2024 7th International Conference on Artificial Intelligence and Big Data (ICAIBD) | 979-8-3503-8510-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICAIBD62003.2024.10604628

430
Authorized licensed use limited to: John M. Pfau Library California State University San Bemardino. Downloaded on October 11,2024 at 04:55:37 UTC from IEEE Xplore. Restrictions apply.

2024 7th International Conference on Artificial Intelligence and Big Data

A Dual-Modal Human Activity Recognition System
Based on Deep Learning and Data Fusion

Qingquan Sun*
School of Computer Science
and Engineering
California State University
San Bernardino
San Bernardino, USA
gsun@csusb.edu

Sai Kalyan Ayyagari
School of Computer Science
and Engineering
California State University
San Bernardino
San Bernardino, USA

Abstract—As the primary sensing device in human activity
recognition (HAR), non-intrusive sensors have been widely used
in various applications such as gaming, sporting, health care
monitoring, and others. However, the existing work mainly
utilizes single modality of non-intrusive sensors, which limits
the capability of information acquisition, and thus limits the
performance of sensor-based HAR. This paper presents a dual-
modal, non-intrusive, deep learning enhanced sensing system to
improve the performance of sensor-based HAR. This proposed
system consists of inertial sensor and Kinect sensor. Each of them
is able to acquire activity information from different perspectives,
and the combination enlarges data and feature diversities. The
local features and temporal dependencies are further extracted
by multi-layer convolutional neural network and long short-
term memory models. Furthermore, data fusion is implemented
at the decision level with different schemes to improve the
performance. Experimental results demonstrate the effectiveness
and improvement of the proposed system on HAR over other
single-modal systems.

Index Terms—deep learning, human activity recognition, dual
modality sensing, data fusion

I. INTRODUCTION

Sensor-based human activity recognition (HAR) has drawn
more attentions due to the advantages of low-cost, low-data-
throughput, high-convenience, and high-privacy of sensors. It
has been proved that HAR can be achieved with a satisfactory
accuracy using a single modality sensing system [1], espe-
cially for wearable sensors, they have been investigated and
applied to a variety of applications in fitness, sport, gaming,
and monitoring [2], [3]. However, the limited information
acquisition capabilities of single-modal sensor prevents the
further development of sensor-based HAR, especially for the
applications involve complex and highly correlated activities.

To overcome the information acquisition challenge that
single-modal HAR systems are facing, either more activity
information needs to be incorporated into the sensory data
or the learning and feature extraction capabilities of the
HAR systems to be enhanced. As for incorporating more
information, it can be achieved by using dual-modal or multi-
modal sensing architectures, which aims to combine the in-
formation acquired from different sources and leverage di-
verse information on feature extraction and recognition. Deep

979-8-3503-8510-6/24/$31.00 ©2024 IEEE

008080534 @coyote.csusb.edu

Yunfei Hou
School of Computer Science
and Engineering
California State University
San Bernardino
San Bernardino, USA
yunfei.hou@csusb.edu

Khalil Dajani
School of Computer Science
and Engineering
California State University
San Bernardino
San Bernardino, USA
Khalil.Dajani @csusb.edu

Accelerstion ig
= { ¥
Accelerstion iy

(b}
Fig. 1. (a) Depth data of bowling; (b) Inertial sensory data of bowling.

learning techniques utilize neural networks to facilitate feature
extraction and classification. They are more powerful than
traditional machine learning techniques in local feature ex-
traction and unsupervised learning process. Some well known
deep learning models such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) have been
proved to be effective in processing of sensory data. They
can be employed to improve information/feature acquisition
capability of sensor-based HAR systems.

II. RELATED WORK

The concept of using CNN for RGB image-based HAR
can be employed to process depth data, although depth data
includes not as much information as RGB images, shape and
depth information can be extracted from depth data to facilitate
activity recognition [4]. Due to the small scale of depth data,
there are not many works that applied CNNs to depth data-
based HAR. A typical work in this category is done by [6],
in which a combination of CNN and hierarchical dynamic
depth projected difference images is proposed for HAR. A
parallel structure of three CNN channels is proposed in [5].
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Fig. 2. System architecture of proposed dual-modal human activity recognition system.

