enabling
smooth interaction over time.

Our method is competitive with respect to performance to the RT
core splatter baseline. For more surface-like transfer functions like
those used in “Nozzle”, splatting benefits more from early-ray termi-
nation. However, for more optically thin media like the water in the
“Viscus” dataset, splatting performance degrades when many transpar-
ent particles are intersected but do not contribute to early-ray termi-
nation. In these more volumetric cases, it appears that radial basis
functions like ours perform significantly better, as point location can
take a more conservative sampling along rays.

5 CONCLUSION

In this work, we presented a novel method for the visualization of time
series volumetric particle datasets using a combination of attribute-
aware radial basis functions, hardware ray tracing, and GPU-parallel
tree construction. By integrating color-mapped attributes of the parti-
cles into the RBF field, we were able to increase the expressiveness of
our data, and by incorporating blue noise, we were able to significantly
improve comprehension of time-series exploration.

A potential limitation of our approach is that with many large and
transparent particles, we face over-sampling issues due to excessive
null collisions. Sampling empty regions with our method is cheap,
but not free. We would likely benefit from tighter bounding majo-
rants which would reduce the number of samples taken along a ray,
especially in these empty regions. We also suspect that an alternative
query formulation like a truncated K-Nearest-Neighbors query would
help alleviate some issues where particle overlap is large.

Sample code and data demonstrating our method can be found on-
line [24] at https://github.com/gprt-org/attribute-aware
-rbfs, providing additional opportunities for insights as GPU archi-
tectures continue to evolve.
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