[7] applied a multi-channel CNN model to RGB images and
depth data, the combination of two modalities improves the
performance compared with each single modality. Compared
with depth data, a special RNN model called long short-
term memory (LSTM) is developed to handle and maintain
the dependencies of time-series data, which is a good fit to
inertial sensor-based HAR. It has been proved that LSTM can
achieve a higher accuracy than CNN on time-series data [8].
An advanced variant of LSTM, bidirectional long short-term
memory (BLSTM) is proposed to improve the performance.
It shows that BLSTM outperforms regular LSTM models and
CNN on large scale data sets [9].

Multi-modal is an effective way to enrich the diversity
of activity feature acquired from different sensor sources,
thus to enhance feature extraction and classification. This
mechanism has been adopted in sensor based-HAR. [10]
presents a multi-modal HAR system based on wifi signal
and inertial sensory data. Authors in [11] utilized a dual-
modal mechanism to train hidden Morkov model to improve
sensor-based hand gesture recognition. An accurate and robust
upper limb tracking system is developed in [12] by unscented
Kalman filter and dual-modal fusion. There are not many
works focusing on only depth data and inertial data fusion. A
complex multi-modal HAR system with skeleton, depth and
inertial data was proposed in [13], in which the depth data
was converted to depth motion maps (DMM) in front, side,
and top views, respectively. Although [14] proposed a dual-
modal fusion work with depth and inertial data, the fusion
was done at the data level. More specifically, the inertial data
has to be transformed to image signals to be compatible with
DMM, which complicated the whole recognition process and
generated more time consumptions.

In this work, we propose a light-weight, dual-modal HAR
system that consists of inertial and Kinect sensors. These
two type of sensors can acquire activity information along
time and distance axes, respectively. Moreover, multi-layer
CNN and LSTM models are employed in parallel to enhance
the capability of feature extraction. The decision level data
fusion further improves the performance of the proposed HAR
system.

III. DUAL-MODAL SENSING BASED ON MULTI-LAYER
LEARNING AND DATA FUSION

A. Data Pre-processing

As shown in Fig.3, data from both Kinect and inertial
sensors are pre-processed with de-noising, splitting, alignment
and normalization. In this work, a median and 3rd order
Butterworth filters are applied to remove the noises from depth
and inertial data. Alignment is for depth data to have consistent
positioning of subject bodies; Normalization is for depth data
to have a common scale in values; A sliding window of 104
samples and 50% overlap is adopted to facilitate learning.

B. Multi-layer CNN and LSTM

CNN is employed in this work to extract the local features
of shapes of human body with different postures, and also
discover the correlations of motions for the same activity.
The multi-layer concept is adopted here to fully utilize the
function of convolutions to repeatedly discover and extract
the local correlations. With the number of convolutional lay-
ers increased, the model is able to extract further localized
features. These further localized features will help enhance
the classification later.

As a special RNN that incorporates a memory cell in each
unit, LSTM is able to retain dependencies among input data.
Hence, it is suitable to handle inertial sensory data which is
serial data in time domain. Similarly to multi-layer CNN,
the purpose of using multi-layer architecture of LSTM is
to discover more dependencies along motions of the same
activity, thus to enhance classifications.

Although technically, more layers can help achieve a better
performance, considering the practical application and time
consumption, we only investigated up to 4 layers for both
models in this work.

C. Decision Level Data Fusion

As the sensory data in this work is completely different,
one is in one-dimension, time-series format, the other is in
two-dimension image format, it is too complicated and costy
to do data fusion at the raw data level. Instead, decision level
data fusion is investigated and implemented in this work. Two
voting schemes of decision fusion are adopted to enhance the
recognition accuracy in this work.
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1) Majority Voting: Majority voting is the most straightfor- TABLE I
ward voting scheme for decision fusion and making. Basically HUMAN ACTIONS
it counts the number of classification decisions for all classes Tion T Action Descripfion Soncor Placement
and selects the class that receives the highest votes as the 1 two hand front clap right wrist
. . .. . 2 cross arms in the chest right wrist
final classification decision. In this work, D denotes the final 3 draw x right wrist
decision. it can be oiven b 4 draw circle (clockwise) right wrist
’ g y 5 bowling right wrist
6 boxing right wrist
k 7 baseball swing right wrist
8 tennis swing right wrist
argmax E 0(Dy, Cj) (1) 9 push right wrist
Cy 1 10 pick up and throw right wrist
11 jogging in place right thigh
A . . 12 walking in place right thigh
where Cj is the target class, Dy, is the decision of the base 13 sit to stand right thigh
- 14 forward lunge (left foot forward) right thigh
classifier Ok" and 15 squat (two arms stretch out) right thigh

1,if Dy = C,

0, otherwise

§= { (2)

2) Weighted Voting: Weighted voting aims to assign differ-
ent significances to each classifier based on their performance.
More specifically, if a classifier generates a higher accuracy, it
will be assigned a higher weight during fusion. In this work,
the voting weights are derived from validation accuracy. Let
ay denote the accuracy of ki classifier, then weight w; can
be represented by

Qg

Yia;

3

Wk

Similarly to the majority voting scheme, the final decision
of weighted voting scheme can be represented by

k
argcmaxz wid(Dg, C;j) )
7 1

IV. EXPERIMENT AND RESULT

A. Dataset

The dataset used in this work is a benchmark dataset: UTD-
MHAD, which is widely used to test HAR systems. This
dataset contains four modalities of data, here we only use the
depth data and inertial data. These data were collected from 8
subjects with 4 trials of 27 different activities. To be noted, as
the initial test of our proposed system, we tested 15 activities
in our experiment as shown in Table L.

B. Performance

The individual performance of using inertial and depth data
is shown in Fig. 4 and 5. The confusion matricies show
that these two modalities received comparable recognition
accuracy, using depth data can get a little higher accuracy.
For each activity, the accuracy is around 82% - 84%. The
comparisons between single layer and multi-layer structures
are shown in Table II. We found out that for our models,
a 4-layer CNN can get the highest accuracy with the depth
data; while a 2-layer LSTM can get the best performance
with the inertial data. Increasing the number of layers does
help to improve the learning capabilities of these two models.
Considering model complexities and time consumptions, we
did not test other cases that more than 4 layers.

The decision level data fusion here is to improve the final
recognition performance. Both fusion schemes (weighted vote
and majority vote) work well. The recognition results of
single-modal and dual-modal are shown in Fig. 6. The dual-
modal accuracy shown in this figure is using majority vote
scheme. As we can see, the proposed fusion scheme improved
the recognition accuracy for all activities.

Table II shows the comparisons of recognition accuracy
among individual modalities of depth data, inertial data, and
the fusion of two modalities. It shows that our developed multi-
layer architecture achieved a better performance than the CRC
method proposed in [3] for both depth and inertial modalities.
In addition, no matter it is using traditional machine learning
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Fig. 6. Recognition accuracies of depth data, inertial data, and the fusion of
two modalities.

TABLE 1T
SUMMARY OF PERFORMANCE ACCURACY

Model Accuracy (%)
CRC (depth) [3] 66.1
CRC (inertial) [3] 67.2
1-layer CNN (depth) 68.8
Multi-layer CNN (depth) 83.8
I-layer LSTM (inertial) 78.25
Multi-layer LSTM (inertial) 82.85
CRC fusion [3] 79.1
fusion (weighted vote) 83.38
fusion (Majority vote) 84.34

technique or deep learning technique, the dual-model fusion
can get a higher recognition accuracy. The majority vote
scheme increased the final average recognition accuracy by
about 0.64. It is not a notable increment, but it is done
without using complicated transformations and involving large
volume of computations. It is more practical for real world
applications. Although the weighted scheme did not increase
the final average recognition accuracy, it will be more robust
integrating the accuracy from both modalities. Furthermore,
the proposed dual-modal system with majority voting fusion
scheme received a higher accuracy than the CRC fusion
scheme [3].

V. CONCLUSION

A dual-modal HAR system is developed with deep learning
and data fusion. Experimental results have demonstrated the
feasibility and effectiveness of the proposed system. Future
work will continue to enhance the accuracy using advanced
learning and data fusion technologies.
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